JP2007204969A - Building - Google Patents

Building Download PDF

Info

Publication number
JP2007204969A
JP2007204969A JP2006022867A JP2006022867A JP2007204969A JP 2007204969 A JP2007204969 A JP 2007204969A JP 2006022867 A JP2006022867 A JP 2006022867A JP 2006022867 A JP2006022867 A JP 2006022867A JP 2007204969 A JP2007204969 A JP 2007204969A
Authority
JP
Japan
Prior art keywords
water
ngh
building
gas
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006022867A
Other languages
Japanese (ja)
Other versions
JP4889309B2 (en
Inventor
Makoto Tanaka
田中  誠
Shigeru Nanbara
滋 南原
Masashi Murata
真史 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006022867A priority Critical patent/JP4889309B2/en
Publication of JP2007204969A publication Critical patent/JP2007204969A/en
Application granted granted Critical
Publication of JP4889309B2 publication Critical patent/JP4889309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To take advantage of water which is obtained by the decomposition of a natural gas hydrate (NGH) serving as a fuel source for gas equipment in a building. <P>SOLUTION: This building 10 comprises a building structure 11a which includes a plurality of dwellings, and a gas supply system 11b for supplying gas energy to the building structure 11a. The gas supply system 11b comprises: an NGH tank 12 in which the NGH is stored; an NGH decomposition unit 13 which decomposes the NGH supplied from the NGH tank 12, so as to generate fuel gas and the water; fuel piping 14 for distributing the fuel gas to respective dwelling units in the building structure 11a; power generation equipment 15 which is driven by the fuel gas; a water storage tank 16 in which the water decomposed by the NGH decomposition unit 13 is temporarily stored; a pump 17 for pumping out the water from the water storage tank 16; and a water discharge device 18 for discharging the water which is pumped out by the pump 17. The water in the water storage tank 16 is pumped out by the pump 17, and sprinkled from the water discharge device 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガス設備を備えた建築物に関し、特に、天然ガスハイドレート(NGH:Natural Gas Hydrate)を燃料として使用するガス設備を備える建築物に関するものである。   The present invention relates to a building having a gas facility, and more particularly to a building having a gas facility that uses natural gas hydrate (NGH) as a fuel.

近年、地球環境への配慮から燃料として天然ガスハイドレート(NGH)が注目されている(非特許文献1参照)。NGHは、メタン、エタン、プロパンなどを主成分とする天然ガスの分子(ゲスト)が水分子のクラスタ中に取り込まれた包接水和物であり、マイナス20℃の大気圧環境下で約170倍のガスを包蔵することができる。ガスエネルギーとしては液化天然ガス(LNG)がよく知られているが、LNGはマイナス162℃の極低温下で製造・貯蔵されるため、NGHは製造、輸送、貯蔵、ガス化というシステム全体面でLNGよりも有利な点が多い。また、NGHはガソリンなどに比べて二酸化炭素や大気汚染物質の排出量が少ないことから、クリーンエネルギーとしても注目されている。
三井造船株式会社、"天然ガスハイドレート(NGH)−三井造船"、[online]、[平成18年1月16日検索]、インターネット<URL:http://www.mes.co.jp/mes_technology/NGH.html>
In recent years, natural gas hydrate (NGH) has attracted attention as a fuel in consideration of the global environment (see Non-Patent Document 1). NGH is a clathrate hydrate in which natural gas molecules (guests) mainly composed of methane, ethane, propane, etc. are incorporated into a cluster of water molecules, and is about 170 under an atmospheric pressure environment of minus 20 ° C. Double the gas can be stored. As gas energy, liquefied natural gas (LNG) is well known, but since LNG is manufactured and stored at an extremely low temperature of minus 162 ° C, NGH is used in the entire system of manufacturing, transportation, storage, and gasification. There are many advantages over LNG. NGH is also attracting attention as clean energy because it emits less carbon dioxide and air pollutants than gasoline.
Mitsui Engineering & Shipbuilding Co., Ltd., “Natural Gas Hydrate (NGH)-Mitsui Engineering & Shipbuilding”, [online], [searched January 16, 2006], Internet <URL: http://www.mes.co.jp/mes_technology /NGH.html>

NGHを燃料とするガス設備にはNGH分解装置が必要となり、NGHの分解によって得られるメタンガス等を燃料として使用するが、NGHを分解したときには多量の水が副次的に生成される。水の生成率はNGHに対する体積比で約80%であることから、かなり多量の水が生成されることになる。しかしながら、こうして生成された水は生活用水としてなじみにくいものであり、従来の建築物においてはこの水の使い道がないため、そのまま排水するしかなかった。   A gas facility using NGH as a fuel requires an NGH decomposing apparatus and uses methane gas or the like obtained by NGH decomposition as a fuel. However, when NGH is decomposed, a large amount of water is produced as a secondary. Since the generation rate of water is about 80% by volume ratio with respect to NGH, a considerably large amount of water is generated. However, the water generated in this way is difficult to be used as domestic water, and conventional buildings have no way to use this water, so they have to be drained as they are.

一方、集合住宅(マンション)、病院、ホテル、商業ビル、工場、倉庫等の大型建築物は夏場になると建築物の内外ともに非常に高温となる。建築物の内部についてはエアコンにより適温に保つことができるが、エアコンを稼働させた場合には光熱費が高くなるという問題がある。また、建築物の内部は適温に保てるものの、外部は非常に高温のままであるため、建築物の内部の冷却効果が十分ではなく、建築物の外壁面に触れるとやけどをするおそれもある。   On the other hand, large buildings such as apartment houses (condominiums), hospitals, hotels, commercial buildings, factories, and warehouses become extremely hot both inside and outside the building in the summer. Although the inside of a building can be kept at an appropriate temperature by an air conditioner, there is a problem that the utility cost increases when the air conditioner is operated. In addition, although the inside of the building can be kept at an appropriate temperature, the outside remains at a very high temperature, so the cooling effect inside the building is not sufficient, and there is a risk of burns when touching the outer wall surface of the building.

したがって、本発明の目的は、ガス設備の燃料源となるNGHの分解によって得られる水を活用することが可能な建築物を提供することにある。   Therefore, the objective of this invention is providing the building which can utilize the water obtained by decomposition | disassembly of NGH used as the fuel source of gas equipment.

本発明の上記目的は、NGHが貯蔵されたNGHタンクと、前記NGHタンクより供給されるNGHを分解して燃料ガスと水を生成するNGH分解装置と、前記燃料ガスを利用したガス設備と、前記水を当該建築物の屋上又は外壁面へ放水するための放水機構とを備えることを特徴とする建築物によって達成される。   The above objects of the present invention include an NGH tank in which NGH is stored, an NGH decomposition apparatus that decomposes NGH supplied from the NGH tank to generate fuel gas and water, a gas facility that uses the fuel gas, It is achieved by a building comprising a water discharge mechanism for discharging the water to the roof or outer wall surface of the building.

本発明において、前記放水機構は、前記NGH分解装置によるNGH分解圧力を利用して前記水を放水することが好ましい。これによれば、ポンプ等を用いることなく放水することができる。また、前記放水機構は、貯水タンクと、前記貯水タンク内の水を汲み出すポンプと、前記ポンプによって汲み出された水を放水する放水器とを備えることが好ましく、当該建築物の屋上の端に取り付けられていることが特に好ましい。これによれば、NGH分解装置により生成された水を一時的に貯蔵することができ、貯蔵された水を適宜放水することができる。   In the present invention, it is preferable that the water discharge mechanism discharges the water using an NGH decomposition pressure by the NGH decomposition apparatus. According to this, water can be discharged without using a pump or the like. The water discharge mechanism preferably includes a water storage tank, a pump that pumps out water in the water storage tank, and a water discharge device that discharges water pumped out by the pump. It is particularly preferred that it is attached to According to this, the water produced | generated by the NGH decomposition | disassembly apparatus can be stored temporarily, and the stored water can be discharged appropriately.

本発明においては、前記建築物の屋上又は外壁面が光触媒でコーティングされていることが好ましい。これによれば、光触媒の超親水性効果により水の蒸発を促進することができ、放熱効果を高めることができる。   In the present invention, it is preferable that the roof or the outer wall surface of the building is coated with a photocatalyst. According to this, evaporation of water can be promoted by the superhydrophilic effect of the photocatalyst, and the heat dissipation effect can be enhanced.

本発明においては、前記燃料ガスを利用した発電設備をさらに備えることが好ましい。これによれば、商用とは別系統の電力を供給することができ、常用又は非常用電力として用いることができるほか、NGHを分解するための電熱ヒータや水をくみ上げるためのポンプの電源としても使用することができる。   In this invention, it is preferable to further provide the power generation equipment using the said fuel gas. According to this, it is possible to supply electric power of a system different from that for commercial use, and it can be used as normal or emergency power, as well as an electric heater for decomposing NGH and a power source for a pump for pumping water. Can be used.

本発明によれば、NGH分解装置がNGHを分解することにより得られる燃料ガスをガスコンロ等のガス設備に利用すると共に、NGH分解装置より得られる冷水を建築物の屋上や外壁面に放水するので、冷水の気化熱により建築物全体を冷却することができる。これにより、建築物が高温になるという問題が解決され、エアコンのみに頼ることなく建築物の内部を適温に保つことができ、光熱費の低減を図ることができる。   According to the present invention, the fuel gas obtained by the NGH decomposition apparatus decomposing NGH is used for gas equipment such as a gas stove, and the cold water obtained from the NGH decomposition apparatus is discharged to the rooftop or outer wall surface of the building. The entire building can be cooled by the heat of vaporization of cold water. Thereby, the problem that a building becomes high temperature is solved, the inside of a building can be kept at a suitable temperature without relying only on an air conditioner, and reduction in utility costs can be achieved.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の好ましい実施形態に係る建築物10の構成を示す模式図である。尚、本実施形態の建築物10は高層の大型集合住宅を例にしており、各階には複数の住居(戸)が設けられている。   FIG. 1 is a schematic diagram showing a configuration of a building 10 according to a preferred embodiment of the present invention. The building 10 of this embodiment is an example of a high-rise large apartment house, and a plurality of houses (doors) are provided on each floor.

図1に示すように、建築物10は、複数の住居を含む建築構造体11aと、建築構造体11aにガスエネルギーを供給するためのガス供給システム11bとで構成されている。ガス供給システム11bは、建築構造体11a内に設けられていてもよく、建築構造体11aとは別の棟として設けられていてもよい。ガス供給システム11bは、NGHが収容されたNGHタンク12と、NGHタンク12より供給されるNGHを分解して燃料ガスと水を生成するNGH分解装置13と、燃料ガスを建築構造体11a内の各戸へ配給するための燃料配管14と、燃料ガスによって駆動される発電設備15と、NGH分解装置13により分解された水を一時的に蓄える貯水タンク16と、貯水タンク16から水を取り出すポンプ17と、ポンプ17で汲み出された水を放水するための放水器18とを備えている。その他にも、本実施形態の建築物10は通常の建築物が有する種々の構成要素を備えているが、ここでは図示を省略する。NGHタンク12内のNGHは、例えば、NGH輸送車による巡回補充によって適宜補充される。   As shown in FIG. 1, the building 10 includes a building structure 11a including a plurality of residences and a gas supply system 11b for supplying gas energy to the building structure 11a. The gas supply system 11b may be provided in the building structure 11a, or may be provided as a building different from the building structure 11a. The gas supply system 11b includes an NGH tank 12 in which NGH is stored, an NGH decomposition apparatus 13 that decomposes NGH supplied from the NGH tank 12 to generate fuel gas and water, and fuel gas in the building structure 11a. A fuel pipe 14 for distributing to each house, a power generation facility 15 driven by fuel gas, a water storage tank 16 for temporarily storing water decomposed by the NGH decomposition device 13, and a pump 17 for taking out water from the water storage tank 16 And a water discharger 18 for discharging water pumped out by the pump 17. In addition, although the building 10 of this embodiment is provided with the various component which a normal building has, illustration is abbreviate | omitted here. The NGH in the NGH tank 12 is appropriately replenished by, for example, patrol replenishment with an NGH transport vehicle.

図2は、NGH分解装置13の構成を示す模式図である。   FIG. 2 is a schematic diagram showing the configuration of the NGH decomposition apparatus 13.

図2に示すように、NGH分解装置13は、NGHタンク12から供給されるNGHを分解するためのNGH分解槽21と、NGH分解槽21より得られる燃料ガスを用いてNGH分解槽21を加熱するヒータ22と、ヒータ22を制御するためのコントローラ23とを備えている。NGH分解槽21内で発生した燃料ガスは、NGH分解槽21のガス排出口21aから排出され、NGH分解槽21内で発生した水は、排水口21bから排出される。このとき得られる水は冷水であり、水温は常温よりも低い。なお、NGH分解槽21で得られた水の温度を調整する水温調整器を設けてもよい。   As shown in FIG. 2, the NGH decomposition apparatus 13 heats the NGH decomposition tank 21 using an NGH decomposition tank 21 for decomposing NGH supplied from the NGH tank 12 and fuel gas obtained from the NGH decomposition tank 21. And a controller 23 for controlling the heater 22. The fuel gas generated in the NGH decomposition tank 21 is discharged from the gas discharge port 21a of the NGH decomposition tank 21, and the water generated in the NGH decomposition tank 21 is discharged from the drain port 21b. The water obtained at this time is cold water, and the water temperature is lower than room temperature. In addition, you may provide the water temperature regulator which adjusts the temperature of the water obtained with the NGH decomposition | disassembly tank 21. FIG.

そして図1に示すように、ガス排出口21aから排出された燃料ガスは燃料配管14を通って各戸に供給され、給湯器、ガスコンロ、暖房機といった種々のガス設備11eの燃料として使用される。また、燃料ガスは発電設備15にも供給される。発電設備15にはガスエンジン、ガスタービン等を用いることができる。発電設備15で発電された電力は電気配線19を介して各戸に供給される。また、排水口21bから排出された水は貯水タンク16に供給され、貯水タンク16内に一時貯蔵される。貯水タンク16内の水は必要に応じてポンプ17で汲み出され、配水管20を通って放水器18から建築物の屋上(屋根を含む)や外壁面に散水される。放水器18は、建築物全体に水が行き渡るように屋上11cに設けられ、放水器18の数、放水方向、放水方式等が定められている。放水器18としては、例えば、散水ノズル、スプリンクラー等を挙げることができる。建築物の屋上11cや外壁面11dを効率よく濡らすためには、建築物10の屋上11cの端に放水器18を設けることが好ましい。このようにすれば、できるだけ少ない数の放水器18で屋上11cと外壁面11dの両方に散水することができる。建築物の屋上11c付近から放水された水は、屋上11cで気化すると共に、外壁面11dを伝って下方に流れている間に気化し、この気化熱により建築物全体を冷却することができる。   As shown in FIG. 1, the fuel gas discharged from the gas discharge port 21a is supplied to each door through the fuel pipe 14, and is used as fuel for various gas facilities 11e such as a water heater, a gas stove, and a heater. The fuel gas is also supplied to the power generation facility 15. A gas engine, a gas turbine, or the like can be used for the power generation facility 15. The electric power generated by the power generation facility 15 is supplied to each house via the electrical wiring 19. Further, the water discharged from the drain port 21 b is supplied to the water storage tank 16 and temporarily stored in the water storage tank 16. Water in the water storage tank 16 is pumped out by a pump 17 as necessary, and is sprayed from the water discharger 18 through the water distribution pipe 20 to the roof (including the roof) of the building and the outer wall surface. The water discharger 18 is provided on the rooftop 11c so that water can spread throughout the building, and the number of water dischargers 18, the direction of water discharge, the water discharge method, and the like are determined. As the water discharger 18, a watering nozzle, a sprinkler, etc. can be mentioned, for example. In order to efficiently wet the rooftop 11c and the outer wall surface 11d of the building, it is preferable to provide a water discharger 18 at the end of the rooftop 11c of the building 10. If it does in this way, water can be sprinkled to both the rooftop 11c and the outer wall surface 11d with as few water dischargers 18 as possible. The water discharged from the vicinity of the rooftop 11c of the building is vaporized on the rooftop 11c and is vaporized while flowing downward along the outer wall surface 11d, and the entire building can be cooled by this heat of vaporization.

本実施形態においては、建築構造体11aの屋上11cや外壁面11dに光触媒をコーティングすることが好ましい。光触媒をコーティングした場合には、光触媒の超親水性効果により水の蒸発を促進することができ、放熱効果を高めることができる。さらに、防汚効果も期待できる。ここで、光触媒としては、紫外線又は可視光線により光触媒反応を起こすものであれば特に限定されないが、酸化チタンの他、酸化亜鉛、酸化スズ、酸化鉛、酸化第二鉄、三酸化二ビスマス、三酸化タングステン、チタン酸ストロンチウム等を挙げることができる。中でも、光触媒活性に優れたアナターゼ型の酸化チタンが好ましい。また、光触媒コーティング材のバインダーとしては、耐久性に優れた無機バインダーが好ましく、中でもアルコキシシラン、コロイダルシリカが好ましい。   In this embodiment, it is preferable to coat the photocatalyst on the roof 11c and the outer wall surface 11d of the building structure 11a. When the photocatalyst is coated, evaporation of water can be promoted by the superhydrophilic effect of the photocatalyst, and the heat dissipation effect can be enhanced. Furthermore, antifouling effect can be expected. Here, the photocatalyst is not particularly limited as long as it causes a photocatalytic reaction by ultraviolet rays or visible light. In addition to titanium oxide, zinc oxide, tin oxide, lead oxide, ferric oxide, dibismuth trioxide, three Examples thereof include tungsten oxide and strontium titanate. Among these, anatase type titanium oxide having excellent photocatalytic activity is preferable. Moreover, as a binder of a photocatalyst coating material, the inorganic binder excellent in durability is preferable, and especially alkoxysilane and colloidal silica are preferable.

以上説明したように、本実施形態によれば、NGH分解装置13より得られる冷水が建築物の屋上や外壁面に放水されるので、冷水の気化熱により建築物全体を冷却することができる。これにより、建築物が高温になるという問題が解決され、エアコンのみに頼ることなく建築物の内部を適温に保つことができ、光熱費の低減を図ることができる。   As described above, according to the present embodiment, since the cold water obtained from the NGH decomposition apparatus 13 is discharged to the rooftop or outer wall surface of the building, the entire building can be cooled by the heat of vaporization of the cold water. Thereby, the problem that a building becomes high temperature is solved, the inside of a building can be kept at a suitable temperature without relying only on an air conditioner, and reduction in utility costs can be achieved.

本発明は、以上の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で種々の変更を加えることが可能であり、これらも本発明の範囲に包含されるものであることは言うまでもない。   The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention, and these are also included in the scope of the present invention. Needless to say.

例えば、上記実施形態においては、貯水タンク16内の水をポンプ17で汲み出すことで放水器18に送り出しているが、貯水タンク16やポンプ17は必須でなく、NGH分解装置13から得られる高圧の水をそのまま利用すれば貯水タンク16やポンプ17の省略が可能である。   For example, in the above embodiment, the water in the water storage tank 16 is pumped out by the pump 17 and sent to the water discharger 18. However, the water storage tank 16 and the pump 17 are not essential, and the high pressure obtained from the NGH decomposition device 13. If the water is used as it is, the water storage tank 16 and the pump 17 can be omitted.

また、上記実施形態においては、NGH分解槽21より得られる燃料ガスを用いてNGH分解槽21を加熱するヒータ22を用いているが、電力で発熱する電熱ヒータを用いることも可能である。また,ガスエンジン等の発電装置の排熱を用いることも可能であり、発電装置による排熱と電熱ヒータ等の他の熱源とを組み合わせて使用することも可能である。   Moreover, in the said embodiment, although the heater 22 which heats the NGH decomposition | disassembly tank 21 using the fuel gas obtained from the NGH decomposition | disassembly tank 21 is used, it is also possible to use the electric heater which generate | occur | produces with electric power. Further, exhaust heat from a power generation apparatus such as a gas engine can be used, and exhaust heat generated by the power generation apparatus and other heat sources such as an electric heater can be used in combination.

また、上記実施形態においては、冷水を放水する場合について説明したが、温水を放水することも可能である。尚、その場合には、貯水タンク16から汲み出された冷水を加熱するヒータが必要となる。温水を放水した場合には、屋上や玄関前に積もった雪を溶かしたり、窓ガラスの凍結を溶かしたりすることも可能である。   Moreover, in the said embodiment, although the case where cold water was discharged was demonstrated, warm water can also be discharged. In that case, a heater for heating the cold water pumped from the water storage tank 16 is required. When the hot water is discharged, it is possible to melt the snow accumulated on the rooftop or in front of the entrance, or to melt the frozen window glass.

本発明が適用される建築物は、特に限定されるものではなく、一般の小型住宅にも適用可能であるが、NGH分解装置などの設備を導入するコストを考慮に入れると、集合住宅、総合病院、ホテル、商業ビル、工場、倉庫等の大型施設に適用されることが好ましい。   The building to which the present invention is applied is not particularly limited and can be applied to a general small house. However, taking into account the cost of introducing equipment such as an NGH decomposing apparatus, It is preferably applied to large facilities such as hospitals, hotels, commercial buildings, factories, and warehouses.

本発明の好ましい実施形態に係る建築物10の構成を示す模式図である。It is a schematic diagram which shows the structure of the building 10 which concerns on preferable embodiment of this invention. NGH分解装置13の構成を示す模式図である。3 is a schematic diagram showing a configuration of an NGH decomposition apparatus 13. FIG.

符号の説明Explanation of symbols

10 建築物
11a 建築構造体
11b ガス供給システム
11c 建築物の屋上
11d 建築物の外壁面
11e ガス設備
12 NGHタンク
13 NGH分解装置
14 燃料配管
15 発電設備
16 貯水タンク
17 ポンプ
18 放水器
19 電気配線
20 配水管
21 NGH分解槽
21a ガス排出口
21b 排水口
22 電熱ヒータ
23 コントローラ
DESCRIPTION OF SYMBOLS 10 Building 11a Building structure 11b Gas supply system 11c Building rooftop 11d Building outer wall surface 11e Gas equipment 12 NGH tank 13 NGH decomposition device 14 Fuel piping 15 Power generation equipment 16 Water storage tank 17 Pump 18 Water discharger 19 Electric wiring 20 Water distribution pipe 21 NGH decomposition tank 21a Gas discharge port 21b Drain port 22 Electric heater 23 Controller

Claims (6)

NGHが貯蔵されたNGHタンクと、
前記NGHタンクより供給されるNGHを分解して燃料ガスと水を生成するNGH分解装置と、
前記燃料ガスを利用したガス設備と、
前記水を当該建築物の屋上又は外壁面へ放水するための放水機構とを備えることを特徴とする建築物。
An NGH tank in which NGH is stored;
An NGH decomposition apparatus that decomposes NGH supplied from the NGH tank to generate fuel gas and water;
Gas equipment using the fuel gas;
A building comprising: a water discharge mechanism for discharging the water to the roof or outer wall surface of the building.
前記放水機構は、前記NGH分解装置によるNGH分解圧力を利用して前記水を放水することを特徴とする請求項1に記載の建築物。   The building according to claim 1, wherein the water discharge mechanism discharges the water using an NGH decomposition pressure by the NGH decomposition apparatus. 前記放水機構は、貯水タンクと、前記貯水タンク内の水を汲み出すポンプと、前記ポンプによって汲み出された水を放水する放水器とを備えることを特徴とする請求項1に記載の建築物。   2. The building according to claim 1, wherein the water discharge mechanism includes a water storage tank, a pump that pumps out water in the water storage tank, and a water discharger that discharges water pumped out by the pump. . 前記放水器は、当該建築物の屋上の端に取り付けられていることを特徴とする請求項2又は3に記載の建築物。   The building according to claim 2 or 3, wherein the water discharger is attached to an end of the roof of the building. 前記建築物の屋上又は外壁面が光触媒でコーティングされていることを特徴とする請求項1乃至4のいずれか一項に記載の建築物。   The building according to any one of claims 1 to 4, wherein a roof or an outer wall surface of the building is coated with a photocatalyst. 前記燃料ガスを利用した発電設備をさらに備えることを特徴とする請求項1乃至5のいずれか一項に記載の建築物。
The building according to any one of claims 1 to 5, further comprising a power generation facility using the fuel gas.
JP2006022867A 2006-01-31 2006-01-31 Building Expired - Fee Related JP4889309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022867A JP4889309B2 (en) 2006-01-31 2006-01-31 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022867A JP4889309B2 (en) 2006-01-31 2006-01-31 Building

Publications (2)

Publication Number Publication Date
JP2007204969A true JP2007204969A (en) 2007-08-16
JP4889309B2 JP4889309B2 (en) 2012-03-07

Family

ID=38484668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022867A Expired - Fee Related JP4889309B2 (en) 2006-01-31 2006-01-31 Building

Country Status (1)

Country Link
JP (1) JP4889309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878962A (en) * 2015-05-29 2015-09-02 中国能源建设集团广东省电力设计研究院有限公司 Independent building type distributed energy station structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077620A (en) * 1983-09-30 1985-05-02 松下電工株式会社 Insulator separator
JP2002161288A (en) * 2000-11-29 2002-06-04 Kawasaki Heavy Ind Ltd Method for transportation/utilization of gas hydrate
JP2002201727A (en) * 2000-12-28 2002-07-19 Shin Nippon Air Technol Co Ltd Cooling method of urban space and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077620A (en) * 1983-09-30 1985-05-02 松下電工株式会社 Insulator separator
JP2002161288A (en) * 2000-11-29 2002-06-04 Kawasaki Heavy Ind Ltd Method for transportation/utilization of gas hydrate
JP2002201727A (en) * 2000-12-28 2002-07-19 Shin Nippon Air Technol Co Ltd Cooling method of urban space and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878962A (en) * 2015-05-29 2015-09-02 中国能源建设集团广东省电力设计研究院有限公司 Independent building type distributed energy station structure

Also Published As

Publication number Publication date
JP4889309B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Ürge-Vorsatz et al. Energy end-use: Buildings
Bergman Sustainable Design: A Critical Guide.
US7658082B2 (en) Heat transfer system and associated methods
JP7115175B2 (en) Community system and hydrogen production method
US20090159718A1 (en) Building Designs and Heating and Cooling Systems
US10082317B2 (en) Building designs and heating and cooling systems
JP2020047495A (en) Community system
JP4889309B2 (en) Building
JP5551027B2 (en) Rainwater sprinkler
US8628670B2 (en) Water treatment apparatus and process to reduce pipe scale and biomass
JP4999360B2 (en) Transport ship
JP2010037922A (en) House having earthen-floor air conditioning structure and photovoltaic power generation system
JP2007203813A (en) Water discharge mechanism and automobile equipped therewith
JP7135647B2 (en) Community system and its management method
EP2118574B1 (en) Heat transfer system and associated methods
JP2005114200A (en) Air conditioner
Yew et al. Active and passive systems for cool roofs
JP2007247187A (en) Motor sprinkler
JP7087872B2 (en) Community system
JP2007322027A (en) Humidifier
JP2010117039A (en) Operating method of air-conditioning heat source system for building
US20200099075A1 (en) Community system and construction method of constructing community system
JP2007322034A (en) Humidifier and warehouse using the same
JP2011185548A (en) Control system for sprinkling cooling device and the sprinkling cooling device
US20120273169A1 (en) Pipe having variable cross section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees