JP2007206385A - Positively charged toner - Google Patents

Positively charged toner Download PDF

Info

Publication number
JP2007206385A
JP2007206385A JP2006025234A JP2006025234A JP2007206385A JP 2007206385 A JP2007206385 A JP 2007206385A JP 2006025234 A JP2006025234 A JP 2006025234A JP 2006025234 A JP2006025234 A JP 2006025234A JP 2007206385 A JP2007206385 A JP 2007206385A
Authority
JP
Japan
Prior art keywords
toner
fine particles
inorganic fine
particle diameter
positively chargeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006025234A
Other languages
Japanese (ja)
Inventor
Yasushi Nakanishi
靖 中西
Tomoki Yamazaki
智己 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2006025234A priority Critical patent/JP2007206385A/en
Publication of JP2007206385A publication Critical patent/JP2007206385A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a toner which keeps a photoreceptor surface free of a deposit and a scratch and has a long lifetime and excellent quality, with respect to the toner for use in an image forming apparatus using an amorphous silicon photoreceptor. <P>SOLUTION: A positively charged toner for use in an image forming apparatus using an amorphous silicon photoreceptor comprises toner base particles containing at least a binder resin and a colorant, and a plurality of external additives, wherein the external additives comprise at least inorganic fine particles (A) having an average particle diameter D50 of cumulative 50% from the top by the Microtrac method being 0.5-2.5 μm, a particle diameter D3 of cumulative 3% from the top being ≤7 μm, a particle diameter D94 of cumulative 94% from the top being ≥0.3 μm and a Mohs hardness of 9-14, and inorganic fine particles (B) of a metal salt compound having a Mohs hardness of ≤5 surface-treated with silica hydrosol and silicone oil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アモルファスシリコン感光体を用いた、電子写真法、静電記録法、静電印刷法を利用する電子写真複写機、レーザービームプリンタ、静電記録法を利用する静電記録装置における静電潜像の現像のために使用されるトナーに関する。詳しくは、コピー品質に優れ、且つ耐熱性、保存安定性のある正帯電性トナーに関する。   The present invention relates to an electrophotographic method using an amorphous silicon photoconductor, an electrostatic recording method, an electrophotographic copying machine using an electrostatic printing method, a laser beam printer, and an electrostatic recording apparatus using an electrostatic recording method. The present invention relates to a toner used for developing an electrostatic latent image. Specifically, the present invention relates to a positively chargeable toner having excellent copy quality, heat resistance, and storage stability.

電子写真法、静電記録法、静電印刷法を利用する電子写真複写機、レーザービームプリンタ、静電記録法を利用する静電記録装置に搭載される感光体(静電荷像担持体)としてはヒ素−セレン、セレン−テルル等のセレン系感光体、有機光半導体を用いた感光体(以下OPCとする)、アモルファスシリコン感光体の3種類に大別することができる。セレン系感光体は昨今その有毒性、耐久性の弱さから衰退し大幅にシェアは低下しており、現在はOPC、アモルファスシリコン感光体が主流となっている
OPCとアモルファスシリコン感光体を比較した場合、OPCは廉価であるが寿命が10万枚程度の耐刷レベルであり、定期的なメンテナンス、交換が必要であること、一方、アモルファスシリコン感光体は寿命が長いが高価なものであることであり、両者を用途に応じて使い分けている。
As a photosensitive member (electrostatic image carrier) mounted on an electrophotographic copying machine using an electrophotographic method, an electrostatic recording method, an electrostatic printing method, a laser beam printer, or an electrostatic recording device using an electrostatic recording method. Can be roughly classified into three types: selenium-based photoconductors such as arsenic-selenium and selenium-tellurium, photoconductors using organic optical semiconductors (hereinafter referred to as OPC), and amorphous silicon photoconductors. Selenium photoconductors have recently declined due to their toxic and weak durability, and their market share has declined significantly. Currently, OPC and amorphous silicon photoconductors are the mainstream. In this case, the OPC is inexpensive but has a lifespan level of about 100,000 sheets and requires regular maintenance and replacement. On the other hand, the amorphous silicon photoconductor has a long life but is expensive. Both are used properly according to the purpose.

アモルファスシリコン感光体は、耐久性は非常に優れたものであり、100万枚以上の枚数の使用においても感光体としての性能の劣化することなく寿命はなきに等しいものである。そのためアモルファスシリコン感光体に用いるトナーにおいては、トナー成分が感光体に傷をつけたり、付着してしまうことは致命的な問題となってしまうことであり、極力アモルファスシリコン感光体を汚染しないようにトナー材料、特に外添剤を設計する必要がある。   Amorphous silicon photoconductors are extremely excellent in durability, and even when one million or more sheets are used, the life as a photoconductor does not deteriorate and the life is equal. Therefore, in the toner used for the amorphous silicon photoconductor, it is a fatal problem that the toner component scratches or adheres to the photoconductor, so that the toner is not contaminated as much as possible. It is necessary to design materials, especially external additives.

外添剤としては通常、流動化剤、研磨剤、導電性付与剤、滑剤等を使用することは周知の通りであり、これらの材料を複数使うことによりトナーとしての特性を満足するよう調製して用いている。   It is well known to use fluidizing agents, abrasives, conductivity-imparting agents, lubricants, etc. as external additives, and by using a plurality of these materials, the toner can be prepared so as to satisfy the properties as a toner. Used.

例えば、疎水性シリカ、疎水化処理された炭酸カルシウム、疎水化処理された炭化ケイ素と複数の外添剤を用いることにより耐久性、転写効率の上昇、優れたクリーニング性
再転写の改善を実現することが提案されている。(特許文献1、2参照)
また当社においても、アモルファスシリコン感光体を用いた画像形成装置に用いるトナーにおいて、研磨剤として凝固粒子量を10〜60%の割合に調製した炭化ケイ素微粉体を用いることによりアモルファスシリコン感光体に対して傷、付着の汚染を生じさせないトナーを得る技術が見い出せたものの、トナー母体に使用する原材料が限定的であったり、炭化ケイ素の製造コストが高くなってしまったりして満足の行くものとは言い難い現状である。(特許文献3参照)
また滑剤として、一次平均粒径が0.01〜0.5μm、比表面積が25〜200m2/gの範囲の炭酸塩微粒子をトナーに用いることも提案されている。(特許文献4)
またゴム、合成樹脂用の補強性充填剤として、アルカリ土類金属の炭酸塩、硫酸塩をシリカヒドロゾル、有機シラン化合物で表面処理することも知られている。(特許文献5)
特開平8−227171号公報 特開2005−70187号公報 特開2004−163560号公報 特開平9−325513号公報 特公昭52−39061号公報 しかし、これらの外添剤、特に流動化剤、研磨剤、滑剤を用いても、長期にわたりアモルファスシリコン感光体を汚染することなく、かつ良好な画像を得ることは困難であった。
For example, by using hydrophobic silica, hydrophobized calcium carbonate, hydrophobized silicon carbide, and multiple external additives, durability, increased transfer efficiency, and excellent cleaning and retransfer improvements are realized. It has been proposed. (See Patent Documents 1 and 2)
Also in our company, the toner used in the image forming apparatus using the amorphous silicon photoconductor is an abrasive that uses silicon carbide fine powder prepared with a solidified particle amount of 10 to 60% as an abrasive. Although technology has been found to obtain toner that does not cause flaws and fouling contamination, it is satisfactory because the raw materials used for the toner base are limited and the production cost of silicon carbide increases. It is hard to say. (See Patent Document 3)
It has also been proposed to use carbonate fine particles in the toner having a primary average particle size of 0.01 to 0.5 μm and a specific surface area of 25 to 200 m 2 / g as a lubricant. (Patent Document 4)
As reinforcing fillers for rubbers and synthetic resins, it is also known to surface-treat alkaline earth metal carbonates and sulfates with silica hydrosols and organosilane compounds. (Patent Document 5)
JP-A-8-227171 JP 2005-70187 A JP 2004-163560 A JP-A-9-325513 However, it is difficult to obtain a good image without contaminating the amorphous silicon photoreceptor for a long period of time even if these external additives, particularly fluidizing agents, abrasives, and lubricants are used. Met.

本発明の課題はアモルファスシリコン感光体を用いた画像形成装置に用いるトナーにおいて、感光体上に付着物、傷を生じさせることなく、長寿命の品質に優れたトナーを提供することである。特に当社において、以前検討を行った特許文献3の技術を更に改善し、品質を向上させたトナーを提供することである。   An object of the present invention is to provide a toner having excellent long-life quality without causing deposits and scratches on the photoreceptor, in a toner used in an image forming apparatus using an amorphous silicon photoreceptor. In particular, the present invention is to provide a toner with improved quality by further improving the technology of Patent Document 3 previously examined.


本発明者は、アモルファスシリコン感光体を用いた画像形成装置に用いるトナーにおいて、繰り返し、連続複写して用いた場合の感光体表面へのトナー成分の付着、研磨剤による傷の発生が起こらず、更に画像品質にも優れたトナーを提供するべく鋭意検討を行った結果、特定の無機微粒子(A)と特定の無機微粒子(B)とを少なくとも外添剤として用いて正帯電性トナーを得ることにより、さらには特定の性質を満足する材料を用いることにより前記問題点が解決されることを見出して本発明を成したものである。

The present inventor, in the toner used in the image forming apparatus using an amorphous silicon photoreceptor, the toner component adheres to the surface of the photoreceptor when repeatedly and continuously used, and scratches due to the abrasive do not occur. Furthermore, as a result of intensive studies to provide a toner with excellent image quality, a positively chargeable toner is obtained using at least the specific inorganic fine particles (A) and the specific inorganic fine particles (B) as external additives. Thus, the present invention has been accomplished by finding that the above problems can be solved by using a material satisfying specific properties.

すなわち本発明とは、以下の(1)〜(6)の発明に関するものである。
(1)少なくとも結着樹脂及び着色剤を含有するトナー母粒子と複数の外添剤とからなる、アモルファスシリコン感光体を用いた画像形成装置に用いる正帯電性トナーであって、外添剤が少なくともマイクロトラック法による上からの累積50%の平均粒子径D50が0.5〜2.5μm、上からの累積3%の粒子径D3が7μm以下、上からの累積94%の粒子径D94が0.3μm以上であり、かつモース硬度が9〜14の無機微粒子(A)とシリカヒドロゾル及びシリコーンオイルにより表面処理されたモース硬度が5以下の金属塩化合物である無機微粒子(B)とからなることを特徴とする正帯電性トナーである。
(2)無機微粒子(A)の含有量が、トナー母粒子100重量部に対して、0.5〜2.0重量部、かつ無機微粒子(B)の含有量が、トナー母粒子100重量部に対して、0.5〜2.0重量部であることを特徴とする(1)記載の正帯電性トナーである。
(3)無機微粒子(A)が無機炭化物であることを特徴とする(1)または(2)に記載の正帯電性トナーである。
(4)無機炭化物が炭化ケイ素であることを特徴とする(3)に記載の正帯電性トナーである。
(5)無機微粒子(B)が炭酸カルシウムであることを特徴とする(1)〜(4)いずれかに記載の正帯電性トナーである。
(6)無機微粒子(B)の形状が長径(L)と短径(S)の比、L/Sが2以上であることを特徴とする(1)〜(5)いずれかに記載の正帯電性トナーである。
That is, the present invention relates to the following inventions (1) to (6).
(1) A positively chargeable toner for use in an image forming apparatus using an amorphous silicon photoreceptor, comprising toner base particles containing at least a binder resin and a colorant and a plurality of external additives, wherein the external additive is At least 50% of the average particle diameter D50 from the top by the microtrack method is 0.5 to 2.5 μm, 3% of the particle diameter D3 from the top is 7 μm or less, and 94% of the particle diameter D94 is from the top. From inorganic fine particles (A) having a Mohs hardness of 9 to 14 having a Mohs hardness of 9 to 14 and inorganic fine particles (B) which are a metal salt compound having a Mohs hardness of 5 or less and surface-treated with silica hydrosol and silicone oil A positively chargeable toner.
(2) The content of inorganic fine particles (A) is 0.5 to 2.0 parts by weight with respect to 100 parts by weight of toner base particles, and the content of inorganic fine particles (B) is 100 parts by weight of toner base particles. The positively chargeable toner according to (1), wherein the toner is 0.5 to 2.0 parts by weight.
(3) The positively chargeable toner according to (1) or (2), wherein the inorganic fine particles (A) are inorganic carbides.
(4) The positively chargeable toner according to (3), wherein the inorganic carbide is silicon carbide.
(5) The positively chargeable toner according to any one of (1) to (4), wherein the inorganic fine particles (B) are calcium carbonate.
(6) The shape of the inorganic fine particles (B) is a ratio of the major axis (L) to the minor axis (S), and L / S is 2 or more. The positive according to any one of (1) to (5) It is a chargeable toner.

外添剤として少なくとも特定の無機微粒子(A)と特定の無機微粒子(B)とを用いて正帯電性トナーを得ることにより、研磨機能と研磨抑制機能が調和し、アモルファスシリコン感光体を用いる画像形成装置の使用において、感光体へのトナー成分の付着、傷を生じることなく、耐刷性、耐久性に優れ画像品質に優れたトナーを得ることができた。   By using at least specific inorganic fine particles (A) and specific inorganic fine particles (B) as external additives to obtain a positively chargeable toner, the polishing function and the polishing suppression function are harmonized, and an image using an amorphous silicon photoconductor In the use of the forming apparatus, a toner having excellent printing durability and durability and excellent image quality could be obtained without causing adhesion or scratching of the toner component to the photoreceptor.

本発明のアモルファスシリコン感光体を用いた画像形成装置に用いる正帯電性トナーにおいては、外添剤としてマイクロトラック法による上からの累積50%の平均粒子径D50が0.5〜2.5μm、上からの累積3%の粒子径D3が7μm以下、上からの累積94%の粒子径D94が0.3μm以上であり、かつモース硬度9〜14の無機微粒子(A)とシリカヒドロゾル及び有機シラン化合物により表面処理されたモース硬度5以下の金属塩化合物である無機微粒子(B)とをともに用いることによって、画像品質、耐久性、耐刷性に優れ、かつ感光体へのトナー成分の付着、傷のいずれも生じさせないトナーを得ることができる。   In the positively chargeable toner used in the image forming apparatus using the amorphous silicon photoreceptor of the present invention, an average particle diameter D50 of 50% cumulative from the top by the microtrack method is 0.5 to 2.5 μm as an external additive, Inorganic fine particles (A) having a cumulative 3% particle diameter D3 from the top of 7 μm or less, a 94% cumulative particle diameter D94 from the top of 0.3 μm or more, and a Mohs hardness of 9 to 14, silica hydrosol and organic By using together with inorganic fine particles (B), which is a metal salt compound having a Mohs hardness of 5 or less, which is surface-treated with a silane compound, it has excellent image quality, durability and printing durability, and adhesion of toner components to the photoreceptor. A toner that does not cause any scratches can be obtained.

ここで無機微粒子(A)は研磨剤として機能するものであるが、従来の研磨剤(ここでは特許文献3に記載される研磨剤)と比して研磨能力を高めた材料である。これはモース硬度9〜14の材料を用いて、かつマイクロトラック法による上からの累積50%の平均粒子径D50が0.5〜2.5μm、上からの累積3%の粒子径D3が7μm以下、上からの累積94%の粒子径D94が0.3μm以上の粒度分布となるように粒度分布範囲を調整し、微粒子の凝集体等の凝固粒子をなくし単独の粒子として存在させることによりなされるものである。しかしながら無機微粒子(A)の存在だけでは、研磨能力が高いためアモルファスシリコン感光体に傷をつけ致命的な欠陥となってしまい、そこで無機微粒子(B)のはたらきが大きな役割を果たす。
無機微粒子(B)はシリカヒドロゾル及びシリコーンオイルにより表面処理されたモース硬度5以下の金属塩化合物であるが、トナーの感光体への付着を弱める役割を有するものであり、研磨を抑制するものである。特に表面をシリコーンオイルにて処理することにより滑り性を持たせることは感光体への付着を防止する大きな効果を有するものである。
Here, the inorganic fine particle (A) functions as an abrasive, but is a material with improved polishing ability as compared with a conventional abrasive (here, the abrasive described in Patent Document 3). This is made of a material having a Mohs hardness of 9 to 14, and an average particle diameter D50 of 50% cumulative from the top by the microtrack method is 0.5 to 2.5 μm, and a particle diameter D3 of 3% cumulative from the top is 7 μm. Hereinafter, the particle size distribution range is adjusted so that the 94% cumulative particle size D94 from the top has a particle size distribution of 0.3 μm or more, and solidified particles such as aggregates of fine particles are eliminated to exist as single particles. Is. However, the presence of the inorganic fine particles (A) alone has a high polishing ability, so that the amorphous silicon photoreceptor is scratched and becomes a fatal defect, and the function of the inorganic fine particles (B) plays a large role there.
The inorganic fine particle (B) is a metal salt compound having a Mohs hardness of 5 or less, which has been surface-treated with silica hydrosol and silicone oil, and has a role to weaken adhesion of toner to the photoreceptor and suppresses polishing. It is. In particular, imparting slipperiness by treating the surface with silicone oil has a great effect of preventing adhesion to the photoreceptor.

トナー母粒子上に無機微粒子(A)と無機微粒子(B)は外添され、トナー表面上に存在しているが、実際にアモルファスシリコン感光体上で現像される際には、無機微粒子(A)と無機微粒子(B)とはともに共存しながら、研磨機能、研磨抑制保護機能を有しながら現像されている。これにより無機微粒子(A)の機能が過度にはたらき感光体に傷をつけることもなく、また無機微粒子(B)の機能が過度にはたらき感光体にトナー成分、無機微粒子(B)の成分が付着してしまうこともなくバランスが取れた状態で安定した現像を行うことができる。このように無機微粒子(A)及び無機微粒子(B)はともに共存することではたらき、個々の単独の使用ではトナーの所望の品位を得ることができない。シリカヒドロゾルで処理された無機微粒子(B)はゴム、合成樹脂用の補強性充填剤として知られているもののトナーに用いられる実績はこれまでになく本発明の無機微粒子(A)と無機微粒子(B)との併用により初めてその効用が見い出されたものである。   The inorganic fine particles (A) and the inorganic fine particles (B) are externally added on the toner base particles and exist on the toner surface, but when actually developed on the amorphous silicon photoreceptor, the inorganic fine particles (A ) And the inorganic fine particles (B) are co-existing and developed while having a polishing function and a polishing suppression and protection function. As a result, the function of the inorganic fine particles (A) does not work excessively, and the photoconductor is not damaged. Also, the function of the inorganic fine particles (B) works excessively, and the toner component and inorganic fine particle (B) components adhere to the photoconductor. Therefore, stable development can be performed in a balanced state. As described above, the inorganic fine particles (A) and the inorganic fine particles (B) coexist with each other, and the desired quality of the toner cannot be obtained by individual use. Although the inorganic fine particles (B) treated with silica hydrosol are known as reinforcing fillers for rubber and synthetic resins, they have never been used in toners, and the inorganic fine particles (A) and inorganic fine particles of the present invention have never been used. Its utility was found for the first time in combination with (B).

また無機微粒子(A)と無機微粒子(B)との配合比、添加量は感光体への傷の防止、トナー成分の付着を防止する上で、トナーの特性に大きく寄与するものである。無機微粒子(A)に対する無機微粒子(B)の使用量は、無機微粒子(A)1に対して無機微粒子(B)が0.5〜2の範囲の割合で用いることが好ましい。より好ましくは0.7〜1.8の範囲の割合である。そして無機微粒子(A)と無機微粒子(B)の合計含有量が1.0重量部以上、3.5重量部以下であることが好ましい。両者の合計含有量が1.0重量部よりも少なくなると研磨剤、研磨抑制剤のいずれも機能しなくなり感光体上にトナー成分が付着してしまうこととなる。また3.5重量部を超えてしまうと、無機微粒子(B)による研磨抑制機能が及ばなくなってしまい感光体上に傷を発生させてしまったり、機内飛散、画像濃度低下、かぶりの増加等の問題が生じてしまうこととなる。   The blending ratio and addition amount of the inorganic fine particles (A) and the inorganic fine particles (B) greatly contribute to the characteristics of the toner in preventing scratches on the photoreceptor and preventing toner components from adhering. The amount of the inorganic fine particles (B) used with respect to the inorganic fine particles (A) is preferably used at a ratio of the inorganic fine particles (B) in the range of 0.5 to 2 with respect to the inorganic fine particles (A) 1. More preferably, the ratio is in the range of 0.7 to 1.8. The total content of the inorganic fine particles (A) and the inorganic fine particles (B) is preferably 1.0 part by weight or more and 3.5 parts by weight or less. If the total content of both is less than 1.0 part by weight, neither the abrasive nor the polishing inhibitor functions and the toner component adheres on the photoreceptor. On the other hand, if it exceeds 3.5 parts by weight, the function of suppressing polishing by the inorganic fine particles (B) may not be achieved, and scratches may be generated on the photoreceptor, scattering in the machine, reduction in image density, increase in fog, etc. Problems will arise.

以下無機微粒子(A)、無機微粒子(B)を始め、本発明の正帯電性トナーに用いることのできる材料及び製造の条件等について以下詳述する。   Hereinafter, materials that can be used for the positively chargeable toner of the present invention, the manufacturing conditions, etc., including the inorganic fine particles (A) and the inorganic fine particles (B), will be described in detail below.

本発明の正帯電性トナーに用いられる無機微粒子(A)は、上記のとおりマイクロトラック法による上からの累積50%の平均粒子径D50が0.5〜2.5μm、上からの累積3%の粒子径D3が7μm以下、上からの累積94%の粒子径D94が0.3μm以上であり、かつモース硬度9〜14の無機微粒子であることが必要である。平均粒子径D50が0.5μmより小さい、あるいは粒子径D94が0.3μmより小さいと、研磨機能が十分に得られず感光体にトナー成分が付着してしまい好ましくない。平均粒子径D50が2.5μmより大きい、あるいは粒子径D3が7μmより大きいと、10μm以上の粗大粒子が1次粒子として存在するようになり、粗大粒子が感光体のクリーニングブレードに滞留して感光体上に深い傷をつけてしまい好ましくない。無機微粒子(A)の特に好ましい平均粒子径D50の範囲は1〜2μmであり、粒子径D3の範囲は5μm以下であり、また粒子径D94の範囲は0.4μm以上である。   As described above, the inorganic fine particles (A) used in the positively chargeable toner of the present invention have an average particle diameter D50 of 50% cumulative from the top by the microtrack method as 0.5 to 2.5 μm, and a cumulative 3% from the top. It is necessary that the particle diameter D3 is 7 μm or less, the 94% cumulative particle diameter D94 from the top is 0.3 μm or more, and inorganic fine particles having a Mohs hardness of 9 to 14. If the average particle diameter D50 is smaller than 0.5 μm or the particle diameter D94 is smaller than 0.3 μm, the polishing function cannot be sufficiently obtained, and the toner component adheres to the photoreceptor, which is not preferable. When the average particle diameter D50 is larger than 2.5 μm, or the particle diameter D3 is larger than 7 μm, coarse particles of 10 μm or more exist as primary particles, and the coarse particles stay on the cleaning blade of the photosensitive member and are photosensitive. This is not preferable because it causes deep scratches on the body. The particularly preferable average particle diameter D50 of the inorganic fine particles (A) is 1 to 2 μm, the particle diameter D3 is 5 μm or less, and the particle diameter D94 is 0.4 μm or more.

無機微粒子(A)の平均粒子径D50,D94,D3の測定は、測定装置としてマイクロトラックFRA(マイクロトラック社製)を用い、次のようにして行った。まず、試料の無機微粒子(A)約50mgを100ccビーカーに入れ、これに市水100ccを注入し、3分間超音波処理を行って、測定試料を作製する。循環モジュール内を洗浄してSet Zeroを行う。この時Flux4chが0.05以上の時は再洗浄を行う。前記調製した試料を循環モジュールに注入し、規定濃度にする。循環モジュールの攪拌を3秒以上停止させ、泡抜きした後、攪拌を再開する。計測を選択して粒度分布測定を行った。   The average particle diameters D50, D94, and D3 of the inorganic fine particles (A) were measured using Microtrac FRA (manufactured by Microtrac) as a measuring device as follows. First, about 50 mg of inorganic fine particles (A) of a sample is put into a 100 cc beaker, 100 cc of city water is poured into this, and ultrasonic treatment is performed for 3 minutes to prepare a measurement sample. The inside of the circulation module is cleaned and Set Zero is performed. At this time, if the flux 4ch is 0.05 or more, re-cleaning is performed. The prepared sample is injected into the circulation module to obtain a specified concentration. Stirring of the circulation module is stopped for 3 seconds or more, and after defoaming, stirring is resumed. Particle size distribution measurement was performed by selecting measurement.

また無機微粒子(A)の添加量は、トナー母粒子(分級されたトナー粒子)100重量部に対して、0.5〜2.0重量部であることが好ましい。0.5重量部よりも少ないと十分な研磨効果が得られず、感光体表面にトナー成分が付着してしまう場合があり、また2.0重量部よりも多くなってしまうと研磨過多により、感光体上に傷を発生させる危険性がある。またより好ましい範囲はトナー母粒子(分級されたトナー粒子)100重量部に対して0.7〜1.5重量部である。また前記述べたように無機微粒子(A)の添加量は常に無機微粒子(B)の添加量とのバランスが大切であり影響を及ぼし合うことを考慮する必要がある。   The amount of inorganic fine particles (A) added is preferably 0.5 to 2.0 parts by weight with respect to 100 parts by weight of toner base particles (classified toner particles). If the amount is less than 0.5 parts by weight, a sufficient polishing effect cannot be obtained, and the toner component may adhere to the surface of the photoreceptor. If the amount exceeds 2.0 parts by weight, excessive polishing will result. There is a risk of scratches on the photoreceptor. A more preferable range is 0.7 to 1.5 parts by weight with respect to 100 parts by weight of toner base particles (classified toner particles). Further, as described above, it is necessary to consider that the amount of addition of the inorganic fine particles (A) is always important and has a balance with the amount of addition of the inorganic fine particles (B).

無機微粒子(A)として好ましいものは、モース硬度9〜14の特性を有する、炭化ケイ素、炭化タングステン、炭化チタン、炭化タンタル等の無機炭化物、窒化ケイ素、窒化チタン等の無機窒化物があげられるが、中でも無機炭化物を用いることが好ましい。ここでモース硬度が9に満たない粒子を用いてしまうと、研磨機能が十分得られず感光体にトナー成分が付着してしまい好ましくない。中でも炭化ケイ素が画像特性を損なうことなく安定した研磨性を有する点において優れている。   Preferable inorganic fine particles (A) include inorganic carbides such as silicon carbide, tungsten carbide, titanium carbide, and tantalum carbide, and inorganic nitrides such as silicon nitride and titanium nitride, which have a Mohs hardness of 9 to 14. Of these, inorganic carbides are preferably used. If particles having a Mohs hardness of less than 9 are used, the polishing function cannot be sufficiently obtained and the toner component adheres to the photoreceptor, which is not preferable. Among these, silicon carbide is excellent in that it has a stable polishing property without impairing image characteristics.

無機微粒子(A)は湿式粉砕、湿式分級、乾燥を行うことにより最終的に所望の粒度分布を得ることができる。無機微粒子(A)として市販されている微粉末を以下の方法により湿式粉砕、湿式分級することにより粒度分布を調整すればよい。   The inorganic fine particles (A) can finally obtain a desired particle size distribution by wet pulverization, wet classification, and drying. The particle size distribution may be adjusted by wet-grinding and wet-classifying fine powder commercially available as inorganic fine particles (A) by the following method.

湿式粉砕工程は粉砕媒体を使用するものが好ましく、容器駆動媒体ミル、媒体攪拌式ミル等が用いられる。中でも媒体攪拌式ミルが好ましく、マイクロビーズを充填した粉砕メディアを使用することが好ましい。   The wet pulverization step preferably uses a pulverization medium, and a container driving medium mill, a medium stirring mill, or the like is used. Among them, a medium stirring mill is preferable, and it is preferable to use a pulverized media filled with microbeads.

粉砕メディアの種類としては、無機微粒子(A)の硬度、比重及び粉砕、分散の要求粒度に応じて、ジルコンビーズ(ZrO 69%、SiO 31%)、ジルコニアビーズ(ZrO 95%以上)、アルミナ(Al 90%以上)、チタニア(TiO 77.7%、Al 17.4%)、スチールボール等が使用可能であるが、中でも良好な粉砕性を得るためには、ジルコニアビーズ、スチールボールを用いることが好ましい。
また粉砕メディアの粒子径(直径)は0.1mm〜3.0mmの範囲において使用可能であるが、中でも0.3〜1.4mmの範囲であることが好ましい。0.1mmよりも小さいと、粉砕機内の負荷が大きくなり、発熱により無機微粒子(A)が凝集し粉砕が困難になってしまい、また3.0mmよりも大きいと、十分な粉砕能力を得ることができない。
The types of grinding media include zircon beads (69% ZrO 2 , 31% SiO 2 ) and zirconia beads (95% or more ZrO 2 ) depending on the hardness, specific gravity and grinding required particle size of the inorganic fine particles (A). , Alumina (Al 2 O 3 90% or more), titania (TiO 2 77.7%, Al 2 O 3 17.4%), steel balls, etc. can be used, but in order to obtain good grindability It is preferable to use zirconia beads or steel balls.
The particle diameter (diameter) of the pulverization media can be used in the range of 0.1 mm to 3.0 mm, and in particular, the range of 0.3 to 1.4 mm is preferable. If it is smaller than 0.1 mm, the load in the pulverizer increases, the inorganic fine particles (A) aggregate due to heat generation, and pulverization becomes difficult, and if it is larger than 3.0 mm, sufficient pulverizing ability is obtained. I can't.

また、本発明に好ましく使用される湿式粉砕機内部のアジテーターディスクも粉砕性を制御する上で重要なものである。ディスクの周速は、4〜16m/sであることが好ましく、4m/sよりも小さいと粉砕に時間がかかってしまい、16m/sよりも大きいと粉砕メディア(媒体)の接触により発熱してしまい、粒子が凝集してしまい好ましくない。アジテーターディスクの材質としては、焼入鋼、ステンレススチール、アルミナ、ジルコニアなどを用いることが可能であるが、中でも、ジルコニアを用いることが好ましい。   An agitator disk inside the wet pulverizer preferably used in the present invention is also important for controlling the pulverization property. The peripheral speed of the disk is preferably 4 to 16 m / s, and if it is less than 4 m / s, it takes time to grind. If it is greater than 16 m / s, heat is generated due to contact with the grinding media. As a result, the particles aggregate, which is not preferable. As a material of the agitator disk, hardened steel, stainless steel, alumina, zirconia and the like can be used, and among them, zirconia is preferable.

また湿式粉砕機内壁のグライディングシリンダーの材質としては、特殊焼入鋼、ステンレススチール、アルミナ、ジルコニア、ZTA、ガラス、ポリエチレン等があげられる。中でもZTAと称されるジルコニア強化アルミナセラミックスを用いることが好ましい。   Examples of the material of the grinding cylinder on the inner wall of the wet pulverizer include special hardened steel, stainless steel, alumina, zirconia, ZTA, glass, and polyethylene. Among them, it is preferable to use zirconia reinforced alumina ceramics called ZTA.

湿式粉砕において用いる溶媒は、粉砕助剤として機能するものであり、水、メタノール、エタノール、水とこれらアルコールの混合物等が好ましい。   The solvent used in the wet pulverization functions as a pulverization aid, and water, methanol, ethanol, a mixture of water and these alcohols, and the like are preferable.

湿式分級工程は粗大粒子の除去、微粉の除去の2つの工程を経ることが好ましい。湿式分級の手段としては、重力沈降を利用した沈降槽、液体サイクロン、強制回転方式によるものがあげられる。中でも重力沈降を利用した沈降槽を用いることが、簡単で確実な方法である。これは液体中を自然沈降する粒子の速度差を利用する方法である。粗大粒子の除去のためには最も早く沈降する部位を除去し、微粉の除去のためには上澄みに残る部位を除去すればよい。   It is preferable that the wet classification process goes through two steps of removing coarse particles and fine powder. Examples of the wet classification means include a sedimentation tank using gravity sedimentation, a hydrocyclone, and a forced rotation system. Among them, it is a simple and reliable method to use a sedimentation tank using gravity sedimentation. This is a method that utilizes the difference in velocity of particles that naturally settle in a liquid. In order to remove coarse particles, the part that settles first is removed, and in order to remove fine powder, the part remaining in the supernatant may be removed.

またこのような粒度分布の特性を得るためには、無機微粒子(A)の製造工程において湿式下での粉砕、分級工程を経た後に、流動式の乾燥機、または超音波を利用し衝撃波による乾燥機による乾燥工程を経ることが好ましい。これにより無機微粒子(A)が凝固することを防ぎ所望の粒度分布を得ることができる。特に、瞬時に脱水、乾燥のできる点、粒子の凝固を防ぎ粒度分布を制御できる点においては超音波を利用し衝撃波による乾燥機は有効である。具体的にはパルテック社のハイパルコン等が好ましい乾燥機である。   Further, in order to obtain such particle size distribution characteristics, after passing through a wet pulverization and classification process in the production process of the inorganic fine particles (A), drying by a shock wave using a fluid-type dryer or ultrasonic waves. It is preferable to go through a drying process using a machine. As a result, the inorganic fine particles (A) can be prevented from solidifying and a desired particle size distribution can be obtained. In particular, a shock wave dryer using ultrasonic waves is effective in that dehydration and drying can be performed instantaneously and particle size distribution can be controlled by preventing solidification of particles. Specifically, Paltec's high palcon is a preferred dryer.

また本発明の粒度分布を得るためには、分級工程において粗粒子、微粒子の除去が必要であり、最終的には250μm以下の篩を通過させることが好ましい。   In order to obtain the particle size distribution of the present invention, it is necessary to remove coarse particles and fine particles in the classification step, and it is preferable to pass through a sieve having a particle size of 250 μm or less.

無機微粒子(A)として好ましく用いられる炭化ケイ素は次のような方法により製造される。炭化ケイ素は天然には存在しない化合物であり、Acheson法により製造されたα−炭化ケイ素を、乾式粉砕法により粗粉砕し、更に湿式粉砕により微粉砕する。次いで、得られたスラリーを所望の粒度の炭化ケイ素が得られるまで重力沈降を利用した沈降槽を用いて必要回数湿式分級した後、粗粒子、微粒子の除去を行った後、上記の手段で乾燥し、必要であれば解砕、篩の工程を経て不必要に大きい粒子を除去し、上記物性を有する炭化ケイ素微粉体を得る。   Silicon carbide preferably used as the inorganic fine particles (A) is produced by the following method. Silicon carbide is a compound that does not exist in nature, and α-silicon carbide produced by the Acheson method is coarsely pulverized by a dry pulverization method and further finely pulverized by wet pulverization. Next, the obtained slurry is wet-classified as many times as necessary using a sedimentation tank using gravity sedimentation until silicon carbide having a desired particle size is obtained, and then coarse particles and fine particles are removed, followed by drying by the above means. If necessary, pulverization and sieving are performed to remove unnecessarily large particles, thereby obtaining a silicon carbide fine powder having the above physical properties.

本発明の正帯電性トナーに用いられる無機微粒子(B)は、上記のとおりシリカヒドロゾル及びシリコーンオイルにより表面処理されたモース硬度5以下の金属塩化合物であることが必要である。無機微粒子(B)は前記述べたように、感光体ドラムの過度の研磨を抑制する目的で使用されるものである。特に感光体上で前記無機微粒子(A)にて研磨された部分にトナー成分が付着、融着しないように無機微粒子(B)により感光体表面を保護する効果が求められるものである。無機微粒子(B)はトナーと感光体との付着を弱める効果を有し、無機微粒子(A)の研磨剤の過剰な研磨を防止、抑制するものである。   The inorganic fine particles (B) used in the positively chargeable toner of the present invention are required to be a metal salt compound having a Mohs hardness of 5 or less which has been surface-treated with silica hydrosol and silicone oil as described above. As described above, the inorganic fine particles (B) are used for the purpose of suppressing excessive polishing of the photosensitive drum. In particular, an effect of protecting the surface of the photoreceptor with the inorganic fine particles (B) is required so that the toner component does not adhere to and fuse with the portion of the photoreceptor polished with the inorganic fine particles (A). The inorganic fine particles (B) have an effect of weakening the adhesion between the toner and the photoreceptor, and prevent or suppress excessive polishing of the abrasive of the inorganic fine particles (A).

無機微粒子(B)の基材となる金属塩化合物としては、モース硬度が5以下の特性を有していることが好ましい。モース硬度が5を超えてしまうと、研磨剤として働き、無機微粒子(A)の研磨性を抑制することができず感光体に傷をつけてしまうこととなる。   The metal salt compound that serves as the base material for the inorganic fine particles (B) preferably has a Mohs hardness of 5 or less. If the Mohs hardness exceeds 5, it acts as an abrasive, and the abrasiveness of the inorganic fine particles (A) cannot be suppressed, and the photoreceptor is damaged.

具体的な金属塩化合物としては、アルカリ土類金属の炭酸化物、硫酸化物が好ましく、中でも炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸ストロンチウム、硫酸カルシウム、硫酸バリウム、硫酸マグネシウム、硫酸カルシウム等があげられる、特に炭酸カルシウム、硫酸バリウムの2つが好ましいものである。   Specific examples of the metal salt compound include carbonates and sulfates of alkaline earth metals. Among them, calcium carbonate, magnesium carbonate, barium carbonate, strontium carbonate, calcium sulfate, barium sulfate, magnesium sulfate, calcium sulfate, and the like can be given. In particular, two of calcium carbonate and barium sulfate are preferred.

炭酸カルシウムとしては、天然炭酸カルシウム、合成炭酸カルシウムの2種に大別されるが、形状をコントロールすることを考慮すれば合成炭酸カルシウムを用いることが好ましく、その中でも軽微性炭酸カルシウム、膠質炭酸カルシウムを用いることが好ましい。   Calcium carbonate is roughly classified into two types: natural calcium carbonate and synthetic calcium carbonate, but it is preferable to use synthetic calcium carbonate in view of controlling the shape, among which light calcium carbonate and colloidal calcium carbonate Is preferably used.

また硫酸バリウムは比重が重く、物理的にも化学的にも非常に安定である点で好ましい材料であるが、天然の重晶石と呼ばれるバライト鉱物の粉砕品(バライト粉)と、化学反応で製造した沈降性硫酸バリウムとがあるが、合成時の条件により粒子の大きさを制御することができ、極めて微細な硫酸バリウムを製造することができる点で沈降性硫酸バリウムを用いることが好ましい。   Barium sulfate is a preferred material because it has a high specific gravity and is very physically and chemically stable. However, it is a natural product of barite minerals called barite mineral (barite powder). Although there is produced precipitated barium sulfate, it is preferable to use precipitated barium sulfate in that the size of the particles can be controlled by the conditions at the time of synthesis, and extremely fine barium sulfate can be produced.

また研磨を抑制することを目的とすることから、無機微粒子(B)の形状は所謂、紡錘形であることが好ましい。すなわち粒子の形状として、長径(L)と短径(S)との比、L/Sの値が2以上であるものが好ましい。この比を有する紡錘形の形状であるならば、感光体上で転がるようにはたらき、また両端部は先鋭状であることからクリーニング不良を起こしてしまう問題も生じない。特に軽微性炭酸カルシウムは紡錘形を有していることから好ましい材料である。   Moreover, since it aims at suppressing grinding | polishing, it is preferable that the shape of inorganic fine particle (B) is what is called a spindle shape. That is, the particle shape is preferably such that the ratio of the major axis (L) to the minor axis (S) and the value of L / S are 2 or more. If it is a spindle-shaped shape having this ratio, it works to roll on the photosensitive member, and both ends are sharp, so there is no problem of causing cleaning failure. In particular, light calcium carbonate is a preferred material because it has a spindle shape.

無機微粒子(B)はアモルファスシリコン感光体に対して、滑り性を持たせるために、少なくともシリカヒドロゾルとシリコーンオイルで表面処理を行うことが必要である。基材となる金属塩化合物はそのままシリコーンオイルのみで表面処理を行うと粒子に均一にコーティングを施すことができないため、シリカヒドロゾルを用いてシリカ処理を行い粒子表面をシリカ化した後にシリコーンオイルで表面処理を行うことが重要である。これにより、アモルファスシリコン感光体へのトナーの付着を防止することができる。

シリカヒドロゾルはシリコンアルコキシドの加水分解、あるいはケイ酸塩と無機酸との反応により得られる。ケイ酸塩と無機酸との反応の場合は、ケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸アンモニウム等があり、無機酸としては、硫酸、硝酸、塩酸等があげられ、一般的にはケイ酸ナトリウム、硫酸を用いることが多い。この場合、ケイ酸ナトリウムと硫酸を反応させ、水洗することにより硫酸ナトリウムを除去することによりシリカヒドロゾルを得ることができる。金属塩化合物の表面処理を考慮するとシリカヒドロゾルのSiO濃度は5〜20重量%の範囲であることが好ましい。5重量%以下では処理効率が悪くなり、20重量%を超えると基材である金属塩化合物が凝集してしまう。
The inorganic fine particles (B) must be subjected to a surface treatment with at least silica hydrosol and silicone oil in order to provide the amorphous silicon photoreceptor with slipperiness. If the surface treatment of the metal salt compound as the base material is performed with silicone oil alone, the particles cannot be uniformly coated. Therefore, the silica treatment is performed using silica hydrosol, and the surface of the particles is silicified with silicone oil. It is important to perform surface treatment. As a result, toner adhesion to the amorphous silicon photoconductor can be prevented.

Silica hydrosol is obtained by hydrolysis of silicon alkoxide or reaction of silicate with inorganic acid. In the case of a reaction between a silicate and an inorganic acid, the silicate includes sodium silicate, potassium silicate, ammonium silicate, etc., and the inorganic acid includes sulfuric acid, nitric acid, hydrochloric acid, etc. In particular, sodium silicate and sulfuric acid are often used. In this case, a silica hydrosol can be obtained by reacting sodium silicate with sulfuric acid and removing the sodium sulfate by washing with water. Considering the surface treatment of the metal salt compound, the SiO 2 concentration of the silica hydrosol is preferably in the range of 5 to 20% by weight. If the amount is 5% by weight or less, the treatment efficiency is deteriorated, and if it exceeds 20% by weight, the metal salt compound as the base material is aggregated.

シリカヒドロゾルによる処理方法としては、基材である金属塩化合物にシリカヒドロゾルを噴霧し攪拌処理する半乾式法、基材の懸濁液にシリカヒドロゾルを加えて攪拌処理する湿式法のいずれかの方法を用いることができるが、基材の粒子表面を均一に処理するためには湿式法が好ましい。湿式法の場合は、基材の水懸濁液にケイ酸ナトリウム溶液を加え、攪拌しながら無機酸、または有機酸等の酸性物質を滴下して生成する活性なシリカヒドロゾルによって粒子表面を処理するのが好ましい。酸性物質の添加量は、基材の水懸濁液に加えたケイ酸ナトリウム溶液を中和するのに要する量を滴下すればよく、ケイ酸ナトリウム溶液を加えた基材の水懸濁液のpHが中性から微アルカリ性(pH7〜9)の範囲であればよい。このようにシリカ処理された基材はシリカヒドロゾルが粒子に強く、均一に付着、処理されたものとなる。   As a treatment method using silica hydrosol, either a semi-dry method in which silica hydrosol is sprayed on a metal salt compound as a base material and stirred, or a wet method in which silica hydrosol is added to a suspension of the base material and stirred is used. Such a method can be used, but a wet method is preferred in order to uniformly treat the particle surface of the substrate. In the case of the wet method, the particle surface is treated with an active silica hydrosol produced by adding a sodium silicate solution to the aqueous suspension of the substrate and dropping an acidic substance such as an inorganic acid or an organic acid while stirring. It is preferable to do this. The amount of the acidic substance added may be the amount required to neutralize the sodium silicate solution added to the aqueous suspension of the base material, and the amount of the aqueous suspension of the base material added with the sodium silicate solution may be reduced. The pH may be in a range from neutral to slightly alkaline (pH 7 to 9). The silica-treated base material is such that the silica hydrosol is strong against particles and uniformly adhered and treated.

またシリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルなどのストレートシリコーンオイル、更には変性シリコーンオイルが使用できる。変性シリコーンオイルに用いられる変性基としては、メチルスチレン基、長鎖アルキル基、ポリエーテル基、カルビノール基、アミノ基、エポキシ基、カルボキシル基、高級脂肪酸基、メルカプト基、メタクリル基等があげられる。   As the silicone oil, straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, and modified silicone oil can be used. Examples of the modifying group used in the modified silicone oil include methylstyrene group, long chain alkyl group, polyether group, carbinol group, amino group, epoxy group, carboxyl group, higher fatty acid group, mercapto group, methacryl group and the like. .

さらにシリコーンオイルの処理としては、シリコーンオイル、あるいはその溶剤希釈した溶液をシリカ処理基材の乾燥粉末に攪拌下で噴霧処理した後乾燥するか、または湿式法で得られたシリカ処理された基材の溶液またはペースト品に添加して攪拌処理、乾燥する方法を用いることができる。シリカ処理された金属塩化合物の表面処理を考慮するとシリコーンオイルの含有量は0.05〜20重量%の範囲であることが好ましい。より好ましくは0.1〜10重量%の範囲である。0.05重量%以下では処理効率が悪くなり、20重量%を超えてもその増量による効果は認められない上に凝集してしまう。   Further, as a treatment of silicone oil, a silica-treated substrate obtained by spraying silicone oil or a solution diluted with the solvent onto a dry powder of a silica-treated substrate with stirring and then drying, or obtained by a wet method A method of adding to the solution or paste product and stirring and drying the solution can be used. Considering the surface treatment of the silica-treated metal salt compound, the silicone oil content is preferably in the range of 0.05 to 20% by weight. More preferably, it is in the range of 0.1 to 10% by weight. If it is 0.05% by weight or less, the treatment efficiency is deteriorated, and even if it exceeds 20% by weight, the effect due to the increase is not recognized and aggregation occurs.

またシリコーンオイルの特性としては、25℃における粘度が0.5〜10000センチストークス、好ましくは1〜1000センチストークスの物が用いられる。   Moreover, as a characteristic of silicone oil, the thing of the viscosity in 25 degreeC is 0.5-10000 centistokes, Preferably it is 1-1000 centistokes.

シリコーンオイル処理の方法としては、シリカ処理された金属塩化合物とシリコーンオイルとをヘンシェルミキサー等の混合機を用いて直接混合してもよいし、ベースとなるシリカ処理された金属塩化合物にシリコーンオイルを噴霧する方法を用いてもよい。あるいは適当な溶剤にシリコーンオイルを溶解あるいは分散せしめた後、シリカ処理された金属塩化合物を加え混合し溶剤を除去する方法でもよい。   As a method for treating the silicone oil, the silica-treated metal salt compound and the silicone oil may be directly mixed using a mixer such as a Henschel mixer, or the base silica-treated metal salt compound may be mixed with the silicone oil. You may use the method of spraying. Alternatively, after dissolving or dispersing the silicone oil in a suitable solvent, a silica-treated metal salt compound is added and mixed to remove the solvent.

無機微粒子(B)の平均粒子径の長径(L)は、0.5〜5μmであることが好ましい。長径(L)が0.5μmよりも小さいと機内飛散、画像濃度の低下、かぶりの増加等の問題が生じ、長径(L)が5μmよりも大きいと研磨抑制機能が低下してしまう。より好ましい長径(L)は0.8〜4μmである。ここで無機微粒子(B)の平均粒子径の長径(L)は走査型電子顕微鏡SEMにより観察することにより算出した。また平均粒子径の長径(L)と短径(S)との関係は前記述べたようにL/Sが2以上であることが好ましく、平均粒子径の短径(S)は2μm以下であることが好ましい。一方で、無機微粒子(B)は針状の粒子になってしまうと、研磨抑制機能が低下してしまうことからL/Sの範囲は2以上5以下であることが好ましい。またL/Sの範囲が2よりも小さいとクリーニング機能が低下してしまいクリーニング不良が発生しやすくなってしまう。このような特性から好ましい短径(S)の値は自ら決まってくるものである。   The major axis (L) of the average particle diameter of the inorganic fine particles (B) is preferably 0.5 to 5 μm. If the long diameter (L) is less than 0.5 μm, problems such as in-machine scattering, a decrease in image density, and an increase in fog occur, and if the long diameter (L) is greater than 5 μm, the polishing suppression function is deteriorated. A more preferred major axis (L) is 0.8 to 4 μm. Here, the major axis (L) of the average particle diameter of the inorganic fine particles (B) was calculated by observing with a scanning electron microscope SEM. In addition, as described above, the relationship between the long axis (L) and the short diameter (S) of the average particle diameter is preferably L / S of 2 or more, and the short diameter (S) of the average particle diameter is 2 μm or less. It is preferable. On the other hand, when the inorganic fine particles (B) become needle-like particles, the polishing suppressing function is lowered, so the L / S range is preferably 2 or more and 5 or less. On the other hand, if the L / S range is less than 2, the cleaning function is deteriorated and cleaning failure is likely to occur. From these characteristics, the preferred minor axis (S) value is determined by itself.

このようなクリーニング特性から本発明の正帯電性トナーはアモルファスシリコン感光体にクリーニングブレードを有する装置に用いることが適している。   From such cleaning characteristics, the positively chargeable toner of the present invention is suitable for use in an apparatus having a cleaning blade on an amorphous silicon photoreceptor.

また無機微粒子(B)の添加量は、トナー母粒子(分級されたトナー粒子)100重量部に対して、0.5〜2.0重量部であることが好ましい。0.5重量部よりも少ないと十分な研磨抑制効果が得られず、感光体表面を傷つけてしまう危険性があり、また2.0重量部よりも多くなってしまうと機内飛散、画像濃度の低下、かぶりの増加等の問題が生じてしまう危険性がある。またより好ましい範囲はトナー母粒子(分級されたトナー粒子)100重量部に対して0.7〜1.5重量部である。また前記述べたように無機微粒子(B)の添加量は常に無機微粒子(A)の添加量とのバランスが大切であり影響を及ぼし合うことを考慮する必要がある。   The amount of inorganic fine particles (B) added is preferably 0.5 to 2.0 parts by weight with respect to 100 parts by weight of toner base particles (classified toner particles). If the amount is less than 0.5 part by weight, a sufficient polishing suppression effect cannot be obtained, and there is a risk of damaging the surface of the photoreceptor. There is a risk that problems such as reduction and increase in fog will occur. A more preferable range is 0.7 to 1.5 parts by weight with respect to 100 parts by weight of toner base particles (classified toner particles). Further, as described above, it is necessary to consider that the amount of addition of the inorganic fine particles (B) is always important and has a balance with the amount of addition of the inorganic fine particles (A).

トナー粒子を構成する結着樹脂としては、従来磁性トナーあるいは磁性粉を含まない非磁性トナーの結着樹脂として用いられているもののいずれをも用いることができる。結着樹脂としては、具体的には、スチレン系重合体、例えば、ポリスチレン、ポリ−p−クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン−p−クロルスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタレン共重合体、スチレン−アクリル系共重合体、スチレン−α−クロルメタアクリル酸メチル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−ジメチルアミノエチルアクリレート共重合体、スチレン−ジエチルアミノエチルアクリレート共重合体、スチレン−ブチルアクリレート−ジエチルアミノエチルメタクリレート共重合体等のスチレン系共重合体;架橋されたスチレン系重合体など:ポリエステル樹脂、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、芳香族ジアルコール、ジフェノール類から選択される単量体を構造単位として有するポリエステル樹脂、架橋したポリエステル樹脂など:その他ポリ塩化ビニル、フェノール樹脂、変性フェノール樹脂、マレイン樹脂、ロジン変成マレイン樹脂、ポリ酢酸ビニル、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、エポキシ樹脂、ポリビニルブチラール、ロジン、変性ロジン、テルペン樹脂、キシレン樹脂、脂肪族または脂環族炭化水素樹脂、石油樹脂などを挙げることができる。   As the binder resin constituting the toner particles, any of those conventionally used as a binder resin for a magnetic toner or a non-magnetic toner containing no magnetic powder can be used. Specific examples of the binder resin include styrene-based polymers, for example, styrene such as polystyrene, poly-p-chlorostyrene, and polyvinyltoluene, and homopolymers of substitution products thereof; styrene-p-chlorostyrene copolymers. Styrene-propylene copolymer, styrene-vinyl toluene copolymer, styrene-vinyl naphthalene copolymer, styrene-acrylic copolymer, styrene-α-chloromethacrylic acid methyl copolymer, styrene-vinyl methyl ether Copolymer, Styrene-vinyl ethyl ether copolymer, Styrene-vinyl methyl ketone copolymer, Styrene-butadiene copolymer, Styrene-isoprene copolymer, Styrene-acrylonitrile-indene copolymer, Styrene-dimethylaminoethyl Acrylate copolymer, styrene-diethyl Styrene copolymer such as minoethyl acrylate copolymer, styrene-butyl acrylate-diethylaminoethyl methacrylate copolymer; cross-linked styrene polymer, etc .: polyester resin, for example, aliphatic dicarboxylic acid, aromatic dicarboxylic acid, Polyester resins having monomers selected from aromatic dialcohols and diphenols as structural units, crosslinked polyester resins, etc .: Polyvinyl chloride, phenol resins, modified phenol resins, male resins, rosin modified male resins, poly Examples thereof include vinyl acetate, silicone resin, polyurethane resin, polyamide resin, epoxy resin, polyvinyl butyral, rosin, modified rosin, terpene resin, xylene resin, aliphatic or alicyclic hydrocarbon resin, and petroleum resin.

上記スチレン−アクリル系共重合体を構成するアクリル系単量体としては、例えば、アクリル酸やメタクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸2エチルヘキシル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチルなどの(メタ)アクリル酸エステル類が挙げられる。更に、これらスチレン、アクリル系単量体と共に用いることができる単量体として、アクリロニトリル、メタクリロニトリル、アクリルアミド、マレイン酸、マレイン酸ブチルなどのマレイン酸ハーフエステル、あるいはジエステル類、酢酸ビニル、塩化ビニル、ビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルブチルエーテルなどのビニルエーテル類、ビニルメチルケトン、ビニルエチルケトン、ビニルヘキシルケトンなどのビニルケトン類が挙げられる。   Examples of the acrylic monomer constituting the styrene-acrylic copolymer include acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, acrylic acid 2 (Meth) acrylic acid esters such as ethylhexyl, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, and the like can be mentioned. Further, monomers that can be used with these styrene and acrylic monomers include maleic acid half esters such as acrylonitrile, methacrylonitrile, acrylamide, maleic acid, butyl maleate, or diesters, vinyl acetate, vinyl chloride. , Vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether and vinyl butyl ether, and vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone and vinyl hexyl ketone.

また、上記の架橋したスチレン系重合体を製造するために用いる架橋剤としては、主として不飽和結合を2個以上有する化合物を挙げることができ、具体的には、例えばジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物;エチレングリコールジアクリレート、エチレングリコールジメタクリレート等の不飽和結合を2個以上有するカルボン酸エステル;ジビニルアニリン、ジビニルエーテル、ジビニルスルフィド、ジビニルスルホン等のジビニル化合物;及び不飽和結合を3個以上有する化合物を、単独で或いは混合して使用することができる。上記架橋剤は、結着剤樹脂に対して、0.01〜10重量%、好ましくは0.05〜5重量%で用いられる。   Examples of the crosslinking agent used for producing the above-mentioned crosslinked styrene-based polymer include compounds mainly having two or more unsaturated bonds, and specific examples thereof include divinylbenzene and divinylnaphthalene. Aromatic divinyl compounds; carboxylic acid esters having two or more unsaturated bonds such as ethylene glycol diacrylate and ethylene glycol dimethacrylate; divinyl compounds such as divinyl aniline, divinyl ether, divinyl sulfide, divinyl sulfone; and 3 unsaturated bonds The compounds having more than one can be used alone or in combination. The crosslinking agent is used in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the binder resin.

これらの樹脂は、単独で用いることも2種以上を併用することもできる。これら樹脂のうち、スチレン系重合体、ポリエステル樹脂は、優れた帯電特性を示すため特に好ましいものである。また、GPC(ゲルパーミエイション・クロマトグラフィー)により測定される分子量分布で3×10〜5×10の領域に少なくとも一つのピークを有し、かつ10以上の領域にも少なくとも一つのピークあるいはショルダーを有するスチレン系共重合体、更には2種以上の樹脂、例えば前記スチレン樹脂とスチレン−アクリル系共重合体との併用あるいは2種以上のスチレン−アクリル系共重合体の併用などによりこのような分子量分布を有するようにされた樹脂組成物が、トナーの粉砕性、定着性などの点から好ましい。 These resins can be used alone or in combination of two or more. Of these resins, styrenic polymers and polyester resins are particularly preferred because they exhibit excellent charging characteristics. The molecular weight distribution measured by GPC (gel permeation chromatography) has at least one peak in the region of 3 × 10 3 to 5 × 10 4 and at least one in the region of 10 5 or more. A styrene copolymer having a peak or a shoulder, and further two or more kinds of resins, for example, a combination of the styrene resin and a styrene-acrylic copolymer or a combination of two or more kinds of styrene-acrylic copolymers. A resin composition having such a molecular weight distribution is preferred from the standpoints of toner pulverization and fixing properties.

更に、加圧定着方式を用いる場合には、圧力定着トナー用結着剤樹脂を使用することができる。このような樹脂としては、例えばポリエチレン、ポリプロピレン、ポリメチレン、ポリウレタンエラストマー、エチレン−エチルアクリレート共重合体、スチレン−イソプレン共重合体、線状飽和ポリエステル、パラフィン及等のワックス類を挙げることができる。   Further, when the pressure fixing method is used, a binder resin for pressure fixing toner can be used. Examples of such resins include polyethylene, polypropylene, polymethylene, polyurethane elastomer, ethylene-ethyl acrylate copolymer, styrene-isoprene copolymer, linear saturated polyester, paraffin, and other waxes.

本発明の正帯電性トナーにおいて用いられる着色剤としては、従来トナーに使用される、以下に示すイエロー、マゼンタ、シアン、黒の各有機顔料、カーボンブラック、磁性体が好適に用いられる。   As the colorant used in the positively chargeable toner of the present invention, the following yellow, magenta, cyan, and black organic pigments, carbon black, and magnetic materials used in conventional toners are preferably used.

イエローの有機顔料としては、ベンズイミダゾロン化合物、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯化合物、メチン化合物、アリルアミド化合物に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、147、168、174、176、180、181、191等が好適に用いられる。中でもベンズイミダゾロン化合物を用いることが好ましい。   As the yellow organic pigment, compounds represented by benzimidazolone compounds, condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complex compounds, methine compounds, and allylamide compounds are used. Specifically, C.I. I. Pigment Yellow 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 168, 174, 176, 180, 181 and 191 are preferably used. Among them, it is preferable to use a benzimidazolone compound.

マゼンタの有機顔料としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が用いられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、122、144、146、166、169、177、184、185、202、206、220、221、254等が好適に用いられる。中でもキナクリドン化合物を用いることが好ましい。   As magenta organic pigments, condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinones, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds are used. Specifically, C.I. I. Pigment Red 2, 3, 5, 6, 7, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 144, 146, 166, 169, 177, 184, 185, 202, 206, 220, 221, 254, etc. are preferably used. Among them, it is preferable to use a quinacridone compound.

シアンの有機顔料としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66等が好適に用いられる。中でも銅フタロシアニン化合物を用いることが好ましい。   As the cyan organic pigment, copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, basic dye lake compounds, and the like can be used. Specifically, C.I. I. Pigment Blue 1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, 66 and the like are preferably used. Among these, it is preferable to use a copper phthalocyanine compound.

カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラックのなどの各種いずれも使用できるが、ファーネスブラックカーボンの方が、画像特性においてカブリ(白地部の地汚れ)が低減される効果があり好ましいものである。   As carbon black, various types such as furnace black, channel black, acetylene black, etc. can be used. However, furnace black carbon is preferable because it has the effect of reducing fog (soil on the white background) in image characteristics. It is.

本発明の正帯電性トナーが磁性トナーである場合には、トナー粒子中に更に磁性粉が含有される。磁性粉としては、鉄、コバルト、ニッケル、マンガンなどの強磁性金属や強磁性金属の合金の粉末、γ−酸化鉄、マグネタイト、フェライトなど鉄、コバルト、ニッケル、マンガンなどを含む化合物が使用できる。これらの磁性微粒子は窒素吸着法によるBET比表面積が好ましくは2〜20m/g、特に2.5〜12m/g、さらにモース硬度が5〜7の磁性粉が好ましい。また、その平均粒子径は0.1〜0.8μmであり、この磁性粉の含有量は、トナー量に対して10〜70重量%、好ましくは15〜50重量%とされる。 When the positively chargeable toner of the present invention is a magnetic toner, the toner particles further contain magnetic powder. As the magnetic powder, a powder containing a ferromagnetic metal such as iron, cobalt, nickel or manganese or a powder of an alloy of ferromagnetic metal, or a compound containing iron, cobalt, nickel, manganese or the like such as γ-iron oxide, magnetite or ferrite can be used. These magnetic fine particles preferably have a BET specific surface area by nitrogen adsorption method of preferably 2 to 20 m 2 / g, particularly 2.5 to 12 m 2 / g, and magnetic powder having a Mohs hardness of 5 to 7. The average particle size is 0.1 to 0.8 μm, and the content of the magnetic powder is 10 to 70% by weight, preferably 15 to 50% by weight, based on the toner amount.

本発明の正帯電性トナーにおいては荷電制御剤を用いることが好ましい。具体的に使用できる荷電制御剤としては、良好な正帯電性を付与できるものであり、ニグロシン染料、脂肪酸金属誘導体、トリフェニルメタン系染料、四級アンモニウム塩化合物、ジオルガノスズオキサイド、ジオルガノスズボレート等を単独であるいは2種以上組み合わせて用いることができる。中でもニグロシン染料を用いることが好ましい。また荷電制御剤は結着樹脂100部に対して、0.5〜10重量部で用いられ、0.7〜8重量部が優れた帯電性の保持、無機微粒子(B)、アモルファスシリコン感光体とのバランスを取り、現像性能を安定させることができる点で好ましい。   In the positively chargeable toner of the present invention, it is preferable to use a charge control agent. Specific charge control agents that can be used are those that can impart good positive chargeability, such as nigrosine dyes, fatty acid metal derivatives, triphenylmethane dyes, quaternary ammonium salt compounds, diorganotin oxides, diorganotin. A borate etc. can be used individually or in combination of 2 or more types. Of these, nigrosine dye is preferably used. Further, the charge control agent is used in an amount of 0.5 to 10 parts by weight with respect to 100 parts of the binder resin, and 0.7 to 8 parts by weight has excellent chargeability retention, inorganic fine particles (B), and amorphous silicon photoreceptor. This is preferable in that the development performance can be stabilized.

ニグロシン染料としては、ニグロシンベース、或いはニグロシンベースをマレイン酸樹脂、キシレン樹脂等で変性したものが好ましく、具体的にはオリエント化学社製N−01,N−04,N−07、ニグロシンベースEX、中央合成化学社製CCA−1,CCA−3等があげられる。   As the nigrosine dye, nigrosine base, or nigrosine base modified with maleic acid resin, xylene resin or the like is preferable. Specifically, N-01, N-04, N-07 manufactured by Orient Chemical Co., Nigrosine Base EX, Examples include CCA-1 and CCA-3 manufactured by Chuo Synthetic Chemical Co., Ltd.

四級アンモニウム塩化合物としては、トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフタレンスルホン酸塩、トリブチルベンジルアンモニウム−2−ヒドロキシ−8−ナフタレンスルホン酸塩、トリエチルベンジルアンモニウム−1−ヒドロキシ−4−ナフタレンスルホン酸塩、トリプロピルベンジルアンモニウム−1−ヒドロキシ−4−ナフタレンスルホン酸塩、トリプロピルベンジルアンモニウム−2−ヒドロキシ−6−ナフタレンスルホン酸塩、トリヘキシルベンジルアンモニウム−1−ヒドロキシ−4−ナフタレンスルホン酸塩、テトラブチルアンモニウム−1−ヒドロキシ−4−ナフタレンスルホン酸塩、テトラオクチルアンモニウム−1−ヒドロキシ−4−ナフタレンスルホン酸塩等があげられる。具体的にはオリエント化学社製P−51,P−53、保土谷化学社製TP−302,TP−415等があげられる。   Examples of the quaternary ammonium salt compound include tributylbenzylammonium-1-hydroxy-4-naphthalenesulfonate, tributylbenzylammonium-2-hydroxy-8-naphthalenesulfonate, triethylbenzylammonium-1-hydroxy-4-naphthalenesulfone. Acid salt, tripropylbenzylammonium-1-hydroxy-4-naphthalenesulfonate, tripropylbenzylammonium-2-hydroxy-6-naphthalenesulfonate, trihexylbenzylammonium-1-hydroxy-4-naphthalenesulfonate Tetrabutylammonium-1-hydroxy-4-naphthalenesulfonate, tetraoctylammonium-1-hydroxy-4-naphthalenesulfonate, and the like. Specific examples include P-51 and P-53 manufactured by Orient Chemical Co., TP-302 and TP-415 manufactured by Hodogaya Chemical Co., Ltd.

本発明に用いる荷電制御剤においては、荷電制御剤の体積平均粒径(D50:メディアン径)が3〜10μmの範囲であることが好ましい。(粒度分布についてはベックマンコールター社マルチサイザーにて測定を行った。)この範囲を満足することで、荷電制御剤の結着樹脂中への分散が均一になされ、トナーとして安定した正帯電量を保つことが可能となる。荷電制御剤の粒子径D50が10μmを超えてしまうと結着樹脂中に荷電制御剤を均一に分散することが困難になってしまい、結果として荷電制御剤の含有量の偏りが生じてしまい、カブリ、機内飛散の原因になってしまう。また荷電制御剤の粒子径D50が3μmよりも小さくなると、単位重量あたりの荷電制御剤の比表面積が増大してしまい、トナーの帯電量の過度な上昇(チャージアップ)を引き起こしてしまうこととなり、低温低湿の環境下で現像スリーブ上の波模様が生じ画像欠陥に繋がり好ましくない。   In the charge control agent used in the present invention, the volume average particle size (D50: median diameter) of the charge control agent is preferably in the range of 3 to 10 μm. (The particle size distribution was measured with a Beckman Coulter Multisizer.) By satisfying this range, the charge control agent was uniformly dispersed in the binder resin, and a stable positive charge amount as a toner was obtained. It becomes possible to keep. If the particle size D50 of the charge control agent exceeds 10 μm, it becomes difficult to uniformly disperse the charge control agent in the binder resin, resulting in a bias in the content of the charge control agent, It will cause fogging and flying in the plane. On the other hand, if the particle size D50 of the charge control agent is smaller than 3 μm, the specific surface area of the charge control agent per unit weight increases, which causes an excessive increase (charge up) of the charge amount of the toner. A wave pattern on the developing sleeve is generated in a low temperature and low humidity environment, which leads to image defects, which is not preferable.

本発明の正帯電性トナーに用いる離型剤としては、低分子量ポリエチレン、低分子量ポリプロピレン等のポリオレフィン類、フィーシャートロプシュワックス等の炭化水素系ワックス類、合成エステルワックス類、カルナウバワックス、ライスワックス等の天然エステル系ワックス類の群の中から選ばれた離型剤が用いられる。   The release agent used in the positively chargeable toner of the present invention includes polyolefins such as low molecular weight polyethylene and low molecular weight polypropylene, hydrocarbon waxes such as Fiescher-Tropsch wax, synthetic ester waxes, carnauba wax, rice wax. A release agent selected from the group of natural ester waxes such as

離型剤の含有量は結着樹脂100重量部に対して0.5〜6重量部であることが好ましい。また離型剤の含有量が6重量部よりも多くなると、離型剤が過剰になり、キャリアへのスペント、現像スリーブへのフィルミング等を引き起こしてしまい、トナーの機内飛散、かぶりの増加、感光体への離型剤成分の付着が生じ、品質が悪化してしまったり、トナー中に離型剤を分散、分配(均一に配合すること)ができなくなってしまう。また0.5重量部よりも少なくなると、離型剤を添加する効果が見られず、すなわち、定着性能が低下してしまい、オフセットが発生しやすくなってしまう。   The content of the release agent is preferably 0.5 to 6 parts by weight with respect to 100 parts by weight of the binder resin. On the other hand, if the content of the release agent exceeds 6 parts by weight, the release agent becomes excessive, causing the spent to the carrier, the filming to the developing sleeve, and the like. The release agent component adheres to the photoconductor, resulting in deterioration of quality, and the release agent cannot be dispersed and distributed (mixed uniformly) in the toner. On the other hand, if the amount is less than 0.5 parts by weight, the effect of adding a release agent is not seen, that is, the fixing performance is lowered and offset is likely to occur.

本発明の正帯電性トナーに用いられる外添剤としては、前記述べた無機微粒子(A)、無機微粒子(B)以外に、流動化剤を使用することが好ましい。本発明において使用される流動化剤の基材としては、例えばシリカ、アルミナ、チタニア、マグネシア、非晶質珪素−アルミニウム共酸化物、非晶質珪素−チタニウム共酸化物などの無機酸化物の微粉末を用いることができる。また外添剤としての流動化剤はトナーに流動性を付与する目的のみならず、トナーの帯電性付与及び制御の役割をも担っている。つまり外添剤はトナーの最表部に付着することによって、トナーの帯電性に大きな影響を及ぼす。   As the external additive used in the positively chargeable toner of the present invention, it is preferable to use a fluidizing agent in addition to the inorganic fine particles (A) and the inorganic fine particles (B) described above. Examples of the base material for the fluidizing agent used in the present invention include fine particles of inorganic oxides such as silica, alumina, titania, magnesia, amorphous silicon-aluminum co-oxide, and amorphous silicon-titanium co-oxide. Powder can be used. The fluidizing agent as an external additive has not only the purpose of imparting fluidity to the toner but also the role of imparting and controlling toner chargeability. That is, the external additive adheres to the outermost part of the toner, thereby greatly affecting the chargeability of the toner.

流動化剤は、表面処理を行わずそのまま用いてしまうと、吸湿性により環境安定性が損なわれてしまうことと、流動化剤が感光体ドラム表面に付着して、フィルミングを起こしてしまい画像欠陥を引き起こしてしまう問題がある。吸湿性による環境安定性が損なわれる問題については、高湿環境下では流動化剤が水分の影響を受けてしまい、トナーの帯電減衰を引き起こし、画像上のカブリの発生、トナーの機内飛散の原因となってしまう。そこで流動化剤に用いる粒子の表面処理を行い、疎水性持たせることが好ましい。またこの表面処理に用いる処理剤の選択により、正極性及び負極性の所望の極性を持たせトナーの帯電性を制御し安定させることができる。使用する表面処理剤の選択を行う必要がある。本発明において用いられる流動化剤の表面処理剤としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のオルガノアルコキシシラン類、ジメチルジクロロシラン、トリメチルクロロシラン、オクタデシルトリクロロシラン、t−ブチルジメチルクロロシラン等のオルガノクロロシラン類、ヘキサメチルジシラザン等のシラザン類、ビス(ジメチルアミノ)ジメチルシラン等のオルガノアミノシラン類、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルなどのストレートシリコーンオイル、変性シリコーンオイル等が使用できる。   If the fluidizing agent is used as it is without surface treatment, the environmental stability is impaired due to hygroscopicity, and the fluidizing agent adheres to the surface of the photosensitive drum and causes filming. There is a problem that causes defects. Regarding the problem that the environmental stability due to hygroscopicity is impaired, the fluidizing agent is affected by moisture in a high humidity environment, causing toner charge decay, causing fog on the image, and causing toner scattering in the machine End up. Therefore, it is preferable to carry out surface treatment of the particles used for the fluidizing agent so as to impart hydrophobicity. Further, by selecting the treatment agent used for the surface treatment, it is possible to control and stabilize the chargeability of the toner by imparting desired positive and negative polarities. It is necessary to select the surface treatment agent to be used. Examples of the surface treatment agent for the fluidizing agent used in the present invention include organoalkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane, organochlorosilanes such as dimethyldichlorosilane, trimethylchlorosilane, octadecyltrichlorosilane, and t-butyldimethylchlorosilane. , Silazanes such as hexamethyldisilazane, organoaminosilanes such as bis (dimethylamino) dimethylsilane, straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil, modified silicone oils, etc. it can.

また変性シリコーンオイルに用いられる変性基としては、メチルスチレン基、長鎖アルキル基、ポリエーテル基、カルビノール基、アミノ基、エポキシ基、カルボキシル基、高級脂肪酸基、メルカプト基、メタクリル基等があげられる。シリコーンオイル等の化合物を使用することができる。   Examples of the modifying group used in the modified silicone oil include methyl styrene group, long chain alkyl group, polyether group, carbinol group, amino group, epoxy group, carboxyl group, higher fatty acid group, mercapto group, methacryl group and the like. It is done. Compounds such as silicone oil can be used.

本発明の正帯電性トナーは、前記の材料を、乾式ブレンダー、ヘンシェルミキサー、ボールミル等により予備混合し、しかる後この混合物を熱ロール、ニーダー、一軸または二軸のエクストルーダー等の熱混練機によって溶融混練し、得られた混練物を冷却後粉砕し、必要に応じ所望の粒径に分級する方法により製造するのが好ましい。そして分級され得られたトナー母粒子は最終的に後処理工程において、外添剤を添加し最終的にトナーとされる。しかし、本発明の正帯電性トナーの製造方法については、この混練・粉砕法に限られるものではなく、例えば結着樹脂溶液中にトナー構成材料を分散した後、噴霧乾燥する方法、あるいは、結着樹脂を構成すべき単量体に所定材料を混合して乳化懸濁液とした後に重合させてトナーを得る方法等の従来公知の方法のいずれの方法によってもよいことは勿論である。本発明の正帯電性トナーは、体積平均粒径が3〜20μmであることが好ましく、5〜15μmが更に好ましい。   In the positively chargeable toner of the present invention, the above materials are premixed by a dry blender, a Henschel mixer, a ball mill or the like, and then the mixture is heated by a heat kneader such as a hot roll, a kneader, a uniaxial or biaxial extruder. It is preferable to manufacture by kneading after melting and kneading the obtained kneaded product and classifying it to a desired particle size as necessary. The toner base particles obtained by the classification are finally added to an external additive in the post-processing step to finally become a toner. However, the method for producing the positively chargeable toner of the present invention is not limited to this kneading and pulverizing method. For example, the toner constituent material is dispersed in the binder resin solution and then spray-dried, or the binding is performed. It goes without saying that any method of a conventionally known method such as a method of obtaining a toner by mixing a predetermined material with a monomer to constitute the adhesion resin to form an emulsion suspension and then polymerizing it may be used. The positively chargeable toner of the present invention preferably has a volume average particle size of 3 to 20 μm, and more preferably 5 to 15 μm.

後処理工程は通常ヘンシェルミキサー、スーパーミキサーなどが用いられる。後処理工程は無機微粒子(A)、無機微粒子(B)及び流動化剤のトナー表面上の付着状態を制御する上で重要な工程である。後処理工程条件の違いによりこれら外添剤の付着状態は大きく変わる。良好に研磨機能、研磨抑制機能のバランスを得るためには、通常ミキサーの周速で10〜40m/sec.の条件で混合することが好ましい。40m/sec.を超える条件で混合すると初期の画像濃度が低下する問題があり、一方、10m/sec.よりも低くなると外添剤が遊離してしまい無機微粒子(B)による研磨抑制機能がはたらかず、感光体上に傷をつけてしまう問題が生じてしまう。   In the post-treatment step, a Henschel mixer, a super mixer, etc. are usually used. The post-treatment step is an important step in controlling the adhesion state of the inorganic fine particles (A), the inorganic fine particles (B), and the fluidizing agent on the toner surface. The adhesion state of these external additives varies greatly depending on the post-treatment process conditions. In order to obtain a good balance between the polishing function and the polishing suppression function, it is usually preferable to mix at a peripheral speed of 10 to 40 m / sec. When mixed under conditions exceeding 40 m / sec., There is a problem that the initial image density is lowered, while 10 m / sec. If the temperature is lower than that, the external additive is liberated, and the function of suppressing polishing by the inorganic fine particles (B) does not work, resulting in a problem of scratching the photoreceptor.

外添剤を添加、混合した後の最終工程として、トナー中の異物除去の目的で篩い工程を経てトナーは製造される。篩の種類としては振動篩い機、超音波振動篩い機、ジャイロシフター等を用いることができる。その際に篩いに使用するメッシュの目開きがトナーの品質に影響を与える。本発明においては篩いのメッシュの目開きが40〜300μmのものを用いることが好ましい。更には45〜180μmの範囲が好ましい。300μmよりも目開きの大きなメッシュを使用してトナーの製造を行うと、トナー母粒子に含まれる粗粒子がトナー中に混入したり、また外添剤の凝集体がトナー中に含まれてしまい、画像特性、研磨機能、研磨抑制機能に弊害を来たしてしまう。すなわち現像剤中にトナー粗粒子や外添剤の凝集体の存在によりベタ画像での白抜けが発生、白地部の斑点の発生、感光体上の傷、トナー成分の付着等の問題が起きてしまう。一方、40μmよりも目開きの小さなメッシュを使用してトナーの製造を行うと、トナーのメッシュ通過時に物理的ストレスを受けてしまいトナー表面が傷められてしまい、外添剤がトナーから脱落してしまい研磨機能、研磨抑制機能のバランスが損なわれてしまう。またメッシュの種類としては平織り構造が好ましく、綾織り構造のものも使用することは可能であるが、トナー表面の劣化を考えると好ましくない。これはメッシュの構造上綾織り構造の方が平織り構造と比べて、通過時に摩擦、接触によるストレスを受けやすいためである。   As a final step after adding and mixing the external additive, the toner is manufactured through a sieving step for the purpose of removing foreign matters in the toner. As the type of sieve, a vibration sieve, an ultrasonic vibration sieve, a gyro shifter, or the like can be used. At that time, the mesh openings used for sieving affect the toner quality. In the present invention, it is preferable to use a sieve mesh having an opening of 40 to 300 μm. Furthermore, the range of 45-180 micrometers is preferable. When the toner is manufactured using a mesh having a mesh size larger than 300 μm, coarse particles contained in the toner base particles are mixed in the toner, and aggregates of external additives are contained in the toner. This adversely affects the image characteristics, the polishing function, and the polishing suppression function. In other words, the presence of coarse toner particles and external additive aggregates in the developer causes white spots in solid images, spots on white background, scratches on the photoreceptor, adhesion of toner components, etc. End up. On the other hand, when toner is manufactured using a mesh having a mesh size smaller than 40 μm, the toner surface is damaged when the toner passes through the mesh, and the external additive falls off the toner. Therefore, the balance between the polishing function and the polishing suppression function is impaired. The mesh type is preferably a plain weave structure, and a twill weave structure can also be used, but it is not preferable in view of deterioration of the toner surface. This is because the twill weave structure is more susceptible to stress due to friction and contact during passage than the plain weave structure in terms of the mesh structure.

本発明の正帯電性トナーが二成分系乾式現像剤として用いられる場合には、キャリアが含まれる。本発明の正帯電性トナーとともに用いられるキャリアは、従来二成分系乾式現像剤において用いられるキャリアのいずれであってもよく、例えば、鉄粉等の強磁性金属あるいは強磁性金属の合金粉、ニッケル、銅、亜鉛、マグネシウム、バリウム等の元素から構成されるフェライト粉、マグネタイト粉等が好ましいものとして挙げられる。これらキャリアは、スチレン・メタクリレート共重合体、スチレン重合体、シリコーン樹脂等の樹脂で被覆されたものでよい。キャリアを樹脂により被覆する方法としては、被覆用樹脂を溶剤に溶解し、これを浸漬法、スプレー法、流動床法等によりコア粒子上に塗布し、乾燥させた後必要に応じ加熱して塗膜を硬化する方法等公知の任意の方法によることができる。またキャリアの平均粒径は、通常15〜200μm、好ましくは20〜100μmのものを用いることができる。   When the positively chargeable toner of the present invention is used as a two-component dry developer, a carrier is included. The carrier used together with the positively chargeable toner of the present invention may be any carrier conventionally used in a two-component dry developer, for example, a ferromagnetic metal such as iron powder or an alloy powder of ferromagnetic metal, nickel Ferrite powder, magnetite powder and the like composed of elements such as copper, zinc, magnesium and barium are preferred. These carriers may be coated with a resin such as a styrene / methacrylate copolymer, a styrene polymer, or a silicone resin. As a method of coating the carrier with a resin, a coating resin is dissolved in a solvent, and this is applied onto the core particles by a dipping method, a spray method, a fluidized bed method, etc., dried, and then heated and applied as necessary. Any known method such as a method of curing the film can be used. The average particle diameter of the carrier is usually 15 to 200 μm, preferably 20 to 100 μm.

以下実施例および比較例により本発明を更に具体的に説明するが、本発明の態様がこれらの例に限定されるものではない。なお以下については、部数は全て重量部を表す。また下記の実施例、比較例の詳細な条件、結果を以下の表1、表2に示す。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the embodiments of the present invention are not limited to these examples. In the following, all parts represent parts by weight. Detailed conditions and results of the following examples and comparative examples are shown in Tables 1 and 2 below.

結着樹脂 スチレン−アクリル系共重合体 100部
着色剤 磁性体 (マグネタイト:比表面積 5.7m/g) 93部
荷電制御剤 ニグロシン染料(ニグロシンベース:D50径 7μm) 6部
ワックス 炭化水素系ワックス 2部
上記成分を均一に混合した後、混練、粉砕、分級して平均粒径10.3μmの正帯電性トナー粒子を得た。次いで、このトナー粒子100部に対して、ジメチルジクロロシランで表面処理した疎水性シリカ微粒子0.4部、平均粒子径D50が1.38μm、粒子径D3が3.45μm、粒子径D94が0.64μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子(A)1.0部、及びL/Sが2.7、モース硬度が3のシリカヒドロゾルとメチルフェニルシリコーンオイルで表面処理した炭酸カルシウム微粒子(軽微性炭酸カルシウム)(B)1.0部を添加、混合して正帯電性磁性トナーを得た。次にこのトナーを用いて、アモルファスシリコン感光体を搭載したプロセススピードが300mm/secの市販のデジタル複写機において、A4の用紙にて、初めに常温常湿(23℃、50%RH)環境下で20万枚、次に高温高湿(30℃、85%RH)環境下で10万枚、次に低温低湿(10℃、20%RH)環境下で10万枚、最後に常温常湿(23℃、50%RH)環境下で10万枚、合計50万枚の実写試験を行った。試験の結果、いずれの環境下においても感光体上へのトナーの付着は見られず、また感光体上の傷も認められなかった。さらに50万枚実写後でも画像濃度は安定しており、カブリは少なく、機内のトナー飛散、画像汚れも見られなかった。なお、初期及び50万枚複写時の画像濃度(I.D.)は各々1.38、1.41であり、また初期及び50万枚複写時のカブリは各々0.4、0.7であった。
なお、画像濃度はマクベス光度計を用いて行い、画像濃度は1.35以上の濃度であればよい。また、カブリはフォトボルトにて、反射率を測定することにより行った。1.5%以下が良好な値である。更に、トナーの機内飛散は、複写機の転写チャージャー上に飛散トナーが存在するか否かを確認することにより行った。転写チャージャー上にトナー飛散が見られる場合、これに伴う画像汚れが発生する。画像濃度及びカブリの測定、トナー飛散の有無は以下の実施例及び比較例においても同様な方法で行った。
[実施例2]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が0.57μm、粒子径D3が2.62μm、粒子径D94が0.31μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子0.7部に、炭酸カルシウム微粒子(B)1.0部をL/Sが2.6、モース硬度が3のシリカヒドロゾルとメチルフェニルシリコーンオイルで表面処理した炭酸カルシウム微粒子(軽微性炭酸カルシウム)0.5部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行った。試験の結果、いずれの環境下においても感光体上へのトナーの付着は見られず、また感光体上の傷も認められなかった。さらに50万枚実写後でも画像濃度は安定しており、カブリは少なく、機内のトナー飛散、画像汚れも見られなかった。なお、初期及び50万枚複写時の画像濃度(I.D.)は各々1.44、1.43であり、また初期及び50万枚複写時のカブリは各々1.1、0.8であった。
[実施例3]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が2.45μm、粒子径D3が6.30μm、粒子径D94が0.81μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子2.0部に、炭酸カルシウム(B)1.0部をL/Sが2.3、モース硬度が3のシリカヒドロゾルとジメチルシリコーンオイルで表面処理した炭酸カルシウム微粒子(軽微性炭酸カルシウム)1.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行った。試験の結果、いずれの環境下においても感光体上へのトナーの付着は見られず、また感光体上の傷も認められなかった。さらに50万枚実写後でも画像濃度は安定しており、カブリは少なく、機内のトナー飛散、画像汚れも見られなかった。なお、初期及び50万枚複写時の画像濃度(I.D.)は各々1.42、1.43であり、また初期及び50万枚複写時のカブリは各々0.5、0.6であった。
[実施例4]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が0.57μm、粒子径D3が2.62μm、粒子径D94が0.31μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子1.5部に、炭酸カルシウム(B)1.0部をL/Sが2.8、モース硬度が3のシリカヒドロゾルとジメチルシリコーンオイルで表面処理した炭酸カルシウム微粒子(軽微性炭酸カルシウム)2.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行った。試験の結果、いずれの環境下においても感光体上へのトナーの付着は見られず、また感光体上の傷も認められなかった。さらに50万枚実写後でも画像濃度は安定しており、カブリは少なく、機内のトナー飛散、画像汚れも見られなかった。なお、初期及び50万枚複写時の画像濃度(I.D.)は各々1.35、1.36であり、また初期及び50万枚複写時のカブリは各々1.4、1.3であった。
[実施例5]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が1.17μm、粒子径D3が4.15μm、粒子径D94が0.47μm、モース硬度が9の超音波を利用し衝撃波による乾燥工程を経て得られた炭化チタン微粒子1.5部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行った。試験の結果、いずれの環境下においても感光体上へのトナーの付着は見られず、また感光体上の傷も認められなかった。さらに50万枚実写後でも画像濃度は安定しており、カブリは少なく、機内のトナー飛散、画像汚れも見られなかった。なお、初期及び50万枚複写時の画像濃度(I.D.)は各々1.39、1.37であり、また初期及び50万枚複写時のカブリは各々0.8、0.6であった。
[実施例6]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が1.95μm、粒子径D3が4.86μm、粒子径D94が0.70μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子1.0部に、炭酸カルシウム(B)1.0部をL/Sが2.5、モース硬度が3.5のシリカヒドロゾルとジメチルシリコーンオイルで表面処理した硫酸バリウム微粒子(沈降性硫酸バリウム)1.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行った。試験の結果、いずれの環境下においても感光体上へのトナーの付着は見られず、また感光体上の傷も認められなかった。さらに50万枚実写後でも画像濃度は安定しており、カブリは少なく、機内のトナー飛散、画像汚れも見られなかった。なお、初期及び50万枚複写時の画像濃度(I.D.)は各々1.40、1.41であり、また初期及び50万枚複写時のカブリは各々1.2、1.2であった。
[比較例1]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が0.33μm、粒子径D3が0.70μm、粒子径D94が0.17μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子1.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行ったところ、常温常湿(23℃、50%RH)環境下の約5千枚を過ぎたあたりから、研磨効果が十分でない場合に起こる複写紙上の白点(ホワイトスポット)の発生が認められ、感光体上にトナーが付着していたため実写試験を中止した。
[比較例2]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が3.02μm、粒子径D3が8.00μm、粒子径D94が1.31μm、モース硬度が13の超音波を利用し衝撃波による乾燥工程を経て得られた炭化ケイ素微粒子1.5部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行ったところ、低温低湿(10℃、20%RH)環境下の約35万枚を過ぎたあたりから、複写紙上に筋の発生が認められ、感光体上に炭化ケイ素の粗大粒子による深い傷がついていたため実写試験を中止した。
[比較例3]
実施例1で用いた炭化ケイ素微粒子(A)1.0部を平均粒子径D50が1.44μm、粒子径D3が4.11μm、粒子径D94が0.60μm、モース硬度が7のシリカ微粒子1.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行ったところ、常温常湿(23℃、50%RH)環境下の約8万枚を過ぎたあたりから、研磨効果が十分でない場合に起こる複写紙上の白点(ホワイトスポット)の発生が認められ、感光体上にトナーが付着していたため実写試験を中止した。
[比較例4]
実施例1で用いた炭酸カルシウム微粒子(B)1.0部をL/Sが2.8、モース硬度が3、シリカヒドロゾルを用いずにメチルフェニルシリコーンオイルのみで表面処理した炭酸カルシウム微粒子(軽微性炭酸カルシウム)1.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行ったところ、常温常湿(23℃、50%RH)環境下の約12万枚を過ぎたあたりから、複写紙上の白点(ホワイトスポット)の発生が認められ、感光体上にトナーが付着していたため実写試験を中止した。
[比較例5]
実施例1で用いた炭酸カルシウム微粒子(B)1.0部をL/Sが1.8、モース硬度が7のメチルフェニルシリコーンオイルで表面処理したシリカ微粒子1.0部に代えることを除き、実施例1と同様にして正帯電性磁性トナーを得た。次にこのトナーを用いて、実施例1と同様に実写試験を行ったところ、低温低湿(10℃、20%RH)環境下の約30万枚を過ぎたあたりから、ハーフトーン(I.D.約0.3)の複写紙上に濃度ムラの発生が認められ、感光体上に研磨し過ぎによる傷ムラが発生していた。またクリーニング不良による黒筋も認められたため実写試験を中止した。
Binder resin 100 parts of styrene-acrylic copolymer
Colorant Magnetic substance (Magnetite: Specific surface area 5.7 m 2 / g) 93 parts Charge control agent Nigrosine dye (Nigrosine base: D50 diameter 7 μm) 6 parts Wax Hydrocarbon wax 2 parts The above ingredients are mixed uniformly and then kneaded. Then, pulverization and classification were performed to obtain positively chargeable toner particles having an average particle size of 10.3 μm. Next, with respect to 100 parts of the toner particles, 0.4 part of hydrophobic silica fine particles surface-treated with dimethyldichlorosilane, the average particle diameter D50 is 1.38 μm, the particle diameter D3 is 3.45 μm, and the particle diameter D94 is 0.00. 1.0 μm of silicon carbide fine particles (A) obtained through a drying process using shock waves using ultrasonic waves of 64 μm and Mohs hardness of 13; and a silica hydrosol having L / S of 2.7 and Mohs hardness of 3 1.0 part of calcium carbonate fine particles (light calcium carbonate) (B) surface-treated with methylphenyl silicone oil was added and mixed to obtain a positively chargeable magnetic toner. Next, using this toner, in a commercially available digital copying machine equipped with an amorphous silicon photoconductor and having a process speed of 300 mm / sec, the A4 paper is first subjected to an environment of normal temperature and humidity (23 ° C., 50% RH). 200,000 sheets, then 100,000 sheets in a high temperature and high humidity (30 ° C., 85% RH) environment, then 100,000 sheets in a low temperature and low humidity (10 ° C., 20% RH) environment, and finally room temperature and normal humidity ( In a 23 ° C., 50% RH) environment, 100,000 sheets were taken, and a total of 500,000 sheets were tested. As a result of the test, no adhesion of toner on the photoreceptor was observed in any environment, and no scratch on the photoreceptor was observed. Further, the image density was stable after 500,000 shots were taken, there was little fogging, and no toner scattering and image smearing were observed. The image density (ID) at the initial and 500,000 copies is 1.38 and 1.41, respectively, and the fog at the initial and 500,000 copies is 0.4 and 0.7, respectively. there were.
The image density is determined using a Macbeth photometer, and the image density may be 1.35 or higher. The fog was measured by measuring the reflectance with a photovolt. 1.5% or less is a good value. Further, the toner was scattered in the machine by checking whether or not the scattered toner was present on the transfer charger of the copying machine. When toner scattering is seen on the transfer charger, the image stains associated therewith are generated. The measurement of image density and fog, and the presence or absence of toner scattering were performed in the same manner in the following examples and comparative examples.
[Example 2]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 0.57 μm, a particle diameter D3 of 2.62 μm, a particle diameter D94 of 0.31 μm, and a Mohs hardness of 13. Silica hydrosol and methylphenyl having an L / S of 2.6 and a Mohs hardness of 3 by adding 1.0 part of calcium carbonate fine particles (B) to 0.7 parts of silicon carbide fine particles obtained through a drying process using shock waves. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 0.5 part of calcium carbonate fine particles (light calcium carbonate) surface-treated with silicone oil was used. Next, using this toner, a live-action test was conducted in the same manner as in Example 1. As a result of the test, no adhesion of toner on the photoreceptor was observed in any environment, and no scratch on the photoreceptor was observed. Further, the image density was stable after 500,000 shots were taken, there was little fogging, and no toner scattering and image smearing were observed. The image density (ID) at the initial and 500,000 copies is 1.44 and 1.43, respectively, and the fog at the initial and 500,000 copies is 1.1 and 0.8, respectively. there were.
[Example 3]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 2.45 μm, a particle diameter D3 of 6.30 μm, a particle diameter D94 of 0.81 μm, and a Mohs hardness of 13. Silica hydrosol and dimethylsilicone oil having 1.0 parts of calcium carbonate (B), L / S of 2.3, and Mohs hardness of 3 to 2.0 parts of silicon carbide fine particles obtained through a drying process using shock waves. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 1.0 part of calcium carbonate fine particles (light calcium carbonate) surface-treated with 1.0 was used. Next, using this toner, a live-action test was conducted in the same manner as in Example 1. As a result of the test, no adhesion of toner on the photoreceptor was observed in any environment, and no scratch on the photoreceptor was observed. Further, the image density was stable after 500,000 shots were taken, there was little fogging, and no toner scattering and image smearing were observed. The image density (ID) at the initial and 500,000 copies is 1.42 and 1.43, respectively, and the fog at the initial and 500,000 copies is 0.5 and 0.6, respectively. there were.
[Example 4]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 0.57 μm, a particle diameter D3 of 2.62 μm, a particle diameter D94 of 0.31 μm, and a Mohs hardness of 13. Silica hydrosol and dimethylsilicone oil having 1.0 parts of calcium carbonate (B), L / S of 2.8, and Mohs hardness of 3 to 1.5 parts of silicon carbide fine particles obtained through a drying process using shock waves. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 2.0 parts of calcium carbonate fine particles (light calcium carbonate) that had been surface-treated with 2.0 were replaced. Next, using this toner, a live-action test was conducted in the same manner as in Example 1. As a result of the test, no adhesion of toner on the photoreceptor was observed in any environment, and no scratch on the photoreceptor was observed. Further, the image density was stable after 500,000 shots were taken, there was little fogging, and no toner scattering and image smearing were observed. The image density (ID) at the initial and 500,000 copies is 1.35 and 1.36, respectively, and the fog at the initial and 500,000 copies is 1.4 and 1.3, respectively. there were.
[Example 5]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 1.17 μm, a particle diameter D3 of 4.15 μm, a particle diameter D94 of 0.47 μm, and a Mohs hardness of 9. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that it was replaced with 1.5 parts of titanium carbide fine particles obtained through a drying process using shock waves. Next, using this toner, a live-action test was conducted in the same manner as in Example 1. As a result of the test, no adhesion of toner on the photoreceptor was observed in any environment, and no scratch on the photoreceptor was observed. Further, the image density was stable after 500,000 shots were taken, there was little fogging, and no toner scattering and image smearing were observed. The image density (ID) at the initial and 500,000 copies is 1.39 and 1.37, respectively, and the fog at the initial and 500,000 copies is 0.8 and 0.6, respectively. there were.
[Example 6]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 1.95 μm, a particle diameter D3 of 4.86 μm, a particle diameter D94 of 0.70 μm, and a Mohs hardness of 13. Silica hydrosol and dimethyl having 1.0 parts of calcium carbonate (B) and L / S of 2.5 and Mohs hardness of 3.5 to 1.0 parts of silicon carbide fine particles obtained through a drying process using shock waves. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 1.0 part of fine barium sulfate particles (precipitated barium sulfate) surface-treated with silicone oil was used. Next, using this toner, a live-action test was conducted in the same manner as in Example 1. As a result of the test, no adhesion of toner on the photoreceptor was observed in any environment, and no scratch on the photoreceptor was observed. Further, the image density was stable after 500,000 shots were taken, there was little fogging, and no toner scattering and image smearing were observed. The image density (ID) at the initial and 500,000 copies is 1.40 and 1.41, respectively, and the fog at the initial and 500,000 copies is 1.2 and 1.2, respectively. there were.
[Comparative Example 1]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 0.33 μm, a particle diameter D3 of 0.70 μm, a particle diameter D94 of 0.17 μm, and a Mohs hardness of 13. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 1.0 part of silicon carbide fine particles obtained through a drying process using shock waves was used. Next, when this toner was used and a live-action test was conducted in the same manner as in Example 1, the polishing effect was not sufficient after about 5,000 sheets under normal temperature and normal humidity (23 ° C., 50% RH) environment. The occurrence of white spots (white spots) on the copy paper that occurred in some cases was observed, and the toner was adhering to the photoconductor, so the live-action test was stopped.
[Comparative Example 2]
1.0 parts of silicon carbide fine particles (A) used in Example 1 were subjected to ultrasonic waves having an average particle diameter D50 of 3.02 μm, a particle diameter D3 of 8.00 μm, a particle diameter D94 of 1.31 μm, and a Mohs hardness of 13. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that it was replaced with 1.5 parts of silicon carbide fine particles obtained through a drying process using shock waves. Next, using this toner, a live-action test was conducted in the same manner as in Example 1. After about 350,000 sheets in a low-temperature and low-humidity (10 ° C., 20% RH) environment, streaks were generated on the copy paper. Since the surface of the photoconductor was deeply scratched by coarse particles of silicon carbide, the live-action test was stopped.
[Comparative Example 3]
Silica fine particles 1 having an average particle diameter D50 of 1.44 μm, a particle diameter D3 of 4.11 μm, a particle diameter D94 of 0.60 μm and a Mohs hardness of 7 are 1.0 part of the silicon carbide fine particles (A) used in Example 1. A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 0.0 part was used. Next, when this toner was used and a live-action test was performed in the same manner as in Example 1, the polishing effect was not sufficient after about 80,000 sheets under normal temperature and normal humidity (23 ° C., 50% RH) environment. The occurrence of white spots (white spots) on the copy paper that occurred in some cases was observed, and the toner was adhering to the photoconductor, so the live-action test was stopped.
[Comparative Example 4]
1.0 part of calcium carbonate fine particles (B) used in Example 1 having an L / S of 2.8, a Mohs hardness of 3, and calcium carbonate fine particles surface-treated with only methylphenyl silicone oil without using silica hydrosol ( A positively chargeable magnetic toner was obtained in the same manner as in Example 1 except that 1.0 part of light calcium carbonate) was used. Next, a real image test was conducted using this toner in the same manner as in Example 1. As a result, after about 120,000 sheets under normal temperature and normal humidity (23 ° C., 50% RH) environment, Since the occurrence of (white spot) was observed and the toner adhered to the photoreceptor, the live-action test was stopped.
[Comparative Example 5]
Except for replacing 1.0 part of calcium carbonate fine particles (B) used in Example 1 with 1.0 part of silica fine particles surface-treated with methyl phenyl silicone oil having an L / S of 1.8 and a Mohs hardness of 7, In the same manner as in Example 1, a positively chargeable magnetic toner was obtained. Next, a real image test was conducted using this toner in the same manner as in Example 1. As a result, after about 300,000 sheets in a low-temperature and low-humidity (10 ° C., 20% RH) environment, halftone (ID) was used. About 0.3) density unevenness was observed on the copy paper, and scratches due to excessive polishing were generated on the photoreceptor. In addition, black spot due to poor cleaning was observed, so the live-action test was stopped.

以下表1に使用した無機微粒子(A)、無機微粒子(B)の一覧を、表2に画像試験結果を示す。   Table 1 below shows a list of the inorganic fine particles (A) and inorganic fine particles (B) used, and Table 2 shows the image test results.

Figure 2007206385
Figure 2007206385

Figure 2007206385
Figure 2007206385

本発明の正帯電性トナーはアモルファスシリコン感光体を用いた画像形成装置に好ましく用いることができ、またトナー成分が感光体へ悪影響を及ぼさず耐久性、耐刷性に優れており、かつ画像特性にも十分満足の行く品質の優れたトナーを提供することができる。   The positively chargeable toner of the present invention can be preferably used in an image forming apparatus using an amorphous silicon photoconductor, and the toner component does not adversely affect the photoconductor and has excellent durability and printing durability, and image characteristics. In addition, it is possible to provide an excellent toner with satisfactory quality.

Claims (6)

少なくとも結着樹脂及び着色剤を含有するトナー母粒子と複数の外添剤とからなる、アモルファスシリコン感光体を用いた画像形成装置に用いる正帯電性トナーであって、外添剤が少なくともマイクロトラック法による上からの累積50%の平均粒子径D50が0.5〜2.5μm、上からの累積3%の粒子径D3が7μm以下、上からの累積94%の粒子径D94が0.3μm以上であり、かつモース硬度が9〜14の無機微粒子(A)とシリカヒドロゾル及びシリコーンオイルにより表面処理されたモース硬度が5以下の金属塩化合物である無機微粒子(B)とからなることを特徴とする正帯電性トナー。   A positively chargeable toner for use in an image forming apparatus using an amorphous silicon photoreceptor, comprising toner base particles containing at least a binder resin and a colorant and a plurality of external additives, wherein the external additive is at least a microtrack. 50% cumulative average particle diameter D50 from above is 0.5 to 2.5 μm, 3% cumulative particle diameter D3 from the top is 7 μm or less, 94% cumulative particle diameter D94 from the top is 0.3 μm The inorganic fine particles (A) having a Mohs hardness of 9 to 14 and the inorganic fine particles (B) which are a metal salt compound having a Mohs hardness of 5 or less and surface-treated with silica hydrosol and silicone oil. Characteristic positively chargeable toner. 無機微粒子(A)の含有量が、トナー母粒子100重量部に対して、0.5〜2.0重量部、かつ無機微粒子(B)の含有量が、トナー母粒子100重量部に対して、0.5〜2.0重量部であることを特徴とする請求項1記載の正帯電性トナー。   The content of inorganic fine particles (A) is 0.5 to 2.0 parts by weight with respect to 100 parts by weight of toner base particles, and the content of inorganic fine particles (B) is with respect to 100 parts by weight of toner base particles. The positively chargeable toner according to claim 1, wherein the toner is 0.5 to 2.0 parts by weight. 無機微粒子(A)が無機炭化物であることを特徴とする請求項1または2に記載の正帯電性トナー。   The positively chargeable toner according to claim 1, wherein the inorganic fine particles (A) are inorganic carbides. 無機炭化物が炭化ケイ素であることを特徴とする請求項3に記載の正帯電性トナー。   The positively chargeable toner according to claim 3, wherein the inorganic carbide is silicon carbide. 無機微粒子(B)が炭酸カルシウムであることを特徴とする請求項1〜4いずれかに記載の正帯電性トナー。   The positively chargeable toner according to claim 1, wherein the inorganic fine particles (B) are calcium carbonate. 無機微粒子(B)の形状が長径(L)と短径(S)の比、L/Sが2以上であることを特徴とする請求項1〜5いずれかに記載の正帯電性トナー。
The positively chargeable toner according to claim 1, wherein the shape of the inorganic fine particles (B) is a ratio of the major axis (L) to the minor axis (S), and L / S is 2 or more.
JP2006025234A 2006-02-02 2006-02-02 Positively charged toner Ceased JP2007206385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025234A JP2007206385A (en) 2006-02-02 2006-02-02 Positively charged toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025234A JP2007206385A (en) 2006-02-02 2006-02-02 Positively charged toner

Publications (1)

Publication Number Publication Date
JP2007206385A true JP2007206385A (en) 2007-08-16

Family

ID=38485913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025234A Ceased JP2007206385A (en) 2006-02-02 2006-02-02 Positively charged toner

Country Status (1)

Country Link
JP (1) JP2007206385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027869A (en) * 2009-07-23 2011-02-10 Fuji Xerox Co Ltd Toner for developing electrostatic charge image, method for manufacturing toner for developing electrostatic charge image, developer for developing electrostatic charge image, toner cartridge, process cartridge, and image forming apparatus
JP2012088462A (en) * 2010-10-19 2012-05-10 Tayca Corp Electrostatic latent image development toner external additive
WO2024085855A1 (en) * 2022-10-17 2024-04-25 Hewlett-Packard Development Company, L.P. Calcium carbonate toner surface additives

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05181306A (en) * 1991-12-30 1993-07-23 Kyocera Corp Electrostatic latent image developing toner
JPH0815900A (en) * 1994-06-28 1996-01-19 Fuji Xerox Co Ltd Electrostatic charge image developing toner, electrostatic charge image developer and image forming method
JPH11161004A (en) * 1997-11-21 1999-06-18 Fuji Xerox Co Ltd Image forming method
JP2001265052A (en) * 2000-03-23 2001-09-28 Toyo Ink Mfg Co Ltd Electrostatic charge developer and method for formation of image
JP2002108000A (en) * 2000-10-03 2002-04-10 Toyo Ink Mfg Co Ltd Electrostatic charge image developer and method for forming image
JP2004163560A (en) * 2002-11-12 2004-06-10 Toyo Ink Mfg Co Ltd Electrostatic charge image developer and image forming method
JP2004287102A (en) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd Picture forming method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05181306A (en) * 1991-12-30 1993-07-23 Kyocera Corp Electrostatic latent image developing toner
JPH0815900A (en) * 1994-06-28 1996-01-19 Fuji Xerox Co Ltd Electrostatic charge image developing toner, electrostatic charge image developer and image forming method
JPH11161004A (en) * 1997-11-21 1999-06-18 Fuji Xerox Co Ltd Image forming method
JP2001265052A (en) * 2000-03-23 2001-09-28 Toyo Ink Mfg Co Ltd Electrostatic charge developer and method for formation of image
JP2002108000A (en) * 2000-10-03 2002-04-10 Toyo Ink Mfg Co Ltd Electrostatic charge image developer and method for forming image
JP2004163560A (en) * 2002-11-12 2004-06-10 Toyo Ink Mfg Co Ltd Electrostatic charge image developer and image forming method
JP2004287102A (en) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd Picture forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027869A (en) * 2009-07-23 2011-02-10 Fuji Xerox Co Ltd Toner for developing electrostatic charge image, method for manufacturing toner for developing electrostatic charge image, developer for developing electrostatic charge image, toner cartridge, process cartridge, and image forming apparatus
JP2012088462A (en) * 2010-10-19 2012-05-10 Tayca Corp Electrostatic latent image development toner external additive
WO2024085855A1 (en) * 2022-10-17 2024-04-25 Hewlett-Packard Development Company, L.P. Calcium carbonate toner surface additives

Similar Documents

Publication Publication Date Title
JP4227664B2 (en) Two-component developer
KR101270321B1 (en) Toner and image formation method
JP2008233763A (en) Electrophotographic carrier, and electrophotographic developer, electrophotographic developer cartridge, process cartridge, and image forming apparatus each using the carrier
JP5152172B2 (en) Positively chargeable toner for electrostatic image development
JPWO2007080826A1 (en) Toner for electrostatic image development
JP5423385B2 (en) Positively chargeable electrostatic image developing toner and color image forming method using the toner
JP2008015151A (en) Two-component developer using magnetic fine particle-containing resin carrier
JP2004145325A (en) Fine silica particle, toner, two-component developer and image forming method
JP2007206385A (en) Positively charged toner
JP2009069259A (en) Two-component developer, and image forming method and image forming apparatus using the same
JP4027123B2 (en) Toner and image forming method using the toner
JP4072384B2 (en) Magnetic toner, image forming method using the toner, and process cartridge
JP3778890B2 (en) Electrostatic charge image developer and image forming method
JP2005181489A (en) Resin for toner, toner, and image forming method using the toner
JP3614031B2 (en) Magnetic toner for electrostatic image development
JP3880346B2 (en) toner
JP2020076790A (en) toner
JP4181752B2 (en) Magnetic toner and image forming method using the magnetic toner
JP2009139509A (en) Toner for developing electrostatic charge image
JP3644371B2 (en) Electrostatic charge image developer and image forming method
JP2009210839A (en) Negatively charged toner
JP2007127815A (en) Electrostatic charge image development toner
JP2003107791A (en) Toner, image forming method and image forming device
JP2003177645A (en) Image forming method, image forming device and image forming process unit
JP2007058035A (en) Electrophotographic toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100824