JP2007203131A - Catalyst for nitrogen monoxide oxidation and oxidation method for nitrogen monoxide - Google Patents

Catalyst for nitrogen monoxide oxidation and oxidation method for nitrogen monoxide Download PDF

Info

Publication number
JP2007203131A
JP2007203131A JP2006021739A JP2006021739A JP2007203131A JP 2007203131 A JP2007203131 A JP 2007203131A JP 2006021739 A JP2006021739 A JP 2006021739A JP 2006021739 A JP2006021739 A JP 2006021739A JP 2007203131 A JP2007203131 A JP 2007203131A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
oxidation
nitric oxide
nitrogen monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006021739A
Other languages
Japanese (ja)
Other versions
JP4861018B2 (en
Inventor
Noboru Nakao
昇 中尾
Takeshi Yamashita
岳史 山下
Akitoshi Fujisawa
彰利 藤澤
Takeharu Tanaka
丈晴 田中
Katsuyuki Iijima
勝之 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006021739A priority Critical patent/JP4861018B2/en
Publication of JP2007203131A publication Critical patent/JP2007203131A/en
Application granted granted Critical
Publication of JP4861018B2 publication Critical patent/JP4861018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for nitrogen monoxide oxidation having a high nitrogen monoxide oxidation performance, being inexpensive as compared with a noble metal catalyst and capable of being reacted at a low reaction temperature, and an oxidation method for nitrogen monooxide using the catalyst. <P>SOLUTION: The catalyst for nitrogen monoxide oxidation contains at least one kind selected from the group consisting of a Mn oxide, a Mn-Cu composite oxide and a Mn-Fe composite oxide and a potassium compound. Further, the catalyst for nitrogen monoxide oxidation contains at least one kind selected from the group consisting of a Mn oxide, a Mn-Cu composite oxide and a Mn-Fe composite oxide and a carbonate. Further, the catalyst for nitrogen monoxide contains at least one kind selected from the group consisting of a Mn oxide, a Mn-Cu composite oxide and a Mn-Fe composite oxide and potassium carbonate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶解炉、焼成炉などで発生する燃焼による排ガス中に含まれる窒素酸化物(NOx)を湿式脱硝設備にて除去するのに好適に利用できる一酸化窒素酸化用触媒及び一酸化窒素の酸化方法に関するものである。   The present invention relates to a nitric oxide oxidation catalyst and nitric oxide that can be suitably used to remove nitrogen oxide (NOx) contained in exhaust gas generated by combustion generated in a melting furnace, a firing furnace, etc., in a wet denitration facility. It relates to the oxidation method.

従来、火力発電所、コークス炉、溶解炉などで発生する燃焼による排ガス中の窒素酸化物(以下、NOともいう)を除去する技術(排煙脱硝技術)としては、(1)TiO/V触媒を用い、アンモニアを注入することで、排ガス中のNOをNとHOに分解するアンモニア接触還元法、(2)活性炭(又はコークス)によりNOを吸着し、活性炭の触媒作用によりNOをアンモニアでNに分解させる活性炭法、(3)排ガスにアンモニアを加え、電子ビームを照射してNOを硝酸アンモニウムとして除去する電子線照射法、(4)一酸化窒素(NO)をオゾン又は酸化剤で処理し、二酸化窒素(NO)に変換した後にこれをアルカリ溶液で吸収する湿式吸収法(湿式酸化吸収法)、などの方法などが知られている。 Conventionally, thermal power plants, coke oven, melting furnace nitrogen oxides in the exhaust gas by combustion occurring in such (hereinafter, also referred to as NO X) as a technique for removing (denitrification art), (1) TiO 2 / An ammonia catalytic reduction method in which NO X in exhaust gas is decomposed into N 2 and H 2 O by injecting ammonia using a V 2 O 3 catalyst, (2) NO X is adsorbed by activated carbon (or coke), Activated carbon method in which NO X is decomposed into N 2 with ammonia by the catalytic action of activated carbon, (3) Electron beam irradiation method in which ammonia is added to exhaust gas and irradiated with an electron beam to remove NO X as ammonium nitrate, (4) Monoxide Known is a wet absorption method (wet oxidation absorption method) in which nitrogen (NO) is treated with ozone or an oxidizing agent and converted to nitrogen dioxide (NO 2 ) and then absorbed with an alkaline solution. It is.

これらの方法の中でも特に前記アンモニア接触還元法は、脱硝性能が高く、脱硝設備を安定して自動運転できるようになったことから、排ガス中のNOを除去する方法の主流となっている。 The ammonia catalytic reduction method Among these methods, denitration performance is high, since it has become possible to automatically operate the denitration equipment stable, has become the mainstream of a method of removing NO X in the exhaust gas.

一方、前記湿式吸収法は、通常NOと同時に排出されることが多いSO(硫黄酸化物)を同時に除去できること、またアンモニア接触還元法と比較してイニシャルコストが安価であるという利点があるが、一酸化窒素を酸化して二酸化窒素にするために使用されるオゾンや二酸化塩素などの酸化剤のコストが高く、比較的小型のボイラや加熱炉などに採用されるに留まっている。 On the other hand, the wet absorption method has an advantage that SO X (sulfur oxide), which is usually discharged simultaneously with NO X , can be removed at the same time, and the initial cost is low compared with the ammonia catalytic reduction method. However, the cost of oxidizing agents such as ozone and chlorine dioxide used to oxidize nitric oxide to nitrogen dioxide is high, and it is only used in relatively small boilers and heating furnaces.

また、酸化剤を用いずに一酸化窒素を二酸化窒素に酸化する一酸化窒素の酸化方法としては、Ptなどの貴金属触媒などを用いて200℃程度の温度で接触させるようにした方法が知られているものの、触媒に用いられる貴金属のコストが高いという問題がある。   Further, as a method for oxidizing nitric oxide that oxidizes nitric oxide to nitrogen dioxide without using an oxidizing agent, a method in which contact is made at a temperature of about 200 ° C. using a noble metal catalyst such as Pt is known. However, there is a problem that the cost of the noble metal used for the catalyst is high.

さらに、高価な貴金属触媒を使わない一酸化窒素の酸化方法として、二酸化マンガン及び酸化鉄からなる触媒を用いる方法(特許文献1:特開昭49−45894号公報)、二酸化マンガン及び酸化鉛からなる触媒を用いる方法(特許文献2:特開昭50−62859号公報)が提案されているものの、触媒の一酸化窒素酸化性能(一酸化窒素酸化活性)は必ずしも充分とは云えなかった。   Furthermore, as a method for oxidizing nitric oxide without using an expensive noble metal catalyst, a method using a catalyst comprising manganese dioxide and iron oxide (Patent Document 1: Japanese Patent Laid-Open No. 49-45894), comprising manganese dioxide and lead oxide. Although a method using a catalyst (Patent Document 2: Japanese Patent Laid-Open No. 50-62859) has been proposed, the nitric oxide oxidation performance (nitrogen monoxide oxidation activity) of the catalyst has not always been sufficient.

また、触媒の酸化性能をさらに高めるために、比表面積50m/g以上で、最大強度を示すX線回折角度(2θ)が37±1°である酸化マンガン、あるいは、Cu及び/又はFeを含有する前記酸化マンガンにルテニウム化合物を担持した窒素酸化物吸着剤(特許文献3:特開平9−141088号公報)が提案されている。しかし、この窒素酸化物吸着剤では、高い一酸化窒素酸化性能が得られているものの、高価なルテニウムを含有するため窒素酸化物吸着剤の価格が高いという問題があった。
特開昭49−45894号公報(第1−3頁) 特開昭50−62859号公報(第1−3頁) 特開平9−141088号公報(第2−3頁)
Further, in order to further enhance the oxidation performance of the catalyst, manganese oxide having a specific surface area of 50 m 2 / g or more and an X-ray diffraction angle (2θ) indicating the maximum intensity of 37 ± 1 °, or Cu and / or Fe is used. There has been proposed a nitrogen oxide adsorbent (Patent Document 3: Japanese Patent Laid-Open No. 9-141088) in which a ruthenium compound is supported on the manganese oxide to be contained. However, with this nitrogen oxide adsorbent, although high nitric oxide oxidation performance is obtained, there is a problem that the price of the nitrogen oxide adsorbent is high because it contains expensive ruthenium.
JP 49-45894 (page 1-3) JP 50-62859 A (page 1-3) Japanese Laid-Open Patent Publication No. 9-141088 (page 2-3)

そこで本発明の課題は、高い一酸化窒素酸化性能を有するとともに、貴金属触媒に比べて安価で、低い反応温度で反応できる一酸化窒素酸化用触媒、及びその触媒を用いた一酸化窒素の酸化方法を提供することにある。   Therefore, the object of the present invention is to provide a nitric oxide oxidation catalyst that has high nitric oxide oxidation performance, is cheaper than a noble metal catalyst, and can react at a low reaction temperature, and a nitric oxide oxidation method using the catalyst Is to provide.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、カリウム化合物とを含有することを特徴とする一酸化窒素酸化用触媒である。   The invention according to claim 1 includes at least one selected from the group consisting of a Mn oxide, a Mn—Cu composite oxide and a Mn—Fe composite oxide, and a potassium compound, and nitric oxide oxidation Catalyst.

請求項2の発明は、Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、炭酸塩とを含有することを特徴とする一酸化窒素酸化用触媒である。   Invention of Claim 2 contains at least 1 type selected from the group which consists of Mn oxide, Mn-Cu complex oxide, and Mn-Fe complex oxide, and nitric oxide oxidation characterized by the above-mentioned. Catalyst.

請求項3の発明は、Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、炭酸カリウムとを含有することを特徴とする一酸化窒素酸化用触媒である。   Invention of Claim 3 contains at least 1 type selected from the group which consists of Mn oxide, Mn-Cu complex oxide, and Mn-Fe complex oxide, and nitric oxide oxidation characterized by the above-mentioned. Catalyst.

請求項4の発明は、請求項1〜3のいずれか1項に記載の一酸化窒素酸化用触媒において、前記Mn−Cu複合酸化物における[Mn/(Mn+Cu)]の質量比が0.15以上、前記Mn−Fe複合酸化物における[Mn/(Mn+Fe)]の質量比が0.10以上であることを特徴とするものである。   The invention of claim 4 is the nitric oxide oxidation catalyst according to any one of claims 1 to 3, wherein the [Mn / (Mn + Cu)] mass ratio in the Mn—Cu composite oxide is 0.15. As described above, the [Mn / (Mn + Fe)] mass ratio in the Mn—Fe composite oxide is 0.10 or more.

請求項5の発明は、一酸化窒素を触媒の存在下で二酸化窒素に酸化する方法において、80℃以上の温度で、前記触媒として請求項1〜4のいずれか1項に記載の一酸化窒素酸化用触媒を用いることを特徴とする一酸化窒素の酸化方法である。   The invention according to claim 5 is the method for oxidizing nitric oxide to nitrogen dioxide in the presence of a catalyst, and the nitric oxide according to any one of claims 1 to 4 as the catalyst at a temperature of 80 ° C. or higher. A method for oxidizing nitric oxide, characterized by using an oxidation catalyst.

本発明の一酸化窒素酸化用触媒は、Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、カリウム化合物、炭酸塩又は炭酸カリウムとを含有するものであるから、一酸化窒素を高い酸化性能にて二酸化窒素に酸化することができるとともに、貴金属触媒に比べて安価で済み、かつ、80〜100℃程度の低い反応温度で反応でき、湿式脱硝設備に用いられて、低コスト・高効率な窒素酸化物の除去に寄与することができる。   The catalyst for oxidizing nitric oxide of the present invention contains at least one selected from the group consisting of Mn oxide, Mn—Cu composite oxide and Mn—Fe composite oxide, and a potassium compound, carbonate or potassium carbonate. Therefore, it is possible to oxidize nitric oxide to nitrogen dioxide with high oxidation performance, it is cheaper than noble metal catalysts, and can be reacted at a low reaction temperature of about 80 to 100 ° C. It can be used for denitration equipment and contribute to the removal of nitrogen oxides at low cost and high efficiency.

また、本発明の一酸化窒素の酸化方法は、前記一酸化窒素酸化用触媒を用い、80℃以上の温度で一酸化窒素を二酸化窒素に酸化するようにしたものであるから、湿式脱硝設備に用いられて、低コスト・高効率な窒素酸化物の除去に寄与することができる。   In addition, the nitric oxide oxidation method of the present invention uses the nitric oxide oxidation catalyst and oxidizes nitric oxide to nitrogen dioxide at a temperature of 80 ° C. or higher. It can be used to contribute to the removal of nitrogen oxides at low cost and high efficiency.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の一酸化窒素酸化用触媒は、Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、カリウム化合物、炭酸塩又は炭酸カリウムとを含有しており、このような構成により、80〜100℃程度の低い反応温度で、かつ、高い一酸化窒素酸化性能(一酸化窒素酸化率)にて一酸化窒素を二酸化窒素に酸化することができる。   The catalyst for oxidizing nitric oxide of the present invention contains at least one selected from the group consisting of Mn oxide, Mn—Cu composite oxide and Mn—Fe composite oxide, and a potassium compound, carbonate or potassium carbonate. With such a configuration, it is possible to oxidize nitric oxide to nitrogen dioxide at a low reaction temperature of about 80 to 100 ° C. and high nitric oxide oxidation performance (nitrogen monoxide oxidation rate). .

本発明の一酸化窒素酸化用触媒では、Mn酸化物を有するものに比べて、Mn−Cu複合酸化物又はMn−Fe複合酸化物を有するももの方が、一段と優れた触媒活性(一酸化窒素酸化性能)を発揮する。ここで複合酸化物とは、2種の金属酸化物の単純な混合物ではなく、O原子を介しての両金属の結合が形成された別種の酸化物のことである。複合酸化物とすることにより、酸化物中のO原子の供与と空気中のO2からO原子の補給が容易になるため、触媒活性が向上するためと考えられる。   In the catalyst for oxidizing nitric oxide according to the present invention, the catalyst having Mn—Cu composite oxide or Mn—Fe composite oxide is more excellent in catalytic activity (nitrogen monoxide) than the catalyst having Mn oxide. Demonstrates oxidation performance. Here, the composite oxide is not a simple mixture of two kinds of metal oxides, but another kind of oxide in which a bond between both metals is formed through an O atom. By using a composite oxide, it is considered that the provision of O atoms in the oxide and the replenishment of O atoms from O 2 in the air are facilitated, so that the catalytic activity is improved.

本発明の一酸化窒素酸化用触媒では、Mn−Cu複合酸化物における[Mn/(Mn+Cu)]の質量比が0.15以上、より好ましくは0.45以上であることがよい。[Mn/(Mn+Cu)]の質量比が0.15未満では、Mn量の不足によりMn酸化物単独よりも触媒活性が低下するためである。そして、この質量比が高くなりすぎると、Cuとの複合効果が有効に発揮されにくくなり触媒活性が低下傾向を示すようになるため、前記質量比の上限は0.95とすることがよい。   In the catalyst for oxidizing nitric oxide of the present invention, the mass ratio of [Mn / (Mn + Cu)] in the Mn—Cu composite oxide is preferably 0.15 or more, more preferably 0.45 or more. This is because if the mass ratio of [Mn / (Mn + Cu)] is less than 0.15, the catalytic activity is lower than that of the Mn oxide alone due to the insufficient amount of Mn. And if this mass ratio becomes too high, the combined effect with Cu becomes difficult to be exhibited effectively, and the catalytic activity tends to decrease, so the upper limit of the mass ratio is preferably 0.95.

また、本発明の一酸化窒素酸化用触媒では、Mn−Fe複合酸化物における[Mn/(Mn+Fe)]の質量比が0.10以上、より好ましくは0.30以上であることがよい。[Mn/(Mn+Fe)]の質量比が0.10未満では、Mn量の不足によりMn酸化物単独よりも触媒活性が低下するためである。そして、この質量比が高くなりすぎると、Feとの複合効果が有効に発揮されにくくなり触媒活性が低下傾向を示すようになるため、前記質量比の上限は0.85とすることがよい。   In the nitric oxide oxidation catalyst of the present invention, the [Mn / (Mn + Fe)] mass ratio in the Mn—Fe composite oxide is preferably 0.10 or more, more preferably 0.30 or more. This is because if the mass ratio of [Mn / (Mn + Fe)] is less than 0.10, the catalyst activity is lower than that of the Mn oxide alone due to the insufficient amount of Mn. And if this mass ratio becomes too high, the combined effect with Fe becomes difficult to be exhibited effectively, and the catalytic activity tends to decrease, so the upper limit of the mass ratio is preferably 0.85.

本発明の一酸化窒素酸化用触媒では、触媒に占めるカリウムの含有率は、0.3〜10質量%の範囲がよい。カリウムの含有率が0.3質量%未満では添加効果が弱く、一酸化窒素酸化性能(触媒活性)が充分発揮されず、一方、10質量%を超えて添加すると触媒表面積の低下により一酸化窒素酸化性能が低下するためである。したがって、触媒に占めるカリウムの含有率は、0.3〜10質量%、より好ましくは0.5〜5質量%がよい。一酸化窒素酸化用触媒の作製の際に、カリウムは、例えば水酸化カリウム(KOH),硝酸カリウム(KNO),過マンガン酸カリウム(KMnO)などの水溶液の形態で、Mn酸化物、Mn−Cu複合酸化物又はMn−Fe複合酸化物にスプレー法によって担持させ、このものを乾燥させるようにすればよい。 In the nitric oxide oxidation catalyst of the present invention, the content of potassium in the catalyst is preferably in the range of 0.3 to 10% by mass. When the potassium content is less than 0.3% by mass, the effect of addition is weak and the nitric oxide oxidation performance (catalytic activity) is not sufficiently exhibited. This is because the oxidation performance decreases. Therefore, the potassium content in the catalyst is preferably 0.3 to 10% by mass, more preferably 0.5 to 5% by mass. In the production of the nitric oxide oxidation catalyst, potassium is in the form of an aqueous solution such as potassium hydroxide (KOH), potassium nitrate (KNO 3 ), potassium permanganate (KMnO 4 ), Mn oxide, Mn— A Cu composite oxide or a Mn—Fe composite oxide may be supported by a spray method and dried.

また、本発明の一酸化窒素酸化用触媒では、触媒に占める炭酸の含有率は、前記カリウムと同様の理由で、0.3〜10質量%、より好ましくは0.5〜5質量%がよい。一酸化窒素酸化用触媒の作製の際に、炭酸は、例えば炭酸ナトリウム(NaCO),炭酸カルシウム(CaCO),炭酸マグネシウム(MgCO),炭酸リチウム(LiCO)などの水溶液の形態でMn酸化物、Mn−Cu複合酸化物又はMn−Fe複合酸化物にスプレー法によって担持させ、このものを乾燥させるようにすればよい。なお、炭酸カリウム(KCO)を用いることで、カリウムと炭酸を含有する一酸化窒素酸化用触媒が得られる。 In the nitric oxide oxidation catalyst of the present invention, the content of carbonic acid in the catalyst is 0.3 to 10% by mass, more preferably 0.5 to 5% by mass for the same reason as potassium. . When preparing the catalyst for oxidizing nitric oxide, the carbonic acid is an aqueous solution such as sodium carbonate (Na 2 CO 3 ), calcium carbonate (CaCO 3 ), magnesium carbonate (MgCO 3 ), lithium carbonate (Li 2 CO 3 ), for example. In this form, Mn oxide, Mn—Cu composite oxide, or Mn—Fe composite oxide may be supported by a spray method and dried. Incidentally, by using potassium carbonate (K 2 CO 3), a catalyst for nitrogen monoxide oxidation containing potassium and carbonate are obtained.

図1は本発明を利用する湿式排気脱硝設備のフロー図である。   FIG. 1 is a flow diagram of a wet exhaust denitration facility utilizing the present invention.

図1に示すように、NO含有排ガス発生源1からの排ガスを、排ガス導入ラインL1を経て一酸化窒素酸化用触媒充填塔2に導入し、一酸化窒素酸化用触媒充填塔2内に収容されている本発明の一酸化窒素酸化用触媒に80℃以上の温度、例えば100℃の温度で接触させることにより、NO含有排ガス発生源1からの排ガス中の一酸化窒素が二酸化窒素に酸化される。そして、一酸化窒素が酸化された二酸化窒素を含む排ガスを、排ガス導入ラインL2を経て湿式吸収塔3に導入し、吸収液(苛性ソーダ水溶液)にて二酸化窒素を吸収することにより、NOが除去された排ガスが排気ラインL3を経て排出される。なお、4は吸収液タンクから湿式吸収塔3内に供給された吸収液を湿式吸収塔3上部から注入するための吸収液用ポンプである。このように、本発明の一酸化窒素酸化用触媒は、貴金属触媒に比べて安価で済み、かつ、80〜120℃程度の低い反応温度で反応でき、湿式排気脱硝設備に用いられて、低コスト・高効率な窒素酸化物の除去に寄与することができる。 As shown in FIG. 1, the exhaust gas from the NO X -containing exhaust gas generation source 1 is introduced into the nitrogen monoxide oxidation catalyst packed tower 2 through the exhaust gas introduction line L <b> 1 and accommodated in the nitrogen monoxide oxidation catalyst packed tower 2. The nitrogen monoxide in the exhaust gas from the NO X -containing exhaust gas generation source 1 is oxidized to nitrogen dioxide by contacting the nitric oxide oxidizing catalyst of the present invention at a temperature of 80 ° C. or higher, for example, 100 ° C. Is done. Then, the exhaust gas containing nitrogen dioxide nitrogen monoxide is oxidized, through the exhaust gas introduction line L2 is introduced into a wet absorption tower 3 by absorbing the nitrogen dioxide in the absorbing liquid (aqueous sodium hydroxide), NO X removal The exhausted gas is discharged through the exhaust line L3. Reference numeral 4 denotes an absorption liquid pump for injecting the absorption liquid supplied from the absorption liquid tank into the wet absorption tower 3 from above the wet absorption tower 3. As described above, the nitric oxide oxidation catalyst of the present invention is less expensive than the noble metal catalyst, can react at a reaction temperature as low as about 80 to 120 ° C., and is used in a wet exhaust denitration facility. -It can contribute to highly efficient removal of nitrogen oxides.

(1)Mn酸化物をベースとする一酸化窒素酸化用触媒を作製し、その一酸化窒素酸化性能(一酸化窒素酸化率)の評価を行った。   (1) A catalyst for oxidation of nitric oxide based on Mn oxide was prepared, and its nitric oxide oxidation performance (nitrogen monoxide oxidation rate) was evaluated.

硝酸マンガン[Mn(NO・6HO]の水溶液に水酸化カリウムの水溶液を混合し、水酸化マンガン[Mn(OH)]の沈殿物を調製した。並行して、過マンガン酸カリウムの水溶液を調製し、この水溶液を前記水酸化マンガン沈殿物に攪拌下に加えた後、60分間攪拌を継続し、水酸化マンガンを液相中で酸化処理した。次いで、得られたマンガン酸化物の沈殿物について濾過と水洗とを繰り返して不純物を除去し、しかる後、このマンガン酸化物の沈殿物を乾燥器にて乾燥した。この乾燥物をアルミナゾルと均一に混合し、必要に応じて水分調整を行いつつ湿式成形に適した水分状態とし、これをスクリュー式押出機によって直径1/8インチの錠剤状(ペレット状)の押出品に成形した。しかる後、この押出品を乾燥器によって乾燥し、一酸化窒素酸化用触媒機能を有する錠剤状のMn酸化物を得た。 An aqueous solution of potassium hydroxide was mixed with an aqueous solution of manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] to prepare a precipitate of manganese hydroxide [Mn (OH) 2 ]. In parallel, an aqueous solution of potassium permanganate was prepared, and this aqueous solution was added to the manganese hydroxide precipitate with stirring, and then stirring was continued for 60 minutes to oxidize manganese hydroxide in the liquid phase. Subsequently, the obtained manganese oxide precipitate was repeatedly filtered and washed with water to remove impurities, and then the manganese oxide precipitate was dried in a drier. This dried product is uniformly mixed with the alumina sol, adjusted to a moisture state suitable for wet molding while adjusting the moisture as necessary, and this is pressed into a tablet shape (pellet shape) having a diameter of 1/8 inch by a screw type extruder. Molded for exhibition. Thereafter, this extrudate was dried with a drier to obtain a tablet-like Mn oxide having a catalytic function for nitric oxide oxidation.

そして、水酸化カリウム水溶液を調製し、これを前記Mn酸化物にスプレー法によって担持させた後、乾燥器で乾燥を行うことにより、カリウム化合物が添加されたMn酸化物からなる一酸化窒素酸化用触媒を得た。カリウムの含有率は、スプレーする水酸化カリウム水溶液の濃度を調整することで変化させた。同様に、炭酸ナトリウム水溶液を調製し、これを前記Mn酸化物にスプレー法によって担持させた後、乾燥を行うことにより、炭酸ナトリウムが添加されたMn酸化物からなる一酸化窒素酸化用触媒を得た。炭酸の含有率は、スプレーする炭酸ナトリウム水溶液の濃度を調整することで変化させた。また、同様に、炭酸カリウム水溶液を調製し、これを前記Mn酸化物にスプレー法によって担持させた後、乾燥を行うことにより、炭酸カリウムが添加されたMn酸化物からなる一酸化窒素酸化用触媒を得た。炭酸の含有率は、スプレーする炭酸カリウム水溶液の濃度を調整することで制御した。   Then, an aqueous potassium hydroxide solution is prepared, and this is supported on the Mn oxide by a spray method, followed by drying in a drier, thereby oxidizing nitric oxide comprising a Mn oxide to which a potassium compound is added. A catalyst was obtained. The potassium content was changed by adjusting the concentration of the aqueous potassium hydroxide solution to be sprayed. Similarly, a sodium carbonate aqueous solution is prepared, and this is supported on the Mn oxide by a spray method, followed by drying to obtain a nitric oxide oxidation catalyst comprising Mn oxide to which sodium carbonate is added. It was. The content of carbonic acid was changed by adjusting the concentration of the aqueous sodium carbonate solution to be sprayed. Similarly, a potassium carbonate aqueous solution is prepared, and this is supported on the Mn oxide by a spray method, followed by drying, whereby a catalyst for oxidizing nitric oxide comprising Mn oxide to which potassium carbonate is added. Got. The content of carbonic acid was controlled by adjusting the concentration of the aqueous potassium carbonate solution to be sprayed.

前記作製した各一酸化窒素酸化用触媒の一酸化窒素酸化性能の評価は、当該触媒をステンレス製反応管に、触媒充填量10cc(充填高さ2.5cm)で充填し、一酸化窒素100ppm、バランス空気(相対湿度60%)の供給ガス組成で、空間速度(SV)20000h−1、反応温度100℃の条件で一酸化窒素含有ガスを処理することで行った。触媒の一酸化窒素から二酸化窒素への酸化反応の触媒活性は、反応管出口の一酸化窒素濃度とNOx濃度(NO+NO濃度)を化学発光式分析計で測定した。各触媒に対して一酸化窒素の酸化率は、[一酸化窒素酸化率(%)=(1−出口一酸化窒素濃度/入口一酸化窒素濃度)×100]によって求めた。実施例及び比較例の一酸化窒素酸化用触媒の一酸化窒素酸化率を調べた結果を表1に示す。 Evaluation of the nitric oxide oxidation performance of each of the produced nitric oxide oxidation catalysts was performed by filling the catalyst in a stainless steel reaction tube with a catalyst filling amount of 10 cc (packing height of 2.5 cm), 100 ppm of nitrogen monoxide, It was carried out by treating the nitrogen monoxide-containing gas under the conditions of a supply gas composition of balance air (relative humidity 60%), space velocity (SV) 20000 h −1 , and reaction temperature 100 ° C. For the catalytic activity of the oxidation reaction from nitrogen monoxide to nitrogen dioxide of the catalyst, the nitric oxide concentration and NOx concentration (NO + NO 2 concentration) at the outlet of the reaction tube were measured with a chemiluminescence analyzer. The oxidation rate of nitric oxide for each catalyst was determined by [nitrogen monoxide oxidation rate (%) = (1−outlet nitric oxide concentration / inlet nitric oxide concentration) × 100]. Table 1 shows the results of examining the nitric oxide oxidation rates of the catalysts for oxidizing nitric oxide in Examples and Comparative Examples.

Figure 2007203131
Figure 2007203131

単にMn酸化物のみからなる比較例1では、一酸化窒素酸化率は低く61%であった。これに対して、カリウム化合物又は炭酸塩が添加されたMn酸化物からなる一酸化窒素酸化用触媒では、その一酸化窒素酸化率が顕著に向上した。すなわち、カリウム含有率:0.3質量%の実施例1では一酸化窒素酸化率が比較例1の61%から71%まで向上し、カリウム含有率が0.5〜5質量%の実施例2〜4では、90%前後の高い一酸化窒素酸化率が得られた。なお、カリウム含有率:10質量%の実施例5では、実施例4(カリウム含有率:5質量%)に比べて5ただし、カリウムを10%添加した触媒(実施例6)では5%添加触媒と比べ一酸化窒素酸化性能の低下が認められた。カリウムの添加量が多いために、触媒としての活性は高いが、細孔がカリウムで充填されることで比表面積が低下し、一酸化窒素酸化性能の低下が起こったものと考えられる。   In Comparative Example 1 consisting solely of Mn oxide, the nitric oxide oxidation rate was low and 61%. On the other hand, in the nitric oxide oxidation catalyst composed of Mn oxide to which a potassium compound or carbonate was added, the nitric oxide oxidation rate was significantly improved. That is, in Example 1 where the potassium content is 0.3% by mass, the nitric oxide oxidation rate is improved from 61% of Comparative Example 1 to 71%, and Example 2 where the potassium content is 0.5 to 5% by mass. In -4, the nitric oxide oxidation rate as high as about 90% was obtained. In Example 5 where the potassium content was 10% by mass, 5 compared to Example 4 (potassium content: 5% by mass), but 5% added catalyst in the catalyst with 10% added potassium (Example 6). As compared with the results, a decrease in nitric oxide oxidation performance was observed. Since the amount of potassium added is large, the activity as a catalyst is high, but it is considered that the specific surface area was reduced by filling the pores with potassium, and the nitric oxide oxidation performance was reduced.

炭酸塩が添加されたMn酸化物からなる実施例6〜10についても、前記の実施例1〜5と同様な傾向が認められ、炭酸含有率:0.3〜10質量%の範囲において炭酸塩が存在することで一酸化窒素酸化率が高くなることが確認された。また、炭酸カリウムが添加されたMn酸化物からなる実施例11では、92%と非常に高い一酸化窒素酸化率が得られた。   About Examples 6-10 which consist of Mn oxide with which carbonate was added, the same tendency as said Examples 1-5 was recognized, and carbonate in the range of carbonic acid content rate: 0.3-10 mass% It was confirmed that the oxidation rate of nitric oxide is increased by the presence of NO. Further, in Example 11 made of Mn oxide to which potassium carbonate was added, a very high nitric oxide oxidation rate of 92% was obtained.

(2)Mn−Cu複合酸化物をベースとする一酸化窒素酸化用触媒を作製し、その一酸化窒素酸化性能(一酸化窒素酸化率)の評価を行った。   (2) A nitric oxide oxidation catalyst based on a Mn—Cu composite oxide was prepared, and its nitric oxide oxidation performance (nitrogen monoxide oxidation rate) was evaluated.

硫酸マンガン[MnSO・5HO]と硫酸銅[CuSO・5HO]を純水に溶解し、これと別途調製した水酸化ナトリウム水溶液とを攪拌下で混合することにより水酸化マンガンと水酸化銅との共沈殿物を生成させた。次いでこの共沈殿物を液相中で酸化処理するため、攪拌しながら過硫酸アンモニウム[(NH]水溶液を徐々に添加し、共沈殿物の液相酸化を行ってMn−Cuの複合酸化物を得た。この複合酸化物について濾過と水洗とを繰り返して不純物を除去し、しかる後、乾燥器にて乾燥した。この乾燥物をアルミナゾルと均一に混合し、必要に応じて水分調整を行いつつ湿式成形に適した水分状態とし、これをスクリュー式押出機によって直径1/8インチの錠剤状(ペレット状)の押出品に成形した。しかる後、この押出品を乾燥器によって乾燥し、一酸化窒素酸化用触媒機能を有する錠剤状のMn−Cu複合酸化物を得た。そして、硫酸マンガンと硫酸銅の使用量を変化させることにより、[Mn/(Mn+Cu)]の質量比を変えたMn−Cu複合酸化物を調製した。 Manganese sulfate [MnSO 4 · 5H 2 O] and copper sulfate [CuSO 4 · 5H 2 O] are dissolved in pure water, and this and a separately prepared sodium hydroxide aqueous solution are mixed with stirring to obtain manganese hydroxide and A coprecipitate with copper hydroxide was produced. Subsequently, in order to oxidize this coprecipitate in the liquid phase, an aqueous solution of ammonium persulfate [(NH 4 ) 2 S 2 O 8 ] is gradually added with stirring, and the coprecipitate is subjected to liquid phase oxidation to obtain Mn− A complex oxide of Cu was obtained. The composite oxide was repeatedly filtered and washed with water to remove impurities, and then dried in a drier. This dried product is uniformly mixed with the alumina sol, adjusted to a moisture state suitable for wet molding while adjusting the moisture as necessary, and this is pressed into a tablet shape (pellet shape) having a diameter of 1/8 inch by a screw type extruder. Molded for exhibition. Thereafter, the extrudate was dried with a drier to obtain a tablet-like Mn—Cu composite oxide having a catalytic function for nitric oxide oxidation. And the Mn-Cu complex oxide which changed the mass ratio of [Mn / (Mn + Cu)] was prepared by changing the usage-amount of manganese sulfate and copper sulfate.

そして、炭酸カリウム水溶液を調製し、これを前記Mn−Cu複合酸化物にスプレー法によって担持させた後、乾燥器で乾燥を行うことにより、炭酸カリウムが添加されたMn−Cu複合酸化物からなる一酸化窒素酸化用触媒を得た。得られた実施例及び比較例の一酸化窒素酸化用触媒について、前記(1)の場合と同様の評価方法によって一酸化窒素酸化率を調べた。その結果を表2に示す。   And after preparing potassium carbonate aqueous solution and making this carry | support to the said Mn-Cu complex oxide by the spray method, it consists of Mn-Cu complex oxide to which potassium carbonate was added by drying with a drier. A catalyst for oxidation of nitric oxide was obtained. The nitric oxide oxidation rates of the obtained catalysts for oxidizing nitric oxide in Examples and Comparative Examples were examined by the same evaluation method as in the case (1). The results are shown in Table 2.

Figure 2007203131
Figure 2007203131

表2から分かるように、Mn−Cu複合酸化物における[Mn/(Mn+Cu)]の質量比が0.15以上、特に0.45〜0.95の範囲である実施例13〜16では、一段と優れた一酸化窒素酸化率が得られた。   As can be seen from Table 2, in Examples 13 to 16, in which the mass ratio of [Mn / (Mn + Cu)] in the Mn—Cu composite oxide is 0.15 or more, particularly in the range of 0.45 to 0.95, it is much higher. An excellent nitric oxide oxidation rate was obtained.

(3)Mn−Fe複合酸化物をベースとする一酸化窒素酸化用触媒を作製し、その一酸化窒素酸化性能(一酸化窒素酸化率)の評価を行った。   (3) A catalyst for oxidizing nitric oxide based on a Mn—Fe composite oxide was prepared, and its nitric oxide oxidation performance (nitrogen monoxide oxidation rate) was evaluated.

硫酸マンガン[MnSO・5HO]と硫酸第一鉄[FeSO・7HO]を純水に溶解し、これと別途調製した炭酸ナトリウム水溶液とを攪拌下で混合することによりマンガンと鉄の塩基性炭酸塩とからなる共沈殿物を生成させた。次いでこの共沈殿物を液相中で酸化処理するため、攪拌しながら過硫酸アンモニウム[(NH]水溶液を徐々に添加し、共沈殿物の液相酸化を行いMn−Feの複合酸化物を得た。この複合酸化物について濾過と水洗とを繰り返して不純物を除去し、しかる後、乾燥器にて乾燥した。この乾燥物をアルミナゾルと均一に混合し、必要に応じて水分調整を行いつつ湿式成形に適した水分状態とし、これをスクリュー式押出機によって直径1/8インチの錠剤状(ペレット状)の押出品に成形した。しかる後、この押出品を乾燥器によって乾燥し、一酸化窒素酸化用触媒機能を有する錠剤状のMn−Fe複合酸化物を得た。そして、硫酸マンガンと硫酸鉄の使用量を変化させることにより、[Mn/(Mn+Fe)]の質量比を変えたMn−Fe複合酸化物を調製した。 Manganese sulfate [MnSO 4 · 5H 2 O] and ferrous sulfate [FeSO 4 · 7H 2 O] are dissolved in pure water, and this and a separately prepared sodium carbonate aqueous solution are mixed with stirring to mix manganese and iron. A coprecipitate consisting of a basic carbonate was produced. Subsequently, in order to oxidize this coprecipitate in the liquid phase, an aqueous solution of ammonium persulfate [(NH 4 ) 2 S 2 O 8 ] is gradually added with stirring, and the coprecipitate is subjected to liquid phase oxidation to obtain Mn-Fe. A composite oxide was obtained. The composite oxide was repeatedly filtered and washed with water to remove impurities, and then dried in a drier. This dried product is uniformly mixed with the alumina sol, adjusted to a moisture state suitable for wet molding while adjusting the moisture as necessary, and this is pressed into a tablet shape (pellet shape) having a diameter of 1/8 inch by a screw type extruder. Molded for exhibition. Thereafter, the extrudate was dried with a dryer to obtain a tablet-like Mn—Fe composite oxide having a catalytic function for nitric oxide oxidation. And the Mn-Fe complex oxide which changed the mass ratio of [Mn / (Mn + Fe)] by changing the usage-amount of manganese sulfate and iron sulfate was prepared.

そして、炭酸カリウム水溶液を調製し、これを前記Mn−Fe複合酸化物にスプレー法によって担持させた後、乾燥器で乾燥を行うことにより、炭酸カリウムが添加されたMn−Fe複合酸化物からなる一酸化窒素酸化用触媒を得た。得られた実施例及び比較例の一酸化窒素酸化用触媒について、前記(1)の場合と同様の評価方法によって一酸化窒素酸化率を調べた。その結果を表3に示す。   And after preparing potassium carbonate aqueous solution and carrying this by the said Mn-Fe complex oxide by the spray method, it consists of Mn-Fe complex oxide to which potassium carbonate was added by drying with a drier. A catalyst for oxidation of nitric oxide was obtained. The nitric oxide oxidation rates of the obtained catalysts for oxidizing nitric oxide in Examples and Comparative Examples were examined by the same evaluation method as in the case (1). The results are shown in Table 3.

Figure 2007203131
Figure 2007203131

表3から分かるように、Mn−Fe複合酸化物における[Mn/(Mn+Fe)]の質量比が0.10以上、特に0.30〜0.85の範囲である実施例19〜21では、一段と優れた一酸化窒素酸化率が得られた。   As can be seen from Table 3, in Examples 19 to 21 in which the mass ratio of [Mn / (Mn + Fe)] in the Mn—Fe composite oxide is 0.10 or more, particularly 0.30 to 0.85, An excellent nitric oxide oxidation rate was obtained.

本発明を利用する湿式排気脱硝設備のフロー図である。1 is a flow diagram of a wet exhaust denitration facility using the present invention.

符号の説明Explanation of symbols

1…NO含有排ガス発生源
2…一酸化窒素酸化用触媒充填塔
3…湿式吸収塔
4…吸収液用ポンプ
1 ... NO X containing exhaust gas generation source 2 ... catalyst packed column 3 ... wet absorption tower 4 ... absorbent liquid pump for nitric oxide

Claims (5)

Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、カリウム化合物とを含有することを特徴とする一酸化窒素酸化用触媒。   A catalyst for oxidizing nitric oxide, comprising at least one selected from the group consisting of a Mn oxide, a Mn-Cu composite oxide, and a Mn-Fe composite oxide, and a potassium compound. Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、炭酸塩とを含有することを特徴とする一酸化窒素酸化用触媒。   A catalyst for oxidizing nitric oxide, comprising at least one selected from the group consisting of a Mn oxide, a Mn-Cu composite oxide and a Mn-Fe composite oxide, and a carbonate. Mn酸化物、Mn−Cu複合酸化物及びMn−Fe複合酸化物よりなる群から選択される少なくとも一種と、炭酸カリウムとを含有することを特徴とする一酸化窒素酸化用触媒。   A catalyst for oxidizing nitric oxide, comprising at least one selected from the group consisting of a Mn oxide, a Mn-Cu composite oxide, and a Mn-Fe composite oxide, and potassium carbonate. 前記Mn−Cu複合酸化物における[Mn/(Mn+Cu)]の質量比が0.15以上、前記Mn−Fe複合酸化物における[Mn/(Mn+Fe)]の質量比が0.10以上であることを特徴とする請求項1〜3のいずれか1項に記載の一酸化窒素酸化用触媒。   The mass ratio of [Mn / (Mn + Cu)] in the Mn—Cu composite oxide is 0.15 or more, and the mass ratio of [Mn / (Mn + Fe)] in the Mn—Fe composite oxide is 0.10 or more. The catalyst for oxidizing nitric oxide according to any one of claims 1 to 3. 一酸化窒素を触媒の存在下で二酸化窒素に酸化する方法において、80℃以上の温度で、前記触媒として請求項1〜4のいずれか1項に記載の一酸化窒素酸化用触媒を用いることを特徴とする一酸化窒素の酸化方法。   In the method of oxidizing nitrogen monoxide to nitrogen dioxide in the presence of a catalyst, the catalyst for nitric oxide oxidation according to any one of claims 1 to 4 is used as the catalyst at a temperature of 80 ° C or higher. A feature of the oxidation method of nitric oxide.
JP2006021739A 2006-01-31 2006-01-31 Nitric oxide oxidation catalyst and nitric oxide oxidation method Expired - Fee Related JP4861018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021739A JP4861018B2 (en) 2006-01-31 2006-01-31 Nitric oxide oxidation catalyst and nitric oxide oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021739A JP4861018B2 (en) 2006-01-31 2006-01-31 Nitric oxide oxidation catalyst and nitric oxide oxidation method

Publications (2)

Publication Number Publication Date
JP2007203131A true JP2007203131A (en) 2007-08-16
JP4861018B2 JP4861018B2 (en) 2012-01-25

Family

ID=38483069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021739A Expired - Fee Related JP4861018B2 (en) 2006-01-31 2006-01-31 Nitric oxide oxidation catalyst and nitric oxide oxidation method

Country Status (1)

Country Link
JP (1) JP4861018B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974730B1 (en) 2008-11-27 2010-08-06 현대자동차주식회사 Catalyst for purifying automotive exhaust gas
JP2011230120A (en) * 2010-04-23 2011-11-17 General Electric Co <Ge> SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
JP2014005964A (en) * 2012-06-22 2014-01-16 Miura Co Ltd NOx TREATMENT SYSTEM OF BOILER
CN110743495A (en) * 2019-09-30 2020-02-04 北京航空航天大学 Nano manganese oxide modified biomass charcoal, preparation method thereof and method for removing copper citrate
CN111318157A (en) * 2020-03-13 2020-06-23 云南民族大学 Preparation method, product and application of modified carbide slag desulfurization and denitrification agent

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945894A (en) * 1972-09-07 1974-05-01
JPS5062859A (en) * 1973-10-09 1975-05-29
JPH05154339A (en) * 1991-12-03 1993-06-22 Kobe Steel Ltd Removal of nitrogen oxide
JPH0788335A (en) * 1993-09-22 1995-04-04 Nippon Steel Corp Method for denitrating low-temperature waste gas
JPH07308573A (en) * 1994-05-17 1995-11-28 Kobe Steel Ltd Treating agent for air pollution material
JPH0986928A (en) * 1994-10-04 1997-03-31 Nissan Motor Co Ltd A-site deficient perovskite double oxide and catalyst composed thereof
WO1997011779A1 (en) * 1995-09-26 1997-04-03 Kabushiki Kaisha Kobe Seiko Sho Poisonous gas removing agent
JPH09141088A (en) * 1995-11-20 1997-06-03 Sakai Chem Ind Co Ltd Nitrogen oxides adsorbent
JP2000167406A (en) * 1998-01-30 2000-06-20 Kobe Steel Ltd Organic halogen compound remover and treatment of waste gas using same
JP2001263051A (en) * 2000-03-17 2001-09-26 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
JP2003062432A (en) * 2001-08-27 2003-03-04 Tosoh Corp Exhaust gas cleaning method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945894A (en) * 1972-09-07 1974-05-01
JPS5062859A (en) * 1973-10-09 1975-05-29
JPH05154339A (en) * 1991-12-03 1993-06-22 Kobe Steel Ltd Removal of nitrogen oxide
JPH0788335A (en) * 1993-09-22 1995-04-04 Nippon Steel Corp Method for denitrating low-temperature waste gas
JPH07308573A (en) * 1994-05-17 1995-11-28 Kobe Steel Ltd Treating agent for air pollution material
JPH0986928A (en) * 1994-10-04 1997-03-31 Nissan Motor Co Ltd A-site deficient perovskite double oxide and catalyst composed thereof
WO1997011779A1 (en) * 1995-09-26 1997-04-03 Kabushiki Kaisha Kobe Seiko Sho Poisonous gas removing agent
JPH09141088A (en) * 1995-11-20 1997-06-03 Sakai Chem Ind Co Ltd Nitrogen oxides adsorbent
JP2000167406A (en) * 1998-01-30 2000-06-20 Kobe Steel Ltd Organic halogen compound remover and treatment of waste gas using same
JP2001263051A (en) * 2000-03-17 2001-09-26 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
JP2003062432A (en) * 2001-08-27 2003-03-04 Tosoh Corp Exhaust gas cleaning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974730B1 (en) 2008-11-27 2010-08-06 현대자동차주식회사 Catalyst for purifying automotive exhaust gas
JP2011230120A (en) * 2010-04-23 2011-11-17 General Electric Co <Ge> SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
JP2014005964A (en) * 2012-06-22 2014-01-16 Miura Co Ltd NOx TREATMENT SYSTEM OF BOILER
CN110743495A (en) * 2019-09-30 2020-02-04 北京航空航天大学 Nano manganese oxide modified biomass charcoal, preparation method thereof and method for removing copper citrate
CN111318157A (en) * 2020-03-13 2020-06-23 云南民族大学 Preparation method, product and application of modified carbide slag desulfurization and denitrification agent

Also Published As

Publication number Publication date
JP4861018B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP3924322B2 (en) Hazardous gas removal agent
Hao et al. An advanced wet method for simultaneous removal of SO2 and NO from coal-fired flue gas by utilizing a complex absorbent
JP4616497B2 (en) Desulfurization apparatus and desulfurization method
CN101274208B (en) Method for simultaneously removing sulfur dioxide and nitrogen oxide in exhaust air
Zhao et al. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO 2 modified V 2 O 5–WO 3/TiO 2 catalyst
CN104785302B (en) Denitrifying catalyst with selective catalytic reduction and its preparation method and application
JPS6297630A (en) Method for removing nitrogen oxide from nitrogen oxide-containing gas
CN115193430A (en) Ammonia decomposition catalyst and ammonia decomposition method using same
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
WO1997001388A1 (en) Flue-gas treatment system
CN101507923B (en) Preparation method of catalyst for sintering flue gas and desulfurizing and denitrifying
Yang et al. Low temperature denitrification and mercury removal of Mn/TiO2-based catalysts: A review of activities, mechanisms, and deactivation
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
CN110479303A (en) A kind of dry method solid desulphurization denitration catalyst and its desulfurization denitrification agent
Wu et al. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP2012159029A (en) Apparatus and method for producing nitrogen dioxide, and exhaust emission control system
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
JPS5933410B2 (en) How to remove ozone
KR102224335B1 (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
JP3603178B2 (en) Desulfurization method
JP6640357B2 (en) Exhaust gas denitration catalyst, exhaust gas treatment system, and exhaust gas treatment method
JP3474409B2 (en) Adsorbent for nitrogen oxides
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4861018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees