JP2007204329A - Manufacturing method of optical glass preform - Google Patents

Manufacturing method of optical glass preform Download PDF

Info

Publication number
JP2007204329A
JP2007204329A JP2006026859A JP2006026859A JP2007204329A JP 2007204329 A JP2007204329 A JP 2007204329A JP 2006026859 A JP2006026859 A JP 2006026859A JP 2006026859 A JP2006026859 A JP 2006026859A JP 2007204329 A JP2007204329 A JP 2007204329A
Authority
JP
Japan
Prior art keywords
chamber
core material
optical glass
base material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026859A
Other languages
Japanese (ja)
Inventor
Tomoyuki Nishio
友幸 西尾
Yuichi Ikeda
裕一 池田
Kensho Matsuzaki
憲昭 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006026859A priority Critical patent/JP2007204329A/en
Publication of JP2007204329A publication Critical patent/JP2007204329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing an optical preform with reduced bubbles in a long term. <P>SOLUTION: The manufacturing method of an optical preform comprises spraying glass fine particles on a core material 3 in a chamber 1 by an oxygen-hydrogen burner 2 to grow a porous suit layer 6. From above the chamber 1, air is supplied into the chamber 1 and discharged from the bottom of the chamber 1 to the outside of the chamber 1, and the oxygen-hydrogen burner 2 is made to approach from above the core material 3 to the core material 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気泡を低減した光ガラス母材を長期的に安定して製造できる光ガラス母材の製造方法に関する。   The present invention relates to a method for producing an optical glass base material capable of stably producing an optical glass base material with reduced bubbles for a long period of time.

光ファイバの製造方法として、VAD法等で作製されたコアとクラッドの一部からなる心材(コアガラスターゲット)に、酸水素火炎のバーナの中にガラス原料(例えば、四塩化珪素)を供給し、加水分解反応により形成されるガラス微粒子を上記心材に吹き付け、多孔質のスート層を成長させて多孔質ガラス母材を製造するOVD(外付け)法が一般的に用いられている。OVD法で製造された多孔質ガラス母材は、その後、約1500℃の温度で加熱焼結され、透明なガラス母材となる。   As an optical fiber manufacturing method, a glass raw material (for example, silicon tetrachloride) is supplied into a oxyhydrogen flame burner to a core material (core glass target) made of a core and a clad produced by a VAD method or the like. In general, an OVD (external) method is used in which a porous glass base material is produced by spraying glass fine particles formed by a hydrolysis reaction on the core material and growing a porous soot layer. The porous glass base material manufactured by the OVD method is then heated and sintered at a temperature of about 1500 ° C. to become a transparent glass base material.

スート層を心材の軸方向及び周方向に均一に成長させるために、心材はチャンバ内で水平に支持され、その水平な中心軸の周りに回転され、酸水素バーナと心材は心材の中心軸と並行な方向に相対移動される。   In order to grow the soot layer uniformly in the axial direction and circumferential direction of the core material, the core material is supported horizontally in the chamber and rotated around its horizontal central axis, and the oxyhydrogen burner and the core material are aligned with the central axis of the core material. Relatively moved in parallel directions.

従来の光ガラス母材の製造方法では、チャンバ内で酸水素バーナから心材に吹き付けられる原料ガスを含んだ酸水素火炎が上昇気流と共に安定に形成されるよう、酸水素バーナを上記心材の下から心材に臨ませ、酸水素火炎が垂直上方、斜め上方あるいは水平に向くようにしている。排気口は、心材を挟んで酸水素バーナとは反対側、つまり心材より上に設けられる。   In the conventional method for producing an optical glass base material, the oxyhydrogen burner is formed from below the core material so that an oxyhydrogen flame containing a raw material gas blown from the oxyhydrogen burner to the core material in the chamber is stably formed along with the rising airflow. The oxyhydrogen flame is directed vertically upward, diagonally upward, or horizontally, facing the core material. The exhaust port is provided on the side opposite to the oxyhydrogen burner, that is, above the core material with the core material interposed therebetween.

特開2003−20242号公報JP 2003-20242 A 特許第3524426号公報Japanese Patent No. 3524426 特開平9−71430号公報Japanese Patent Laid-Open No. 9-71430 特開平11−343135号公報JP 11-343135 A

光ファイバを紡糸(線引)工程で断線なく安定に製造するためには、光ガラス母材に含まれる気泡を低減することが重要である。気泡の発生要因として、前述の加水分解反応により形成されたガラス微粒子のうち、心材に堆積されずに排気されるガラス微粒子の一部が、排気口やチャンバ内壁に付着し、そのガラス微粒子が堆積していく中で剥離し、落下して心材(成長中の光ガラス母材)に付着することが知られている。   In order to stably manufacture an optical fiber without breaking in the spinning (drawing) process, it is important to reduce bubbles contained in the optical glass base material. Among the glass particles formed by the hydrolysis reaction described above, some of the glass particles that are exhausted without being deposited on the core material adhere to the exhaust port or the inner wall of the chamber, and the glass particles are deposited as a cause of bubbles. It is known that it peels off in the process, falls and adheres to the core material (growing optical glass base material).

従来の光ガラス母材の製造方法では、光ガラス母材に含まれる気泡を低減する対応策として、チャンバを加熱することで付着したガラス微粒子が剥がれにくくしたり、チャンバへのガラス微粒子の付着を低減する独立したガスをチャンバに導入したりしている。しかし、これらの対応策では、短期的には気泡を低減する効果があるが、半年から1年といった長期的な期間で安定して気泡を低減することは困難である。それは、長期間使用した場合、加水分解反応で発生するHClなどの腐食性ガスにより排気口やチャンバが劣化し、その劣化により排気口やチャンバに異物(例えば、金属チャンバの場合は錆)が発生する。排気口やチャンバは心材より上に位置するため、この異物が光ガラス母材に落下して気泡の発生原因となる。   In the conventional method for manufacturing an optical glass base material, as a countermeasure to reduce bubbles contained in the optical glass base material, the glass particles adhered by heating the chamber are made difficult to peel off, or the glass microparticles adhere to the chamber. An independent gas to be reduced is introduced into the chamber. However, these countermeasures have an effect of reducing bubbles in the short term, but it is difficult to stably reduce bubbles in a long period of time such as six months to one year. When used for a long time, the exhaust port and the chamber deteriorate due to corrosive gas such as HCl generated by the hydrolysis reaction, and the deterioration causes foreign matter (for example, rust in the case of a metal chamber) to the exhaust port and the chamber. To do. Since the exhaust port and the chamber are located above the core material, this foreign substance falls on the optical glass base material and causes bubbles.

そこで、本発明の目的は、上記課題を解決し、気泡を低減した光ガラス母材を長期的に安定して製造できる光ガラス母材の製造方法を提供することにある。   Then, the objective of this invention is providing the manufacturing method of the optical glass base material which can manufacture the optical glass base material which reduced the said subject and reduced the bubble for a long term stably.

上記目的を達成するために本発明は、チャンバ内の心材に酸水素バーナでガラス微粒子を吹き付けて多孔質のスート層を成長させる光ガラス母材の製造方法において、上記チャンバの上からチャンバ内に給気して上記チャンバの下からチャンバ外へ排気すると共に、上記酸水素バーナを上記心材の上から上記心材に臨ませたものである。   To achieve the above object, the present invention provides a method for producing an optical glass base material in which a porous soot layer is grown by spraying glass fine particles onto a core material in a chamber with an oxyhydrogen burner. The air is supplied and exhausted from under the chamber to the outside of the chamber, and the oxyhydrogen burner is made to face the core from above the core.

上記給排気によるチャンバ内の気流の強さを、上記心材に未付着のガラス微粒子が上記心材より上に行かない強さにしてもよい。   The strength of the air flow in the chamber by the supply / exhaust may be set so that glass fine particles not adhered to the core do not go above the core.

また、本発明は、チャンバ内の心材に酸水素バーナでガラス微粒子を吹き付けて多孔質のスート層を成長させる光ガラス母材の製造方法において、上記チャンバの上からチャンバ内に給気して上記チャンバの下からチャンバ外へ排気し、該給排気によるチャンバ内の気流の流速を1.0m/s以上に保つと共に、上記酸水素バーナを上記心材の上から上記心材に臨ませたものである。   Further, the present invention provides a method for producing an optical glass base material in which a porous soot layer is grown by spraying glass fine particles onto a core material in a chamber with an oxyhydrogen burner, and the above-mentioned chamber is used to supply air into the chamber. The exhaust gas is exhausted from the bottom of the chamber to the outside of the chamber, and the flow rate of the air flow in the chamber by the supply / exhaust is kept at 1.0 m / s or more, and the oxyhydrogen burner faces the core material from above the core material. .

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)気泡を低減した光ガラス母材を長期的に安定して製造できる。   (1) An optical glass base material with reduced bubbles can be stably produced over a long period.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光ガラス母材の製造方法によれば、チャンバ1の上からチャンバ内に給気してチャンバ1の下からチャンバ外へ排気することにより、チャンバ内を上から下に向かって流れる気流を発生させると共に、酸水素バーナ2を心材3の上から心材3に臨ませることにより、心材3の上から心材3にガラス微粒子を吹き付ける。   As shown in FIG. 1, according to the method for manufacturing an optical glass base material according to the present invention, air is supplied into the chamber from above the chamber 1 and exhausted out of the chamber from below the chamber 1. As a result, an air stream flowing from above to below is generated, and the oxyhydrogen burner 2 is made to face the core material 3 from above the core material 3, whereby glass particles are sprayed onto the core material 3 from above the core material 3.

製造装置を詳しく説明すると、チャンバ1の上部には給気口4が形成され給気ダクト(図示せず)が取り付けられ、チャンバ1の下部には排気口5が形成され排気ダクト(図示せず)が取り付けられる。図は簡素化して描いてあるのでチャンバ1は単純な寸胴形であるが、他の形状、複雑な形状であることを妨げない。排気口5は心材3よりも下に配置すればよく、図示のように心材3の直下である必要はない。同様に、給気口4は心材3を挟んでほぼ排気口5と反対側に配置すればよく、図示のように心材3の直上である必要はない。   The manufacturing apparatus will be described in detail. An air supply port 4 is formed in the upper portion of the chamber 1 and an air supply duct (not shown) is attached. An exhaust port 5 is formed in the lower portion of the chamber 1 and an exhaust duct (not shown). ) Is attached. Since the drawing is drawn in a simplified manner, the chamber 1 has a simple cylindrical shape, but it does not prevent other shapes or complicated shapes from being formed. The exhaust port 5 may be disposed below the core material 3 and does not need to be directly below the core material 3 as shown. Similarly, the air supply port 4 has only to be arranged on the opposite side of the exhaust port 5 with the core material 3 interposed therebetween, and does not need to be directly above the core material 3 as shown in the figure.

当然のことながら給気口4から給気するガス(例えば、空気、窒素ガス)は清浄なガスであり、給気口4にフィルタ(図示せず)を取り付けてもよい。図示した製造装置全体がクリーンな環境に設置されていれば、フィルタがなくともよい。   As a matter of course, a gas (for example, air or nitrogen gas) supplied from the supply port 4 is a clean gas, and a filter (not shown) may be attached to the supply port 4. If the entire manufacturing apparatus shown in the figure is installed in a clean environment, the filter may not be provided.

チャンバ1の材質はSUS系金属であるが、石英ガラスや他の材料でも構わない。   The material of the chamber 1 is SUS metal, but quartz glass or other materials may be used.

心材3はあらかじめ棒状に形成され、図示しない回転支持機構によってチャンバ1内に水平に支持され、かつ心材の中心軸の周りに回転される。   The core material 3 is formed in a rod shape in advance, is horizontally supported in the chamber 1 by a rotation support mechanism (not shown), and is rotated around the central axis of the core material.

酸水素バーナ2は、心材3に対し斜め上方に設置されている。よって、酸水素バーナ2は、心材3の斜め上から心材3にガラス微粒子を吹き付けることになる。   The oxyhydrogen burner 2 is installed obliquely above the core material 3. Therefore, the oxyhydrogen burner 2 sprays glass fine particles onto the core material 3 from obliquely above the core material 3.

酸水素バーナ2と心材3は心材3の中心軸と並行な方向に相対移動できる。この実施形態では、心材3を固定し、酸水素バーナ2を心材の長手方向(紙面に垂直な方向)に往復運動させる。   The oxyhydrogen burner 2 and the core material 3 can move relative to each other in a direction parallel to the central axis of the core material 3. In this embodiment, the core material 3 is fixed, and the oxyhydrogen burner 2 is reciprocated in the longitudinal direction of the core material (direction perpendicular to the paper surface).

製造方法を詳しく説明すると、チャンバ1内で水平に支持された棒状の心材3をその心材3の中心軸の周りに回転させると共に、その心材3の外周に酸水素バーナ2でガラス微粒子を吹き付けつつ、酸水素バーナ2を心材3の長手方向に往復運動させて心材3の外周に多孔質のスート層(多孔質ガラス堆積層)6を順次堆積成長させる。   The manufacturing method will be described in detail. A rod-shaped core 3 supported horizontally in the chamber 1 is rotated around the central axis of the core 3 and glass particles are sprayed on the outer periphery of the core 3 with an oxyhydrogen burner 2. The oxyhydrogen burner 2 is reciprocated in the longitudinal direction of the core material 3 to sequentially deposit and grow a porous soot layer (porous glass deposition layer) 6 on the outer periphery of the core material 3.

その際、チャンバ1には上方の給気口4から給気し下方の排気口5から排気して気流を起こす。その気流の流速を1.0m/s以上に保つことで、酸水素バーナ2から吹き出すガラス微粒子を含む酸水素火炎7を安定に下方に導くことが可能になる。   At that time, air is supplied to the chamber 1 from the upper air supply port 4 and exhausted from the lower air supply port 5 to generate an air flow. By maintaining the flow velocity of the air flow at 1.0 m / s or more, the oxyhydrogen flame 7 containing glass fine particles blown out from the oxyhydrogen burner 2 can be stably guided downward.

また、酸水素火炎7が心材3に吹き付けられた際に発生する余剰のガラス微粒子は、気流の流速を1.0m/s以上に保つことで、上方に舞い上がることなくスムーズに下方の排気口5に排出される。   Further, the excessive glass fine particles generated when the oxyhydrogen flame 7 is sprayed on the core material 3 can be smoothly flown upward without rising up by keeping the flow velocity of the airflow at 1.0 m / s or more. To be discharged.

そして、長期間使用により排気口5やチャンバ1が劣化して異物が発生しても、排気口5やチャンバ1(劣化箇所)が心材3より下に位置するため、異物が成長中の光ガラス母材に落下して気泡の発生原因となることがない。   Even if the exhaust port 5 and the chamber 1 deteriorate due to long-term use and foreign matter is generated, the exhaust port 5 and the chamber 1 (deteriorated part) are located below the core material 3, so that the foreign glass is growing. It does not fall on the base material and cause bubbles.

以上により、光ガラス母材(心材)の上方にある部材・雰囲気がいつもクリーンな状態に保たれることになり、長期間製造を行ってもガラス微粒子や異物の落下による気泡の発生が抑えられ、安定した製造が可能となる。   As a result, the material and atmosphere above the optical glass base material (core material) will always be kept clean, and the generation of bubbles due to the fall of glass particles and foreign matter can be suppressed even after long-term production. , Stable production becomes possible.

なお、流速が1.0m/s以上であることが好ましい理由は次の実験の結果による。すなわち、実験的に0.5m/s、0.8m/s、1.0m/s、1.5m/s、2.0m/sの条件下で、流れの様子、汚れの堆積の様子を観測した。流速が1.0m/s以上では、上昇気流によるスートの舞い上がりが抑えられ、心材のスート堆積位置より上方に位置するチャンバ壁には汚れがほとんどなかった。流速が速くなればなるほど汚れの境界位置が下方になる。   The reason why the flow rate is preferably 1.0 m / s or more depends on the result of the next experiment. In other words, the flow and dirt accumulation were observed experimentally under the conditions of 0.5 m / s, 0.8 m / s, 1.0 m / s, 1.5 m / s, and 2.0 m / s. did. When the flow velocity was 1.0 m / s or more, the soot rising due to the rising air flow was suppressed, and the chamber wall located above the soot deposition position of the core material was hardly contaminated. The higher the flow velocity, the lower the dirt boundary position.

逆に、流速が0.5m/s、0.8m/sでは、上方へのスートの舞い上がりが発生し、心材3のスート堆積位置より上方に位置するチャンバ1の壁にスートが付着し、かつスートの剥がれ(一部)が発生した。流速が遅ければ遅いほど剥がれるスートの量も多かった。   On the contrary, when the flow velocity is 0.5 m / s and 0.8 m / s, the soot rises upward, soot adheres to the wall of the chamber 1 located above the soot deposition position of the core material 3, and Soot peeling (part) occurred. The slower the flow rate, the more soot was peeled off.

石英ガラス製の多重管酸水素バーナに水素ガス0.06m3/分、酸素ガス0.03m3/分及び四塩化珪素30グラム/分を供給し、加水分解反応でガラス微粒子を発生させ、心材の径φ35mmからスタートし、多孔質スート径φ150mmまで堆積した。心材の回転数は40rpm、バーナの移動速度は120mm/分とした。 Hydrogen gas 0.06m in multi-tube oxyhydrogen burner made of silica glass 3 / min, supplying oxygen gas 0.03 m 3 / min and silicon tetrachloride 30 g / min, to generate glass particles by hydrolysis, heartwood Starting from a diameter of 35 mm, a porous soot diameter of 150 mm was deposited. The rotation speed of the core material was 40 rpm, and the moving speed of the burner was 120 mm / min.

その後、透明ガラス化を行い、その際、ガラス内に発生する0.1〜1.0mmの気泡の数を評価した。約1本/日のペースで半年続けた際の一母材当たりの気泡数は0〜2個であった。このように、安定した光ガラス母材製造を実現することができた。   Thereafter, transparent vitrification was performed, and the number of bubbles of 0.1 to 1.0 mm generated in the glass at that time was evaluated. The number of bubbles per base material was 0 to 2 when continued for about half a year at a rate of about 1 line / day. In this way, stable optical glass base material production could be realized.

比較例として、心材の上方に排気口があって心材の下方にバーナが設置されている従来の製造装置で、上記実施例と同じ堆積条件(ガス濃度、径、速度、製造ペース等)で長期間製造を行って気泡数を評価したところ、3ヶ月までは0〜2個で安定していたが、その後、徐々に気泡数が増加して数十個になった。その原因を調べたところ、排気口の劣化(腐食)の進行状態と気泡数増加の傾向とがほぼ一致していることがわかった。   As a comparative example, a conventional manufacturing apparatus in which an exhaust port is located above the core material and a burner is installed below the core material, and the same deposition conditions (gas concentration, diameter, speed, manufacturing pace, etc.) as in the above example are used. When the number of bubbles was evaluated by performing period production, the number of bubbles was stable until 0 to 3 months, but thereafter, the number of bubbles gradually increased to several tens. As a result of investigating the cause, it was found that the progress of deterioration (corrosion) of the exhaust port almost coincided with the tendency of the increase in the number of bubbles.

このことから、チャンバの上からチャンバ内に給気してチャンバの下からチャンバ外へ排気することにより、チャンバ内を上から下に向かって流れる気流を発生させると共に、酸水素バーナを心材の上から心材に臨ませることにより、心材の上から心材にガラス微粒子を吹き付けるようにして製造を行えば、チャンバや排気口に付着したガラス微粒子や異物が成長中の光ガラス母材に落下して付着することがなくなり、長期間安定に製造を続けることが可能となる。   For this reason, air is supplied into the chamber from the top of the chamber and exhausted from the bottom of the chamber to the outside of the chamber, thereby generating an air flow that flows from the top to the bottom of the chamber, and the oxyhydrogen burner on the core. If glass particles are sprayed onto the core material from the top of the core material, glass particles and foreign substances adhering to the chamber and the exhaust port will drop and adhere to the growing optical glass base material. This makes it possible to continue production stably for a long period of time.

本発明の光ガラス母材の製造方法を実施する製造装置の原理的構成図である。It is a fundamental block diagram of the manufacturing apparatus which enforces the manufacturing method of the optical glass base material of this invention.

符号の説明Explanation of symbols

1 チャンバ
2 酸水素バーナ
3 心材
4 給気口
5 排気口
6 スート層(多孔質ガラス堆積層)
7 酸水素火炎
DESCRIPTION OF SYMBOLS 1 Chamber 2 Oxyhydrogen burner 3 Core material 4 Supply port 5 Exhaust port 6 Soot layer (porous glass deposition layer)
7 Oxyhydrogen flame

Claims (3)

チャンバ内の心材に酸水素バーナでガラス微粒子を吹き付けて多孔質のスート層を成長させる光ガラス母材の製造方法において、上記チャンバの上からチャンバ内に給気して上記チャンバの下からチャンバ外へ排気すると共に、上記酸水素バーナを上記心材の上から上記心材に臨ませたことを特徴とする光ガラス母材の製造方法。   In a method for manufacturing an optical glass base material in which a porous soot layer is grown by spraying glass fine particles onto a core material in a chamber with an oxyhydrogen burner, air is supplied into the chamber from above the chamber, and from outside the chamber to outside the chamber. And producing the optical glass base material, wherein the oxyhydrogen burner is allowed to face the core material from above the core material. 上記給排気によるチャンバ内の気流の強さを、上記心材に未付着のガラス微粒子が上記心材より上に行かない強さにしたことを特徴とする請求項1記載の光ガラス母材の製造方法。   2. The method for producing an optical glass base material according to claim 1, wherein the strength of the air flow in the chamber by the supply / exhaust is set such that the glass fine particles not adhered to the core material do not go above the core material. . チャンバ内の心材に酸水素バーナでガラス微粒子を吹き付けて多孔質のスート層を成長させる光ガラス母材の製造方法において、上記チャンバの上からチャンバ内に給気して上記チャンバの下からチャンバ外へ排気し、該給排気によるチャンバ内の気流の流速を1.0m/s以上に保つと共に、上記酸水素バーナを上記心材の上から上記心材に臨ませたことを特徴とする光ガラス母材の製造方法。
In a method for manufacturing an optical glass base material in which a porous soot layer is grown by spraying glass fine particles onto a core material in a chamber with an oxyhydrogen burner, air is supplied into the chamber from above the chamber, and from outside the chamber to outside the chamber. The optical glass base material is characterized in that the flow rate of the air flow in the chamber by supply and exhaust is maintained at 1.0 m / s or more, and the oxyhydrogen burner is placed on the core material from above the core material. Manufacturing method.
JP2006026859A 2006-02-03 2006-02-03 Manufacturing method of optical glass preform Pending JP2007204329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026859A JP2007204329A (en) 2006-02-03 2006-02-03 Manufacturing method of optical glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026859A JP2007204329A (en) 2006-02-03 2006-02-03 Manufacturing method of optical glass preform

Publications (1)

Publication Number Publication Date
JP2007204329A true JP2007204329A (en) 2007-08-16

Family

ID=38484117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026859A Pending JP2007204329A (en) 2006-02-03 2006-02-03 Manufacturing method of optical glass preform

Country Status (1)

Country Link
JP (1) JP2007204329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019870A1 (en) 2007-08-06 2009-02-12 Panasonic Corporation Flow rate metering device, communication system, flow rate measuring method, flow rate measuring program, fluid supply system, and gas tool monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019870A1 (en) 2007-08-06 2009-02-12 Panasonic Corporation Flow rate metering device, communication system, flow rate measuring method, flow rate measuring program, fluid supply system, and gas tool monitoring device

Similar Documents

Publication Publication Date Title
JP4043768B2 (en) Manufacturing method of optical fiber preform
JP4424232B2 (en) Method for producing porous glass base material
JPH0351663B2 (en)
JP2007204329A (en) Manufacturing method of optical glass preform
KR101261095B1 (en) Fabrication Apparatus for Porous Glass Preform
JP4460062B2 (en) Optical fiber preform manufacturing method
CN103896492B (en) Device for manufacturing glass porous body, its manufacturing method and optical fiber perform manufacturing method
JP5012042B2 (en) Manufacturing method of glass base material
JP5762374B2 (en) Porous glass base material manufacturing equipment
JP2002167223A (en) Burner for synthesizing porous glass base material and manufacturing method for porous glass base material
KR101035437B1 (en) Burner for producing porous glass preform
JP7141935B2 (en) Synthetic silica glass manufacturing equipment
JP2006306652A (en) Method for manufacturing porous glass preform and burner for deposition used in the same
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP7399835B2 (en) Method for manufacturing porous glass deposit for optical fiber
JP6462548B2 (en) Porous glass base material manufacturing equipment
JP2003040626A (en) Method for producing fine glass particle heap
JP2003267744A (en) Method for producing optical fiber glass preform
JP4993337B2 (en) Porous glass base material manufacturing equipment
JP2003054957A (en) Method for manufacturing porous glass preform
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JP2006193361A (en) Method and apparatus for manufacturing glass preform for optical fiber
JP2015030642A (en) Multiple pipe burner for manufacturing glass fine particle deposition body and method for manufacturing glass fine particle deposition body
JP3941339B2 (en) Method for producing porous glass base material
JP2001294440A (en) Method for manufacturing preform ingot for optical fiber and preform for optical fiber obtained by processing this preform ingot