JP2009078745A - Electric vertical takeoff/landing aircraft - Google Patents

Electric vertical takeoff/landing aircraft Download PDF

Info

Publication number
JP2009078745A
JP2009078745A JP2007250634A JP2007250634A JP2009078745A JP 2009078745 A JP2009078745 A JP 2009078745A JP 2007250634 A JP2007250634 A JP 2007250634A JP 2007250634 A JP2007250634 A JP 2007250634A JP 2009078745 A JP2009078745 A JP 2009078745A
Authority
JP
Japan
Prior art keywords
landing
duct
center
aircraft
take
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007250634A
Other languages
Japanese (ja)
Inventor
Masashi Harada
正志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2007250634A priority Critical patent/JP2009078745A/en
Publication of JP2009078745A publication Critical patent/JP2009078745A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric vertical takeoff/landing aircraft having considerably high safety to an operator and a person to be rescued, and capable of stably performing transition flight transferring from the aerial-stop posture to the horizontal flight posture. <P>SOLUTION: The electric vertical takeoff/landing aircraft comprises duct fans 1-4 exclusive for takeoff/landing, a center fuselage 7 equipped with the duct fans, a center boom 9 extending backwardly from the center of the center fuselage 7, a left boom 11 and a right boom 10 extending backwardly respectively from the right and left rear ends, right and left duct fans 5, 6 for propulsion supported by the center fuselage 7 and held between the right and left booms 11, 10 and the center boom 9, and a battery 16 for supplying the power to motors for driving the duct fans 1-6. The sectional shape of the center fuselage 7 forms a vertically symmetric airfoil, and its plan view shape forms a rectangular shape having the aspect ratio of 0.4-0.8. Inlets and outlets of the duct fans 1-4 exclusive for takeoff/landing are always opened. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電動垂直離着陸機、特に操作者や被救助者に対する安全性が極めて高く且つ単純な機構により、ホバリング姿勢から水平飛行姿勢へ安定に移行することが出来る電動垂直離着陸機に関するものである。   TECHNICAL FIELD The present invention relates to an electric vertical take-off and landing aircraft, and more particularly to an electric vertical take-off and landing aircraft capable of stably shifting from a hovering posture to a horizontal flight posture with a highly safe and simple mechanism for an operator and a rescued person. .

災害時の遭難者捜索や、災害観測のために無人航空機を利用する試みが盛んに行われている。その無人航空機としては、始動性が良く、なお且つ取り扱いが容易な電動固定翼機が注目されている。また、離陸については、人がその固定翼機を持って手投げにより離陸させるか、或いはその固定翼機が滑走路を使用して離陸している。また、着陸については、その固定翼機が滑走路を使用して着陸するか、或いは人為的なネットによる回収などが行われている。目本の狭隘な国土事情を考えると、長い滑走路を無人飛行機の離着陸のために確保する事は不経済であり実用的ではない。一方、手投げで離陸させる場合には片手で支えられる重量以内に機体重量が収まっていなければならないという制約条件が加わる。また、離陸を手投げで行う場合、機体の失速速度が手投げ速度よりも低くなくてはならないため、翼面荷重を小さくせざるを得ず、強風時に飛行出来ないという問題がある。ところで、固定翼機が離着陸に滑走路を必要とする問題は、機体に垂直離着陸能力を持たせる事で解決する。垂直離着陸可能な航空機としてはヘリコプターが早くから実用化されている。他の垂直離着陸機としては、ティルトロータ方式のBell Boeing V-22 Osprey(非特許文献1を参照。)、リフトファン及びベクタリングジェットを併用したLockheed Martin F-35 Lightning II(非特許文献2を参照。)が最近実用域に入っている。
他方、垂直離着陸能力を持つ小型の無人航空機が採用している方式としては、(1)ヘリコプター方式、(2)ティルトロータ方式、(3)テールシッター方式、(4)コンパウンド方式がある。(1)ではヤマハのR-MAX(非特許文献3を参照。)が市販化に至っている。(2)ではBell Helicopter社のEagle Eye(非特許文献4を参照。)が市販化に至っている。(3)では特許文献1で示された垂直離着陸機をAllied Aerospace社がiStarの名で開発している。(4)ではSikorsky社がCypher II(特許文献2を参照。)の名で開発している。
無人航空機の使用者は必ずしも熟練した技術を持っているわけではないので、事故を未然に防ぐためにロータやプロペラに対し人が接触しない様にガードを設けて欲しい旨の強い要望がある。この点、ダクトファンは周囲をダクトで覆われているため、安全性が高い。複数のダクトファンを用いた垂直離着陸機はいままで様々な形態が開発されて来ており、その中でもダクトファンを4発使用したBell X-22A(非特許文献5を参照。)が有名である。X-22Aは4発のダクトファンを上に向けて離着陸及びホバリングを行い、ダクトファンを前方に向けて水平飛行を行う。ダクトファンを用いる垂直離着陸機の案は他にもライアンVX-5(非特許文献6を参照。)、特許文献2、特許文献3、特許文献4などがある。ライアンVX-5ではファンを閉じる必要があるため、その前後で空力特性が変わる問題と機構が複雑になる問題があった。
There have been many attempts to use unmanned aerial vehicles to search for victims during disasters and to observe disasters. As such an unmanned aerial vehicle, attention is paid to an electric fixed wing aircraft that has good startability and is easy to handle. As for take-off, a person takes the fixed-wing aircraft and takes it off by hand, or the fixed-wing aircraft takes off using a runway. As for landing, the fixed-wing aircraft is landing using a runway or is collected by an artificial net. Given the narrow national landscape of the main text, it is uneconomical and impractical to secure a long runway for unmanned airplane takeoff and landing. On the other hand, in the case of taking off by hand throwing, there is a constraint that the weight of the aircraft must be within the weight supported by one hand. In addition, when performing takeoff by hand throwing, the stall speed of the aircraft must be lower than the hand throwing speed, so there is a problem that the wing load must be reduced and the aircraft cannot fly during strong winds. By the way, the problem of fixed wing aircraft requiring a runway for takeoff and landing is solved by providing the aircraft with a vertical takeoff and landing capability. Helicopters have been put to practical use as an aircraft that can take off and land vertically. Other vertical take-off and landing aircraft include the tilt rotor type Bell Boeing V-22 Osprey (see Non-Patent Document 1), Lockheed Martin F-35 Lightning II (see Non-Patent Document 2) using a lift fan and vectoring jet. (See) has recently entered the practical range.
On the other hand, the methods adopted by small unmanned aerial vehicles with vertical takeoff and landing capabilities include (1) helicopter method, (2) tilt rotor method, (3) tail sitter method, and (4) compound method. In (1), Yamaha's R-MAX (see Non-Patent Document 3) has become commercially available. In (2), Bell Helicopter Eagle Eye (see Non-Patent Document 4) has been commercialized. In (3), Allied Aerospace has developed the vertical take-off and landing aircraft shown in Patent Document 1 under the name iStar. (4) is developed by Sikorsky under the name of Cypher II (see Patent Document 2).
Since unmanned aircraft users do not necessarily have skilled skills, there is a strong demand for a guard to prevent people from coming into contact with the rotor and propeller in order to prevent accidents. In this respect, since the duct fan is covered with a duct, safety is high. Various forms of vertical take-off and landing aircraft using a plurality of duct fans have been developed, and among them, Bell X-22A (refer to Non-Patent Document 5) using four duct fans is famous. . The X-22A will take off, land and hover with the four duct fans facing up, and will fly horizontally with the duct fan facing forward. Other examples of vertical take-off and landing aircraft using a duct fan include Ryan VX-5 (see Non-Patent Document 6), Patent Document 2, Patent Document 3, and Patent Document 4. In Ryan VX-5, it was necessary to close the fan, so there were problems that the aerodynamic characteristics changed before and after that and the mechanism became complicated.

特開平6−293296号公報JP-A-6-293296 米国特許第6,270,038号US Pat. No. 6,270,038 特開2004−122945号公報JP 2004-122945 A 特開2005−125976号公報JP 2005-125976 A 特開平3−70699号公報JP-A-3-70699 Jane's All the World's Aircraft 2006-2007、pp.652Jane's All the World's Aircraft 2006-2007, pp.652 Jane's All the World's Aircraft 1966-1967、pp.804Jane's All the World's Aircraft 1966-1967, pp.804 Jane's Unmanned Aerial Vehicles and Targets、Issue Twenty Seven、Nov.2006、pp 107Jane's Unmanned Aerial Vehicles and Targets, Issue Twenty Seven, Nov. 2006, pp 107 Jane's Unmanned Aerial Vehicles and Targets、Issue Twenty Seven、Nov.2006、pp 190Jane's Unmanned Aerial Vehicles and Targets, Issue Twenty Seven, Nov. 2006, pp 190 Jane's All the World's Aircraft 1966-1967、pp.192Jane's All the World's Aircraft 1966-1967, pp.192 Jane's All the World's Aircraft 1966-1967、pp.316Jane's All the World's Aircraft 1966-1967, pp.316

災害監視や災害時の被災者捜索に供するための航空機は始動性の高さと騒音の低さから電動である事が望ましい。また、長い滑走路を必要とする翼面荷重の高い固定翼機は実用性に乏しい。そこで、手投げで離陸を行い、草むらに胴体着陸させる方法が実用的な方法として考えられるが、手投げで離陸出来る飛行機は必然的に翼面荷重が小さく、外乱に弱い飛行機となってしまう。このような航空機は災害時であっても強い風が吹いている場合は飛行することが出来ない。
ヘリコプター等の垂直離着陸能力を持つ航空機を災害監視・被災者捜索機に採用すれば、上述の滑走路の問題、飛行速度の問題は解決することが出来る。
しかしながら、ヘリコプターはロータがむき出しであるため、使用者や被救助者にケガを与える可能性がある。同様な理由でティルトロータ機、ティルトウイング機は好ましくない。また、ティルトロータ機は可動部分で動力を伝達する難しさ、スワッシュプレートの機構的複雑さ、また遷移飛行時に主翼がローターからの吹き下ろしを受けて空力的に不安定になる問題がある。ティルトウイング機も同様に機構的難しさと遷移飛行時に主翼が失速に近い状態におかれる問題がある。またリフトファン方式のRyan XV-5は巡航時に上下面のルーバーでファンの穴(開口)を塞ぐため、空力特性がホバリング時と巡航時で異なる問題があった。
そこで、本発明は、上記実情に鑑み創案されたものであって、操作者や被救助者に対する安全性が極めて高く且つ単純な機構により、ホバリング姿勢から水平飛行姿勢へ安定に移行することが出来る電動垂直離着陸機を提供することを目的とする。
It is desirable that the aircraft used for disaster monitoring and victim search in the event of a disaster be electric because of its high startability and low noise. In addition, a fixed-wing aircraft with a high blade load that requires a long runway is not practical. Therefore, a method of taking off by hand throwing and landing on the grass on the grass is considered as a practical method. However, an airplane that can take off by hand throwing inevitably has a small wing surface load and is susceptible to disturbance. Such an aircraft cannot fly even in the event of a disaster if a strong wind is blowing.
If an aircraft with a vertical take-off and landing capability such as a helicopter is adopted for disaster monitoring and victim search, the above-mentioned runway problem and flight speed problem can be solved.
However, since the rotor of the helicopter is exposed, there is a possibility of injuring the user or the rescued person. For the same reason, the tilt rotor machine and the tilt wing machine are not preferable. In addition, tilt rotors have difficulty in transmitting power at moving parts, the mechanical complexity of the swash plate, and the problem that the main wing is blown down from the rotor during transitional flight and becomes aerodynamically unstable. The tilt wing machine has the same mechanical difficulty and the problem that the main wing is almost stalled during transitional flight. The lift fan type Ryan XV-5 also had a problem that the aerodynamic characteristics differed between hovering and cruising because the fan holes (openings) were closed by the upper and lower louvers during cruising.
Therefore, the present invention was devised in view of the above circumstances, and can be stably shifted from a hovering posture to a horizontal flight posture by a very high and simple mechanism for an operator or a rescued person. An object is to provide an electric vertical take-off and landing aircraft.

上記目的を達成するための請求項1に記載の電動垂直離着陸機は、4発の離着陸専用ダクトファンと、該離着陸専用ダクトファンを装備する中央胴体と、該中央胴体の中央から後方に伸びた中央ブームと、同右および左後端から各々後方に伸びた右ブームおよび左ブームと、該左右ブームに挟まれた位置に保持される2発の推進専用ダクトファンと、前記左右ブームの外側に取り付けられた左右水平尾翼および左右垂直尾翼と、前記中央胴体の中央から前方に長く伸びた機首と、前記ダクトファンを駆動する電動機に給電するバッテリパックとを具備した電動垂直離着陸機であって、前記中央胴体は翼舷方向の断面形状が上下対称の翼型を成し且つその平面形状がアスペクト比0.4から0.8の略矩形状を成し、並びに前記バッテリパックは前記機首の下部に沿って脱着可能に取り付けられていることを特徴とする。
上記電動垂直離着陸機では、離着陸専用のダクトファンを備えるため、離着陸するための長い滑走路を必要としなくなる。また、各ファンはダクトに収容されているため、ファンのブレードが外部に直接露出しなくなり、その結果、操作者(使用者)や被救助者(被災者)にケガを与える危険性が極めて低く機体の安全性が向上する。また、ファンがダクトに保護されているため、構造物との接触によりファンが損傷または駆動不能になる可能性についても極めて低くなり機体の耐性および信頼性が向上する。
また、中央胴体の断面形状が上下対称の翼型で且つその平面形状がアスペクト比0.4から0.8程度の矩形状を成しているため、中央胴体に離着陸専用ダクトファンを装備することが可能となる。この離着陸専用ダクトファンの補助により、機体は一定高度を保ちながらホバリング状態から失速速度まで加速して水平飛行に至ることが出来るようになる。これにより、失速速度を高く設定することが可能となる。つまり、上記中央胴体の離着陸専用ダクトファンにより、翼面荷重を高くすることができ、その結果、外乱に強い機体とすることが可能となる。
更には、バッテリパックが機首の下部に沿って脱着可能に取り付けられているため、機体の内部にアクセスせずにバッテリー交換が可能となり機体のメンテナンス性が向上する。加えて、機体が構造物や地面等に衝突した際に、バッテリが機体から容易に脱着することにより、ダクトファンの暴走を防止しフェイルセーフ機能を果たす。また、バッテリが機首から脱着することにより、機首がクラッシャブルゾーンを形成し、機体へのダメージを最小限に留め機体の衝突安全性が向上する。このように、本発明の電動垂直離着陸機は、離着陸専用ダクトファンと推進専用ダクトファンという極めて単純な機構によってホバリングから水平飛行に移行する遷移飛行を安定かつ安全に行うことが出来る。従って、上記諸問題はこの翼面荷重の高い電動垂直離着陸機によって好適に解決される。
In order to achieve the above object, an electric vertical take-off and landing aircraft according to claim 1 has four duct take-off and landing duct fans, a central fuselage equipped with the take-off and landing duct fan, and a rear extending from the center of the central fuselage. A central boom, a right boom and a left boom extending rearward from the right and left rear ends, two propulsion dedicated duct fans held at positions sandwiched between the left and right booms, and an outer side of the left and right booms An electric vertical take-off and landing aircraft comprising left and right horizontal tails and left and right vertical tails, a nose extending forward from the center of the central fuselage, and a battery pack for supplying electric power to the electric motor that drives the duct fan, The central fuselage has an aerofoil shape whose cross-sectional shape in the wing wing direction is vertically symmetrical, and its planar shape is a substantially rectangular shape with an aspect ratio of 0.4 to 0.8. Wherein the the are detachably mounted along the bottom.
Since the electric vertical take-off and landing aircraft includes a duct fan dedicated to take-off and landing, a long runway for taking off and landing is not required. In addition, since each fan is housed in a duct, the blades of the fan are not directly exposed to the outside. As a result, the risk of injury to the operator (user) and the rescued person (disaster) is extremely low. The safety of the aircraft is improved. Further, since the fan is protected by the duct, the possibility that the fan is damaged or cannot be driven by contact with the structure is extremely reduced, and the durability and reliability of the airframe are improved.
In addition, the central fuselage has a symmetrical airfoil profile and its planar shape is rectangular with an aspect ratio of about 0.4 to 0.8, so it is possible to equip the center fuselage with a duct fan dedicated to takeoff and landing. . With the assistance of this take-off and landing duct fan, the aircraft can accelerate from the hovering state to the stall speed while maintaining a constant altitude and reach a level flight. This makes it possible to set the stall speed high. That is, the wing surface load can be increased by the duct fan dedicated to take-off and landing in the central fuselage, and as a result, it is possible to make the aircraft strong against disturbance.
Furthermore, since the battery pack is detachably attached along the lower part of the nose, the battery can be replaced without accessing the inside of the aircraft, and the maintainability of the aircraft is improved. In addition, when the aircraft collides with a structure or the ground, the battery is easily detached from the aircraft, thereby preventing the duct fan from running away and achieving a fail-safe function. Further, when the battery is detached from the nose, the nose forms a crushable zone, minimizing damage to the fuselage and improving the collision safety of the fuselage. As described above, the electric vertical take-off and landing aircraft according to the present invention can stably and safely perform a transitional flight from hovering to horizontal flight by a very simple mechanism of a take-off and landing duct fan and a propulsion duct fan. Therefore, the above problems are preferably solved by the electric vertical take-off and landing aircraft having a high wing load.

請求項2に記載の電動垂直離着陸機では、前記4発の離着陸専用ダクトファンは、前記中央胴体を上下に貫通する形態で、中心を機体の重心とし且つ一の対向する二辺を進行方向に対し平行にした正方形の各頂点に配置されていることとした。
上記電動垂直離着陸機では、4発の離着陸専用ダクトファンを上記構成とすることにより、遷移飛行時の機体の姿勢制御が容易となる。
The electric vertical take-off and landing aircraft according to claim 2, wherein the four duct take-off and landing duct fans vertically penetrate the central fuselage, the center is the center of gravity of the aircraft, and one opposite two sides are in the traveling direction. It was arranged at each vertex of a square parallel to the other.
In the electric vertical take-off and landing aircraft described above, it is easy to control the attitude of the airframe during transitional flight by configuring the four duct take-off and landing duct fans as described above.

請求項3に記載の電動垂直離着陸機では、水平飛行時において前記離着陸専用ダクトファンの上面及び下面を可動式のルーバーで覆わずに開口させていることとした。
上記電動垂直離着陸機では、4発の離着陸専用ダクトファンの上面及び下面を開口させることにより、空力特性が巡航時とホバリング時とで変わらなくなり、ホバリング時から水平飛行時への遷移飛行をスムーズに行うことが可能となると同時に、構造が簡単になり信頼性が向上する。
In the electric vertical take-off and landing aircraft according to claim 3, the upper and lower surfaces of the take-off and landing dedicated duct fan are opened without being covered with a movable louver during horizontal flight.
In the above electric vertical take-off and landing aircraft, by opening the upper and lower surfaces of the four duct take-off and landing duct fans, the aerodynamic characteristics will not change between cruising and hovering, and the transition flight from hovering to horizontal flight will be smooth. At the same time, the structure is simplified and the reliability is improved.

請求項4に記載の電動垂直離着陸機では、前記離着陸専用ダクトファンおよび前記推進専用ダクトファンは、円盤荷重が50kgf/m2から100kgf/m2である固定ピッチファンと電動機から成り、且つ前記ダクトファンの推力制御は該電動機の回転数を制御することによって行われることとした。
上記電動垂直離着陸機では、離着陸専用および推進専用ダクトファンを上記構成とすることにより、遷移飛行時の機体の姿勢制御が容易となる。また、ファンを駆動するアクチュエータとして電動機を用いることにより、ダクトファンは始動性が高く、騒音レベルが低く、なお且つ信頼性が高くなる。
5. The electric vertical take-off and landing aircraft according to claim 4, wherein the take-off / landing duct fan and the propulsion-only duct fan are composed of a fixed pitch fan having a disk load of 50 kgf / m 2 to 100 kgf / m 2 and an electric motor, and the duct The fan thrust control is performed by controlling the rotational speed of the electric motor.
In the electric vertical take-off and landing aircraft described above, the take-off and landing dedicated and propulsion dedicated duct fans are configured as described above, thereby making it easy to control the attitude of the aircraft during the transitional flight. In addition, by using an electric motor as an actuator for driving the fan, the duct fan has high startability, low noise level, and high reliability.

請求項5に記載の電動垂直離着陸機では、前記離着陸専用ダクトファンの間隔は前後左右でほぼ等しく、離着陸専用ダクトファンの内径をdoとしたとき、0.4doから1.0doであることとした。
上記電動垂直離着陸機では、離着陸専用ダクトファンを上記構成とすることにより、遷移飛行時の機体の姿勢制御が容易となる。
And it the electric vertical take-off and landing aircraft according to claim 5, the interval of the takeoff and landing dedicated duct fan substantially equal in all directions, when the inner diameter of the takeoff and landing dedicated duct fan was d o, is 1.0d o from 0.4d o did.
In the electric vertical take-off and landing aircraft, the take-off and landing dedicated duct fan is configured as described above, whereby the attitude control of the aircraft during transitional flight is facilitated.

請求項6に記載の電動垂直離着陸機では、前記推進専用ダクトファンの内径は0.9doから1.2doであり、且つダクトの間隔は0.2doから0.8doであることとした。
上記電動垂直離着陸機では、推進専用ダクトファンを上記構成とすることにより、遷移飛行時の機体の姿勢制御が容易となる。
The electric vertical take-off and landing aircraft according to claim 6, the inner diameter of the propulsion dedicated duct fan is 1.2d o from 0.9D o, and spacing of the duct was be 0.8d o from 0.2d o.
In the electric vertical take-off and landing aircraft, the propulsion-only duct fan is configured as described above, so that the attitude control of the aircraft during transition flight is facilitated.

請求項7に記載の電動垂直離着陸機では、前記垂直尾翼は前記推進専用ダクトファンに対し0.1doから0.5doの距離を隔てて前記左右ブームの外側に取り付けられていることとした。
上記電動垂直離着陸機では、垂直尾翼を上記構成とすることにより、垂直尾翼と推進専用ダクトファンとの間に形成されるチャンネルを流れる気流による抵抗力の増加を好適に抑制する。
The electric vertical take-off and landing aircraft according to claim 7, wherein the vertical tail was that attached to the outside of the left and right boom at a distance of 0.5d o from 0.1d o to the propulsion dedicated duct fan.
In the electric vertical take-off and landing aircraft, the vertical tail is configured as described above, so that an increase in resistance due to an airflow flowing through a channel formed between the vertical tail and the propulsion dedicated duct fan is suitably suppressed.

請求項8に記載の電動垂直離着陸機では、前記水平尾翼は、水平安定板とエレボンから成り、且つ該水平安定板の空力中心と機体の重心との距離は3doから7doであることとした。
上記電動垂直離着陸機では、水平尾翼を上記構成とすることにより、前進飛行時(水平飛行時)における機体のロール角制御とピッチ角制御を容易に行うことが出来る。
In the electric vertical take-off and landing aircraft according to claim 8, the horizontal tail is composed of a horizontal stabilizer and an elevon, and the distance between the aerodynamic center of the horizontal stabilizer and the center of gravity of the fuselage is from 3d o to 7d o did.
In the electric vertical take-off and landing aircraft, the roll tail control and pitch angle control of the aircraft during forward flight (during horizontal flight) can be easily performed by configuring the horizontal tail as described above.

請求項9に記載の電動垂直離着陸機では、前記主翼は、アスペクト比が4から7である矩形翼あるいは弱いテーパー比を持つ直線翼であり、且つ翼幅は5doから10doであることとした。
上記電動垂直離直陸機では、主翼を上記構成とすることにより、ホバリング時、遷移飛行時および水平飛行時における機体の姿勢が安定する。
And it the electric vertical take-off and landing aircraft according to claim 9, wherein the wing is a straight blade which aspect ratio has a rectangular blade or weak taper ratio is from 4 to 7, and spanwise is 10d o from 5d o did.
In the electric vertical takeoff and lander, the main wing is configured as described above, so that the attitude of the aircraft is stable during hovering, transitional flight, and horizontal flight.

本発明の電動垂直離着陸機によれば、以下に記す効果が期待される。
(1)上昇力および推進力を発生する手段としてダクトファンを用いるため、被作動時(被取扱時)、ホバリング時および衝突時にファンブレードの先端で人にケガを与える危険性が少なくなる。
(2)ホバリング時の姿勢制御は4発の離着陸専用ダクトファンの回転数制御のみで行われるため、機構が単純化され信頼性が高くなる。
(3)前進飛行時、離着陸時およびホバリング時において機体形状が変わらないため、空力的特性が一定であり制御しやすく、且つ機構が簡単で機械的信頼性が高い。
特に、前進飛行時において、ダクトファンの入口および出口を可動式ルーバーで覆わないため、空力的に特性が一定であり扱いやすく、機械的信頼性が高い。
(4)ファンを駆動するアクチュエータは電動機であるため、騒音レベルが低く、始動性が高く、且つ信頼性が高い。
(5)水平飛行時においても離着陸専用ダクトファンの推力を利用することにより旋回半径を小さくする事が出来る(Vectoring in Forward Flightと呼ばれる機動)。
(6)離着陸専用ダクトファンの推力と推進専用ダクトファンの推力との合成ベクトルの向きを真下から後方へ瞬時に偏向する事が出来る。この偏向速度は推力偏向方式の垂直離着陸機に比べて圧倒的に早く、操縦者(操作者)の意のままに制御することができ、遷移飛行を容易にする。
(7)揚力の一部を主翼が負担し、残りを離着陸専用ダクトファンが負担しているような遷移飛行状態においてもロール角,ピッチ角,ヨー角の制御をホバリング時と同様の離着陸専用ダクトファンの推力制御と、エレボンによる前進時の制御との単純な線形和として行うことが出来るようになり、遷移飛行時の制御が容易となる。
According to the electric vertical take-off and landing aircraft of the present invention, the following effects are expected.
(1) Since a duct fan is used as a means for generating ascending force and propulsive force, the risk of injury to the person at the tip of the fan blade during operation (during handling), hovering and collision is reduced.
(2) Attitude control during hovering is performed only by controlling the number of rotations of the four take-off and landing duct fans, which simplifies the mechanism and increases reliability.
(3) Since the airframe shape does not change during forward flight, takeoff / landing, and hovering, the aerodynamic characteristics are constant, the control is easy, the mechanism is simple, and the mechanical reliability is high.
In particular, during forward flight, since the duct fan inlet and outlet are not covered by the movable louvers, the characteristics are aerodynamically constant and easy to handle, and the mechanical reliability is high.
(4) Since the actuator that drives the fan is an electric motor, the noise level is low, the startability is high, and the reliability is high.
(5) Even during horizontal flight, the turning radius can be reduced by utilizing the thrust of the duct fan dedicated to takeoff and landing (maneuver called Vectoring in Forward Flight).
(6) The direction of the combined vector of the thrust of the duct fan dedicated to takeoff and landing and the thrust of the duct fan dedicated to propulsion can be instantaneously deflected from directly below to the rear. This deflection speed is overwhelmingly faster than thrust deflection type vertical take-off and landing aircraft, and can be controlled as desired by the operator (operator), facilitating transitional flight.
(7) Takeoff / landing duct that controls the roll angle, pitch angle, and yaw angle in the transition flight state where the main wing bears a part of the lift and the rest is taken by the takeoff / landing duct fan. It becomes possible to carry out as a simple linear sum of the thrust control of the fan and the forward control by the elevon, and the control during the transition flight becomes easy.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は本発明の電動垂直離着陸機100を示す上方斜視図である。図2は同下方斜視図であり、図3は同上面図であり、図4は同側面図であり、図5は同正面図である。
図1及び図2に示すように、この電動垂直離着陸機100は中央胴体7に揚力を発生する、離着陸専用ダクトファンとしての右前ダクトファン1、左前ダクトファン2、右後ダクトファン3、および左後ダクトファン4を備えている。また中央胴体7の中央から後方に中央ブーム9が伸びており、また中央胴体7の左右後端から右ブーム10と左ブーム11が各々後方に伸びている。推進力を発生する右推進用ダクトファン5は右ブーム10と中央ブーム9との間に保持され、同じく推進力を発生する左推進用ダクトファン6は左ブーム11と中央ブーム9との間に保持されている。
FIG. 1 is an upper perspective view showing an electric vertical take-off and landing aircraft 100 of the present invention. 2 is a perspective view, FIG. 3 is a top view, FIG. 4 is a side view, and FIG. 5 is a front view.
As shown in FIGS. 1 and 2, the electric vertical take-off and landing aircraft 100 generates lift in the central fuselage 7, and the right front duct fan 1, the left front duct fan 2, the right rear duct fan 3, and the left A rear duct fan 4 is provided. A central boom 9 extends rearward from the center of the central body 7, and a right boom 10 and a left boom 11 extend rearward from the left and right rear ends of the central body 7. The right propulsion duct fan 5 that generates propulsive force is held between the right boom 10 and the central boom 9, and the left propulsion duct fan 6 that also generates propulsive force is interposed between the left boom 11 and the central boom 9. Is retained.

上記ダクトファン1〜6は、すべて内径d0=50mmであり、ファンは3枚ブレード、ピッチ75mmであり、Kv値=5300のブラシレスモータによって直接駆動される。なお、ファンの回転方向を左右で反対にする事が望ましいが、これは必須ではなく同方向であっても良い。 The duct fans 1 to 6 all have an inner diameter d 0 = 50 mm, the fans have three blades and a pitch of 75 mm, and are directly driven by a brushless motor having a Kv value = 5300. In addition, although it is desirable to make the rotation direction of a fan reverse on right and left, this is not essential and may be the same direction.

中央胴体7の(翼舷方向に平行する)断面形状は上下対称の翼型をなし、その平面形状は、図3に示すように例えば全長295mm、幅166mmのアスペクト比=0.55の前後に長い矩形状を成している。また空気抵抗を減らすために中央胴体7の左右前縁に45度の後退角を与えている。また、この中央胴体7の前縁から117mmの位置に機体重心がある。この機体重心を中心とする一辺80mmの正方形の頂点に各中心が来る様に上記離着陸専用ダクトファン1〜4を配置する。ここで正方形の一辺の長さを2l0とも表記する。 The cross-sectional shape of the central fuselage 7 (parallel to the wing wing direction) is a vertically symmetric airfoil shape, and its planar shape is a rectangular shape with a total length of 295 mm and a width of 166 mm, for example, as shown in FIG. It has a shape. In order to reduce the air resistance, a 45 ° receding angle is given to the left and right front edges of the central body 7. Further, the center of gravity of the aircraft is at a position 117 mm from the front edge of the central fuselage 7. The take-off and landing duct fans 1 to 4 are arranged so that each center comes to the apex of a square with a side of 80 mm centered on the center of gravity of the aircraft. Here, the length of one side of the square is also expressed as 2l 0 .

主翼12のスパンは600mmであり、主翼12の翼弦長は付け根で150mm、先端で120mmと弱いテーパがついている。翼断面形状は比較的キャンバーが大きい形状を用いている。本実施例ではエルロンを省略しているが、装備していても良い。   The span of the main wing 12 is 600 mm, and the chord length of the main wing 12 is 150 mm at the base and 120 mm at the tip. The blade has a relatively large camber shape. Although the aileron is omitted in this embodiment, it may be equipped.

機首8は長く、先端に発泡ポリプロピレンの緩衝材を用いている。また内部に受信機、飛行制御エレクトロニクスを含む航空電子工学システムを収容している。また機首8を長くとることで内部機器の前後移動が可能となり重心の位置調整が容易になる。さらに物体に衝突した際に機首8が破壊されてエネルギーを吸収し破壊が限定的になるように、機首8の構造を弱くすると共に、取り外し可能としている。   The nose 8 is long and uses a foamed polypropylene cushioning material at the tip. It also houses an avionics system that includes a receiver and flight control electronics. Further, by taking the nose 8 long, the internal device can be moved back and forth, and the position of the center of gravity can be easily adjusted. Further, the nose 8 is weakened and detachable so that the nose 8 is destroyed when it collides with an object to absorb energy and limit the destruction.

右前、左前、右後および左後ダクトファン1〜4は、中央胴体7を上下に貫通して装備される。図5に示すように、離着陸専用ダクトファン1〜4の出口には2枚の固定ルーバー19,19が15度外側に傾いて備えられており、上記離着陸専用ダクトファン1〜4の噴流を角度β(β≒10°)だけ外側に向ける。   The right front, left front, right rear, and left rear duct fans 1 to 4 are installed through the central body 7 up and down. As shown in FIG. 5, two fixed louvers 19 and 19 are provided at the exit of the take-off and landing duct fans 1 to 4 so as to be inclined 15 degrees outward, and the jet flow of the take-off and landing duct fans 1 to 4 is angled. Direct outward by β (β ≒ 10 °).

水平安定板13,13および垂直尾翼15,15は右ブーム10、左ブーム11の外側に各々装備され、重心位置からのモーメントアームを稼いでいる。縦及び横方向の安定が悪いときは図示した左右ブーム10,11の長さを長くすれば良い。この時、左右推進用ダクトファン5,6は中央胴体7の直後に配置されているため、左右ブーム10,11の延長でこれらが後方に移動する事は無い。また垂直尾翼15,15と左右推進用ダクトファン5,6との間にチャンネルが出来るが、左右ブーム10,11の幅を大きめにとることでチャンネルを通過する流れによる抵抗増加を防いでいる。エレボン14を水平安定板13にヒンジを介して取付け、前進飛行中のロール角及びピッチ角の制御に用いる。なお、本実施例ではラダー及びエルロンを装備しなかったが、これらを装備しても良い。   The horizontal stabilizers 13 and 13 and the vertical tails 15 and 15 are provided outside the right boom 10 and the left boom 11, respectively, and earn moment arms from the position of the center of gravity. When the stability in the vertical and horizontal directions is poor, the length of the left and right booms 10 and 11 shown in the figure may be increased. At this time, since the right and left propulsion duct fans 5 and 6 are arranged immediately after the central body 7, they are not moved backward by the extension of the left and right booms 10 and 11. Further, a channel is formed between the vertical tails 15 and 15 and the left and right propulsion duct fans 5 and 6, but by increasing the width of the left and right booms 10 and 11, an increase in resistance due to a flow passing through the channels is prevented. The elevon 14 is attached to the horizontal stabilizer 13 via a hinge and used to control the roll angle and pitch angle during forward flight. In this embodiment, the ladder and the aileron are not equipped, but these may be equipped.

主降着装置(メインランディングギア)18は中央胴体7の左右に各々配置し、前輪(ノーズギア)17は機首8に配置した。これらを用いて電動垂直離着陸機100は滑走路からの離陸および着陸を行うことも可能となる。   Main landing gears (main landing gears) 18 are disposed on the left and right sides of the central body 7, and front wheels (nose gears) 17 are disposed on the nose 8. Using these, the electric vertical take-off and landing aircraft 100 can take off and land from the runway.

バッテリ16は、例えば3セル11.1V,1800mAhのリチウムイオンポリマー電池を空力的に優れた形状のコンテナに内蔵したものであり、交換はこのコンテナごと行う。バッテリ16は中央胴体7に密着させて後方にスライドさせる事で中央胴体7と機械的または電気的に接続されるようになっている。こうする事でバッテリを交換するために機体を開ける手間を省くと共に、物体に衝突した際に重量物であるバッテリ16が外れて、中央胴体7に加わる応力を軽減すると共に、モータとバッテリ16との電気的接続が解かれ、機体の暴走を防止する事ができる。また、バッテリ16の先端に発泡ポリプロピレン等の緩衝材を用いることにより衝突した物体への被害を軽減する。   The battery 16 includes, for example, a three-cell 11.1V, 1800 mAh lithium ion polymer battery built in a container having an aerodynamically excellent shape, and replacement is performed for the entire container. The battery 16 is mechanically or electrically connected to the central body 7 by being brought into close contact with the central body 7 and sliding backward. This saves the trouble of opening the airframe to replace the battery, removes the heavy battery 16 when it collides with an object, reduces the stress applied to the central fuselage 7, and reduces the motor and battery 16 The electrical connection is released, and the aircraft can be prevented from running away. Further, the use of a cushioning material such as foamed polypropylene at the tip of the battery 16 reduces the damage to the colliding object.

本発明の電動垂直離着陸機100の機体重量は620g、上記離着陸専用および推進専用ダクトファン1〜6の最大推力は各々200gである。   The fuselage weight of the electric vertical take-off and landing aircraft 100 of the present invention is 620 g, and the maximum thrust of the take-off and landing dedicated and propulsion dedicated duct fans 1 to 6 is 200 g.

ここで、機体のロール角、ピッチ角およびヨー角の制御についての一例を挙げると、前進飛行時にはエレボンによりロール角制御とピッチ角制御を行う。また、ホバリング時の高度制御については4つの離着陸専用ダクトファン1〜4の合計推力を増減させて行う。また、ホバリング時のピッチ角制御については、例えばピッチ角が増加する場合は前2つの離着陸専用ダクトファン1,2の合計推力を後2つの離着陸専用ダクトファン3,4の合計推力よりも大きくする事で行う。また、ホバリング時のロール角制御については、例えばロール角が増加する場合は左2つの離着陸専用ダクトファン2,4の合計推力を右2つの離着陸専用ダクトファン1,3の合計推力よりも大きくする事で行う。   Here, as an example of control of the roll angle, pitch angle, and yaw angle of the airframe, roll angle control and pitch angle control are performed by elevons during forward flight. In addition, altitude control during hovering is performed by increasing or decreasing the total thrust of the four takeoff and landing dedicated duct fans 1 to 4. As for pitch angle control during hovering, for example, when the pitch angle increases, the total thrust of the front two takeoff and landing duct fans 1 and 2 is made larger than the total thrust of the rear two takeoff and landing duct fans 3 and 4. Do things. As for the roll angle control at the time of hovering, for example, when the roll angle increases, the total thrust of the left two take-off / landing duct fans 1, 4 is made larger than the total thrust of the right two take-off / landing duct fans 1, 3 Do things.

上述した通り、4発の離着陸専用ダクトファン1〜4の出口には固定ルーバー19が設けられ、ダクト出口の流れを外側に偏向させる。これにより右前と左後の離着陸専用ダクトファン1,4は機首を左に向ける水平分力を生じ、左前と右後の離着陸専用ダクトファン2,3は機首を右に向ける水平分力を生じる。従って、ホバリング時のヨー角制御については、例えばヨー角が増加する場合は左前と右後の離着陸専用ダクトファン2,3の合計推力を右前と左後の離着陸専用ダクトファン1,4の合計推力よりも大きくする事で行う。   As described above, the fixed louvers 19 are provided at the exits of the four takeoff and landing dedicated duct fans 1 to 4 to deflect the flow at the duct exits outward. As a result, the right and left rear take-off and landing duct fans 1 and 4 generate horizontal component forces that point the nose to the left, and the left front and right rear take-off and landing duct fans 2 and 3 generate horizontal component forces that point the nose to the right Arise. Therefore, with regard to yaw angle control during hovering, for example, when the yaw angle increases, the total thrust of the left front and right rear take-off and landing duct fans 1 and 4 is the total thrust of the right front and left rear take-off and landing duct fans 1 and 4 It is done by making it bigger.

以下、右前ダクトファン1の推力をT1、左前ダクトファン2の推力をT2、右後ダクトファン3の推力をT3、左後ダクトファン4の推力をT4、右推進用ダクトファン5の推力をT5、左推進用ダクトファン6の推力をT6とする。
ホバリング時における機体の高度制御は次式で定義されるダクトファンが発生する揚力FDを増減させて行う。
FD=(T1+T2+T3+T4)cosβ
ここでcosβが全体にかかるのはそれぞれの離着陸専用ダクトファンの推力線が固定ルーバー19によって外側にβだけ偏向されているためである。
Hereinafter, the thrust of the right front duct fan 1 is T 1 , the thrust of the left front duct fan 2 is T 2 , the thrust of the right rear duct fan 3 is T 3 , the thrust of the left rear duct fan 4 is T 4 , and the right propulsion duct fan 5 the thrust T 5, the thrust of the left propulsion duct fan 6 and T 6.
The advanced control of the aircraft during hover carried out by increasing or decreasing the lift F D of the duct fan, which is defined by the following equation is generated.
F D = (T 1 + T 2 + T 3 + T 4 ) cosβ
Here, cos β is applied to the whole because the thrust lines of the duct fans dedicated to takeoff and landing are deflected outward by β by the fixed louver 19.

ホバリング時における機体のロール角を制御するときは次式で定義されるローリングモーメントLを増減させて行う。
L=l0(-T1+T2-T3+T4)cosβ
ここでl0は前出のとおり重心位置からダクトファンまでの左右の問隔および前後の間隔である。
When controlling the roll angle of the aircraft during hovering, the rolling moment L defined by the following equation is increased or decreased.
L = l 0 (-T 1 + T 2 -T 3 + T 4 ) cosβ
Here, l 0 is the left and right question distance from the center of gravity position to the duct fan and the front and rear distance as described above.

ホバリング時における機体のピッチ角を制御するときは次式で定義されるピッチングモーメントMを増減させて行う。
M=l0(T1+T2-T3-T4)cosβ
When controlling the pitch angle of the aircraft during hovering, the pitching moment M defined by the following equation is increased or decreased.
M = l 0 (T 1 + T 2 -T 3 -T 4 ) cosβ

ホバリング時における機体のヨー角を制御するときは次式で定義されるヨーイングモーメントNを増減させて行う。
N=l0(-T1+T2+T3-T4)sinβ
When controlling the yaw angle of the aircraft during hovering, increase or decrease the yawing moment N defined by the following equation.
N = l 0 (-T 1 + T 2 + T 3 -T 4 ) sinβ

前進飛行時に前進速度を制御するには次式で与えられる推力T0を増減させて行う。
T0=T5+T6
In order to control the forward speed during forward flight, the thrust T 0 given by the following equation is increased or decreased.
T 0 = T 5 + T 6

前進飛行時に機体のロール角を増加させるときは、右のエレボン14を上げ舵に、左のエレボン14を下げ舵にて行う。   When increasing the roll angle of the aircraft during forward flight, the right elevon 14 is raised and the left elevon 14 is lowered.

前進飛行時に機体のピッチ角を増加させるときは、右のエレボン14と左のエレボン14をともに上げ舵にして行う。   When increasing the pitch angle of the aircraft during forward flight, both the right and left elevons 14 are raised and steered.

遷移飛行時には主翼が発生する揚力FWとダクトファンで発生する揚力FDの和が機体重量に等しくなるように制御する。また主翼が発生する揚力FWとダクトファンで発生する揚力FDとの比率に比例して、遷移飛行時の制御方法をホバリング時の制御方法と前進飛行時の制御方法との線形和とする。 During the transition flight sum of lift F D generated by lift F W and the duct fan wing occurs is controlled to be equal to the body weight. Also in proportion to the ratio of the lift force F D generated by lift F W and the duct fan wing occurs, the linear sum of the control method of the forward flight when the control method of the hovering control method at the time of transition flight .

本発明の電動垂直離着陸機は、災害監視や災害時の被災者捜索に好適に適用され得る。   The electric vertical take-off and landing aircraft of the present invention can be suitably applied to disaster monitoring and victim search during a disaster.

本発明の電動垂直離着陸機を示す上方斜視図である。It is an upper perspective view showing the electric vertical take-off and landing aircraft of the present invention. 本発明の電動垂直離着陸機を示す下方斜視図である。It is a lower perspective view showing the electric vertical take-off and landing aircraft of the present invention. 本発明の電動垂直離着陸機を示す上面図である。1 is a top view showing an electric vertical take-off and landing aircraft of the present invention. 本発明の電動垂直離着陸機を示す側面図である。1 is a side view showing an electric vertical take-off and landing aircraft of the present invention. 本発明の電動垂直離着陸機を示す正面図である。1 is a front view showing an electric vertical take-off and landing aircraft of the present invention.

符号の説明Explanation of symbols

1 右前ダクトファン
2 左前ダクトファン
3 右後ダクトファン
4 左後ダクトファン
5 右推進用ダクトファン
6 左推進用ダクトファン
7 中央胴体
8 機首
9 中央ブーム
10 右ブーム
11 左ブーム
12 主翼
13 水平安定板
14 エレボン
15 垂直尾翼
16 バッテリ
17 前輪
18 主降着装置
19 固定ルーバー
100 電動垂直離着陸機
1 right front duct fan 2 left front duct fan 3 right rear duct fan 4 left rear duct fan 5 right propulsion duct fan 6 left propulsion duct fan 7 central fuselage 8 nose 9 central boom 10 right boom 11 left boom 12 main wing 13 horizontal stability Plate 14 Elebon 15 Vertical tail 16 Battery 17 Front wheel 18 Main landing gear 19 Fixed louver 100 Electric vertical take-off and landing aircraft

Claims (9)

4発の離着陸専用ダクトファンと、該離着陸専用ダクトファンを装備する中央胴体と、該中央胴体の中央から後方に伸びた中央ブームと、同右および左後端から各々後方に伸びた右ブームおよび左ブームと、該左右ブームに挟まれた位置に保持される2発の推進専用ダクトファンと、前記左右ブームの外側に取り付けられた左右水平尾翼および左右垂直尾翼と、前記中央胴体の中央から前方に長く伸びた機首と、前記ダクトファンを駆動する電動機に給電するバッテリパックとを具備した電動垂直離着陸機であって、前記中央胴体は翼舷方向の断面形状が上下対称の翼型を成し且つその平面形状がアスペクト比0.4から0.8の略矩形状を成し、並びに前記バッテリパックは前記機首の下部に沿って脱着可能に取り付けられていることを特徴とする電動垂直離着陸機。   Four takeoff and landing duct fans, a central fuselage equipped with the takeoff and landing duct fan, a central boom extending rearward from the center of the central fuselage, a right boom and left extending rearward from the right and left rear ends, respectively A boom, two dedicated duct fans for propulsion held at positions sandwiched between the left and right booms, left and right horizontal tails and left and right vertical tails attached to the outside of the left and right booms, and forward from the center of the central fuselage An electric vertical take-off and landing aircraft having a long nose and a battery pack that supplies power to an electric motor that drives the duct fan, wherein the central fuselage has a wing shape whose cross-sectional shape in the wing wing direction is symmetrical vertically The planar shape is substantially rectangular with an aspect ratio of 0.4 to 0.8, and the battery pack is detachably attached along the lower part of the nose. Dynamic vertical take-off and landing aircraft. 前記4発の離着陸専用ダクトファンは、前記中央胴体を上下に貫通する形態で、中心を機体の重心とし且つ一の対向する二辺を進行方向に対し平行にした正方形の各頂点に配置されている請求項1に記載の電動垂直離着陸機。   The four duct take-off and landing duct fans are arranged at the vertices of a square with the center passing through the center fuselage and having the center as the center of gravity of the fuselage and the two opposite sides parallel to the traveling direction. The electric vertical take-off and landing aircraft according to claim 1. 水平飛行時において前記離着陸専用ダクトファンの上面及び下面を可動式のルーバーで覆わずに開口させている請求項1又は2に記載の電動垂直離着陸機。   The electric vertical take-off and landing aircraft according to claim 1 or 2, wherein the upper and lower surfaces of the take-off and landing duct fan are opened without being covered with a movable louver during horizontal flight. 前記離着陸専用ダクトファンおよび前記推進専用ダクトファンは、円盤荷重が50kgf/m2から100kgf/m2である固定ピッチファンと電動機から成り、且つ前記ダクトファンの推力制御は該電動機の回転数を制御することによって行われる請求項1から3の何れかに記載の電動垂直離着陸機。 The take-off and landing duct fan and the propulsion duct fan are composed of a fixed pitch fan and an electric motor having a disk load of 50 kgf / m 2 to 100 kgf / m 2 , and thrust control of the duct fan controls the rotation speed of the electric motor The electric vertical take-off and landing aircraft according to any one of claims 1 to 3, wherein the electric vertical take-off and landing aircraft is performed. 前記離着陸専用ダクトファンの間隔は前後左右でほぼ等しく、離着陸専用ダクトファンの内径をdoとしたとき、0.4doから1.0doである請求項1から4の何れかに記載の電動垂直離着陸機。 Approximately equal, when the inner diameter of the takeoff and landing dedicated duct fan was d o, electric vertical take-off and landing according to claims 1 is 1.0d o from 0.4d o to one of 4 intervals of the takeoff and landing dedicated duct fans in all directions Machine. 前記推進専用ダクトファンの内径は0.9doから1.2doであり、且つダクトの間隔は0.2doから0.8doである請求項5に記載の電動垂直離着陸機。 The inner diameter of the propulsion dedicated duct fan is 1.2d o from 0.9D o, and electric VTOL aircraft as recited in claim 5 spacing duct is 0.8d o from 0.2d o. 前記垂直尾翼は前記推進専用ダクトファンに対し0.1doから0.5doの距離を隔てて前記左右ブームの外側に取り付けられている請求項5又は6に記載の電動垂直離着陸機。 The vertical tail electric vertical take-off and landing aircraft according to claim 5 or 6 is mounted on the outside of the left and right boom at a distance of 0.5d o from 0.1d o to the propulsion dedicated duct fan. 前記水平尾翼は、水平安定板とエレボンから成り、且つ該水平安定板の空力中心と機体の重心との距離は3doから7doである請求項5から7の何れかに記載の電動垂直離着陸機。 The horizontal stabilizer is horizontal consists stabilizer and elevons and horizontal distance between the center of gravity of the aerodynamic center and body of the stabilization plate electric VTOL according to any of claims 5 7 from 3d o is 7d o Machine. 前記主翼は、アスペクト比が4から7である矩形翼あるいは弱いテーパー比を持つ直線翼であり、且つ翼幅は5doから10doである請求項5から8の何れかに記載の電動垂直離着陸機。 The wing is a straight blade which aspect ratio has a rectangular blade or weak taper ratio is from 4 to 7, and spanwise electric VTOL according to any of claims 5 8 from 5d o is 10d o Machine.
JP2007250634A 2007-09-27 2007-09-27 Electric vertical takeoff/landing aircraft Withdrawn JP2009078745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250634A JP2009078745A (en) 2007-09-27 2007-09-27 Electric vertical takeoff/landing aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250634A JP2009078745A (en) 2007-09-27 2007-09-27 Electric vertical takeoff/landing aircraft

Publications (1)

Publication Number Publication Date
JP2009078745A true JP2009078745A (en) 2009-04-16

Family

ID=40653824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250634A Withdrawn JP2009078745A (en) 2007-09-27 2007-09-27 Electric vertical takeoff/landing aircraft

Country Status (1)

Country Link
JP (1) JP2009078745A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129249B1 (en) 2011-11-22 2012-06-12 조금배 A vertical takeoff and landing aircraft
CN103448910A (en) * 2013-08-31 2013-12-18 西北工业大学 Aircraft capable of vertically taking off and landing at high speed
JP2014528382A (en) * 2011-10-17 2014-10-27 ユー ティアン Aircraft combining fixed wing and electric multi-rotor
CN105539835A (en) * 2016-01-18 2016-05-04 成都纵横自动化技术有限公司 Composite-wing vertical take-off and landing aircraft
CN105857600A (en) * 2016-03-18 2016-08-17 西安交通大学 High-mobility multifunctional unmanned aerial vehicle with separated power and control
JP2018010671A (en) * 2017-09-05 2018-01-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Aircraft attitude control method
JP2018030461A (en) * 2016-08-25 2018-03-01 光司商会株式会社 Rotary wing flight body and remote control system therefor
JP2018134908A (en) * 2017-02-20 2018-08-30 株式会社菊池製作所 Unmanned aircraft
JP2018535890A (en) * 2015-12-18 2018-12-06 アマゾン テクノロジーズ インコーポレイテッド Propeller selection for performance and noise shaping
JP2018537348A (en) * 2015-12-21 2018-12-20 エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー Multi-rotor aircraft with redundant security architecture
CN109641657A (en) * 2016-09-08 2019-04-16 通用电气公司 Tilting rotor propulsion system for aircraft
CN110275541A (en) * 2018-03-16 2019-09-24 埃姆普里萨有限公司 The optimization track of noise is improved using automatic takeoff
CN111032508A (en) * 2017-06-06 2020-04-17 翼科达有限责任公司 Method for controlling the yaw and roll angles of a vertically taking-off aircraft
CN111186569A (en) * 2019-11-15 2020-05-22 陕西飞机工业(集团)有限公司 Vertical lift fixed wing aircraft
US10845825B2 (en) 2014-05-30 2020-11-24 SZ DJI Technology Co., Ltd. Aircraft attitude control methods
CN112623183A (en) * 2020-12-29 2021-04-09 中国民航大学 Portable vertical take-off and landing inclined wing aircraft
JP6970479B1 (en) * 2020-09-07 2021-11-24 株式会社エアロネクスト Flying object
CN114030603A (en) * 2021-10-27 2022-02-11 南京航空航天大学 Variable duct tail seat type high-speed unmanned aerial vehicle and working method thereof
WO2022049764A1 (en) * 2020-09-07 2022-03-10 株式会社エアロネクスト Flying vehicle
US11872898B2 (en) 2020-02-18 2024-01-16 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528382A (en) * 2011-10-17 2014-10-27 ユー ティアン Aircraft combining fixed wing and electric multi-rotor
KR101129249B1 (en) 2011-11-22 2012-06-12 조금배 A vertical takeoff and landing aircraft
CN103448910A (en) * 2013-08-31 2013-12-18 西北工业大学 Aircraft capable of vertically taking off and landing at high speed
US10845825B2 (en) 2014-05-30 2020-11-24 SZ DJI Technology Co., Ltd. Aircraft attitude control methods
JP2018535890A (en) * 2015-12-18 2018-12-06 アマゾン テクノロジーズ インコーポレイテッド Propeller selection for performance and noise shaping
US11052998B2 (en) 2015-12-21 2021-07-06 Airbus Helicopters Deutschland GmbH Multirotor electric aircraft with redundant security architecture
JP2018537348A (en) * 2015-12-21 2018-12-20 エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー Multi-rotor aircraft with redundant security architecture
CN105539835A (en) * 2016-01-18 2016-05-04 成都纵横自动化技术有限公司 Composite-wing vertical take-off and landing aircraft
CN105857600A (en) * 2016-03-18 2016-08-17 西安交通大学 High-mobility multifunctional unmanned aerial vehicle with separated power and control
JP2018030461A (en) * 2016-08-25 2018-03-01 光司商会株式会社 Rotary wing flight body and remote control system therefor
CN109641657A (en) * 2016-09-08 2019-04-16 通用电气公司 Tilting rotor propulsion system for aircraft
US11673661B2 (en) 2016-09-08 2023-06-13 General Electric Company Tiltrotor propulsion system for an aircraft
JP2018134908A (en) * 2017-02-20 2018-08-30 株式会社菊池製作所 Unmanned aircraft
CN111032508A (en) * 2017-06-06 2020-04-17 翼科达有限责任公司 Method for controlling the yaw and roll angles of a vertically taking-off aircraft
CN111032508B (en) * 2017-06-06 2023-03-21 翼科达有限责任公司 Method for controlling the yaw and roll angles of a vertically taking-off aircraft
JP2018010671A (en) * 2017-09-05 2018-01-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Aircraft attitude control method
CN110275541A (en) * 2018-03-16 2019-09-24 埃姆普里萨有限公司 The optimization track of noise is improved using automatic takeoff
CN110275541B (en) * 2018-03-16 2024-03-19 埃姆普里萨有限公司 Optimized trajectory for improving noise with automatic take-off
CN111186569A (en) * 2019-11-15 2020-05-22 陕西飞机工业(集团)有限公司 Vertical lift fixed wing aircraft
US11872898B2 (en) 2020-02-18 2024-01-16 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method
JP6970479B1 (en) * 2020-09-07 2021-11-24 株式会社エアロネクスト Flying object
WO2022049764A1 (en) * 2020-09-07 2022-03-10 株式会社エアロネクスト Flying vehicle
JPWO2022049764A1 (en) * 2020-09-07 2022-03-10
CN112623183A (en) * 2020-12-29 2021-04-09 中国民航大学 Portable vertical take-off and landing inclined wing aircraft
CN114030603A (en) * 2021-10-27 2022-02-11 南京航空航天大学 Variable duct tail seat type high-speed unmanned aerial vehicle and working method thereof

Similar Documents

Publication Publication Date Title
JP2009078745A (en) Electric vertical takeoff/landing aircraft
US10144509B2 (en) High performance VTOL aircraft
US11142309B2 (en) Convertible airplane with exposable rotors
EP4153483B1 (en) Vertical take-off and landing aircraft
EP2353684B1 (en) VTOL model aircraft
US20170057630A1 (en) Aircraft
EP2212199B1 (en) Aircraft
US9145207B2 (en) Remotely controlled micro/nanoscale aerial vehicle comprising a system for traveling on the ground, vertical takeoff, and landing
US8857755B2 (en) Vertical/short take-off and landing passenger aircraft
US20070215746A1 (en) Aircraft Having A Ring-Shaped Wing Structure
US20140158815A1 (en) Zero Transition Vertical Take-Off and Landing Aircraft
US9902486B2 (en) Transition arrangement for an aircraft
CN111619795A (en) Multi-rotor aircraft with connecting wings capable of vertically taking off and landing
JP6825050B2 (en) aircraft
JP2013532601A (en) Private aircraft
TW201313557A (en) Personal aircraft
WO2015099603A1 (en) An unmanned aerial vehicle
CN109562825B (en) Multi-rotor aircraft with wide span rotor configuration
CN106945829A (en) A kind of universal hinge duct double-rotor aerobat
CN108583867B (en) Torque self-balancing three-duct fan bionic aircraft
US11279478B2 (en) Tilting closed-wing aircraft
JP6736198B1 (en) Flying body
JP7178099B2 (en) flying object
CN110770121B (en) Aircraft with a flight control device
US11807357B2 (en) Tilting hexrotor aircraft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207