JP2007204469A - Drug delivery material - Google Patents

Drug delivery material Download PDF

Info

Publication number
JP2007204469A
JP2007204469A JP2007000296A JP2007000296A JP2007204469A JP 2007204469 A JP2007204469 A JP 2007204469A JP 2007000296 A JP2007000296 A JP 2007000296A JP 2007000296 A JP2007000296 A JP 2007000296A JP 2007204469 A JP2007204469 A JP 2007204469A
Authority
JP
Japan
Prior art keywords
drug
drug carrier
carrier according
linker
adp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007000296A
Other languages
Japanese (ja)
Other versions
JP5216219B2 (en
Inventor
Shinji Takeoka
真司 武岡
Yosuke Okamura
陽介 岡村
Ippei Maekawa
一平 前川
Makoto Handa
誠 半田
Yasuo Ikeda
康夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pharma Corp
Keio University
Original Assignee
Mitsubishi Pharma Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pharma Corp, Keio University filed Critical Mitsubishi Pharma Corp
Priority to JP2007000296A priority Critical patent/JP5216219B2/en
Publication of JP2007204469A publication Critical patent/JP2007204469A/en
Application granted granted Critical
Publication of JP5216219B2 publication Critical patent/JP5216219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drug delivery material which can deliver a drug to a desired site with good efficiency, can prevent the influence of the drug on any site other than the desired site during the delivery of the drug (therefore, is less likely to cause any adverse effect), and can release the drug only at the desired site so that the drug can exert its effect at the desired site, without the need of any external means. <P>SOLUTION: The drug delivery material comprises a conjugate of (1) a drug-carried molecule aggregate, (2) a linker and (3) a substance capable of recognizing an activated platelet, a damaged part in a blood vessel and/or an inflammatory tissue. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、1)薬物担持分子集合体、2)リンカー、ならびに、3)活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質、の結合体である薬物運搬体に関する。より詳細には、疾患の予防・治療剤、診断薬及び試薬として、特に、血小板代替剤又は抗血小板剤として有用な薬物運搬体に関する。   The present invention relates to a drug carrier that is a conjugate of 1) a drug-carrying molecular assembly, 2) a linker, and 3) a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues. More specifically, the present invention relates to a drug carrier useful as a prophylactic / therapeutic agent for diseases, a diagnostic agent and a reagent, particularly as a platelet substitute or antiplatelet agent.

血小板膜表面には各種糖タンパク質(グリコプロテイン;GP)が存在しており、血小板機能の発現に関与している。このような血小板糖タンパク質には、GPIb、GPIIb、GPIIIa、GPIIIb、GPIV、GPIXなどが知られている。これらのうち、GPIbはフォンビレブラント因子(vW因子)の受容体として機能している。GPIbはα鎖及びβ鎖がジスルフィド結合した、分子量160,000のヘテロ二量体である。   Various glycoproteins (glycoproteins: GP) exist on the platelet membrane surface and are involved in the expression of platelet functions. As such platelet glycoproteins, GPIB, GPIIb, GPIIIa, GPIIIb, GPIV, GPIX and the like are known. Of these, GPIb functions as a receptor for von Willebrand factor (vW factor). GPIb is a heterodimer with a molecular weight of 160,000, in which α and β chains are disulfide bonded.

最近では、GPIb、α鎖の45kDaの親水性部のリコンビナント体(rGPIbα)、GPIIb/IIIaなどの機能性高分子を何らかの微粒子の表面に結合させた血小板代替物が知られている。これらのうち、rGPIbαを有するものは、rGPIbαとvW因子の相互作用に基づく粘着作用を有することによって血小板代替物として働くことが期待され、一方、GPIIb/IIIaを有するものは、GPIIb/IIIaとフィブリノーゲン及び/又はvW因子の相互作用に基づく凝集作用を有することによって血小板代替物として働くことが期待されている。   Recently, a platelet substitute is known in which a functional polymer such as GPIb, a recombinant body (rGPIbα) of a hydrophilic part of αkDa of 45 kDa, GPIIb / IIIa is bound to the surface of some microparticles. Among these, those having rGPIbα are expected to act as platelet substitutes by having an adhesive action based on the interaction of rGPIbα and vW factor, while those having GPIIb / IIIa are expected to act as GPIIb / IIIa and fibrinogen. It is expected to act as a platelet substitute by having an aggregating action based on the interaction of and / or vW factors.

また、これらの機能性高分子を結合させる微粒子としては、小胞体などの脂質膜、ヒトアルブミン又はその重合体、あるいはヒト赤血球などが知られており、特許文献1には、小胞体にrGPIbαを結合させたものが記載されている。   Further, as fine particles for binding these functional polymers, lipid membranes such as endoplasmic reticulum, human albumin or a polymer thereof, or human erythrocytes are known. Patent Document 1 discloses that rGPIbα is contained in the endoplasmic reticulum. What has been combined is described.

一方、血小板上の機能性高分子を有することによって血小板代替物として働くのではなく、患者血液中に残存する血小板の活性を補助することにより血液の凝集を誘導するものも知られている。例えば、血小板上のGPIIb/IIIaと相互作用を起こすことにより血小板凝集を誘導するものが知られており、具体的には、非特許文献1には、小胞体にフィブリノーゲンのGPIIb/IIIa認識部位に含まれるドデカペプチド(H12)を含むペプチドを結合させたものが記載されている。   On the other hand, there is also known one that induces blood aggregation by assisting the activity of platelets remaining in patient blood, rather than acting as a platelet substitute by having a functional polymer on platelets. For example, one that induces platelet aggregation by interacting with GPIIb / IIIa on platelets is known. Specifically, Non-Patent Document 1 discloses that the endoplasmic reticulum has a GPIIb / IIIa recognition site in fibrinogen. The thing which combined the peptide containing the contained dodecapeptide (H12) is described.

特許文献2及び3には、GPIbやドデカペプチドと小胞体との間にリンカーを挿入した結合体が記載されており、血管損傷部位へ集積させることにより生理学的又は薬理学的に有効な薬物の薬物運搬体として、これらの文献に記載の結合体を使用できることが記載されている。   Patent Documents 2 and 3 describe a conjugate in which a linker is inserted between GPIb or dodecapeptide and the endoplasmic reticulum, and a physiologically or pharmacologically effective drug by accumulating at the site of vascular injury. It is described that the conjugates described in these documents can be used as drug carriers.

また、非特許文献2には、アデノシン二リン酸(ADP)を担持させた小胞体が記載されている。ADPは、血小板凝集や血栓形成を促進することが知られている物質である。この小胞体は、レーザー照射によりADPを放出して、血小板凝集を起こす。   Non-Patent Document 2 describes an endoplasmic reticulum carrying adenosine diphosphate (ADP). ADP is a substance known to promote platelet aggregation and thrombus formation. The endoplasmic reticulum releases ADP by laser irradiation and causes platelet aggregation.

しかし、上述の文献ではいずれも、所望の場所でのみ、薬物運搬体が自発的に薬物を放出して薬理効果を達成するような薬物運搬体は開示されていなかった。特許文献2及び3では、これらの文献に記載の結合体を薬物運搬体として用いることは記載されているものの、その具体的態様は記載されていない。また、非特許文献2には、ADP担持小胞体が記載されているものの、該小胞体はADPを放出するために、レーザー照射という外部手段を必要としていた。
特開平9−208599号公報 国際公開第01/64743号パンフレット 国際公開第2004/069862号パンフレット T.Nishiyaら、Thromb Haemost, 91, 1158−67 (2004) B.Khoobehiら、Lasers Surg Med., 12(6), 609−14, 1992
However, none of the above-described documents discloses a drug carrier that achieves a pharmacological effect by spontaneously releasing the drug only at a desired location. In Patent Documents 2 and 3, it is described that the conjugates described in these documents are used as a drug carrier, but specific embodiments thereof are not described. Non-Patent Document 2 describes an ADP-supporting vesicle, but the vesicle requires an external means of laser irradiation in order to release ADP.
Japanese Patent Laid-Open No. 9-208599 International Publication No. 01/64743 Pamphlet International Publication No. 2004/069862 Pamphlet T. T. et al. Nishiya et al., Thromb Haemost, 91, 1158-67 (2004). B. Khobehi et al., Lasers Sur Med. , 12 (6), 609-14, 1992

本発明者らは、所望の場所まで薬物を効率的に運搬することができ、運搬中の薬物が所望の場所以外の場所に影響を与えることなく(従って、副作用を起こす可能性が低く)、外部手段を必要とせずに所望の場所でのみ薬物を放出して薬物に効果を発揮させる薬物運搬体を提供することを課題とした。   The present inventors can efficiently transport a drug to a desired place, and the drug being transported does not affect a place other than the desired place (thus, it is less likely to cause a side effect). An object of the present invention is to provide a drug carrier that releases a drug only at a desired place without requiring an external means and exerts an effect on the drug.

本発明者らは、薬物を担持する特定の分子集合体と、リンカーならびに活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質とを結合させることによって、所望の細胞(例えば、活性化血小板)及び/又は生体組織(例えば、血管損傷部位、炎症組織)まで薬物を効率的に運搬することができ、これら所望の場所において、細胞及び/又は生体組織と薬物担持分子集合体とが薬物担持分子集合体に結合した活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質を介して相互作用し、これにより、薬物担持分子集合体が細胞及び/又は生体組織から物理的な刺激を受け、これにより薬物が薬物担持分子集合体から放出され、所望の場所でのみ所望の効果を薬物に発揮させることができることを見出し、本発明を完成するに至った。   We combine specific molecular assemblies carrying a drug with a linker and a substance that recognizes activated platelets, sites of vascular injury and / or inflammatory tissue, for example, to activate desired cells (eg, activated Platelets) and / or biological tissues (for example, vascular injury sites, inflamed tissues), and in these desired locations, cells and / or biological tissues and drug-carrying molecular aggregates are drugs. It interacts via a substance that recognizes activated platelets, vascular injury sites and / or inflamed tissue bound to the carrier molecule assembly, which allows the drug-carrying molecule assembly to physically stimulate from cells and / or living tissue Thus, the drug is released from the drug-carrying molecular assembly, and it is found that the drug can exert a desired effect only at a desired location, and the present invention is completed. Was Tsu.

本発明の要旨は以下の通りである。
〔1〕 1)薬物担持分子集合体、2)リンカー、ならびに、3)活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質、の結合体である薬物運搬体。
〔2〕 薬物担持分子集合体が、その内水相に薬物が内包されている脂質二分子膜小胞体である、〔1〕に記載の薬物運搬体。
〔3〕 (薬物担持分子集合体)−(リンカー)−(活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質)で表される、〔1〕又は〔2〕に記載の薬物運搬体。
〔4〕 薬物担持分子集合体との結合時に薬物担持分子集合体の構成成分の一部となる両親媒性分子をリンカーが含み、該両親媒性分子を介してリンカーと薬物担持分子集合体が結合している、〔3〕に記載の薬物運搬体。
〔5〕 リンカーが疎水性分子を含み、リンカーと薬物担持分子集合体が、該疎水性分子を介して薬物担持分子集合体に結合している、〔3〕に記載の薬物運搬体。
〔6〕 リンカーがスペーサー部分を含む、〔1〕〜〔5〕のいずれかに記載の薬物運搬体。
〔7〕 スペーサー部分が、ポリオキシエチレンである、〔6〕に記載の薬物運搬体。
〔8〕 薬物が、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤からなる群から選ばれる、〔1〕〜〔7〕のいずれかに記載の薬物運搬体。
〔9〕 薬物が、アデノシン二リン酸、コラーゲン、コラーゲン由来ペプチド、コンバルキシン、セロトニン、アスピリン、ジピリダモール、チクロピジン、シロスタゾール及びベラプロストからなる群から選択される、〔1〕〜〔7〕のいずれかに記載の薬物運搬体。
〔10〕 活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質が、活性化血小板に露出しているインテグリン又はセレクチン、血管損傷部位に露出しているコラーゲン、血管損傷部位に露出しているコラーゲンに結合しているフォンビレブランド因子、炎症組織に露出しているセレクチン及び/又は白血球に露出しているセレクチンリガンドを認識し、活性化血小板及び/又は白血球の凝集塊に取り込まれる物質、及び/又は血管損傷部位及び/又は炎症組織に集積する物質である、〔1〕〜〔9〕のいずれかに記載の薬物運搬体。
〔11〕 活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質が、H12、GPIbα、GPIa/IIa、GPVI、MAC−1、フィブリノーゲン、P−セレクチン及びPSGL−1からなる群から選択される、〔10〕に記載の薬物運搬体。
〔12〕 脂質二分子膜小胞体が、水添卵黄レシチン、水添大豆レシチン、ジステアロイルホスファチジルコリン又はジパルミトイルホスファチジルコリンであるホスファチジルコリンに対してコレステロールをモル比で20〜100%含有する混合脂質から構成され、リンカーと活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質との結合体が該ホスファチジルコリンに対して0.001〜20%含まれている、〔2〕に記載の薬物運搬体。
〔13〕 脂質二分子膜小胞体の粒子径が50〜300nmであり、脂質二分子膜の層数が1〜4枚である、〔12〕に記載の薬物運搬体。
〔14〕 1)薬物担持分子集合体、2)リンカー、ならびに、3)活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質、の結合体である薬物運搬体であって、細胞又は生体組織に到達した際に細胞又は生体組織から物理的な刺激を受けることにより薬物担持分子集合体から薬物が放出される、薬物運搬体。
〔15〕 細胞が活性化血小板又は白血球であり、薬物が、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤からなる群から選ばれる、〔14〕に記載の薬物運搬体。
〔16〕 生体組織が、血管損傷部位又は炎症組織であり、薬物が、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤からなる群から選ばれる、〔14〕に記載の薬物運搬体。
〔17〕 〔1〕〜〔16〕のいずれかに記載の薬物運搬体を含む診断薬。
〔18〕 〔1〕〜〔16〕のいずれかに記載の薬物運搬体を含む試薬。
〔19〕 〔1〕〜〔16〕のいずれかに記載の薬物運搬体を含む血小板代替剤。
〔20〕 〔1〕〜〔16〕のいずれかに記載の薬物運搬体を含む抗血小板剤。
The gist of the present invention is as follows.
[1] A drug carrier which is a conjugate of 1) a drug-carrying molecular assembly, 2) a linker, and 3) a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues.
[2] The drug carrier according to [1], wherein the drug-carrying molecular assembly is a lipid bilayer vesicle in which a drug is encapsulated in an inner aqueous phase.
[3] Drug delivery according to [1] or [2], represented by (drug-carrying molecular assembly)-(linker)-(substance recognizing activated platelet, vascular injury site and / or inflammatory tissue) body.
[4] The linker includes an amphipathic molecule that becomes a part of the components of the drug-carrying molecular assembly when bound to the drug-carrying molecular assembly, and the linker and the drug-carrying molecular assembly are interposed via the amphiphilic molecule. The drug carrier according to [3], which is bound.
[5] The drug carrier according to [3], wherein the linker includes a hydrophobic molecule, and the linker and the drug-carrying molecular assembly are bonded to the drug-carrying molecular assembly through the hydrophobic molecule.
[6] The drug carrier according to any one of [1] to [5], wherein the linker includes a spacer portion.
[7] The drug carrier according to [6], wherein the spacer portion is polyoxyethylene.
[8] The drug carrier according to any one of [1] to [7], wherein the drug is selected from the group consisting of a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent. .
[9] The drug according to any one of [1] to [7], wherein the drug is selected from the group consisting of adenosine diphosphate, collagen, collagen-derived peptide, convulxin, serotonin, aspirin, dipyridamole, ticlopidine, cilostazol, and beraprost. Drug carrier.
[10] A substance that recognizes activated platelets, vascular injury sites and / or inflamed tissues is integrin or selectin exposed to activated platelets, collagen exposed to vascular injury sites, exposed to vascular injury sites A substance that recognizes von Willebrand factor bound to collagen, selectin exposed to inflamed tissue, and / or selectin ligand exposed to leukocytes, and is taken into activated platelets and / or leukocyte aggregates, And / or the drug carrier according to any one of [1] to [9], which is a substance that accumulates in a vascular injury site and / or an inflamed tissue.
[11] The substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues is selected from the group consisting of H12, GPIbα, GPIa / IIa, GPVI, MAC-1, fibrinogen, P-selectin and PSGL-1. The drug carrier according to [10].
[12] The lipid bilayer vesicle is composed of a mixed lipid containing 20 to 100% of cholesterol in a molar ratio with respect to phosphatidylcholine which is hydrogenated egg yolk lecithin, hydrogenated soybean lecithin, distearoyl phosphatidylcholine or dipalmitoylphosphatidylcholine. The drug carrier according to [2], wherein a conjugate of a linker and a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues is contained in an amount of 0.001 to 20% relative to the phosphatidylcholine.
[13] The drug carrier according to [12], wherein the lipid bilayer vesicle has a particle size of 50 to 300 nm and the lipid bilayer has 1 to 4 layers.
[14] A drug carrier that is a conjugate of 1) a drug-carrying molecular assembly, 2) a linker, and 3) a substance that recognizes activated platelets, vascular injury sites and / or inflamed tissues, A drug carrier in which a drug is released from a drug-carrying molecular assembly upon receiving physical stimulation from a cell or a biological tissue when reaching the biological tissue.
[15] The cell according to [14], wherein the cell is activated platelet or leukocyte, and the drug is selected from the group consisting of a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent. Drug carrier.
[16] The biological tissue is a vascular injury site or an inflammatory tissue, and the drug is selected from the group consisting of a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent. [14] The drug carrier according to 1.
[17] A diagnostic agent comprising the drug carrier according to any one of [1] to [16].
[18] A reagent comprising the drug carrier according to any one of [1] to [16].
[19] A platelet replacement agent comprising the drug carrier according to any one of [1] to [16].
[20] An antiplatelet agent comprising the drug carrier according to any one of [1] to [16].

本発明の薬物運搬体は、所望の細胞及び/又は生体組織に到達する前に、血管中で未活性な血小板などと凝集を起こして不要な血栓の生成や血液の血管内凝固などを誘導することなく、またさらには、該当部位に到達すると、レーザーなどの外部手段を使わなくても所望の場所でのみ薬物担持分子集合体が崩壊して薬物を放出するので、効率的かつ簡便に、薬物を所望の細胞及び/又は生体組織まで運搬することができる。このため、本発明の薬物運搬体は、薬物の吸収効率が高く、副作用を顕著に低減することができる。   The drug carrier of the present invention induces unnecessary thrombus formation and intravascular coagulation by causing aggregation with inactive platelets in blood vessels before reaching desired cells and / or living tissues. Without further using the external means such as a laser, the drug-carrying molecular assembly is disintegrated and released only at a desired location without using an external means such as a laser. Can be delivered to desired cells and / or living tissue. For this reason, the drug carrier of the present invention has high drug absorption efficiency and can significantly reduce side effects.

本発明は、1)薬物担持分子集合体、2)リンカー、及び3)活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質(認識物質と略記することもある)の結合体である薬物運搬体(本発明の薬物運搬体ともいう)を提供する。本発明の薬物運搬体は、(薬物担持分子集合体)−(リンカー)−(活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質)で表されるもの、すなわちこの順番で各構成要素が配置されているものが好ましい。   The present invention is a conjugate of 1) a drug-carrying molecular assembly, 2) a linker, and 3) a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues (sometimes abbreviated as a recognition substance). A drug carrier (also referred to as a drug carrier of the present invention) is provided. The drug carrier of the present invention is represented by (drug-carrying molecular assembly)-(linker)-(substance recognizing activated platelet, vascular injury site and / or inflammatory tissue), that is, each component in this order. Those in which the elements are arranged are preferred.

本明細書において「薬物担持分子集合体」とは、薬物が担持されている分子集合体であって、リンカー及び認識物質との結合体としたときに、所望の細胞及び/又は生体組織(例えば、活性化血小板、血管損傷部位、炎症組織)においては、担持した薬物を放出するが、その他の場所においては担持した薬物を放出せず、薬物の効果を発揮させ難い分子集合体を意味する。そのような分子集合体としては、生体適合性を有する医療用の非経口投与が可能な担体が挙げられる。分子集合体の好ましい材料としては、小胞体、ミセル、高分子ミセル、マイクロスフェアなどが挙げられる。このうち、小胞体が特に好ましい。   In the present specification, the “drug-carrying molecular assembly” is a molecular assembly carrying a drug, and a desired cell and / or biological tissue (for example, when it is combined with a linker and a recognition substance) , Activated platelets, vascular injury sites, and inflamed tissues) means a molecular assembly that releases the carried drug but does not release the carried drug in other places and hardly exerts the effect of the drug. Such molecular assemblies include biocompatible carriers capable of parenteral administration for medical use. Preferable materials for the molecular assembly include vesicles, micelles, polymer micelles, microspheres and the like. Of these, endoplasmic reticulum is particularly preferred.

小胞体は、脂質人工膜で構成される粒子であり、リン脂質、グリセロ糖脂質、コレステロールなどから脂質二分子膜として作製される。本発明においては、リン脂質二分子膜小胞体がより好ましい。脂質二分子膜を構成する炭化水素鎖の炭素原子の数は、12〜18が好ましい。炭化水素鎖に1〜3個の不飽和基を導入して膜の強度を調整することも可能である。炭化水素鎖の炭素原子の数があまりにも多くなると、膜の強度が高くなり過ぎるため、薬物を担持させた場合に、薬物の放出が困難になる。
本発明では、水添卵黄レシチン、水添大豆レシチン、ジステアロイルホスファチジルコリン又はジパルミトイルホスファチジルコリンであるホスファチジルコリンとコレステロールとを含む(好ましくはこれらから本質的になる)混合脂質、より具体的には、水添卵黄レシチン、水添大豆レシチン、ジステアロイルホスファチジルコリン又はジパルミトイルホスファチジルコリンであるホスファチジルコリンに対してコレステロールをモル比で20〜100%含有する混合脂質、から構成されるリン脂質二分子膜小胞体が特に好ましい。
The endoplasmic reticulum is a particle composed of a lipid artificial membrane, and is produced as a lipid bilayer from phospholipid, glyceroglycolipid, cholesterol and the like. In the present invention, phospholipid bilayer vesicles are more preferred. As for the number of carbon atoms of the hydrocarbon chain which comprises a lipid bilayer, 12-18 are preferable. It is also possible to adjust the strength of the membrane by introducing 1 to 3 unsaturated groups into the hydrocarbon chain. If the number of carbon atoms in the hydrocarbon chain is too large, the strength of the film will be too high, and it will be difficult to release the drug when it is loaded.
In the present invention, a mixed lipid containing (preferably consisting essentially of) phosphatidylcholine, which is hydrogenated egg yolk lecithin, hydrogenated soybean lecithin, distearoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine, and cholesterol, more specifically, hydrogenated Particularly preferred is a phospholipid bilayer vesicle composed of egg yolk lecithin, hydrogenated soybean lecithin, mixed lipid containing 20 to 100% of cholesterol in a molar ratio with respect to phosphatidylcholine which is distearoylphosphatidylcholine or dipalmitoylphosphatidylcholine.

小胞体は、界面活性剤除去法、水和法、超音波法、逆相蒸留法、凍結融解法、エタノール注入法、押し出し法、及び高圧乳化法など、公知の方法で作製することができる。小胞体の調製の詳細は、特開平9−208599号公報及びT.Nishiyaら,Biochim. Biophys. Res. Commun., 224, 242−245, 1996に詳細に記載されている。   The endoplasmic reticulum can be produced by a known method such as a surfactant removal method, a hydration method, an ultrasonic method, a reverse phase distillation method, a freeze-thaw method, an ethanol injection method, an extrusion method, and a high-pressure emulsification method. Details of the preparation of the endoplasmic reticulum are described in JP-A-9-208599 and T.W. Nishiya et al., Biochim. Biophys. Res. Commun. , 224, 242-245, 1996.

リンカー及び認識物質導入後の小胞体の粒子径は、リンカー及び認識物質の導入量とそれらの機能発現及び体内動態の点から、50〜300nmが好ましく、100〜270nmがより好ましく、150〜250nmが最も好ましい。ここで、粒子径とは、リンカー及び認識物質導入後にフィルターを用いて粒径制御した粒子径である。粒子径が50nmよりも小さくなると、薬物を担持させた場合に、分子集合体からの薬物の放出が困難になる。   The particle size of the endoplasmic reticulum after introduction of the linker and the recognition substance is preferably 50 to 300 nm, more preferably 100 to 270 nm, and more preferably 150 to 250 nm, from the viewpoints of the introduction amount of the linker and the recognition substance and their functional expression and pharmacokinetics. Most preferred. Here, the particle diameter is a particle diameter that is controlled by using a filter after introducing the linker and the recognition substance. When the particle diameter is smaller than 50 nm, it becomes difficult to release the drug from the molecular assembly when the drug is supported.

小胞体の脂質二分子膜の層数は、二分子膜を1枚として考えると、1〜4枚が好ましく、1〜2枚がより好ましい。層数が4枚よりも多くなると、薬物を担持させた場合に、分子集合体からの薬物の放出が困難になる。
層数は、フィルターの孔径、小胞体の分散媒(pH、温度、イオン強度)によって制御できる。層数の測定方法としては、凍結割断法、小角X線散乱法、スピンラベル脂質を用いた電子スピン共鳴(ESR)、31P−NMRを用いた測定方法、6−p−トルイジノ−2−ナフタレンスルホン酸(TNS)を用いた測定方法などが挙げられる。
The number of lipid bilayer membranes of the endoplasmic reticulum is preferably 1 to 4 and more preferably 1 to 2 when the bilayer is considered as one. When the number of layers exceeds 4, it becomes difficult to release the drug from the molecular assembly when the drug is supported.
The number of layers can be controlled by the pore size of the filter and the dispersion medium (pH, temperature, ionic strength) of the endoplasmic reticulum. As a method for measuring the number of layers, there are a freeze cleaving method, a small angle X-ray scattering method, an electron spin resonance (ESR) using a spin-labeled lipid, a measuring method using 31 P-NMR, and 6-p-toluidino-2-naphthalene. Examples include a measurement method using sulfonic acid (TNS).

薬物担持分子集合体としては、その内水相に薬物が内包されている脂質二分子膜小胞体が最も好ましい。   As the drug-carrying molecular assembly, a lipid bilayer vesicle in which a drug is encapsulated in the inner aqueous phase is most preferable.

本明細書において「リンカー」とは、薬物担持分子集合体と、活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質とを架橋可能なものであって、生体適合性があるものであれば特に限定されない。リンカーとしては、薬物担持分子集合体又は認識物質との結合部位となる官能基を有する炭素数2〜10の飽和もしくは不飽和非環式炭化水素又は脂肪族もしくは芳香族環式炭化水素が好ましく、鎖又は環に、ヘテロ原子(例えば、酸素原子又は窒素原子など)を含んでいてもよい。また、2種以上の異なるリンカーを組み合わせて用いてもよい。リンカーとしては、SH基、OH基、COOH基、NH基のいずれかと反応する官能基を有する化合物がより好ましい。リンカーとしては、例えば、ジカルボン酸、アミノカルボン酸、ビスマレイミド化合物、ビスハロカルボニル化合物、ハロカルボニルマレイミド化合物、ジチオマレイミド、ジチオカルボン酸、マレイミドカルボン酸などを原料として合成されたものが挙げられ、さらに、SH基、OH基、COOH基、NH基のいずれかと反応する官能基を有するリンカーとしては、例えば、N−(α−マレイミドアセトキシ)スクシンイミド エステル、N−[4−(p−アジドサリシルアミド)ブチル]−3’−(2’−ピリジルジチオ)プロピオネート、N−β−マレイミドプロピオン酸、N−(β−マレイミドプロピオン酸)ヒドラジド、N−(β−マレイミドプロピオキシ)スクシンイミド エステル、N−ε−マレイミドカプロン酸、N−(ε−マレイミドカプロン酸)ヒドラジド、N−(ε−マレイミドカプロイルオキシ) スクシンイミド エステル、N−(γ−マレイミドブチリルオキシ) スクシンイミド エステル、N−κ−マレイミドウンデカン酸、N−(κ−マレイミドウンデカン酸) ヒドラジド、スクシンイミジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシ−(6−アミドカプレート)、スクシンイミジル−6−[3−(2−ピリジルジチオ)−プロピオンアミド]ヘキサネート、m−マレイミドベンゾイル−N−ヒドロキシスクシンイミド エステル、4−(4−N−マレイミドフェニル)ブチル酸 ヒドラジドなどを原料として合成されたリンカーが挙げられる。 In the present specification, the “linker” is capable of cross-linking a drug-carrying molecular assembly and a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues, and is biocompatible. If there is no particular limitation. The linker is preferably a saturated or unsaturated acyclic hydrocarbon having 2 to 10 carbon atoms or an aliphatic or aromatic cyclic hydrocarbon having a functional group that becomes a binding site with a drug-carrying molecular assembly or a recognition substance, The chain or ring may contain a hetero atom (for example, an oxygen atom or a nitrogen atom). Two or more different linkers may be used in combination. As the linker, a compound having a functional group that reacts with any of the SH group, OH group, COOH group, and NH 2 group is more preferable. Examples of the linker include those synthesized from dicarboxylic acid, aminocarboxylic acid, bismaleimide compound, bishalocarbonyl compound, halocarbonylmaleimide compound, dithiomaleimide, dithiocarboxylic acid, maleimide carboxylic acid, and the like. As a linker having a functional group that reacts with any of SH group, OH group, COOH group, and NH 2 group, for example, N- (α-maleimidoacetoxy) succinimide ester, N- [4- (p-azidosalisyl) Amido) butyl] -3 ′-(2′-pyridyldithio) propionate, N-β-maleimidopropionic acid, N- (β-maleimidopropionic acid) hydrazide, N- (β-maleimidopropoxy) succinimide ester, N- ε-maleimidocaproic acid, N- (ε-male Midocaproic acid) hydrazide, N- (ε-maleimidocaproyloxy) succinimide ester, N- (γ-maleimidobutyryloxy) succinimide ester, N-κ-maleimidoundecanoic acid, N- (κ-maleimidoundecanoic acid) hydrazide, Succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxy- (6-amidecaprate), succinimidyl-6- [3- (2-pyridyldithio) -propionamide] hexanate, m-maleimidobenzoyl-N- Examples include linkers synthesized using hydroxysuccinimide ester, 4- (4-N-maleimidophenyl) butyric acid hydrazide and the like as raw materials.

上記リンカーは、薬物担持分子集合体と認識物質との間にあって、薬物担持分子集合体と認識物質との間の長さを調節できるスペーサー部分を含んでいてもよい。スペーサー部分の配置位置は、薬物担持分子集合体−リンカー−スペーサー−認識物質であってもよいし、薬物担持分子集合体−スペーサー−リンカー−認識物質であってもよい。また、同一又は異なるリンカーの間にスペーサー部分を挿入してもよい。すなわち、薬物担持分子集合体−リンカー−スペーサー−リンカー−認識物質であってもよい。スペーサーは、生体適合性があれば特に限定されないが、ポリオキシエチレン、ポリペプチド、多糖、アルブミン、及び抗体からなる群から選択される物質を使用することができる。アルブミンや抗体は組換体を使用してもよい。本発明におけるスペーサーとしては特にポリオキシエチレン又はその誘導体が好ましい。   The linker may include a spacer part between the drug-carrying molecular assembly and the recognition substance and capable of adjusting the length between the drug-carrying molecular assembly and the recognition substance. The arrangement position of the spacer part may be a drug-carrying molecular assembly-linker-spacer-recognizing substance or a drug-carrying molecular assembly-spacer-linker-recognizing substance. In addition, a spacer part may be inserted between the same or different linkers. That is, it may be a drug-carrying molecular assembly-linker-spacer-linker-recognizing substance. The spacer is not particularly limited as long as it has biocompatibility, and a substance selected from the group consisting of polyoxyethylene, polypeptide, polysaccharide, albumin, and antibody can be used. Recombinants may be used for albumin and antibodies. As the spacer in the present invention, polyoxyethylene or a derivative thereof is particularly preferable.

好ましい本発明の薬物運搬体としては、リンカーが、薬物担持分子集合体との結合時に薬物担持分子集合体の構成成分の一部となる両親媒性分子を含み、該両親媒性分子を介してリンカー又はスペーサーと薬物担持分子集合体が結合しているもの、及び、リンカーが疎水性分子を含み、リンカー又はスペーサーと薬物担持分子集合体が、該疎水性分子を介して薬物担持分子集合体に結合しているものが挙げられる。   As a preferred drug carrier of the present invention, the linker includes an amphipathic molecule that becomes a part of a component of the drug-carrying molecule assembly when bound to the drug-carrying molecule assembly, and through the amphiphilic molecule The linker or spacer and the drug-carrying molecular assembly are bonded, and the linker contains a hydrophobic molecule, and the linker or spacer and the drug-carrying molecular assembly are converted into the drug-carrying molecular assembly via the hydrophobic molecule. The thing which has couple | bonded is mentioned.

両親媒性分子や疎水性分子の例としては、例えば、ジパルミトイルホスファチジルエタノールアミン、ジステアロイルホスファチジルエタノールアミン、ジオレオイルホスファチジルエタノールアミンなどが挙げられる。本発明においては、以下の式で示されるGlu2C18が両親媒性分子として特に好ましい。   Examples of amphiphilic molecules and hydrophobic molecules include dipalmitoyl phosphatidylethanolamine, distearoyl phosphatidylethanolamine, dioleoylphosphatidylethanolamine, and the like. In the present invention, Glu2C18 represented by the following formula is particularly preferred as an amphiphilic molecule.

ホスファチジルコリンに対してコレステロールをモル比で20〜100%含有する混合脂質から構成される脂質二分子膜小胞体の場合、リンカーと活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質との結合体が、該ホスファチジルコリンに対して0.001〜20%含まれていることが好ましい。   In the case of a lipid bilayer vesicle composed of a mixed lipid containing 20 to 100% of cholesterol in a molar ratio with respect to phosphatidylcholine, a linker and a substance that recognizes activated platelets, vascular injury sites and / or inflamed tissues The conjugate is preferably contained in an amount of 0.001 to 20% with respect to the phosphatidylcholine.

本明細書において、「活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質」とは、活性化血小板、血管損傷部位及び/又は炎症組織を認識して、本発明の薬物運搬体を活性化血小板、血管損傷部位及び/又は炎症組織に指向させ、これらの場所に本発明の薬物運搬体を集積させるように働く物質を意味する。認識物質としては、活性化血小板に露出しているインテグリン又はセレクチン、血管損傷部位に露出しているコラーゲン、血管損傷部位に露出しているコラーゲンに結合しているフォンビレブランド因子、炎症組織に露出しているセレクチン及び/又は白血球に露出しているセレクチンリガンドを認識し、活性化血小板及び/又は白血球の凝集塊に取り込まれる物質及び/又は血管損傷部位及び/又は炎症組織に集積する物質が好ましく用いられる。より具体的には、認識物質としては、H12(HHLGGAKQAGDV、配列番号1)、GPIbα、GPIa/IIa(インテグリンα2β1)、GPVI、MAC−1、フィブリノーゲン、P−セレクチン、PSGL−1などが好ましい。
H12、GPIbα、GPIa/IIa、GPVI、MAC−1、フィブリノーゲン、P−セレクチン、及びPSGL−1の調製方法に特別の制限はなく、血小板膜から抽出・単離する方法、細胞培養による方法、遺伝子工学的に産生する方法等により調製することができる。
本発明で用いられる認識物質は、本発明の目的が達成される限り、そのアミノ酸配列中の1個または複数個のアミノ酸に欠失、置換、付加もしくは修飾といった任意の変異を施したものであってもよく、例えば天然の認識物質の置換体、類似体、変異体、修飾体、誘導体、糖鎖付加物なども包含される。
GPIbαとしては、GPIbα〔His(1)〜Leu(610)〕、当該α鎖のvWF結合領域の断片等のGPIbα断片、さらに膜貫通部位を欠失したGPIbα断片などが挙げられる。本発明においてより好ましいのは、膜貫通部位を欠失したGPIbα断片である。
より具体的なGPIbα鎖断片として、His(1)〜Cys(485)、His(1)〜Pro(340)、His(1)〜Thr(304)、His(1)〜Ala(302)、His(1)〜Arg(293)〔特開平1−221394号公報、EP0317278〕、Ala(165)〜Leu(184)、Gln(180)〜Phe(199)、His(195)〜Leu(214)、Asn(210)〜Val(229)、Glu(225)〜Ala(244)及びThr(240)〜Tyr(259)〔特開平1−100196号公報〕、Asn(61)〜Thr(75)、Gln(71)〜Ser(85)、Thr(81)〜Leu(95)、Gln(97)〜Arg(111)、Leu(136)〜Leu(150)、Asn(210)〜Ala(224)、Gln(221)〜Asp(235)及びSer(241)〜Asp(255)〔特表平5−503708号公報、WO91/09614〕などが例示される。また、置換体として、His(1)〜Ala(302)からなるGPIbα鎖断片において、Gly(233)またはMet(239)を各々Valに置換したものなどが例示される〔WO93/16712〕。これらのGPIbα鎖断片は全て膜貫通部位を欠失している。膜貫通部位は、GPIbα鎖ではLeu(486)〜Gly(514)が該当する(Proc. Natl. Acad. Sci. USA,84巻,5615〜5619頁,1987年)。
In the present specification, the “substance recognizing activated platelets, vascular injury site and / or inflammatory tissue” means that the drug carrier of the present invention is recognized by recognizing activated platelets, vascular injury site and / or inflammatory tissue. It refers to a substance that is directed to activated platelets, sites of vascular injury and / or inflamed tissue and serves to accumulate the drug carrier of the present invention at these locations. Recognizing substances include integrins or selectins exposed to activated platelets, collagen exposed to vascular injury sites, von Willebrand factor bound to collagen exposed to vascular injury sites, exposed to inflammatory tissues Preferred is a substance that recognizes the selectin and / or the selectin ligand that is exposed to leukocytes, and that is incorporated into activated platelets and / or leukocyte aggregates and / or that accumulates at sites of vascular injury and / or inflamed tissue Used. More specifically, as a recognition substance, H12 (HHLGGAKQAGDV, SEQ ID NO: 1), GPIbα, GPIa / IIa (integrin α2β1), GPVI, MAC-1, fibrinogen, P-selectin, PSGL-1, and the like are preferable.
There are no particular restrictions on the method for preparing H12, GPIbα, GPIa / IIa, GPVI, MAC-1, fibrinogen, P-selectin, and PSGL-1, methods for extraction and isolation from platelet membranes, cell culture methods, genes It can be prepared by an engineering production method or the like.
As long as the object of the present invention is achieved, the recognition substance used in the present invention is one obtained by subjecting one or more amino acids in the amino acid sequence to any mutation such as deletion, substitution, addition or modification. For example, substitutions, analogs, mutants, modifications, derivatives, sugar chain adducts and the like of natural recognition substances are also included.
Examples of GPIbα include GPIbα [His (1) to Leu (610)], GPIbα fragments such as a fragment of the vWF binding region of the α chain, and GPIbα fragments lacking a transmembrane site. More preferred in the present invention is a GPIbα fragment lacking a transmembrane site.
More specific GPIbα chain fragments include His (1) to Cys (485), His (1) to Pro (340), His (1) to Thr (304), His (1) to Ala (302), His. (1) to Arg (293) [JP-A-1-221394, EP0317278], Ala (165) to Leu (184), Gln (180) to Phe (199), His (195) to Leu (214), Asn (210) to Val (229), Glu (225) to Ala (244) and Thr (240) to Tyr (259) [Japanese Patent Laid-Open No. 1100196], Asn (61) to Thr (75), Gln (71) to Ser (85), Thr (81) to Leu (95), Gln (97) to Arg (111), Leu (136) to Leu (150), A n (210) ~Ala (224), Gln (221) ~Asp (235) and Ser (241) ~Asp (255) [Kohyo 5-503708 discloses, WO91 / 09,614], etc. are exemplified. In addition, examples of the substitute include GPIbα chain fragments consisting of His (1) to Ala (302), in which Gly (233) or Met (239) are each substituted with Val [WO93 / 16712]. All of these GPIbα chain fragments lack the transmembrane site. The transmembrane site corresponds to Leu (486) to Gly (514) in the GPIbα chain (Proc. Natl. Acad. Sci. USA, 84, 5615-5619, 1987).

本発明の薬物運搬体は、細胞又は生体組織に到達した際に、薬物担持分子集合体が細胞又は生体組織から物理的な刺激を受けることにより薬物担持分子集合体から薬物が放出される。すなわち、薬物運搬体を構成する認識物質が、標的細胞又は標的生体組織に、本発明の薬物運搬体を指向させる。標的細胞又は標的生体組織に、本発明の薬物運搬体が到達すると、本発明の薬物運搬体は、リンカー及び認識物質を介して標的細胞又は標的生体組織と相互作用し、それにより物理的刺激を受け、担持されていた薬物が分子集合体から放出される。より詳細には、認識物質が標的細胞又は標的生体組織に引きつけられ、これらの細胞又は生体組織の形態変化によって、物理的な負荷が薬物担持分子集合体にかかり、それにより薬物担持分子集合体が崩壊し、薬物が放出される。
ここで、標的が細胞である場合には、標的は活性化血小板又は白血球であることが好ましい。この場合、薬物運搬体は活性化血小板や白血球の凝集塊に巻き込まれ、血小板や白血球の形態変化による物理的な刺激によって、分子集合体が崩壊して薬物を遊離させる。また、標的が生体組織である場合には、標的は血管損傷部位又は炎症組織であることが好ましい。
When the drug carrier of the present invention reaches a cell or biological tissue, the drug-carrying molecular assembly is physically stimulated from the cell or biological tissue, whereby the drug is released from the drug-carrying molecular assembly. That is, the recognition substance constituting the drug carrier directs the drug carrier of the present invention to the target cell or the target biological tissue. When the drug carrier of the present invention reaches the target cell or the target biological tissue, the drug carrier of the present invention interacts with the target cell or the target biological tissue through the linker and the recognition substance, thereby causing physical stimulation. The received and loaded drug is released from the molecular assembly. More specifically, the recognition substance is attracted to the target cell or the target biological tissue, and a physical load is applied to the drug-carrying molecular assembly due to the morphological change of these cells or the biological tissue. Collapses and drug is released.
Here, when the target is a cell, the target is preferably activated platelet or leukocyte. In this case, the drug carrier is engulfed in an aggregate of activated platelets and leukocytes, and the molecular aggregates are broken down and released by physical stimulation due to morphological changes of the platelets and leukocytes. When the target is a living tissue, the target is preferably a vascular injury site or an inflamed tissue.

薬物担持分子集合体上に結合される認識物質の分子数は、高密度であることが細胞又は生体組織との結合性の可能性を高め、凝集塊の形成が迅速に進むことから好ましい。その数は、所望の凝集度及び凝集速度に応じて当業者が適宜調整可能である。   It is preferable that the number of molecules of the recognition substance bound on the drug-carrying molecular assembly is high because the possibility of binding to cells or biological tissue is increased and the formation of aggregates proceeds rapidly. The number can be appropriately adjusted by those skilled in the art according to the desired degree of aggregation and aggregation rate.

薬物担持分子集合体、リンカー、及び認識物質の結合体の調製は、分子集合体の調製後、分子集合体にリンカーを結合させ、次いで、認識物質を反応させることによって調製してもよいし、あるいは、リンカーと認識物質との反応産物を予め調製しておき、その後、その反応産物を分子集合体と結合させてもよい。
リンカーと薬物担持分子集合体が、薬物担持分子集合体の構成成分の一部となる両親媒性分子を介して又は疎水性分子を介して薬物担持分子集合体に結合している、薬物担持分子集合体、リンカー及び認識物質の結合体を調製する場合には、リンカーと、認識物質と、両親媒性分子又は疎水性分子との反応産物を予め調製しておき、その後、その反応産物を分子集合体と結合させてもよい。
薬物は、最初から分子集合体に担持させておいてもよいし、分子集合体と、リンカーと、認識物質との結合体を調製後、最後に分子集合体に担持させてもよい。反応条件は、分子集合体の原料に応じて自体公知の条件を使用することができる。薬物担持分子集合体と認識物質との混合比は、最終的な結合体における認識物質の密度の所望値によって調節される。
Preparation of a drug-carrying molecular assembly, a linker, and a recognition substance conjugate may be prepared by binding a linker to the molecular assembly after the preparation of the molecular assembly, and then reacting the recognition substance. Alternatively, a reaction product of the linker and the recognition substance may be prepared in advance, and then the reaction product may be combined with the molecular assembly.
A drug-carrying molecule in which a linker and a drug-carrying molecular assembly are bound to the drug-carrying molecular assembly via an amphiphilic molecule that is a part of a component of the drug-carrying molecular assembly or via a hydrophobic molecule When preparing an aggregate, a linker, and a recognition substance combination, a reaction product of a linker, a recognition substance, and an amphiphilic molecule or a hydrophobic molecule is prepared in advance, and then the reaction product is converted into a molecule. You may combine with an aggregate.
The drug may be supported on the molecular assembly from the beginning, or may be finally supported on the molecular assembly after preparing a conjugate of the molecular assembly, the linker, and the recognition substance. As the reaction conditions, conditions known per se can be used according to the raw material of the molecular assembly. The mixing ratio between the drug-carrying molecular assembly and the recognition substance is adjusted according to the desired value of the density of the recognition substance in the final conjugate.

リンカーと脂質二分子膜小胞体が、脂質二分子膜の構成成分の一部となる両親媒性分子を介して又は疎水性分子を介して脂質二分子膜小胞体に結合している、脂質二分子膜小胞体、リンカー及び認識物質の結合体を調製する場合には、リンカーと、認識物質と、両親媒性分子又は疎水性分子とを結合させた脂質二分子膜の構成成分となりえる上記両親媒性分子を、小胞体を構成する脂質と有機溶媒中で混合しておき、常法にて小胞体を調製することによって、小胞体表面を認識物質で修飾することができる。   The lipid and bilayer vesicles are linked to the lipid bilayer vesicles via amphipathic molecules that are part of the components of the lipid bilayer or via hydrophobic molecules. When preparing a conjugate of a molecular membrane endoplasmic reticulum, a linker, and a recognition substance, the above-mentioned parents that can be a constituent component of a lipid bilayer membrane in which a linker, a recognition substance, and an amphipathic molecule or a hydrophobic molecule are combined. The surface of the endoplasmic reticulum can be modified with a recognition substance by mixing the medicinal molecule with the lipid constituting the endoplasmic reticulum in an organic solvent and preparing the endoplasmic reticulum by a conventional method.

次いで要すれば、上記で作製された結合体を生理的に許容される水溶液で洗浄し、除菌濾過、分注などを行い、本発明の薬物運搬体を、液剤、ペレット、又は懸濁剤とすることができる。製剤化は、医薬品製造の分野において公知の方法に準じて行うことができる。また、液剤を凍結させた後、減圧乾燥し、凍結乾燥製剤とすることもできる。なお、凍結乾燥する場合は、保護剤として、単糖類(例えば、ブドウ糖等)、二糖類(例えば、ショ糖)などを配合してもよい。製剤には、アルブミン、デキストラン、ビニル重合体、ゼラチン及びヒドロキシルエチルデンプンなどの高分子を安定化剤として配合してもよい。安定剤の添加量は脂質1重量部に対して、0.5〜10重量部が好ましく、1〜5重量部がより好ましい。   Then, if necessary, the conjugate prepared above is washed with a physiologically acceptable aqueous solution, subjected to sterilization filtration, dispensing, etc., and the drug carrier of the present invention is used as a solution, pellet, or suspension. It can be. Formulation can be carried out according to a known method in the field of pharmaceutical production. Moreover, after freezing a liquid agent, it can also be dried under reduced pressure and it can also be set as a freeze-dried formulation. In addition, when freeze-drying, you may mix | blend monosaccharides (for example, glucose etc.), disaccharides (for example, sucrose) etc. as a protective agent. In the preparation, polymers such as albumin, dextran, vinyl polymer, gelatin and hydroxylethyl starch may be added as a stabilizer. The added amount of the stabilizer is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 1 part by weight of the lipid.

薬物担持分子集合体に担持される薬物としては、活性化血小板や白血球等の細胞や、血管損傷部位や炎症組織等の生体組織において、所望の生理活性を奏する薬物であれば特に限定されないが、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤が好ましい。診断薬として用いる場合には、生理活性を有さない蛍光試薬や造影剤などを担持させることもできる。
血小板凝集惹起剤としては、アデノシン二リン酸(ADP)、コラーゲン、コラーゲン由来ペプチド、コンバルキシン、セロトニン、エピネフリン、バソプレシン、カルバゾクロム、血液凝固因子(FVIII、FIX)、トロンビン、抗プラスミン剤(例えば、イプシロン−アミノカプロン酸、トラネキサム酸)、硫酸プロタミン、エタンシラート、フィトナジオン、結合型エストロゲン(例えば、エストロン硫酸ナトリウム、エクイリン硫酸ナトリウム)などが挙げられる。
血小板凝集抑制剤としては、アスピリン、ジピリダモール、チクロピジン、シロスタゾール、ベラプロスト、ヘパリン等のムコ多糖類や、クマリン系抗凝固薬、ヒルジン等の天然抽出物やその誘導体、トロンボモジュリンや活性プロテインC等の生理活性物質などが挙げられる。
血管収縮剤としては、ノルアドレナリン、ノルフェネフリン、フェニレフリン、メタラミノール、メトキサミン、プロスタグランジンFα、プロスタグランジンFα、トロンボキサンAなどが挙げられる。
血管拡張剤としては、プロスタグランジンE、プロスタグランジンIなどが挙げられる。
抗炎症剤としては、ステロイド系抗炎症剤(デキサメサゾン、ヒドロコルチゾン、プレドニゾロン、ベタメサゾン、トリアムシノロン、メチルプレドニゾロンなど)、非ステロイド系抗炎症剤(インドメタシン、アセメタシン、フルルビプロフェン、アスピリン、イブプロフェン、フルフェナム酸、ケトプロフェンなど)などが挙げられる。
薬物担持分子集合体に担持される薬物として特に好ましいものとしては、アデノシン二リン酸(ADP)、コラーゲン、コラーゲン由来ペプチド、コンバルキシン、セロトニン、アスピリン、ジピリダモール、チクロピジン、シロスタゾール及びベラプロストが挙げられる。
The drug carried on the drug-carrying molecular assembly is not particularly limited as long as it has a desired physiological activity in cells such as activated platelets and leukocytes, or in biological tissues such as vascular injury sites and inflamed tissues, Platelet aggregation inducers, platelet aggregation inhibitors, vasoconstrictors, vasodilators and anti-inflammatory agents are preferred. When used as a diagnostic agent, a fluorescent reagent or a contrast agent having no physiological activity can be carried.
Platelet aggregation inducers include adenosine diphosphate (ADP), collagen, collagen-derived peptides, convulxin, serotonin, epinephrine, vasopressin, carbazochrome, blood coagulation factors (FVIII, FIX), thrombin, antiplasmin agents (for example, epsilon- Aminocaproic acid, tranexamic acid), protamine sulfate, ethanesylate, phytonadione, conjugated estrogens (for example, sodium estrone sulfate, sodium equilin sulfate) and the like.
Platelet aggregation inhibitors include mucopolysaccharides such as aspirin, dipyridamole, ticlopidine, cilostazol, beraprost, heparin, natural extracts such as coumarin anticoagulants, hirudin and their derivatives, physiological activities such as thrombomodulin and active protein C Examples include substances.
Examples of the vasoconstrictor include noradrenaline, norphenephrine, phenylephrine, metallaminol, methoxamine, prostaglandin F 1 α, prostaglandin F 2 α, thromboxane A 2 and the like.
The vasodilator prostaglandins E, such as prostaglandin I 2 and the like.
Anti-inflammatory agents include steroidal anti-inflammatory agents (dexamethasone, hydrocortisone, prednisolone, betamethasone, triamcinolone, methylprednisolone, etc.), non-steroidal anti-inflammatory agents (indomethacin, acemetacin, flurbiprofen, aspirin, ibuprofen, flufenamic acid, Ketoprofen, etc.).
Particularly preferred examples of the drug carried on the drug-carrying molecular assembly include adenosine diphosphate (ADP), collagen, collagen-derived peptide, convulxin, serotonin, aspirin, dipyridamole, ticlopidine, cilostazol and beraprost.

薬物担持分子集合体に担持させる薬物の量は担持させる薬物の種類や使用目的により異なるため、一概に定義することは困難であるが、例えば、リン脂質二分子膜内にADPを内包させて、所望の場所で血小板を活性化させるために本発明の薬物運搬体を用いる場合、脂質10mg/mL中に、0.1〜25mM内包させるのが好ましく、0.5〜10mM内包させるのがより好ましく、1〜6mM内包させるのがさらにより好ましい。   Since the amount of the drug to be carried on the drug-carrying molecular assembly varies depending on the kind of drug to be carried and the purpose of use, it is difficult to define it generally. For example, by encapsulating ADP in a phospholipid bilayer, When using the drug carrier of the present invention to activate platelets at a desired location, it is preferable to encapsulate 0.1 to 25 mM, more preferably 0.5 to 10 mM in 10 mg / mL of lipid. It is even more preferable to include 1 to 6 mM.

本発明の薬物運搬体を含む製剤の投与量は、担持される薬物の量や、患者の性別、年齢、症状などに応じて適宜決定されるため、一概に決定することはできないが、例えば、1日あたり0.001〜1000mg程度を投与することができる。本発明の薬物運搬体を含む製剤は、好ましくは非経口投与され、具体的には、血管内(動脈内又は静脈内)注射、持続点滴、皮下投与、局所投与、筋肉内投与などによって投与することができる。本発明の薬物運搬体を含む製剤は、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤として有用であり、また、血小板代替剤、抗血小板剤、血管障害、血管損傷及び血栓症等の予防・治療剤などの医薬品、あるいは血小板無力症などの血小板機能異常症の診断薬、生物学的又は医学的な試薬、血小板代替剤や抗血小板剤のスクリーニング用の試薬、血管損傷部位及び血管形成部位の検査用診断剤又は治療剤などとしても有用である。   Since the dosage of the preparation containing the drug carrier of the present invention is appropriately determined according to the amount of drug carried, the sex, age, symptoms, etc. of the patient, it cannot be generally determined. About 0.001 to 1000 mg per day can be administered. The preparation containing the drug carrier of the present invention is preferably administered parenterally, specifically administered by intravascular (intraarterial or intravenous) injection, continuous infusion, subcutaneous administration, local administration, intramuscular administration, and the like. be able to. The preparation containing the drug carrier of the present invention is useful as a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator and an anti-inflammatory agent, and also a platelet replacement agent, antiplatelet agent, vascular disorder, Drugs such as preventive and therapeutic agents for vascular damage and thrombosis, diagnostic agents for platelet dysfunctions such as asthenia gravis, biological or medical reagents, reagents for screening platelet substitutes and antiplatelet agents It is also useful as a diagnostic agent or therapeutic agent for examination of vascular injury sites and angiogenesis sites.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中特に明記していない場合、ADP又はCF内包濃度は脂質10mg/mL中にADP又はCFを内包させた濃度(mM)を示す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples. Unless otherwise specified in the examples, the concentration of ADP or CF inclusion indicates the concentration (mM) in which ADP or CF is included in 10 mg / mL of lipid.

実施例1 ADP内包小胞体
1.Glu2C18の合成
グルタミン酸(2.96g、20mmol)、p−トルエンスルホン酸一水和物(4.56g、24mmol)をベンゼン150mLに溶解し、Dean−Stark装置を用いて105℃で生成水を除去しながら1時間還流した。ステアリルアルコール(11.9mg、44mmol)を加え、105℃で生成水を除去しながらさらに14時間還流した。溶媒を減圧蒸留した後、残分をクロロホルム150mLに溶解し、炭酸ナトリウム飽和水溶液150mLで2回、水150mLで2回洗浄した。クロロホルム層を回収し、硫酸ナトリウム5gで脱水後、溶媒を減圧除去した。残分を60℃でメタノール400mLに溶解し不溶成分があればろ過し、4℃で再結晶し、濾過後乾燥して白色粉末Glu2C18(13.3g、収率85%)を得た。
Example 1 ADP-containing endoplasmic reticulum
1. Synthesis of Glu2C18 Glutamic acid (2.96 g, 20 mmol) and p-toluenesulfonic acid monohydrate (4.56 g, 24 mmol) were dissolved in 150 mL of benzene, and the generated water was removed at 105 ° C. using a Dean-Stark apparatus. The mixture was refluxed for 1 hour. Stearyl alcohol (11.9 mg, 44 mmol) was added, and the mixture was further refluxed at 105 ° C. for 14 hours while removing generated water. After the solvent was distilled under reduced pressure, the residue was dissolved in 150 mL of chloroform and washed twice with 150 mL of a saturated aqueous solution of sodium carbonate and twice with 150 mL of water. The chloroform layer was collected, dehydrated with 5 g of sodium sulfate, and the solvent was removed under reduced pressure. The residue was dissolved in 400 mL of methanol at 60 ° C. and filtered if there were insoluble components, recrystallized at 4 ° C., filtered and dried to obtain white powder Glu2C18 (13.3 g, yield 85%).

2.H12−MAL−PEG−Glu2C18の合成
クロロホルム5mL中にGlu2C18(115.1mg、176μmol)、トリエチルアミン(TEA)(24.6μL、176μmol)を加えた後にα-マレイミジル
−ω−N−ヒドロキシスクシンイミジルポリエチレングリコール(MAL−PEG−NHS)(Mw=3400)(300mg、58.8μmol)を溶解し、室温で12時間撹拌した。反応溶液をジエチルエーテル250mLに滴下し、不溶成分を回収した。回収物をベンゼン中に溶解し凍結乾燥後、白色粉末MAL−PEG−Glu2C18(264.8mg、収率64%)を得た。
MAL−PEG−Glu2C18(n=71)(100mg、25.37μmol)とC末端にシステインを導入したフィブリノーゲンγ鎖C末端400〜411番目のアミノ酸配列(Cys−H12)(CHHLGGAKQAGDV、配列番号2)(32.8mg、25.37μmol)をジメチルホルムアミド(DMF)5mLに溶解し、室温で12時間撹拌した。反応溶液をジエチルエーテル250mLに滴下し、不溶成分を回収した。水250mLを加え不溶成分を除去後、凍結乾燥機にて溶媒を除去し、淡黄色粉末H12−MAL−PEG−Glu2C18(62.8mg、収率47%)を得た。
2. Synthesis of H12-MAL-PEG-Glu2C18 After adding Glu2C18 (115.1 mg, 176 μmol) and triethylamine (TEA) (24.6 μL, 176 μmol) in 5 mL of chloroform, α-malemidyl-ω-N-hydroxysuccinimidyl was added. Polyethylene glycol (MAL-PEG-NHS) (Mw = 3400) (300 mg, 58.8 μmol) was dissolved and stirred at room temperature for 12 hours. The reaction solution was added dropwise to 250 mL of diethyl ether to recover insoluble components. The recovered product was dissolved in benzene and freeze-dried to obtain white powder MAL-PEG-Glu2C18 (264.8 mg, yield 64%).
MAL-PEG-Glu2C18 (n = 71) (100 mg, 25.37 μmol) and fibrinogen γ-chain C-terminal 400 to 411st amino acid sequence (Cys-H12) (CHHLGGAKQAGDV, SEQ ID NO: 2) with cysteine introduced at the C-terminus ( 32.8 mg, 25.37 μmol) was dissolved in 5 mL of dimethylformamide (DMF) and stirred at room temperature for 12 hours. The reaction solution was added dropwise to 250 mL of diethyl ether to recover insoluble components. After adding 250 mL of water to remove insoluble components, the solvent was removed by a freeze dryer to obtain a pale yellow powder H12-MAL-PEG-Glu2C18 (62.8 mg, 47% yield).

3.小胞体調製方法
1,2−ジパルミトイル−sn−グリセロ−3−ホスファチジルコリン(DPPC)(100mg、136μmol)、コレステロール(52.7mg、136μmol)、及び、1,5−ジヘキサデシル−N−スクシニル−L−グルタメート(DHSG)(19.0mg、13.6μmol)の混合脂質(本明細書における脂質濃度の表記では、混合脂質であっても単に脂質と記載している)、ならびに、PEG−Glu2C18(PEG−DSPE、日本油脂製、4.74mg、0.817μmol)又はH12−MAL−PEG−Glu2C18(4.34mg、0.817μmol)をベンゼン5mLに溶解し、凍結乾燥を3時間行った。乾燥後、アデノシン二リン酸(ADP)溶液(0、1、10、25又は100mM)8.5mLを加え12時間撹拌したのち造粒装置を用いてフィルター(3000nm→800nm→650nm→450nm→300nm→220nm×2)を通過させ粒径制御した。超遠心分離(33000rpm、30分)を2回行い、リン酸緩衝生理食塩水(PBS)5mL中に分散させ小胞体分散液とした。さらに、小胞体分散液をゲルろ過(Sephadex G25)して、外水相に微量に残存するADPを完全に除去した。
上記手順により、ADP内包H12−PEG小胞体(平均粒子径250±80nm、平均層数1.6;Glu2C18は小胞体の構成成分の一部となっている。以下同様)、ADP未内包H12−PEG小胞体(平均粒子径230±70nm、平均層数1.8)、ADP内包PEG小胞体(平均粒子径240±90nm、平均層数1.5)、ADP未内包PEG小胞体(平均粒子径250±90nm、平均層数1.8)の分散液を得た。
回収した小胞体分散液の脂質濃度の定量(リン脂質C−テストワコー、和光純薬工業製)を行ったところ、脂質濃度は18±5mg/mLであった。後述の動物実験では、PBSを用いて各小胞体分散液の脂質濃度を0.25、1.0、2.5、5.0、10mg/mLの濃度に調整したものを4mL/kgで投与し、1、4、10、20、40mg/kg(脂質量換算)となるように投与した。
小胞体の層数(平均層数)は以下のようにして算出した。
ADP未内包H12−PEG小胞体の分散液(0.5wt%、0、20、30、50、70、90μL)をPBSにて希釈し3mLに定容した。TNS水溶液(70μM)又は純水を100μLずつ添加し、室温で12時間振とうした。蛍光測定し(λex=321nm、λem=445nm)、脂質濃度と蛍光強度の比例式を算出し、傾きKとした。孔径0.05μmのフィルターを通過させたPEG小胞体の分散液(0.5wt%、0、20、30、50、70、90μL)でも、同様に、TNS水溶液(70μM)又は純水を添加し、室温で12時間振とうした後、傾きKを算出し、平均層数N=K/Kを算出した。ADP未内包H12−PEG小胞体、ADP内包PEG小胞体、ADP未内内包PEG小胞体についても同様に平均層数を算出した。
以下、H12−MAL−PEG−Glu2C18を用いて作製したADP内包H12−PEG小胞体とADP未内包H12−PEG小胞体をそれぞれH12−PEG(ADP)小胞体、H12−PEG小胞体と表記する。また、PEG−Glu2C18を用いて作製したADP内包PEG小胞体とADP未内包PEG小胞体をそれぞれPEG(ADP)小胞体、PEG小胞体と表記する。
3. Endoplasmic reticulum preparation method 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) (100 mg, 136 μmol), cholesterol (52.7 mg, 136 μmol) and 1,5-dihexadecyl-N-succinyl-L- Glutamate (DHSG) (19.0 mg, 13.6 μmol) mixed lipid (in the description of lipid concentration in this specification, even if it is mixed lipid, it is simply described as lipid), and PEG-Glu2C18 (PEG- DSPE, manufactured by NOF Corporation, 4.74 mg, 0.817 μmol) or H12-MAL-PEG-Glu2C18 (4.34 mg, 0.817 μmol) was dissolved in 5 mL of benzene and freeze-dried for 3 hours. After drying, 8.5 mL of adenosine diphosphate (ADP) solution (0, 1, 10, 25 or 100 mM) was added and stirred for 12 hours, and then a filter (3000 nm → 800 nm → 650 nm → 450 nm → 300 nm → The particle size was controlled by passing 220 nm × 2). Ultracentrifugation (33000 rpm, 30 minutes) was performed twice and dispersed in 5 mL of phosphate buffered saline (PBS) to obtain an endoplasmic reticulum dispersion. Further, the endoplasmic reticulum dispersion was subjected to gel filtration (Sephadex G25) to completely remove ADP remaining in a trace amount in the outer aqueous phase.
By the above procedure, ADP-encapsulated H12-PEG vesicles (average particle size 250 ± 80 nm, average number of layers 1.6; Glu2C18 is a part of constituents of vesicles; the same applies hereinafter), ADP-unencapsulated H12- PEG vesicles (average particle size 230 ± 70 nm, average layer number 1.8), ADP-encapsulated PEG vesicles (average particle size 240 ± 90 nm, average layer number 1.5), ADP non-encapsulated PEG vesicles (average particle size A dispersion liquid of 250 ± 90 nm and an average number of layers of 1.8) was obtained.
When the lipid concentration of the collected endoplasmic reticulum dispersion was quantified (phospholipid C-Test Wako, manufactured by Wako Pure Chemical Industries, Ltd.), the lipid concentration was 18 ± 5 mg / mL. In the animal experiments described below, PBS was used to adjust the lipid concentration of each endoplasmic reticulum dispersion to 0.25, 1.0, 2.5, 5.0, 10 mg / mL at 4 mL / kg. The dose was 1, 4, 10, 20, 40 mg / kg (in terms of lipid amount).
The number of endoplasmic reticulum layers (average number of layers) was calculated as follows.
A dispersion of non-ADP-encapsulated H12-PEG vesicles (0.5 wt%, 0, 20, 30, 50, 70, 90 μL) was diluted with PBS to a constant volume of 3 mL. 100 μL of TNS aqueous solution (70 μM) or pure water was added, and shaken at room temperature for 12 hours. Fluorescence measured (λex = 321nm, λem = 445nm ), to calculate the proportional expression of lipid concentration and fluorescence intensity was the inclination K 1. Similarly, in the dispersion of PEG vesicles (0.5 wt%, 0, 20, 30, 50, 70, 90 μL) that has passed through a filter with a pore size of 0.05 μm, an aqueous TNS solution (70 μM) or pure water is added. After shaking for 12 hours at room temperature, the slope K 2 was calculated, and the average number of layers N = K 1 / K 2 was calculated. The average number of layers was also calculated for ADP-unencapsulated H12-PEG vesicles, ADP-encapsulated PEG vesicles, and ADP-unencapsulated PEG vesicles.
Hereinafter, an ADP-encapsulated H12-PEG vesicle and an ADP-unencapsulated H12-PEG vesicle prepared using H12-MAL-PEG-Glu2C18 are referred to as an H12-PEG (ADP) vesicle and an H12-PEG vesicle, respectively. In addition, ADP-encapsulated PEG vesicles and ADP-unencapsulated PEG vesicles prepared using PEG-Glu2C18 are referred to as PEG (ADP) vesicles and PEG vesicles, respectively.

4.HPLCを用いたADP内包濃度の定量
H12−PEG(ADP)小胞体(1mg/mL)を2%ラウリルエーテル(C1210)で可溶化し、HPLC(Abs. 260nm)にてADPの定量を行った。
水和時(調製時)のADP濃度(0、10、25、100mM)に対する脂質10mg/mL中に内包されたADP濃度の関係を図2に示す。内包されたADP濃度は水和時のADP濃度に比例し、内包濃度を制御できることを確認した。また、粒径(250±80nm)から内水相のADP濃度を算出すると、水和時のADP濃度とほぼ同等であった。
4). Quantification of ADP inclusion concentration using HPLC H12-PEG (ADP) vesicles (1 mg / mL) were solubilized with 2% lauryl ether (C 12 E 10 ), and ADP was quantified using HPLC (Abs. 260 nm). went.
FIG. 2 shows the relationship between the ADP concentration at the time of hydration (preparation) (0, 10, 25, 100 mM) and the concentration of ADP encapsulated in 10 mg / mL lipid. The encapsulated ADP concentration was proportional to the ADP concentration at the time of hydration, and it was confirmed that the encapsulated concentration could be controlled. Further, when the ADP concentration of the inner aqueous phase was calculated from the particle size (250 ± 80 nm), it was almost equal to the ADP concentration at the time of hydration.

5.フローサイトメトリー(FACS)による相互作用解析
全血(1/10(v/v) 3.8%クエン酸ナトリウム)を遠心分離し(600rpm、15分)、多血小板血漿(PRP)を得た。沈殿成分を更に遠心分離して(2500rpm、10分)、乏血小板血漿(PPP)を得た。PPPにて血小板数を調整したPRP([血小板]=1.0×10/μL、50μL)にADP内包濃度の異なるH12−PEG(ADP)小胞体を添加し([脂質]=1mg/mL、10μL)、37℃、10分間撹拌した。血小板活性化マーカーであるFITC標識PAC−1(20μL)を添加後、37℃で10分間振とうし、ホルムアルデヒド(f.c. 1%)にて固定した。サンプルをフローサイトメトリーにより試験した。ポジティブコントロール群はADP刺激時とし、ネガティブコントロール群はPEG小胞体とした。
ADPの内包濃度が1.5mM以下のPEG(ADP)小胞体あるいはH12−PEG(ADP)小胞体を血小板に添加した系では、ADP未内包小胞体添加系と比較してPAC−1結合率はほぼ同等であり、血小板を活性化させないことを確認した(図3)。一方、内包濃度のもっとも高いPEG(ADP)小胞体、H12−PEG(ADP)小胞体(6mM)を血小板に添加した系では血小板の活性化を引き起こすことが判明した。
5). Interaction analysis by flow cytometry (FACS) Whole blood (1/10 (v / v) 3.8% sodium citrate) was centrifuged (600 rpm, 15 minutes) to obtain platelet-rich plasma (PRP). The precipitated component was further centrifuged (2500 rpm, 10 minutes) to obtain platelet poor plasma (PPP). H12-PEG (ADP) vesicles having different ADP inclusion concentrations were added to PRP ([platelet] = 1.0 × 10 5 / μL, 50 μL) whose platelet count was adjusted with PPP ([lipid] = 1 mg / mL 10 μL) and stirred at 37 ° C. for 10 minutes. After adding FITC-labeled PAC-1 (20 μL) as a platelet activation marker, the mixture was shaken at 37 ° C. for 10 minutes and fixed with formaldehyde (fc 1%). Samples were tested by flow cytometry. The positive control group was at the time of ADP stimulation, and the negative control group was a PEG vesicle.
In a system in which PEG (ADP) vesicles having an ADP encapsulation concentration of 1.5 mM or less or H12-PEG (ADP) vesicles were added to platelets, the PAC-1 binding rate was higher than that in the ADP non-encapsulating vesicle addition system. It was almost the same, and it was confirmed that platelets were not activated (FIG. 3). On the other hand, it was found that PEG (ADP) endoplasmic reticulum with the highest inclusion concentration and H12-PEG (ADP) endoplasmic reticulum (6 mM) were added to platelets and caused platelet activation.

6.血小板凝集計による機能評価
以下の実験では、FACS測定により血小板を活性化させないことが明らかとなったADP内包濃度が1.5mMであるPEG(ADP)小胞体及びH12−PEG(ADP)小胞体、ならびに、PEG小胞体及びH12−PEG小胞体を用いた。PPPにて血小板数を調整したPRP([血小板]=2.0×10/μL、180μL)に小胞体分散液(10μL)を添加した後、コラーゲン(f.c. 0.4μg/mL、10μL)にて血小板凝集を惹起させ、透過度変化を計測した(図4)。
PEG小胞体(a)を添加したところ、PBS添加系と比較して血小板凝集に何ら影響を与えないことを確認した。PEG小胞体(a)の代わりにH12−PEG小胞体(b)を添加したところ、透過度が増大し血小板凝集促進効果が確認できた。これは、H12−PEG小胞体が血小板と多点結合し、血小板凝集を促進したためと考えられる。PEG(ADP)小胞体(c)では(b)と比較して凝集が亢進し、H12−PEG(ADP)小胞体(d)では(c)の促進効果以上であった。他方、(d)を存在させただけ(すなわちコラーゲン非存在下、(e))では血小板の凝集は惹起されないことも確認した。従って、コラーゲンによって血小板の凝集が惹起され、直ちに小胞体が物理的にその凝集塊に巻き込まれ小胞体が変形してADPが放出されたと考えられる。(d)の効果は、H12を担持させたことによる多点結合とADP放出との相乗効果によるものと考えられる。
さらに、コラーゲン添加から約1分後に、コラーゲン刺激による血小板形状変化に伴う緩やかな透過度の減少が見られる((a)及び(b))。しかしながら、ADP内包系(c)及び(d)では、コラーゲン添加後、直ちに透過度の上昇が見られ、これはADP刺激に特有の現象である。これにより、血小板凝集によってH12−PEG(ADP)小胞体(d)からのADPの放出が惹起されたことが示唆された。
6). Functional evaluation by platelet aggregometer In the following experiments, PEG (ADP) endoplasmic reticulum and A12-PEG (ADP) endoplasmic reticulum having an ADP inclusion concentration of 1.5 mM, which were found not to activate platelets by FACS measurement, In addition, PEG vesicles and H12-PEG vesicles were used. After adding the endoplasmic reticulum dispersion (10 μL) to PRP ([platelet] = 2.0 × 10 5 / μL, 180 μL) whose platelet count was adjusted with PPP, collagen (fc 0.4 μg / mL, 10 μL), platelet aggregation was induced, and the change in permeability was measured (FIG. 4).
When PEG vesicle (a) was added, it was confirmed that there was no effect on platelet aggregation as compared with the PBS addition system. When H12-PEG vesicle (b) was added instead of PEG vesicle (a), the permeability increased and the effect of promoting platelet aggregation could be confirmed. This is thought to be because the H12-PEG vesicles were multipoint bonded to platelets and promoted platelet aggregation. In PEG (ADP) endoplasmic reticulum (c), aggregation was enhanced as compared with (b), and in H12-PEG (ADP) endoplasmic reticulum (d), it was more than the promoting effect of (c). On the other hand, it was also confirmed that platelet aggregation was not induced only by the presence of (d) (that is, (e) in the absence of collagen). Therefore, it is considered that platelet aggregation was induced by collagen, and the vesicle was immediately physically involved in the aggregate, and the vesicle was deformed to release ADP. The effect of (d) is considered to be due to the synergistic effect of multipoint bonding and ADP release by supporting H12.
Further, about 1 minute after the addition of collagen, a gradual decrease in permeability is observed with changes in platelet shape caused by collagen stimulation ((a) and (b)). However, in the ADP inclusion systems (c) and (d), an increase in permeability is observed immediately after the addition of collagen, which is a phenomenon peculiar to ADP stimulation. This suggested that platelet aggregation caused the release of ADP from the H12-PEG (ADP) endoplasmic reticulum (d).

7.血小板減少症モデルラットを用いた、H12−PEG小胞体及びH12−PEG(ADP)小胞体の尾出血時間に与える影響の評価
ウィスター系雄性ラット(8週齢,250〜270g)にブスルファン(20mg/kg)を尾静脈投与し、投与後10日目を血小板減少症モデルラット([血小板]=20×10/μL)とした。セボフラン麻酔後、サンプルを投与し、投与5分後に尾先端から1cmの部位に長さ2.5mm、深さ1mmの傷をつけ、その部分を生理食塩水中に浸し、出血時間を測定した。
血小板減少症モデルラットに生理食塩水を投与したところ(4mL/kg)、出血時間は682±198秒であり、正常ラット([血小板]=80×10/μL)の出血時間(178±56秒)と比較して、約3.8倍延長した(図5)。脂質濃度を2.5、10mg/mLに調整したH12−PEG小胞体分散液を投与したところ(4mL/kg)、投与量依存的に出血時間は短縮し、10、40mg/kg(脂質量換算)における出血時間は、それぞれ573±127、335±96秒となった。そこで、脂質濃度0.25、1、2.5mg/mLに調整したH12−PEG(ADP)小胞体分散液(ADP内包濃度1mM)を投与したところ(4mL/kg)、1、4、10mg/kg(脂質量換算)における出血時間は、それぞれ543±134、521±88、349±49秒となり、H12−PEG小胞体にて短縮効果の確認できた1/4の投与濃度で短縮できることが判明した。以上より、ADP内包によるH12−PEG小胞体の止血効果向上がin vivoにて確認された。
7). Evaluation of effects of H12-PEG vesicle and H12-PEG (ADP) vesicle on tail bleeding time using thrombocytopenia model rats Wistar male rats (8 weeks old, 250-270 g) were treated with busulfan (20 mg / day). kg) was administered via the tail vein, and the thrombocytopenia model rat ([platelet] = 20 × 10 4 / μL) was formed on the 10th day after administration. After sevofuran anesthesia, the sample was administered, and 5 minutes after administration, a wound 1 mm in length and 2.5 mm in length was made in a site 1 cm from the tip of the tail, and that part was immersed in physiological saline, and the bleeding time was measured.
When physiological saline was administered to thrombocytopenia model rats (4 mL / kg), the bleeding time was 682 ± 198 seconds, and the bleeding time (178 ± 56) of normal rats ([platelet] = 80 × 10 4 / μL). (About 5 seconds) (Fig. 5). When H12-PEG endoplasmic reticulum dispersion adjusted to a lipid concentration of 2.5 and 10 mg / mL was administered (4 mL / kg), the bleeding time was shortened depending on the dose, and 10, 40 mg / kg (in terms of lipid amount) ) Bleeding times were 573 ± 127 and 335 ± 96 seconds, respectively. Therefore, when H12-PEG (ADP) endoplasmic reticulum dispersion liquid (ADP inclusion concentration 1 mM) adjusted to a lipid concentration of 0.25, 1, 2.5 mg / mL was administered (4 mL / kg), 1, 4, 10 mg / mL Bleeding time in kg (lipid amount conversion) was 543 ± 134, 521 ± 88, 349 ± 49 seconds, respectively, and it was found that it could be shortened with a dose of 1/4 that was confirmed to have a shortening effect with H12-PEG vesicles. did. From the above, it was confirmed in vivo that the hemostatic effect of H12-PEG vesicles by ADP encapsulation was improved.

8.重篤な血小板減少症モデルウサギを用いた、H12−PEG(ADP)小胞体の耳出血時間に与える影響の評価
ニュージーランドホワイトウサギ(11週齢、2.5kg)にブスルファン(30mg/kg)を尾静脈投与し、投与後15日目を血小板減少症モデルウサギ([血小板]=2.6×10/μL)とした。ケタミン/セラクタール麻酔後、0.5mL/分の速度でサンプルを投与し、投与30分後に耳介周囲静脈に長さ6mmの傷をつけ、その部分を生理食塩水中に浸し出血時間を測定した。
血小板減少症モデルウサギに生理食塩水を投与したところ(4mL/kg)、出血時間は1695±197秒であり、正常ウサギ([血小板]=41×10/μL)の出血時間(112±24秒)と比較して、約15倍延長した(図6)。陽性対照群としてウサギ血小板を0.4×10、2.0×10、4.0×10/kgで投与したところ、血小板数依存的に出血時間を短縮させた(それぞれ1505±410、863±440、505±257秒)。そこで、脂質濃度を2.5、5.0mg/mLに調整したH12−PEG(ADP)小胞体分散液(4mL/kg)を投与したところ、出血時間はそれぞれ881±303、433±52秒であり、生理食塩水群と比較して投与量依存的に有意に出血時間を短縮させ、血小板投与群のそれに匹敵した。従って、H12−PEG(ADP)小胞体は血小板減少モデルウサギの出血時間を効率よく短縮させることが確認された。
8). Evaluation of the effect of H12-PEG (ADP) endoplasmic reticulum on ear bleeding time using a severe thrombocytopenia model rabbit New Zealand white rabbit (11 weeks old, 2.5 kg) tailed with busulfan (30 mg / kg) It was intravenously administered, and a thrombocytopenia model rabbit ([platelet] = 2.6 × 10 4 / μL) was obtained on the 15th day after administration. After ketamine / cerectal anesthesia, the sample was administered at a rate of 0.5 mL / min. 30 minutes after administration, the periauric vein was injured with a length of 6 mm, and the part was immersed in physiological saline to measure the bleeding time.
When physiological saline was administered to a thrombocytopenia model rabbit (4 mL / kg), the bleeding time was 1695 ± 197 seconds, and the bleeding time (112 ± 24) of a normal rabbit ([platelet] = 41 × 10 4 / μL). Compared to the second) (FIG. 6). As a positive control group, rabbit platelets were administered at 0.4 × 10 9 , 2.0 × 10 9 , 4.0 × 10 9 / kg, and the bleeding time was shortened depending on the platelet count (each 1505 ± 410). 863 ± 440, 505 ± 257 seconds). Therefore, when H12-PEG (ADP) vesicle dispersion (4 mL / kg) adjusted to a lipid concentration of 2.5 and 5.0 mg / mL was administered, bleeding times were 881 ± 303 and 433 ± 52 seconds, respectively. Yes, the bleeding time was significantly shortened in a dose-dependent manner compared with the physiological saline group, comparable to that of the platelet administration group. Therefore, it was confirmed that H12-PEG (ADP) endoplasmic reticulum efficiently shortens the bleeding time of a thrombocytopenic model rabbit.

9.PEG(ADP)小胞体とH12−PEG(ADP)小胞体との出血時間に与える影響の比較
PEG(ADP)小胞体又はH12−PEG(ADP)小胞体の分散液(10mg/kg(脂質量換算)、ADP内包濃度0、1、10mM)を投与した際の出血時間を測定した。出血時間の測定は、正常ラット及び血小板減少症モデルラットを用いて7.と同様に行った。結果を図7に示す。H12−PEG小胞体(すなわち、ADP内包濃度0)投与系では出血時間短縮効果は見られないが、H12−PEG(ADP)小胞体では血小板減少症モデルラットの生理食塩水投与系と比較して出血時間の有意な短縮がみられ、PEG(ADP)小胞体にて短縮効果の確認できた1/10の投与濃度で同程度の短縮が得られた。以上から、PEG(ADP)小胞体よりもH12−PEG(ADP)小胞体の方が優れた止血効果を有することが確認された。
9. Comparison of the effect of PEG (ADP) vesicles and H12-PEG (ADP) vesicles on bleeding time Dispersion of PEG (ADP) vesicles or H12-PEG (ADP) vesicles (10 mg / kg (lipid amount conversion) ), The bleeding time when ADP inclusion concentration 0, 1, 10 mM) was administered. Bleeding time was measured using normal rats and thrombocytopenia model rats. As well as. The results are shown in FIG. The H12-PEG vesicle (that is, ADP inclusion concentration 0) administration system does not show an effect of shortening the bleeding time, but the H12-PEG (ADP) vesicle has an effect compared with the physiological saline administration system of a thrombocytopenia model rat. The bleeding time was significantly shortened, and a similar shortening was obtained at a dose of 1/10 at which the shortening effect could be confirmed with the PEG (ADP) endoplasmic reticulum. From the above, it was confirmed that the H12-PEG (ADP) vesicle had a superior hemostatic effect than the PEG (ADP) vesicle.

10.血小板凝集計を用いたADP内包効果測定
PEG小胞体、H12−PEG小胞体についてADP内包量の異なる小胞体(PEG(ADP)小胞体、H12−PEG(ADP)小胞体)を調製した。ADP内包濃度の算出は小胞体を2%ラウリルエーテルで可溶化させHPLC(260nm)にて行った。ADP内包の効果を血小板凝集計により評価した。PPPにて血小板数を調整した血小板減少血漿(PLT)([血小板]=10×10/μL、180μL)を調製し、小胞体分散液を10μL添加後、ADP(30〜45μM、10μL)を添加し、透過率を計測した。添加小胞体はADP内包濃度が0、0.1、0.5、1.0、2.0もしくは10.0mMであるPEG(ADP)小胞体又はH12−PEG(ADP)小胞体を用いた。評価はPEG小胞体添加時の透過率との差により行った。ADPを用いて血小板凝集を惹起させた時の結果を図8に示す。H12−PEG(ADP)小胞体添加系はADP内包濃度1mM以上で内包効果が確認でき、それ以上の高濃度内包小胞体においてもその内包効果はほぼ同等であった。また、PEG(ADP)小胞体添加系についてはその内包効果は確認できなかった。
10. Measurement of ADP inclusion effect using a platelet aggregometer PEG vesicles and H12-PEG vesicles were prepared with different ADP inclusion amounts (PEG (ADP) vesicles, H12-PEG (ADP) vesicles). The ADP inclusion concentration was calculated by HPLC (260 nm) after solubilizing the endoplasmic reticulum with 2% lauryl ether. The effect of ADP encapsulation was evaluated using a platelet aggregometer. Prepare platelet-decreased plasma (PLT) ([platelet] = 10 × 10 4 / μL, 180 μL) with platelet count adjusted by PPP, add 10 μL of ER dispersion, then add ADP (30-45 μM, 10 μL). It was added and the transmittance was measured. The added vesicles were PEG (ADP) vesicles or H12-PEG (ADP) vesicles having an ADP inclusion concentration of 0, 0.1, 0.5, 1.0, 2.0, or 10.0 mM. Evaluation was performed based on the difference from the transmittance when PEG vesicles were added. FIG. 8 shows the results when platelet aggregation was induced using ADP. In the H12-PEG (ADP) vesicle addition system, the inclusion effect could be confirmed at an ADP inclusion concentration of 1 mM or more, and the inclusion effect was almost the same even in the higher concentration inclusion vesicles. Moreover, the inclusion effect was not confirmed about the PEG (ADP) endoplasmic reticulum addition system.

11.Bio−PEG−Glu2C18の合成
N−[6−(ビオチンアミド)ヘキシル]−3’−(2’−ピリジルジチオ)プロピオンアミド(Bio−HPDP、10mg、18.5μmol)をDMF5mLに溶解し、ジチオスレイトール水溶液(1M)を20μL添加し、室温で30分攪拌後、MAL−PEG−Glu2C18(73.0mg、18.5μmol)を添加し、室温で12時間撹拌した。反応溶液をジエチルエーテル250mLに滴下し、不溶成分を回収した。水250mLを加え不溶成分を除去後、凍結乾燥機にて溶媒を除去し、淡黄色粉末Bio−MAL−PEG−Glu2C18を得た(Bio:ビオチン)。
11. Synthesis of Bio-PEG-Glu2C18 N- [6- ( Biotinamide ) hexyl] -3 ′-(2′-pyridyldithio) propionamide (Bio-HPDP, 10 mg, 18.5 μmol) was dissolved in 5 mL of DMF, and dithiosley. 20 μL of a tall aqueous solution (1M) was added and stirred at room temperature for 30 minutes, then MAL-PEG-Glu2C18 (73.0 mg, 18.5 μmol) was added and stirred at room temperature for 12 hours. The reaction solution was added dropwise to 250 mL of diethyl ether to recover insoluble components. After adding 250 mL of water and removing insoluble components, the solvent was removed with a freeze dryer to obtain a light yellow powder Bio-MAL-PEG-Glu2C18 (Bio: biotin).

12.血小板凝集塊に巻込まれたH12−PEG(ADP)小胞体の電子顕微鏡観察
H12−PEG(ADP)小胞体添加系中の小胞体観察を目的とし、H12−PEG(ADP)小胞体にBio−MAL−PEG−Glu2C18を導入し、その凝集塊を凍結超薄切し透過型電子顕微鏡にて免疫電子顕微鏡観察した(図9)。血小板間に小胞体が巻き込まれていることが確認され、また血小板の各部位にBio−MAL−PEG−Glu2C18が点在することから、小胞体が凝集塊中で崩壊していることが示唆された。
12 Electron Microscopic Observation of H12-PEG (ADP) Endoplasmic Reticulum Engaged in Platelet Aggregate For the purpose of observation of endoplasmic reticulum in H12-PEG (ADP) endoplasmic reticulum addition system, Bio-MAL was applied to H12-PEG (ADP) endoplasmic reticulum. -PEG-Glu2C18 was introduced, and the aggregate was frozen and sliced and observed with an immunoelectron microscope using a transmission electron microscope (FIG. 9). It is confirmed that the endoplasmic reticulum is involved between platelets, and Bio-MAL-PEG-Glu2C18 is scattered at each site of the platelet, suggesting that the endoplasmic reticulum has collapsed in the aggregate. It was.

実施例2 CF内包小胞体
1.CF内包PEG小胞体及びCF内包H12−PEG小胞体の製造
実施例1の1.〜3.に記載の手順に準じて、10mMの5(6)−カルボキシフルオレセイン(CF)を内包させたPEG小胞体及びH12−PEG小胞体を作製した。CF内包量は、実施例1の4.と同様にして定量した。
CF内包PEG小胞体(平均粒子径230±80nm、平均層数1.8)
CF内包H12−PEG小胞体(平均粒子径240±50nm、平均層数1.6)
2.血小板凝集に伴う小胞体内包物放出量の定量
CF(10mM)内包PEG小胞体又はCF(10mM)内包H12−PEG小胞体をPRP([血小板]=2.0×10/μL、[vesicle]=f.c. 0.05mg/mL)に添加後、ADPにより血小板凝集を惹起し([ADP]=f.c. 2μM)、血小板凝集計にて透過度変化を測定した。測定終了後、遠心分離(1200rpm、5分)にて凝集塊を除去した。この時、ADP未添加系において、血小板のみを除去し、2%ラウリルエーテル(C1210)にて小胞体を可溶化した際の蛍光強度(A)を測定し、100%と定義した。この上清中(小胞体分散液)の蛍光強度(B)を測定し、血小板凝集塊への小胞体取込み率を算出した。さらに、この上清を遠心分離(33000rpm、45分)して小胞体を除去し、その上清の蛍光強度(C)を測定し、血小板凝集塊に取込まれた小胞体からのCF放出率を算出した。
Example 2 CF-containing endoplasmic reticulum
1. Production of CF-encapsulated PEG vesicles and CF-encapsulated H12-PEG vesicles ~ 3. PEG vesicles and H12-PEG vesicles encapsulating 10 mM 5 (6) -carboxyfluorescein (CF) were prepared according to the procedure described in 1. The amount of CF inclusion is the same as that in Example 1. Quantified in the same manner as above.
CF-encapsulated PEG vesicles (average particle size 230 ± 80 nm, average number of layers 1.8)
CF-encapsulated H12-PEG vesicles (average particle size 240 ± 50 nm, average number of layers 1.6)
2. Quantification of amount of endoplasmic reticulum release accompanying platelet aggregation CF (10 mM) -encapsulated PEG vesicle or CF (10 mM) -encapsulated H12-PEG vesicle was PRP ([platelet] = 2.0 × 10 5 / μL, [vesicle] = 0.05 mg / mL), platelet aggregation was induced by ADP ([ADP] = fc 2 μM), and the permeability change was measured with a platelet aggregometer. After completion of the measurement, aggregates were removed by centrifugation (1200 rpm, 5 minutes). At this time, in the ADP non-addition system, only the platelets were removed, and the fluorescence intensity (A) when the vesicle was solubilized with 2% lauryl ether (C 12 E 10 ) was measured and defined as 100%. The fluorescence intensity (B) in the supernatant (endoplasmic reticulum dispersion) was measured, and the rate of endoplasmic reticulum uptake into the platelet aggregate was calculated. Further, the supernatant was centrifuged (33,000 rpm, 45 minutes) to remove the endoplasmic reticulum, the fluorescence intensity (C) of the supernatant was measured, and the CF release rate from the endoplasmic reticulum incorporated into the platelet aggregate was measured. Was calculated.

CF内包PEG小胞体を添加したところ、PBS添加系と比較して血小板凝集に何ら影響を与えないことを確認した。CF内包PEG小胞体の代わりにCF内包H12−PEG小胞体を添加したところ、2次凝集が亢進し、透過度が増大し血小板凝集促進効果が確認できた(図10)。これはCF内包H12−PEG小胞体が血小板と多点結合し、血小板凝集を促進したためと考えられる。
血小板凝集塊へのCF内包PEG−小胞体、CF内包H12−PEG小胞体の取込み率は、それぞれ13±5、17±5%であり、両者ともほぼ同等であった。そこで、取込まれた小胞体からのCF放出率を測定したところ、それぞれ0.6±0.5、10±1%となった(表1)。これは、小胞体にH12を担持させたことにより、小胞体と血小板との結合が強固となり、小胞体が血小板凝集に巻込まれた際の物理的な刺激に伴ってCF放出率が増大したためと考えられる。
When CF-encapsulated PEG vesicles were added, it was confirmed that there was no effect on platelet aggregation compared to the PBS-added system. When CF-encapsulated H12-PEG vesicles were added instead of CF-encapsulated PEG vesicles, secondary aggregation was enhanced, the permeability was increased, and the platelet aggregation promoting effect was confirmed (FIG. 10). This is presumably because the CF-encapsulated H12-PEG vesicles were multipoint bonded to platelets and promoted platelet aggregation.
The incorporation rates of CF-encapsulated PEG-vesicles and CF-encapsulated H12-PEG vesicles into platelet aggregates were 13 ± 5 and 17 ± 5%, respectively, which were almost the same. Therefore, when the CF release rate from the incorporated endoplasmic reticulum was measured, they were 0.6 ± 0.5 and 10 ± 1%, respectively (Table 1). This is because the binding of the endoplasmic reticulum to platelets was strengthened by supporting H12 on the endoplasmic reticulum, and the CF release rate increased with physical stimulation when the endoplasmic reticulum was involved in platelet aggregation. Conceivable.

本発明の薬物運搬体は、活性化血小板、血管損傷部位及び/又は炎症組織と選択的な結合性を示し、これらの場所でのみ担持された薬物を放出するため、所望の場所以外に悪影響を及ぼすことなく、担持薬物の効果を活性化血小板、血管損傷部位及び/又は炎症組織でのみ発現させることが可能である。従って、本発明の薬物運搬体を含む製剤は、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤として有用であり、また、血小板代替剤、抗血小板剤、血管障害、血管損傷及び血栓症等の予防・治療剤などの医薬品、あるいは血小板無力症などの血小板機能異常症の診断薬、生物学的又は医学的な試薬、血小板代替剤や抗血小板剤のスクリーニング用の試薬、血管損傷部位及び血管形成部位の検査用診断剤又は治療剤などとしても有用である。   The drug carrier of the present invention exhibits selective binding to activated platelets, vascular injury sites and / or inflamed tissues, and releases the drug carried only at these locations, so that adverse effects can occur other than at the desired location. Without effect, the effect of the carrier drug can be expressed only in activated platelets, vascular injury sites and / or inflamed tissues. Therefore, the preparation containing the drug carrier of the present invention is useful as a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent, and also a platelet substitute, antiplatelet, blood vessel For screening pharmaceuticals such as prophylactic / therapeutic agents for disorders, vascular injury and thrombosis, etc., diagnostic agents for platelet dysfunctions such as asthenia gravis, biological or medical reagents, platelet replacement agents and antiplatelet agents It is also useful as a reagent for the above, a diagnostic agent or a therapeutic agent for examination of vascular damage sites and angiogenesis sites.

実施例1に記載のGlu2C18、H12−MAL−PEG−Glu2C18の合成スキームである。2 is a synthesis scheme of Glu2C18 and H12-MAL-PEG-Glu2C18 described in Example 1. 水和時ADP濃度(0、10、25、100mM)に対する脂質10mg/mL中に内包されたADP濃度の関係を示すグラフである。It is a graph which shows the relationship of the ADP density | concentration included in 10 mg / mL of lipid with respect to the ADP density | concentration (0, 10, 25, 100 mM) at the time of hydration. H12−PEG(ADP)小胞体(黒)又はPEG(ADP)小胞体(白)の存在下での、血小板へのPAC−1の結合比を示すグラフである。FIG. 6 is a graph showing the binding ratio of PAC-1 to platelets in the presence of H12-PEG (ADP) vesicles (black) or PEG (ADP) vesicles (white). H12−PEG(ADP)小胞体によるコラーゲン惹起血小板凝集の促進効果を示す透過度の変化である。[コラーゲン]:f.c. 0.4μg/mL、[血小板]:2.0×10/μL、[脂質]:0.05mg/mL。(a)PEG小胞体、(b)H12−PEG小胞体、(c)PEG(ADP)小胞体、(d)H12−PEG(ADP)小胞体、(e)コラーゲン非存在下のH12−PEG(ADP)小胞体。It is a change in permeability showing the effect of promoting collagen-induced platelet aggregation by H12-PEG (ADP) vesicles. [Collagen]: f. c. 0.4 μg / mL, [platelet]: 2.0 × 10 5 / μL, [lipid]: 0.05 mg / mL. (A) PEG vesicle, (b) H12-PEG vesicle, (c) PEG (ADP) vesicle, (d) H12-PEG (ADP) vesicle, (e) H12-PEG in the absence of collagen ( ADP) endoplasmic reticulum. 尾出血時間に対する、H12−PEG(ADP)小胞体投与の止血効果を示すグラフである。H12−PEG(ADP)小胞体投与量:1、4、10mg/kg(脂質量換算)。○:血小板数(N=10)。P<0.05。It is a graph which shows the hemostatic effect of H12-PEG (ADP) endoplasmic reticulum administration with respect to tail bleeding time. H12-PEG (ADP) endoplasmic reticulum dosage: 1, 4, 10 mg / kg (in terms of lipid amount). ○: Platelet count (N = 10). * P <0.05. 耳出血時間に対する、H12−PEG(ADP)小胞体投与及びPRPの止血効果を示すグラフである。H12−PEG(ADP)小胞体投与量:10、20mg/kg(脂質量換算)。ウサギ血小板投与量:0.4、2.0、4.0×10/kg。○:血小板数(N=5〜6)。P<0.05 vs. 生理食塩水群。It is a graph which shows the hemostatic effect of H12-PEG (ADP) endoplasmic reticulum administration and PRP with respect to ear bleeding time. H12-PEG (ADP) endoplasmic reticulum dose: 10, 20 mg / kg (in terms of lipid amount). Rabbit platelet dosage: 0.4, 2.0, 4.0 × 10 9 / kg. ○: Platelet count (N = 5-6). * P <0.05 vs. Saline group. 尾出血時間に対する、PEG(ADP)小胞体とH12−PEG(ADP)小胞体との止血効果を比較したグラフである。小胞体投与量:10mg/kg。○:血小板数(N=6〜10)。It is the graph which compared the hemostatic effect of PEG (ADP) vesicle and H12-PEG (ADP) vesicle with respect to tail bleeding time. Endoplasmic reticulum dose: 10 mg / kg. ○: Platelet count (N = 6-10). PEG小胞体及びH12−PEG小胞体へのADP内包効果を示すグラフである。It is a graph which shows the ADP inclusion effect to a PEG vesicle and an H12-PEG vesicle. 血小板凝集の透過型電子顕微鏡像である。矢印で示したものがH12−PEG(ADP)小胞体である。It is a transmission electron microscope image of platelet aggregation. What is indicated by an arrow is an H12-PEG (ADP) endoplasmic reticulum. CF内包H12−PEG小胞体によるADP惹起血小板凝集の促進効果を示す透過度の変化である。It is a change in permeability showing the effect of promoting ADP-induced platelet aggregation by CF-encapsulated H12-PEG vesicles.

配列番号1:デザインペプチド
配列番号2:デザインペプチド
SEQ ID NO: 1: Design peptide SEQ ID NO: 2: Design peptide

Claims (20)

1)薬物担持分子集合体、2)リンカー、ならびに、3)活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質、の結合体である薬物運搬体。   1) a drug carrier that is a conjugate of a drug-carrying molecular assembly, 2) a linker, and 3) a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues. 薬物担持分子集合体が、その内水相に薬物が内包されている脂質二分子膜小胞体である、請求項1に記載の薬物運搬体。   The drug carrier according to claim 1, wherein the drug-carrying molecular assembly is a lipid bilayer vesicle in which a drug is encapsulated in an inner aqueous phase thereof. (薬物担持分子集合体)−(リンカー)−(活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質)で表される、請求項1又は2に記載の薬物運搬体。   The drug carrier according to claim 1 or 2, represented by (drug-carrying molecular assembly)-(linker)-(substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues). 薬物担持分子集合体との結合時に薬物担持分子集合体の構成成分の一部となる両親媒性分子をリンカーが含み、該両親媒性分子を介してリンカーと薬物担持分子集合体が結合している、請求項3に記載の薬物運搬体。   The linker contains an amphiphilic molecule that becomes a part of the constituent components of the drug-carrying molecular assembly at the time of binding to the drug-carrying molecular assembly, and the linker and the drug-carrying molecular assembly are bonded via the amphiphilic molecule. The drug carrier according to claim 3. リンカーが疎水性分子を含み、リンカーと薬物担持分子集合体が、該疎水性分子を介して薬物担持分子集合体に結合している、請求項3に記載の薬物運搬体。   The drug carrier according to claim 3, wherein the linker includes a hydrophobic molecule, and the linker and the drug-carrying molecular assembly are bonded to the drug-carrying molecular assembly through the hydrophobic molecule. リンカーがスペーサー部分を含む、請求項1〜5のいずれか1項に記載の薬物運搬体。   The drug carrier according to any one of claims 1 to 5, wherein the linker comprises a spacer moiety. スペーサー部分が、ポリオキシエチレンである、請求項6に記載の薬物運搬体。   The drug carrier according to claim 6, wherein the spacer portion is polyoxyethylene. 薬物が、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤からなる群から選ばれる、請求項1〜7のいずれか1項に記載の薬物運搬体。   The drug carrier according to any one of claims 1 to 7, wherein the drug is selected from the group consisting of a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent. 薬物が、アデノシン二リン酸、コラーゲン、コラーゲン由来ペプチド、コンバルキシン、セロトニン、アスピリン、ジピリダモール、チクロピジン、シロスタゾール及びベラプロストからなる群から選択される、請求項1〜7のいずれか1項に記載の薬物運搬体。   The drug delivery according to any one of claims 1 to 7, wherein the drug is selected from the group consisting of adenosine diphosphate, collagen, collagen-derived peptide, convulxin, serotonin, aspirin, dipyridamole, ticlopidine, cilostazol and beraprost. body. 活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質が、活性化血小板に露出しているインテグリン又はセレクチン、血管損傷部位に露出しているコラーゲン、血管損傷部位に露出しているコラーゲンに結合しているフォンビレブランド因子、炎症組織に露出しているセレクチン及び/又は白血球に露出しているセレクチンリガンドを認識し、活性化血小板及び/又は白血球の凝集塊に取り込まれる物質、及び/又は血管損傷部位及び/又は炎症組織に集積する物質である、請求項1〜9のいずれか1項に記載の薬物運搬体。   Substances that recognize activated platelets, vascular injury sites and / or inflammatory tissues are integrin or selectin exposed to activated platelets, collagen exposed to vascular injury sites, collagen exposed to vascular injury sites A substance that recognizes bound von Willebrand factor, selectin exposed to inflamed tissue and / or selectin ligand exposed to leukocytes, and is taken up by aggregates of activated platelets and / or leukocytes, and / or The drug carrier according to any one of claims 1 to 9, which is a substance that accumulates at a vascular injury site and / or an inflamed tissue. 活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質が、H12、GPIbα、GPIa/IIa、GPVI、MAC−1、フィブリノーゲン、P−セレクチン及びPSGL−1からなる群から選択される、請求項10に記載の薬物運搬体。   A substance that recognizes activated platelets, sites of vascular injury and / or inflamed tissue is selected from the group consisting of H12, GPIbα, GPIa / IIa, GPVI, MAC-1, fibrinogen, P-selectin and PSGL-1. Item 11. A drug carrier according to Item 10. 脂質二分子膜小胞体が、水添卵黄レシチン、水添大豆レシチン、ジステアロイルホスファチジルコリン又はジパルミトイルホスファチジルコリンであるホスファチジルコリンに対してコレステロールをモル比で20〜100%含有する混合脂質から構成され、リンカーと活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質との結合体が該ホスファチジルコリンに対して0.001〜20%含まれている、請求項2に記載の薬物運搬体。   Lipid bilayer endoplasmic reticulum is composed of a mixed lipid containing 20-100% of cholesterol in a molar ratio with respect to phosphatidylcholine which is hydrogenated egg yolk lecithin, hydrogenated soybean lecithin, distearoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine, and a linker The drug carrier according to claim 2, wherein a conjugate with a substance that recognizes activated platelets, vascular injury sites and / or inflammatory tissues is contained in an amount of 0.001 to 20% relative to the phosphatidylcholine. 脂質二分子膜小胞体の粒子径が50〜300nmであり、脂質二分子膜の層数が1〜4枚である、請求項12に記載の薬物運搬体。   The drug carrier according to claim 12, wherein the lipid bilayer vesicle has a particle size of 50 to 300 nm and the lipid bilayer has 1 to 4 layers. 1)薬物担持分子集合体、2)リンカー、ならびに、3)活性化血小板、血管損傷部位及び/又は炎症組織を認識する物質、の結合体である薬物運搬体であって、細胞又は生体組織に到達した際に細胞又は生体組織から物理的な刺激を受けることにより薬物担持分子集合体から薬物が放出される、薬物運搬体。   1) a drug-carrying molecular assembly, 2) a linker, and 3) a drug carrier which is a conjugate of activated platelets, a substance recognizing a vascular injury site and / or an inflammatory tissue, which is attached to a cell or biological tissue A drug carrier in which a drug is released from a drug-carrying molecular assembly by receiving physical stimulation from a cell or a living tissue when it reaches. 細胞が活性化血小板又は白血球であり、薬物が、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤からなる群から選ばれる、請求項14に記載の薬物運搬体。   The drug carrier according to claim 14, wherein the cells are activated platelets or leukocytes, and the drug is selected from the group consisting of a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent. . 生体組織が、血管損傷部位又は炎症組織であり、薬物が、血小板凝集惹起剤、血小板凝集抑制剤、血管収縮剤、血管拡張剤及び抗炎症剤からなる群から選ばれる、請求項14に記載の薬物運搬体。   The biological tissue is a vascular injury site or an inflammatory tissue, and the drug is selected from the group consisting of a platelet aggregation inducer, a platelet aggregation inhibitor, a vasoconstrictor, a vasodilator, and an anti-inflammatory agent. Drug carrier. 請求項1〜16のいずれか1項に記載の薬物運搬体を含む診断薬。   A diagnostic agent comprising the drug carrier according to any one of claims 1 to 16. 請求項1〜16のいずれか1項に記載の薬物運搬体を含む試薬。   A reagent comprising the drug carrier according to any one of claims 1 to 16. 請求項1〜16のいずれか1項に記載の薬物運搬体を含む血小板代替剤。   A platelet substitute comprising the drug carrier according to any one of claims 1 to 16. 請求項1〜16のいずれか1項に記載の薬物運搬体を含む抗血小板剤。   An antiplatelet agent comprising the drug carrier according to any one of claims 1 to 16.
JP2007000296A 2006-01-06 2007-01-05 Drug carrier Active JP5216219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000296A JP5216219B2 (en) 2006-01-06 2007-01-05 Drug carrier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006001916 2006-01-06
JP2006001916 2006-01-06
JP2007000296A JP5216219B2 (en) 2006-01-06 2007-01-05 Drug carrier

Publications (2)

Publication Number Publication Date
JP2007204469A true JP2007204469A (en) 2007-08-16
JP5216219B2 JP5216219B2 (en) 2013-06-19

Family

ID=38484237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000296A Active JP5216219B2 (en) 2006-01-06 2007-01-05 Drug carrier

Country Status (1)

Country Link
JP (1) JP5216219B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509326A (en) * 2011-03-02 2014-04-17 ノヴォ ノルディスク アー/エス Targeting clotting factors to TLT-1 on activated platelets
JP2018513170A (en) * 2015-04-20 2018-05-24 アカデミア シニカAcademia Sinica Platelet-like protein microparticles and methods of using them for drug delivery
JP2019116441A (en) * 2017-12-27 2019-07-18 慈濟大學Tzu Chi University Drug delivery to autophagy cells and apoptotic cells by vesicles having protein-expressed surface
CN114469865A (en) * 2022-03-17 2022-05-13 中国医学科学院输血研究所 Liposome drug carrier combined with blood cell membrane and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208599A (en) * 1996-02-07 1997-08-12 Green Cross Corp:The Gpib-lipid composite material and its use
WO2001064743A1 (en) * 2000-03-02 2001-09-07 Mitsubishi Pharma Corporation GPib-LIPID BOND CONSTRUCT AND USE THEREOF
WO2004069862A1 (en) * 2003-02-06 2004-08-19 Keio University Peptide conjugate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208599A (en) * 1996-02-07 1997-08-12 Green Cross Corp:The Gpib-lipid composite material and its use
WO2001064743A1 (en) * 2000-03-02 2001-09-07 Mitsubishi Pharma Corporation GPib-LIPID BOND CONSTRUCT AND USE THEREOF
WO2004069862A1 (en) * 2003-02-06 2004-08-19 Keio University Peptide conjugate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012028996; OGURA,Y. et al: 'Occlusion of retinal vessels using targeted delivery of a platelet aggregating agent' Br J Ophthalmol Vol.77, No.4, 1993, p.233-7 *
JPN7012002122; GURSOY,A. et al: 'The inhibitory effect of liposome-encapsulated indomethacin on inflammation and platelet aggregation' J Pharm Pharmacol Vol.40, No.1, 1988, p.53-4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509326A (en) * 2011-03-02 2014-04-17 ノヴォ ノルディスク アー/エス Targeting clotting factors to TLT-1 on activated platelets
JP2018043997A (en) * 2011-03-02 2018-03-22 ノヴォ・ノルディスク・ヘルス・ケア・アーゲー Coagulation factor-targeting to tlt-1 on activated platelets
JP2018513170A (en) * 2015-04-20 2018-05-24 アカデミア シニカAcademia Sinica Platelet-like protein microparticles and methods of using them for drug delivery
US10835493B2 (en) 2015-04-20 2020-11-17 Academia Sinica Platelet-like proteo-microparticles and method of using such in drug delivery
JP2019116441A (en) * 2017-12-27 2019-07-18 慈濟大學Tzu Chi University Drug delivery to autophagy cells and apoptotic cells by vesicles having protein-expressed surface
JP7253762B2 (en) 2017-12-27 2023-04-07 慈濟大學 Drug delivery to autophagic and apoptotic cells by vesicles with surface-expressed proteins
CN114469865A (en) * 2022-03-17 2022-05-13 中国医学科学院输血研究所 Liposome drug carrier combined with blood cell membrane and preparation method and application thereof
CN114469865B (en) * 2022-03-17 2023-09-22 中国医学科学院输血研究所 Liposome drug carrier combined with blood cell membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP5216219B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US7887837B2 (en) Drug delivery material
US6177059B1 (en) GPIb-lipid complex and uses thereof
JP5216219B2 (en) Drug carrier
Pastuszka et al. An amphipathic alpha-helical peptide from apolipoprotein A1 stabilizes protein polymer vesicles
JP2023002687A (en) Pharmaceutical formulations of pegylated liposomes and blood coagulation factors
US20210093721A1 (en) Colloidal particles for use in medicine
US20080241233A1 (en) Targeted delivery and expression of procoagulant hemostatic activity
KR20050111583A (en) Peptide conjugate
US20090221496A1 (en) novel antithrombotic agent
CA3206228A1 (en) Compositions and methods for targeted amplification of coagulation and phagocytosis
JP4505556B2 (en) Peptide conjugate
CN109568598B (en) Placenta-targeted nanoparticles for drug abortion and preparation method and application thereof
KR101933623B1 (en) Liposome comprising elastin-like polypeptide and tumor cell targeting material and use thereof
WO2023150616A1 (en) Biosynthetic hemostat and uses thereof
WO2021155198A1 (en) Nanomaterials for targeted treatment and imaging of aneurysmal microenvironment
Aluri Polypeptide based drug carriers for anti cancer applications

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250