JP2007203008A - Vertical taking off and landing airplane - Google Patents

Vertical taking off and landing airplane Download PDF

Info

Publication number
JP2007203008A
JP2007203008A JP2006053771A JP2006053771A JP2007203008A JP 2007203008 A JP2007203008 A JP 2007203008A JP 2006053771 A JP2006053771 A JP 2006053771A JP 2006053771 A JP2006053771 A JP 2006053771A JP 2007203008 A JP2007203008 A JP 2007203008A
Authority
JP
Japan
Prior art keywords
jet
duct
jet flow
hovering
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006053771A
Other languages
Japanese (ja)
Inventor
Shinzo Tanaka
愼造 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006053771A priority Critical patent/JP2007203008A/en
Publication of JP2007203008A publication Critical patent/JP2007203008A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio-controlled model plane of a vertical taking off and landing airplane capable of hovering by eliminating a complicated structure and complicated control and reducing its weight. <P>SOLUTION: This vertical taking off and landing airplane adopts a system that a propeller used usually in the radio-controlled model plane is used as one machine to obtain power and is mounted by facing upward to control front, rear, left, and right sides by the air dividing a part of its thrust when hovering. When shifting from hovering to advance flight, an opening and closing door at a lower part is closed and thrust is deflected onto a rear side to perform usual advance flight. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特にラジコン模型飛行機に関するものであるが、実機の分野にも適応可能である。  The present invention particularly relates to a radio-controlled model airplane, but can also be applied to the field of actual aircraft.

ラジコン模型飛行機の垂直離着陸として、これまで色々なタイプが考えられ、製作や実験などがなされて来たほか、そのほかのアイデアも公表されている。
ラジコン技術誌2003年2月号p192、193 ラジコン技術誌2003年3月号p194、195 ラジコン技術誌2003年7月号p32、34 ラジコン技術誌2005年9月号p27〜29 また、実機における従来の垂直離着陸機としては、主翼に2基あるいは4基のプロペラを有し、垂直上昇時にはプロペラあるいは翼全体を上向きに回転偏向し上昇推力を得て、前進飛行時にはプロペラあるいは翼全体を前方向に回転偏向して通常の飛行機のように飛行するタイプや、垂直上昇用のプロペラあるいはダクトファンと前進飛行用のプロペラを別々に装備して使い分けるタイプなとがある。 また、4基のダクトファンを装備し、垂直上昇時にはダクトファン全体を下方に向けて上昇しながら4基それぞれのダクトファン推力を加減することにより姿勢制御を行い、前進飛行時には同じくダクトファン全体を前方向に向けて飛行させるタイプもある。 そのほか、主にホバリング飛行するものでは、ダクトファン1基のタイプでは、ダクト内の下部に噴流方向制御用の複数の翼を設け、それによって前後左右の姿勢を制御するもの、また、複数のダクトファンを装備し、それぞれのダクトファンの推力あるいは噴流方向制御用の翼を動かすことにより前後左右の姿勢あるいはロール軸を制御するものなどがある。
Various types have been conceived as vertical take-off and landing of radio controlled model airplanes, and production and experiments have been made, and other ideas have been released.
Radio control technology magazine February 2003 issue p192, 193 Radio Control Technology Magazine March 2003 issue p194, 195 Radio control technology magazine July 2003 issue p32, 34 Radio Control Technology Magazine September 2005 issue p27-29 In addition, as a conventional vertical take-off and landing aircraft, the main wing has two or four propellers, and when propelled vertically, the propeller or the entire wing is rotated and deflected upwards to obtain thrust, and during forward flight, the propeller or wing There are types that fly forward like a normal airplane by rotating and deflecting the whole forward, and types that use propellers for vertical ascent or duct fans and propellers for forward flight separately. Equipped with four duct fans, and when vertically rising, the attitude is controlled by adjusting the duct fan thrust of each of the four while raising the entire duct fan downwards. Some types fly forward. In addition, in the case of mainly hovering flight, in the type of one duct fan, a plurality of wings for controlling the jet direction are provided in the lower part of the duct, thereby controlling the front / rear and left / right postures, and the plurality of ducts There are those equipped with fans, which control the front / rear / left / right posture or roll axis by moving the thrust of each duct fan or the wing for controlling the jet direction.

主翼に回転偏向可能な2基あるいは4基のプロペラを装備するタイプの場合、前進飛行時は通常の飛行機として問題は無いが、垂直上昇時では、左右の姿勢を制御するため
には、左右のプロペラの回転数あるいはピッチを変え、推力を変化させなければならず、また、前後の姿勢を制御するためには上方向に向けたプロペラの推力方向を前後に細かく偏向して制御するか、尾部あるいは前部に姿勢制御用のプロペラあるいは噴流ノズルを装備して制御を行う必要があり、複雑でかつ難しい。
When the main wing is equipped with two or four propellers that can rotate and deflect, there is no problem as a normal airplane during forward flight. The propeller rotation speed or pitch must be changed to change the thrust, and in order to control the front-rear posture, the propeller thrust direction toward the upper direction must be finely deflected back and forth, or the tail Or it is necessary to equip a front part with a propeller or jet nozzle for attitude control, and it is complicated and difficult to control.

1基のダクトファンタイプの場合は、ダクト下部に設けた噴流方向を変える翼を動かすことによりヨー軸を含めた姿勢を制御するが、重心が上にあり、噴流を直接偏向して行うことから、安定をとるためには高性能なジャイロが必要であり、制御はかなり微妙で難しい。 4基のダクトファンタイプの場合はダクト本体を回転させなければならないため、その機構が大変なこと、また、それをエンジンが1基で行う場合は、動力軸をどのようにもって行くかの問題、エンジンが4基で独立した場合であっても、各推力を制御するために、それぞれの回転数あるいはファンのピッチを変えなければならず、構造が複雑になり制御も難しい。  In the case of a single duct fan type, the posture including the yaw axis is controlled by moving the blade that changes the jet direction provided in the lower part of the duct. However, the center of gravity is at the top and the jet is deflected directly. In order to achieve stability, a high-performance gyro is required, and control is rather delicate and difficult. In the case of four duct fan types, the duct body must be rotated, so the mechanism is difficult, and if it is done with a single engine, the problem of how to move the power shaft Even when the four engines are independent, in order to control each thrust, it is necessary to change the number of revolutions or the pitch of the fan, which makes the structure complicated and difficult to control.

そこで、本発明においては、エンジンは1基として胴体内に固定したまま垂直方向にダクトを設け、ダクト下部に設けた複数枚の扉を開け閉めすることにより、ホバリング時には噴流をそのまま下方に出し、上昇推力を得て、水平飛行を行うには下方の扉を閉めて噴流を後方に吹き出す方法とし、ホバリング時はプロペラダクト内から噴流の一部を前後左右にある程度離れた位置まで導き、それを吹き出すことによってピッチ・ロール・ヨー3軸の制御を行う方法とした。  Therefore, in the present invention, the engine is fixed in the fuselage as a single unit, and a duct is provided in the vertical direction, and a plurality of doors provided at the lower part of the duct are opened and closed, so that a jet flow is taken downward as it is during hovering. In order to obtain a rising thrust and perform a horizontal flight, the lower door is closed and the jet is blown backwards.When hovering, a part of the jet is guided from the inside of the propeller duct to a position somewhat away from front to back and left and right. The pitch, roll and yaw triaxial control was performed by blowing.

その場合、請求項2に記載したとおり、姿勢制御用のダクトから吹き出す噴流を通常状態では上下に等しく出すことにより、空気中で「くさび」の役目をすることとなり、姿勢保持の効果が高くなる。 また、姿勢を変化させる場合は、上下の吹き出しの強さを変え、左右あるいは前後で互いに逆方向にすることで、強い回転モーメントを発生させることが出来る。 姿勢制御ダクトの長さについては、長い方が制御する回転モーメントは大きくなるが、あまり長くするとダクト内の流体抵抗が増えることによって吹き出す噴流の勢いが弱まり、かえって回転モーメントは弱くなってしまうので、概ねプロペラダクト直径の1〜2倍程度以内が良いと思われる。  In that case, as described in claim 2, by jetting the jets blown out from the posture control ducts up and down in the normal state, it serves as a “wedge” in the air, and the effect of maintaining the posture is enhanced. . Further, when changing the posture, a strong rotational moment can be generated by changing the strength of the upper and lower balloons and making them opposite to each other on the left and right or front and back. As for the length of the attitude control duct, the longer one controls the rotational moment, but if it is too long, the fluid resistance in the duct increases and the momentum of the jet that blows out weakens. It seems that it is generally within 1 to 2 times the diameter of the propeller duct.

また、請求項3に記載したとおり、ヨー軸制御のための回転力を発生させる方法については、前後左右の姿勢制御用ダクト先端から吹き出す噴流を上下方向のまま、ダクト長手方向を上から見て直角方向に前方向又は後方向に吹き出し噴流の向きを変えることにより行うものである。 その場合、吹き出し噴流の向きを変える構造は、複数の案内板で構成した偏向装置を姿勢制御ダクト吹き出し口の上下に設け、上下同時に前後に動かすものである。 偏向角度は最大45度程度とし、それにより噴流が前あるいは後に斜めに吹き出すことよって、ヨー軸回りの回転力を得る。 それを前後あるいは左右2対に、あるいはそのすべての4対に設置する。  Further, as described in claim 3, with respect to the method for generating the rotational force for yaw axis control, the jet flow blown from the front / rear / right / left attitude control duct tip remains in the vertical direction, and the longitudinal direction of the duct is viewed from above. This is done by changing the direction of the blowing jet forward or backward in a perpendicular direction. In this case, the structure for changing the direction of the blowout jet is to provide a deflecting device composed of a plurality of guide plates above and below the posture control duct blowout opening and to move it back and forth simultaneously. The deflection angle is set to about 45 degrees at the maximum, whereby a jet flow is obliquely blown forward or backward to obtain a rotational force around the yaw axis. Place it in front and rear, left and right two pairs, or all four pairs.

これら各軸の制御は人間の操作では追いつけないめ、各軸のコントロール用サーボにはジャイロを付加する。  These axes cannot be controlled by human operation, and a gyro is added to the control servo for each axis.

姿勢制御用ダクトの噴流取り入れ口は、プロペラダクト内に前後・左右の4箇所にあるが、水平飛行を行う場合は閉じる構造である。 理由は、そのまま姿勢制御用のダクトから噴流を出したまま飛行した場合、その噴流が大きな空気抵抗となり、飛行できないほどの速度に落ちてしまうからである。 その開閉構造としては、図9のようにヒンジによる開閉及びスライド式などが考えられる。 また、姿勢制御用噴流を多く取り出せば制御の力が強くなり、それだけ姿勢制御がやりやすく、操縦時の反応や安定性も強くなる。 しかし反面、機体を浮上させる力が減少するため、垂直上昇そのもが出来なくなる恐れが出てくる。 そのため、姿勢制御用噴流の取り入れ口の大きさ(面積)は、4箇所合わせてプロペラダクト面積(円面積)の2割から3割程度以内とする。  The attitude control duct has four jet inlets in the front, rear, left and right within the propeller duct, but is closed when performing horizontal flight. The reason is that if a flight is carried out with a jet flow from the attitude control duct as it is, the jet flow becomes a large air resistance and falls to a speed at which it cannot fly. As the opening / closing structure, as shown in FIG. Further, if a large number of attitude control jets are taken out, the control force becomes stronger, and the attitude control becomes easier, and the response and stability during maneuvering become stronger. On the other hand, since the force to lift the aircraft decreases, there is a risk that it will not be possible to ascend vertically. Therefore, the size (area) of the intake port for the posture control jet is set to be within about 20 to 30% of the propeller duct area (circular area) for the four locations.

プロペラダクト下方に設置する噴流を下方と後方に振り分ける開閉扉の構造は、図8のとおり、縦方向あるいは横方向に一斉に連動して動く数枚の回転扉によって構成される。 その場合、噴流の勢いに逆らって開閉しなければならないため、その駆動力を軽減するためは、扉の水平方向中央に回転軸をもってくる構造とする。  As shown in FIG. 8, the structure of the open / close door that distributes the jets installed below the propeller ducts downward and rearward is composed of several revolving doors that move together in the vertical or horizontal direction. In that case, since it must open and close against the momentum of the jet flow, in order to reduce the driving force, a structure is adopted in which a rotating shaft is provided at the center in the horizontal direction of the door.

水平飛行時において、後方に出る噴流の中心点は構造上、上下方向で機体重心よりもやや下側にあるため、機体の頭上げが起こる。 それを防止するため、図11のとおり、後方噴流の底面を後方へある程度の長さに伸ばしながら後半部をやや上向に上げて噴流の中心を底面より上に上げるよう偏向板を取り付ける。 または図12のとおり、噴出口を水平に後ろに伸ばすとともに、出口部を下方にやや傾ける方法により、噴流のスラスト中心が機体重心付近を押すことととなり頭上げを防止し、安定した飛行を行うことが出来る。  At the time of level flight, the center point of the jet flowing backward is structurally slightly above the center of gravity of the aircraft in the vertical direction. In order to prevent this, as shown in FIG. 11, a deflection plate is attached so as to raise the bottom half of the rear jet to a certain length and raise the latter half upward slightly to raise the center of the jet above the bottom. Alternatively, as shown in FIG. 12, the jet outlet is extended horizontally and the outlet is tilted slightly downward, so that the thrust center of the jet pushes near the center of gravity of the fuselage, preventing head rise and performing stable flight. I can do it.

噴流出口の形状については、構造上、出口付近の高さが低いこと及び、により、噴流出口幅をダクト径と同じまま延長した場合、噴流出口面積がダクト面積よりかなり少なくなるため、排出抵抗が大きくなり、前進時の推力がかなり低下する。 また、上述の噴流偏向によっても、さらに推力の低下が生じる。その推力低下を少なくするためには、図13のとおり、ダクト下部を前方から横幅を徐々に広げ、出口付近は機体縦方向に平行になるよう噴流を整えるような構造にすることにより、出口面積が大きくなりかつ、噴流の横への広がりを防止して推力を大幅に増加させることが出来る。 併せて側面形状についても、ダクト前方の上方から徐々にカーブを付け、ダクト内の流れをスムースにさせれば、さらに効果的となる。 その際は、下部開閉扉は機体軸に対して直角方向の扉を複数設ける構造とすれば良い。  As for the shape of the jet outlet, if the jet outlet width is extended while keeping the same as the duct diameter due to the low height in the vicinity of the structure, the jet outlet area becomes considerably smaller than the duct area, so the discharge resistance is reduced. It becomes larger and the thrust when moving forward decreases considerably. Further, the thrust is further reduced by the jet deflection described above. In order to reduce the thrust drop, as shown in FIG. 13, the width of the lower part of the duct is gradually widened from the front, and the jet area is arranged so that the vicinity of the outlet is parallel to the longitudinal direction of the fuselage. And the thrust can be significantly increased by preventing the jet from spreading sideways. At the same time, the side shape can be further improved by gradually curving from the upper front side of the duct to make the flow in the duct smooth. In that case, the lower opening / closing door may have a structure in which a plurality of doors perpendicular to the body axis are provided.

プロペラダクト上部空気取り入れ口は吸入効率を良くするため、入り口周辺部を外側に向けて半径を大きく円弧状に張り出す。(ファンネルとも言う) これによって、吸入効率が上かり、ホバリング時の推力が増加する。 また、水平飛行時における吸入効率を良くするためには、プロペラダクト面を水平面からやや前方向に傾ける構造とすれば良い。  In order to improve the suction efficiency, the upper air intake port of the propeller duct has a large radius and projects in an arc shape with the periphery of the entrance facing outward. (Also referred to as funnel) This increases the suction efficiency and increases the thrust during hovering. In order to improve the suction efficiency during horizontal flight, the propeller duct surface may be inclined slightly forward from the horizontal plane.

エンジンの燃料タンクはプロペラ中心に対して左右あるいは前後に2個所に分けて置き、両方が同時に減って行くようにして燃料の増減による重心位置の移動を無くするシステムとする。  The fuel tank of the engine is divided into two places on the left and right or front and rear with respect to the propeller center, and both are decreased at the same time so that the movement of the center of gravity due to increase or decrease of fuel is eliminated.

本発明による垂直離着陸機により、ラジコン飛行機を飛ばす場合、少なくとも長さ100m程度、幅10m程度以上の滑走路が必要であったものが、周囲に障害物が無い環境さえあれば、離発着用として最小では数平方メートル程度の空き地があれば良いことから、これまでのように飛行場の確保に苦労することが無くラジコン飛行機を飛ばす楽しみを容易に得ることが出来る。 また、ラジコンによる航空撮影用のプラットフォームとして使う場合は、一般的に使われているヘリコプターに比べて構造が簡単であり、製造コストも格段に安く作れることから、撮影費用なども安く出来るほか、ヘリコプターのように大きな回転翼が無く、操縦不能その他の要因による墜落の場合においても安全性が高く、また、非常用のパラシュートも装備可能となるため、より安全に回収でき、そのまま墜落した場合であっても、回転するプロペラが内部にあるため、ヘリコプター等の航空機よりは他に与える損傷を少なく出来る。 さらに、本発明による垂直離着陸機はラジコン飛行機として利用するほかに、産業用の航空写真撮影用プラットフォームとして利用できる。 また、人間が乗れる実機への応用も可能である。  When flying a radio controlled airplane with the vertical take-off and landing aircraft according to the present invention, a runway having a length of at least about 100 m and a width of about 10 m or more is necessary. Then, since it is sufficient if there is a vacant lot of about several square meters, you can easily get the pleasure of flying a radio-controlled airplane without struggling to secure an airfield like before. Also, when used as an aerial photography platform by radio control, the structure is simpler than that of a commonly used helicopter, and the manufacturing cost is much cheaper, so the cost of photography can be reduced, and the helicopter In the case of a crash due to lack of control and other factors like this, the safety is high, and an emergency parachute can be equipped so that it can be recovered more safely and crashed as it is. However, since the rotating propeller is inside, damage to other parts can be reduced compared to aircraft such as helicopters. Furthermore, the vertical take-off and landing aircraft according to the present invention can be used as an industrial aerial photography platform in addition to being used as a radio controlled airplane. In addition, it can be applied to actual machines on which humans can ride.

本発明になる垂直離着陸機を飛行させる場合、通常は、機首を風上に向けた状態で所定の位置からホバリングモード(下部開閉口及び姿勢制御用空気取り入れ口を開いた状態で、なおかつジャイロ作動状態)で浮き上がり、ある程度の高度(機体全長の10倍程度以上)を取ったら、やや前傾で前進しながら飛行モード(下部開閉口及び姿勢制御用空気取り入れ口を閉じた状態で、なおかつジャイロは非作動状態)に切り替えて前進飛行を行う。 前進飛行からホバリングに移る場合は、着陸地点に向かいながら前進飛行の速度を落とし、適当な高度でホバリングモードに切り替え着陸する。 なお、一般的な飛行機のように前進飛行状態で滑走しながらの離陸や着陸も可能である。  When flying the vertical take-off and landing aircraft according to the present invention, the hovering mode (with the lower opening / closing opening and the air intake for attitude control being opened, and the gyro When the aircraft is lifted in the operating state) and takes a certain altitude (about 10 times the total length of the aircraft), the flight mode (lower opening / closing port and attitude control air intake port is closed, while the gyro is still moving while moving forward slightly forward Switch forward to inactive state and fly forward. When moving from forward flight to hovering, lower the speed of forward flight while heading to the landing point, switch to hovering mode and land at an appropriate altitude. It is also possible to take off and land while sliding in a forward flight state like a general airplane.

実施例としては図1の機体が挙げられるが、目的とする性能を有するためには、従来の同じエンジンサイズの機体に比べてかなり軽量にする必要がある。エンジンサイズが40クラスの場合、通常の機体であれば3Kgから4Kg程度であるが、それを少なくとも2.5Kg程度にしなければならない。 そのためには、機体構造素材としてカーボンFRPなどを使用するほか、翼の構造などもバルサやフイルム張りを用いる構造とする。  As an embodiment, the airframe of FIG. 1 can be mentioned, but in order to have the desired performance, it is necessary to make it considerably lighter than a conventional airframe of the same engine size. When the engine size is 40 class, it is about 3 kg to 4 kg for a normal aircraft, but it must be at least about 2.5 kg. For this purpose, carbon FRP or the like is used as the airframe structure material, and the structure of the wing is made of balsa or film tension.

主にホビー用及び産業用として利用。  Mainly used for hobby and industrial use.

全体図Overall view ホバリング時における姿勢制御の状態Attitude control during hovering ホバリング時における横から見た内部の空気の流れInternal air flow viewed from the side during hovering ホバリング時において機体を後方に回転させる(ピッチアップ)姿勢に変えようとする場合の空気の流れAir flow when trying to change to a posture where the aircraft rotates backward (pitch up) during hovering 前進飛行を行う場合の空気の流れAir flow during forward flight 機体横方向から見たヨー軸制御のための噴流の出る方向Direction of jet flow for yaw axis control viewed from the side of the aircraft ヨー軸制御のための噴流排出方向を変える装置部の構造例Example of the structure of the device that changes the jet discharge direction for yaw axis control ダクト下方の噴流吹き出し方向を変える扉の構造図、2方式Structural diagram of the door that changes the jet direction of the jet below the duct, 2 types ダクト内の姿勢制御用空気取り入れ口の開閉機構、2方式Opening / closing mechanism of air intake for posture control in duct, 2 types ダクト内噴流をスムーズに後方に流すための整流板取り付けた状態A state in which a rectifying plate is installed to smoothly flow the jet in the duct backward. 飛行時におけるピッチアップを防ぐため、後方排出噴流の中心を重心に近づけるための整流板を取り付けた状態In order to prevent pitch-up during flight, with a rectifying plate attached to bring the center of the rear discharge jet closer to the center of gravity 同じく、飛行時におけるピッチアップを防ぐため、後方排出噴流の中心を 重心に近づけるための整流板を後方に設置する場合の例Similarly, in order to prevent pitch-up during flight, an example of installing a rectifying plate in the rear to bring the center of the rear discharge jet closer to the center of gravity 前進飛行時の推力を増加(後方噴流出口面積増加)させるための噴流出口 形状Jet outlet shape to increase thrust during forward flight (increase rear jet outlet area) 機体のデザインをデルタ翼型とした場合の例Example when the aircraft design is a delta wing 航空写真撮影用プラットフォームとして応用する例Example of application as an aerial photography platform

符号の説明Explanation of symbols

1 エンジン
2 姿勢制御用噴流吹き出し口(上下)
3 プロペラ
4 推進用噴流吹き出し口
5 撮影機材
6 機体認識用マーカー
1 Engine 2 Attitude control jet outlet (up and down)
3 Propeller 4 Propulsion jet outlet 5 Camera equipment 6 Aircraft recognition marker

Claims (3)

胴体中央上向き又は若干前方向に傾けてダクト内にプロペラを装着したエンジンを装備し、ホバリング時はそのまま下方に噴流を出すことにより上昇推力を確保するとともに、その噴流の一部を前後左右の吹き出し口に導き、そこでの噴出方向を調整することにより、ピッチ・ヨー・ロール3軸の姿勢制御を行い、前進飛行を行う場合は、ダクト下部の開閉扉を閉じて噴流を後方に出すことにより、前方への推進力を得ることを特徴とする垂直離着陸機。  Equipped with an engine with a propeller in the duct that is tilted upward or slightly forward in the center of the fuselage. The pitch, yaw, and roll three axes are controlled by guiding them to the mouth and adjusting the jet direction there. When performing forward flight, close the open / close door at the bottom of the duct and let the jet flow backward. Vertical take-off and landing aircraft characterized by gaining forward thrust. ホバリング時におけるピッチ及びロール軸の制御について、通常状態では、各吹き出し口の内部に設けた噴流制御弁を中立にすることにより、吹き出し口からの噴流を上下に等しく出し、その時の姿勢を保つ強い安定力を得るとともに、姿勢を変える場合は、各噴流制御弁を動かし、上下の吹き出し量を変えるが、その際、前後あるいは左右の吹き出し口から出る上下の噴流の量をそれぞれ逆にすることにより、傾き力を得る構造・方式。  With regard to pitch and roll axis control during hovering, in a normal state, the jet flow control valve provided inside each blow-out port is made neutral, so that the jet flow from the blow-out port is made equal in the vertical direction, and the posture at that time is kept strong In order to obtain stability and change posture, each jet flow control valve is moved to change the upper and lower blowout amount. , Structure and method to get tilt force. ホバリング時におけるヨー軸の制御について、左右あるいは前後の吹き出し口から出る噴流を上下同時に、機体上面方向から見て、吹き出し口より直角方向へ偏向できる構造とし、その際、吹き出し方向を左右あるいは前後で反対にすることにより、ヨー軸の回転力を得る構造・方式。  Regarding the control of the yaw axis during hovering, the jet flow from the left and right or front and rear outlets can be deflected in the direction perpendicular to the outlet when viewed from the top of the aircraft at the same time. A structure and method that obtains the rotational force of the yaw axis by reversing it.
JP2006053771A 2006-01-31 2006-01-31 Vertical taking off and landing airplane Pending JP2007203008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053771A JP2007203008A (en) 2006-01-31 2006-01-31 Vertical taking off and landing airplane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053771A JP2007203008A (en) 2006-01-31 2006-01-31 Vertical taking off and landing airplane

Publications (1)

Publication Number Publication Date
JP2007203008A true JP2007203008A (en) 2007-08-16

Family

ID=38483000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053771A Pending JP2007203008A (en) 2006-01-31 2006-01-31 Vertical taking off and landing airplane

Country Status (1)

Country Link
JP (1) JP2007203008A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106081097A (en) * 2016-06-24 2016-11-09 张奕嘉 A kind of jet changement of aircraft
CN106608354A (en) * 2015-10-26 2017-05-03 李晋宇 Drone with wind guide part
US10095226B1 (en) 2008-02-12 2018-10-09 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US10717525B2 (en) 2013-06-25 2020-07-21 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method
US11260973B2 (en) 2013-06-25 2022-03-01 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095226B1 (en) 2008-02-12 2018-10-09 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US10248117B2 (en) 2008-02-12 2019-04-02 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US11281205B2 (en) 2008-02-12 2022-03-22 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US10717525B2 (en) 2013-06-25 2020-07-21 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method
US11260973B2 (en) 2013-06-25 2022-03-01 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method
US11801938B2 (en) 2013-06-25 2023-10-31 SZ DJI Technology Co., Ltd Aircraft control apparatus, control system and control method
CN106608354A (en) * 2015-10-26 2017-05-03 李晋宇 Drone with wind guide part
JP2017081544A (en) * 2015-10-26 2017-05-18 リ,ジン−ウ Unmanned aircraft having wind guide part
CN106081097A (en) * 2016-06-24 2016-11-09 张奕嘉 A kind of jet changement of aircraft

Similar Documents

Publication Publication Date Title
US11180248B2 (en) Fixed wing aircraft with trailing rotors
EP2899122B1 (en) Vertical takeoff and landing aircraft
US20190270517A1 (en) Vertical take-off and landing aircraft
US8181903B2 (en) Aircraft having the ability for hovering flight, fast forward flight, gliding flight, short take-off, short landing, vertical take-off and vertical landing
US6547180B1 (en) Impeller-powered vertical takeoff and descent aircraft
US5407150A (en) Thrust unit for VTOL aircraft
US5098034A (en) Vertical/short takeoff or landing aircraft having a rotatable wing and tandem supporting surfaces
US10287011B2 (en) Air vehicle
US6561456B1 (en) Vertical/short take-off and landing aircraft
US9487286B2 (en) Lift and propulsion device, and heavier-than-air aircraft provided with such a device
CN108298064B (en) Unconventional yaw control system
CN105882959A (en) Aircraft capable of vertical takeoff
US20080272244A1 (en) Hybrid Aircraft
CN113291466A (en) Fixed wing short take-off and landing aircraft and related method thereof
JP2009078745A (en) Electric vertical takeoff/landing aircraft
US9994312B2 (en) Vertical take-off and landing aircraft
CN106005394A (en) Rescue aircraft
JP2007203008A (en) Vertical taking off and landing airplane
TWI783337B (en) Carrier aircraft and driving method thereof
CN108528714A (en) Adjustable rotor engine head device for fixed-wing unmanned plane
JP6425323B1 (en) Floating type moving device
CN208021716U (en) Adjustable rotary wing mechanism for fixed-wing unmanned plane
CN208021740U (en) Adjustable rotor fuselage device for fixed-wing unmanned plane
RU180623U1 (en) VERTICAL TAKEOFF AND LANDING PLANE
WO2019202493A1 (en) A rotating uplift and carrier disk for vertical take-off and landing and also for forward flight, the mode of flight and its use