JP2007202563A - METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND - Google Patents

METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND Download PDF

Info

Publication number
JP2007202563A
JP2007202563A JP2007061892A JP2007061892A JP2007202563A JP 2007202563 A JP2007202563 A JP 2007202563A JP 2007061892 A JP2007061892 A JP 2007061892A JP 2007061892 A JP2007061892 A JP 2007061892A JP 2007202563 A JP2007202563 A JP 2007202563A
Authority
JP
Japan
Prior art keywords
optically active
acid
lactic acid
trifluoromethyllactic
trifluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007061892A
Other languages
Japanese (ja)
Inventor
Eiji Sato
栄治 佐藤
Kanehiko Enomoto
兼彦 榎本
Toshitaka Uragaki
俊孝 浦垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007061892A priority Critical patent/JP2007202563A/en
Publication of JP2007202563A publication Critical patent/JP2007202563A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing optically active α-trifluoromethyllactic acid and its chiral ester, and to provide a method for purifying the compound (method for improving optical purity). <P>SOLUTION: This method for producing the optically active α-trifluoromethyllactic acid and its chiral ester comprises asymmetrically hydrolyzing a racemic α-trifluoromethyllactate represented by the general formula (I) (R is a substituted or non-substituted 1 to 12C hydrocarbon group) in the presence of an enzyme, an enzyme-immobilized product, a microbial cell culture solution or a microbial cell-treated product. The method for purifying the compound comprises recrystallizing the optically active α-trifluoromethyllactic acid obtained by the method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、医薬、農薬等の原料又は中間体として有用な光学活性α−トリフルオロメチル乳酸及びその対掌体エステルの製造方法に関する。   The present invention relates to a method for producing optically active α-trifluoromethyl lactic acid and its enantiomer ester useful as raw materials or intermediates for pharmaceuticals, agricultural chemicals and the like.

ラセミ体α−トリフルオロメチル乳酸及びそのエステルは、従来1,1,1-トリフルオロアセトンとシアン化ナトリウムを原料として合成されることが報告されている(Journal of Chemical Society, 2329, 1951)。また、同報告においてはブルシンを用いた光学分割法によるラセミ体α−トリフルオロメチル乳酸からの光学活性α−トリフルオロメチル乳酸の製造方法を報告している。更にWO93/23358には(S)-(-)-α−メチルベンジルアミンを用いた光学分割法によるラセミ体α−トリフルオロメチル乳酸からの光学活性α−トリフルオロメチル乳酸の製造方法が報告されている。   Racemic α-trifluoromethyl lactic acid and its ester have been reported to be synthesized from 1,1,1-trifluoroacetone and sodium cyanide as raw materials (Journal of Chemical Society, 2329, 1951). In the same report, a method for producing optically active α-trifluoromethyl lactic acid from racemic α-trifluoromethyl lactic acid by an optical resolution method using brucine is reported. Furthermore, WO93 / 23358 reports a method for producing optically active α-trifluoromethyl lactic acid from racemic α-trifluoromethyl lactic acid by optical resolution using (S)-(-)-α-methylbenzylamine. ing.

しかしながら、いずれの方法も光学純度を上げるためには高価な分割剤を必要とし、生産コストが高額となる。更に、これらの方法では、分割剤との塩の形で数回以上再結晶を繰り返した後に、脱分割剤処理を行う必要があり、操作が煩雑である。   However, either method requires an expensive resolving agent to increase the optical purity, and the production cost is high. Furthermore, in these methods, it is necessary to carry out the de-resolving agent treatment after repeating recrystallization several times in the form of a salt with the resolving agent, and the operation is complicated.

また、上記の文献では、再結晶による光学活性α−トリフルオロメチル乳酸の精製(光学純度の向上)については何ら触れられておらず、再結晶により光学純度を向上させることが可能か否かは全く不明であった。   In addition, the above-mentioned document does not mention anything about purification of optically active α-trifluoromethyllactic acid by recrystallization (improvement of optical purity), and whether or not optical purity can be improved by recrystallization. It was completely unknown.

本発明の課題は、医薬、農薬等の原料又は中間体として有用な光学活性α−トリフルオロメチル乳酸及びその対掌体エステルの光学分割剤を使用しない製造方法、並びに当該方法で得られる光学活性体の簡便な精製方法(光学純度向上方法)を提供することにある。   An object of the present invention is to provide an optically active α-trifluoromethyllactic acid useful as a raw material or intermediate for pharmaceuticals, agricultural chemicals, etc. The object is to provide a simple purification method (an optical purity improving method) of a body.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、ラセミ体α−トリフルオロメチル乳酸エステルを光学選択的に加水分解する活性を有する酵素を見い出し、更に、光学活性α−トリフルオロメチル乳酸を再結晶することによりその光学純度が向上することを見い出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found an enzyme having an activity of optically hydrolyzing racemic α-trifluoromethyl lactate, and further, optically active α-trifluoro. The inventors have found that optical purity is improved by recrystallizing methyl lactic acid, and the present invention has been completed.

すなわち、本発明は以下の発明を包含する。   That is, the present invention includes the following inventions.

(1)一般式(I):

Figure 2007202563
(式中、Rは置換又は非置換の炭素原子数1〜12の炭化水素基である。)
で表されるラセミ体α−トリフルオロメチル乳酸エステルを、エステル不斉加水分解能力を有する酵素、酵素固定化物、微生物、菌体培養液、又は菌体処理物の存在下で不斉加水分解することを特徴とする、光学活性α−トリフルオロメチル乳酸及びその対掌体エステルの製造方法。 (1) General formula (I):
Figure 2007202563
(In the formula, R is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms.)
Is asymmetrically hydrolyzed in the presence of an enzyme having an asymmetric hydrolysis ability, an enzyme-immobilized product, a microorganism, a cell culture broth, or a cell-treated product. A process for producing optically active α-trifluoromethyl lactic acid and its enantiomer ester.

(2)上記(1)に記載の方法で得られる光学活性α−トリフルオロメチル乳酸、又は上記(1)に記載の方法で得られる対掌体エステルを加水分解して得られる対掌体光学活性α−トリフルオロメチル乳酸を再結晶し、結晶を回収することを特徴とする光学活性α−トリフルオロメチル乳酸の精製方法。   (2) Enantiomer optics obtained by hydrolyzing the optically active α-trifluoromethyl lactic acid obtained by the method described in (1) above or the enantiomer ester obtained by the method described in (1) above. A method for purifying optically active α-trifluoromethyl lactic acid, comprising recrystallizing active α-trifluoromethyl lactic acid and recovering the crystals.

本発明によれば、医薬、農薬等の原料又は合成中間体として有用な光学活性α−トリフルオロメチル乳酸及びそのエステル類を光学分割剤を使用せず製造することができる。また、本発明により得られる光学活性α−トリフルオロメチル乳酸を再結晶すれば、簡便な手法での精製(光学純度の向上)が可能である。   According to the present invention, optically active α-trifluoromethyl lactic acid and its esters useful as raw materials for pharmaceuticals, agricultural chemicals and the like or synthetic intermediates can be produced without using an optical resolution agent. Moreover, if the optically active α-trifluoromethyllactic acid obtained by the present invention is recrystallized, purification (improvement of optical purity) can be achieved by a simple technique.

以下、本発明を詳細に説明する。
一般式(I)中において、Rは置換又は非置換の炭素原子数1〜12の炭化水素基である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、n-ヘキシル基等の炭素原子数1〜12のアルキル基;ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基等の炭素原子数2〜12のアルケニル基;エチニル基、プロピニル基、ブチニル基等の炭素原子数2〜12のアルキニル基;シクロヘキシル基等の炭素原子数3〜12、好ましくは3〜7のシクロアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基等のアラルキル基等が例示される。また、この炭化水素基は、その炭素原子に結合する水素原子がハロゲン等の置換基で置換されていてもよい。
Hereinafter, the present invention will be described in detail.
In general formula (I), R is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms. Specifically, alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, n-hexyl group; vinyl group, propenyl group, isopropenyl group, butenyl An alkenyl group having 2 to 12 carbon atoms such as a group, isobutenyl group and hexenyl group; an alkynyl group having 2 to 12 carbon atoms such as ethynyl group, propynyl group and butynyl group; 3 to 12 carbon atoms such as cyclohexyl group; Preferable examples include 3 to 7 cycloalkyl groups; aryl groups such as phenyl group, tolyl group and naphthyl group; aralkyl groups such as benzyl group and the like. In this hydrocarbon group, the hydrogen atom bonded to the carbon atom may be substituted with a substituent such as halogen.

原料となるラセミ体α−トリフルオロメチル乳酸エステルは、例えば、Journal of Chemical Society, 2329(1951)等に記載されたような公知の方法により合成することができる。すなわち、1,1,1-トリフルオロアセトン水溶液に、冷却下でシアン化ナトリウム水溶液を滴下した後、硫酸を添加して室温にて一昼夜反応させることによってα−トリフルオロメチルラクトニトリルを合成し、次いで、これを硫酸等の強酸で加水分解することによりα−トリフルオロメチル乳酸を合成し、続いてこれを常法に従いエステル化することにより製造することができる。   The racemic α-trifluoromethyl lactate used as a raw material can be synthesized by a known method described in, for example, Journal of Chemical Society, 2329 (1951). That is, to the 1,1,1-trifluoroacetone aqueous solution, sodium cyanide aqueous solution was added dropwise under cooling, and then sulfuric acid was added to react at room temperature for one day to synthesize α-trifluoromethyl lactonitrile, Subsequently, this is hydrolyzed with a strong acid such as sulfuric acid to synthesize α-trifluoromethyl lactic acid, which can then be produced by esterification according to a conventional method.

本発明において使用するエステル不斉加水分解酵素は、ラセミ体α−トリフルオロメチル乳酸エステルを不斉加水分解して光学活性α−トリフルオロメチル乳酸とその対掌体エステルを製造する能力を有するエステル不斉加水分解酵素であれば酵素の種類及びその製造源を問わないが、その中でも一般にリパーゼ類、エステラーゼ類、プロテアーゼ類と称される酵素が特に有効である。   The ester asymmetric hydrolase used in the present invention is an ester having the ability to asymmetrically hydrolyze racemic α-trifluoromethyl lactic acid ester to produce optically active α-trifluoromethyl lactic acid and its enantiomer ester. The type of enzyme and the production source thereof are not particularly limited as long as they are asymmetric hydrolases. Among them, enzymes generally called lipases, esterases, and proteases are particularly effective.

エステル不斉加水分解酵素としては、例えば、ラセミ体α−トリフルオロメチル乳酸エステルを不斉加水分解して光学活性α−トリフルオロメチル乳酸とその対掌体エステルを製造する能力を有する微生物から分離された粗酵素又は精製酵素を使用することができる。そのような微生物としては、バシラス属(Bacillus)、アスペルギルス属(Aspergillus)、キャンディダ属(Candida)、シュードモナス属(Pseudomonas)、リゾップス属(Rhizopus)、ムコール属(Mucor)、フミコラ属(Humicola)等に属する微生物が挙げられる。   As the ester asymmetric hydrolase, for example, a racemic α-trifluoromethyl lactic acid ester is asymmetrically hydrolyzed to isolate optically active α-trifluoromethyl lactic acid and its enantiomer ester from microorganisms capable of producing the same. Crude or purified enzyme can be used. Examples of such microorganisms include Bacillus, Aspergillus, Candida, Pseudomonas, Rhizopus, Mucor, and Humicola. And microorganisms belonging to

バシラス属に属する微生物としては、Bacillus subtilis, Bacillus licheniformus, Bacillus polymixa等が、アスペルギルス属に属する微生物としては、Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus foetides, Aspergillus niger, Aspergillus phoenics, Aspergillus saitoi, Aspergillus sojae等が、キャンディダ属に属する微生物としては、Candida rugosa, Candida antarcia, Candida utilus等が、シュードモナス属に属する微生物としては、Pseudomonas fluorescence, Pseudomonas antarcia, Pseudomonas sp. MR-2301(FERM BP-4870)等が、リゾップス属に属する微生物としては、Rhizopus juponicus等が、ムコール属に属する微生物としては、Mucor juponicus, Mucor miehei等が、フミコラ属に属する微生物としては、Humicola lanuginosa等が例示される。   Examples of microorganisms belonging to the genus Bacillus include Bacillus subtilis, Bacillus licheniformus, Bacillus polymixa, etc. As the microorganisms belonging to the genus Candida, Candida rugosa, Candida antarcia, Candida utilus, etc., and the microorganisms belonging to the genus Pseudomonas include Pseudomonas fluorescence, Pseudomonas antarcia, Pseudomonas sp. MR-2301 (FERM BP-4870), etc. However, examples of the microorganism belonging to the genus Rhizopus include Rhizopus juponicus and the like, examples of the microorganism belonging to the genus Mucor include Mucor juponicus and Mucor miehei, and examples of the microorganism belonging to the genus Humicola include Humicola lanuginosa and the like.

また、本発明において使用するエステル加水分解酵素としては、市販のものを使用することができる。微生物により生産される酵素としては、代表的なものとして、例えばNOVO社製アルカラーゼ(Bacillus属由来)、NOVO社製デュラザイム(Bacillus属由来)、NOVO社製エスペラーゼ(Bacillus属由来)、NOVO社製サビナーゼ(Bacillus属由来)、NOVO社製ニュートラーゼ(Bacillus属由来)、NOVO社製リポラーゼ(Humicola属由来)、NOVO社製フラボザイム(Aspergillus属由来)、ナガセ生化学工業社製ビオプラーゼコンク(Bacillus属由来)、ナガセ生化学工業社製デナチームAP及びAP-15(共にAspergillus属由来)、ナガセ生化学工業社製リパーゼ2G(Pseudomonas属由来)、天野製薬社製リパーゼP(Pseudomonas属由来)、天野製薬社製リパーゼPS(Pseudomonas属由来)、天野製薬社製ニューラーゼF(Rhizopus属由来)、天野製薬社製リパーゼMFL、天野製薬社製リパーゼM(Mucor属由来)、天野製薬社製リパーゼAY(Candida属由来)、天野製薬社製リパーゼA(Aspergillus属由来)、天野製薬社製リパーゼM−AP−10、旭化成工業社製LP−015−S等の酵素等が挙げられ、動物起源のエステル加水分解酵素としては、ブタあるいはウシ由来のパンクレアチン、トリプシン等が挙げられる。   Moreover, a commercially available thing can be used as ester hydrolase used in this invention. Representative enzymes produced by microorganisms include, for example, NOVO Alcalase (derived from the genus Bacillus), NOVO Durazyme (derived from the genus Bacillus), NOVO Esperase (derived from the genus Bacillus), NOVO Savinase (Derived from Bacillus genus), NOVO neutrase (derived from Bacillus genus), NOVO lipolase (derived from Humicola genus), NOVO flavozyme (derived from Aspergillus genus), Nagase Seikagaku Corporation biolase conch (Bacillus genus) Origin), Nagase Seikagaku Corporation Denateam AP and AP-15 (both Aspergillus genus), Nagase Seikagaku Corporation lipase 2G (Pseudomonas genus), Amano Pharmaceutical lipase P (Pseudomonas genus), Amano Pharmaceutical Lipase PS (derived from the genus Pseudomonas), Amase Pharmaceutical Co., Ltd. Newase F (derived from the genus Rhizopus), Amano Pharmaceutical Co., Ltd. lipase MFL, Amano Pharmaceutical Co., Ltd. lipase M (derived from the genus Mucor), Amano Pharmaceutical Co., Ltd. lipase AY (Candi) genus da), Amano Pharmaceutical lipase A (from Aspergillus genus), Amano Pharmaceutical lipase M-AP-10, Asahi Kasei Kogyo LP-015-S, etc. Examples of degrading enzymes include porcine or bovine pancreatin, trypsin and the like.

更に、上記のような微生物から分離された粗酵素又は精製酵素のみならず、該微生物を培地中で培養して得られる培養物をそのままか、又は該培養物から遠心分離等の集菌操作によって得られる培養上清、菌体、若しくは菌体処理物の存在下で一般式(I)で表されるラセミ体α−トリフルオロメチル乳酸エステルを不斉加水分解することにより光学活性α−トリフルオロメチル乳酸及びその対掌体エステルを製造することもできる。菌体処理物としては、アセトン、トルエン等で処理した菌体、菌体の破砕物、菌体を破砕した無細胞抽出物等が挙げられる。   Furthermore, not only the crude enzyme or purified enzyme separated from the microorganism as described above, but also the culture obtained by culturing the microorganism in a medium as it is or by collecting the microorganism from the culture by centrifugation or the like. Optically active α-trifluoro is obtained by asymmetric hydrolysis of the racemic α-trifluoromethyl lactate represented by the general formula (I) in the presence of the obtained culture supernatant, cells, or treated cells. Methyl lactic acid and its enantiomer ester can also be produced. Examples of the treated microbial cells include microbial cells treated with acetone, toluene, etc., crushed microbial cells, cell-free extracts crushed microbial cells, and the like.

本発明の製造方法において、上記エステル不斉加水分解酵素を反応に供するに際しては、該酵素が活性を示す限りその使用形態は特に限定されず、酵素を適当な担体に固定化して使用することもできる。酵素を固定化して用いることにより、反応終了後の光学活性α−トリフルオロメチル乳酸及びその対掌体エステル並びに酵素の分離・回収が容易になるとともに、酵素の再利用も可能となる。   In the production method of the present invention, when the ester asymmetric hydrolase is used for the reaction, the form of use is not particularly limited as long as the enzyme exhibits activity, and the enzyme may be used by immobilizing the enzyme on a suitable carrier. it can. By immobilizing the enzyme, separation and recovery of the optically active α-trifluoromethyl lactic acid, its enantiomer ester, and the enzyme after the reaction is facilitated, and the enzyme can be reused.

本発明において、ラセミ体α−トリフルオロメチル乳酸エステルの光学選択的加水分解は、以下の方法で行うことができる。反応溶媒に基質であるラセミ体α−トリフルオロメチル乳酸エステルを溶解もしくは懸濁する。また、基質を反応溶媒に添加する前に又は添加した後に触媒となる上記不斉加水分解する能力を有する酵素、酵素固定化物、微生物、菌体培養液、又は菌体処理物を添加する。そして、反応温度、必要により反応液のpHを制御しながらα−トリフルオロメチル乳酸エステルの半量程度が加水分解されるまで反応を行う。場合によっては反応の初期段階で反応を中断したり、あるいは過剰に反応させることもある。   In the present invention, optically selective hydrolysis of racemic α-trifluoromethyl lactate can be carried out by the following method. Racemic α-trifluoromethyl lactate as a substrate is dissolved or suspended in the reaction solvent. In addition, the enzyme, enzyme-immobilized product, microorganism, cell culture solution, or cell-treated product having the ability to perform asymmetric hydrolysis, which becomes a catalyst, is added before or after the substrate is added to the reaction solvent. Then, the reaction is carried out until about half of the α-trifluoromethyl lactate is hydrolyzed while controlling the reaction temperature and, if necessary, the pH of the reaction solution. In some cases, the reaction may be interrupted or excessively reacted at an early stage of the reaction.

反応液の基質濃度は、0.1〜80重量%の間で特に制限はないが、生産性等を考慮すると1〜50重量%の濃度で実施するのが好ましい。
反応液の酵素濃度は、通常、0.01〜10重量%であり、好ましくは0.05〜5重量%である。
The substrate concentration of the reaction solution is not particularly limited between 0.1 and 80% by weight, but it is preferably carried out at a concentration of 1 to 50% by weight in consideration of productivity.
The enzyme concentration of the reaction solution is usually 0.01 to 10% by weight, preferably 0.05 to 5% by weight.

反応液のpHは用いる酵素の至適pHに依存するが、一般的にはpH4〜11の範囲である。化学的加水分解反応による光学純度の低下及び収率の低下を抑えることができるという点でpH5〜9で反応を行うのが好ましい。また、反応が進行するに従いpHが低下してくるが、この場合は適当な中和剤、例えば、水酸化ナトリウム、水酸化カリウム水溶液等を添加して最適pHに調整することが望ましい。
反応温度は5〜70℃が好ましく、10〜50℃がより好ましい。
The pH of the reaction solution depends on the optimum pH of the enzyme used, but is generally in the range of pH 4-11. It is preferable to carry out the reaction at a pH of 5 to 9 in that a decrease in optical purity and a decrease in yield due to a chemical hydrolysis reaction can be suppressed. Further, the pH decreases as the reaction proceeds. In this case, it is desirable to adjust to an optimum pH by adding an appropriate neutralizing agent such as sodium hydroxide or potassium hydroxide aqueous solution.
The reaction temperature is preferably 5 to 70 ° C, more preferably 10 to 50 ° C.

反応溶媒は、通常イオン交換水、緩衝液等の水性媒体を使用するが、有機溶媒を含んだ系でも反応を行うことができる。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブチルアルコール、t-アミルアルコール等のアルコール系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、その他アセトニトリル、N,N-ジメチルホルムアミド等を適宜使用できる。また、これらの有機溶媒を水への溶解度以上に加えて2層系で反応を行うことも可能である。有機溶媒を反応系に共存させることで、選択率、変換率、収率等が向上することも多い。   As the reaction solvent, an aqueous medium such as ion-exchanged water or a buffer solution is usually used, but the reaction can also be performed in a system containing an organic solvent. Examples of the organic solvent include alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butyl alcohol, and t-amyl alcohol, and aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane. , Aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride and dichloroethane, ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane, acetic acid Ester solvents such as ethyl, propyl acetate and butyl acetate, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, acetonitrile, N, N-dimethylformamide and the like can be used as appropriate. It is also possible to carry out the reaction in a two-layer system by adding these organic solvents beyond the solubility in water. By allowing the organic solvent to coexist in the reaction system, the selectivity, conversion rate, yield, etc. are often improved.

反応時間は、通常、1時間〜1週間、好ましくは1〜72時間であり、そのような時間で反応が終了する反応条件を選択することが好ましい。   The reaction time is usually 1 hour to 1 week, preferably 1 to 72 hours, and it is preferable to select reaction conditions for completing the reaction in such a time.

尚、以上のような基質濃度、酵素濃度、pH、温度、溶媒、反応時間及びその他の反応条件はその条件における反応収率、光学収率等を考慮して目的とする光学活性化合物が最も多く採取できる条件を適宜選択することが望ましい。   The substrate concentration, enzyme concentration, pH, temperature, solvent, reaction time, and other reaction conditions as described above are the most targeted optically active compounds in consideration of the reaction yield, optical yield, etc. under the conditions. It is desirable to appropriately select the conditions for collection.

上記の反応により、ラセミ体α−トリフルオロメチル乳酸エステルが不斉加水分解されて、光学活性α−トリフルオロメチル乳酸が生成する。また、残存基質は、その生成した光学活性α−トリフルオロメチル乳酸の対掌体エステルとなる。   By the above reaction, racemic α-trifluoromethyl lactic acid ester is asymmetrically hydrolyzed to produce optically active α-trifluoromethyl lactic acid. The remaining substrate becomes the enantiomer ester of the optically active α-trifluoromethyl lactic acid produced.

生成した光学活性α−トリフルオロメチル乳酸及び光学活性α−トリフルオロメチル乳酸エステル(すなわち、光学活性α−トリフルオロメチル乳酸の対掌体エステル)の反応混合液からの単離は抽出、蒸留、カラム分離等通常の単離法で行うことができる。   Isolation of the produced optically active α-trifluoromethyl lactic acid and optically active α-trifluoromethyl lactic acid ester (that is, the enantiomer of optically active α-trifluoromethyl lactic acid) from the reaction mixture is extraction, distillation, It can be performed by a usual isolation method such as column separation.

例えば、光学活性α−トリフルオロメチル乳酸エステルは、例えば、反応液のpHを中性付近に調整後、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;酢酸エチル等のエステル類;ヘキサン、オクタン、ベンゼン、トルエン等の炭化水素類;塩化メチレン等のハロゲン化炭化水素等、一般的な有機溶媒により抽出分離することができる。   For example, optically active α-trifluoromethyl lactate is prepared by adjusting the pH of the reaction solution to near neutral, and then ethers such as diethyl ether and diisopropyl ether; esters such as ethyl acetate; hexane, octane, benzene, It can be extracted and separated by a general organic solvent such as hydrocarbons such as toluene; halogenated hydrocarbons such as methylene chloride.

一方、光学活性α−トリフルオロメチル乳酸は、上記抽出残液に硫酸、塩酸等の強酸を加えた後に、上記と同様の一般的な有機溶媒で抽出分離することができる。   On the other hand, optically active α-trifluoromethyl lactic acid can be extracted and separated with the same general organic solvent as described above after adding a strong acid such as sulfuric acid or hydrochloric acid to the above extraction residue.

更に、光学活性α−トリフルオロメチル乳酸エステルは、通常の方法で加水分解することにより光学活性を維持したままα−トリフルオロメチル乳酸にすることができる。また、光学活性α−トリフルオロメチル乳酸は通常の方法でエステル化することにより光学活性を維持したままα−トリフルオロメチル乳酸エステルにすることができる。従って、任意の立体配置のα−トリフルオロメチル乳酸及びそのエステルを取得することができる。   Furthermore, the optically active α-trifluoromethyl lactic acid ester can be converted to α-trifluoromethyl lactic acid while maintaining the optical activity by hydrolysis by a usual method. Further, optically active α-trifluoromethyl lactic acid can be converted to α-trifluoromethyl lactic acid ester while maintaining optical activity by esterification by a usual method. Therefore, α-trifluoromethyl lactic acid and esters thereof having an arbitrary configuration can be obtained.

以上のようにして得られる光学活性α−トリフルオロメチル乳酸は、再結晶により更に精製し、その光学純度を向上させることができる。以下に、再結晶による精製について詳細に説明する。   The optically active α-trifluoromethyl lactic acid obtained as described above can be further purified by recrystallization to improve its optical purity. Hereinafter, purification by recrystallization will be described in detail.

本発明において、再結晶に供する光学活性α−トリフルオロメチル乳酸は、R体及びS体のいずれの光学活性体でもよい。その光学純度は0%e.e.でなければ、即ち、R体及びS体のいずれか一方が他方よりも多く含まれていれば、特に制限はないが、10%e.e.以上のものが好ましい。なお、本明細書においては、光学純度はエナンチオマー過剰率(%e.e.)で表す。   In the present invention, the optically active α-trifluoromethyl lactic acid to be used for recrystallization may be either an R-form or an S-form optically active form. The optical purity is not 0% e.e., that is, as long as any one of the R-form and S-form is contained more than the other, there is no particular limitation, but a 10% e.e. or higher is preferable. In the present specification, the optical purity is expressed as an enantiomeric excess (% e.e.).

本発明に従って不斉加水分解することにより得られる光学活性α−トリフルオロメチル乳酸は、そのままの形で再結晶に供することができる。一方、光学活性α−トリフルオロメチル乳酸と同時に製造されるその対掌体エステルは、再結晶に供する前に、エステル結合を通常の方法により加水分解する必要がある。   The optically active α-trifluoromethyl lactic acid obtained by asymmetric hydrolysis according to the present invention can be used for recrystallization as it is. On the other hand, the enantiomer ester produced at the same time as the optically active α-trifluoromethyllactic acid needs to hydrolyze the ester bond by a conventional method before being subjected to recrystallization.

光学活性α−トリフルオロメチル乳酸の再結晶に使用する溶媒は、光学活性α−トリフルオロメチル乳酸と反応しないものであれば、特に制限はなく、用いる原料の光学純度、目的とする光学純度等に応じて、目的物の回収率を勘案して適宜決定することができる。上記溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;並びにアセトニトリル、N,N-ジメチルホルムアミド等が挙げられ、その中でも、汎用性及び経済性の面で、トルエン、n-ヘキサン、酢酸エチル、塩化メチレン、クロロホルム、イソプロピルエーテル、アセトン及びアセトニトリルが好ましく、これらのうち、トルエンは、凝固点〜沸点(1気圧下、−95℃〜110.6℃)の範囲が取り扱い易い範囲内にあり、かつその範囲が広いため、特に好ましい。これらの再結晶溶媒は、単独で又は組み合わせて用いることができる。   The solvent used for recrystallization of the optically active α-trifluoromethyllactic acid is not particularly limited as long as it does not react with the optically active α-trifluoromethyllactic acid, and the optical purity of the raw material used, the target optical purity, etc. Depending on the situation, it can be appropriately determined in consideration of the recovery rate of the object. Examples of the solvent include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; halogens such as methylene chloride, chloroform, carbon tetrachloride, and dichloroethane. Hydrocarbon solvents; ether solvents such as diethyl ether, isopropyl ether, tetrahydrofuran and dioxane; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; and acetonitrile , N, N-dimethylformamide and the like. Among them, toluene, n-hexane, ethyl acetate, methylene chloride, chloroform, isopropyl ether, acetone and acetonitrile are preferable in terms of versatility and economy. Among them, toluene, freezing point to the boiling point (under 1 atmosphere, -95 ℃ ~110.6 ℃) is in the range easily handled range, and therefore the range is wide, particularly preferred. These recrystallization solvents can be used alone or in combination.

また、メタノール、エタノール、プロパノール及びブタノールに代表されるアルコール系溶媒は、光学活性α−トリフルオロメチル乳酸とエステル化反応を起こさない程度の量であれば、他の溶媒と組み合わせて混合溶媒として使用することも場合によっては有効である。   Also, alcohol solvents such as methanol, ethanol, propanol and butanol can be used as a mixed solvent in combination with other solvents as long as they do not cause esterification with optically active α-trifluoromethyllactic acid. It is also effective in some cases.

再結晶操作は一般的な方法に従って実施することができ、特に制限はない。即ち、上記再結晶溶媒に原料となる光学活性α−トリフルオロメチル乳酸を加温下で溶解させ、その後に冷却させることにより析出させることができる。また、光学活性α−トリフルオロメチル乳酸の貧溶媒を加えることにより、結晶を析出させてもよい。更に、結晶の析出を円滑かつ効率的に行うために、結晶種を播種することもできる。結晶種としては、特に制限はないが、目的に応じて、光学純度の高い結晶、ラセミ体結晶等を用いることが好ましい。   The recrystallization operation can be carried out according to a general method and is not particularly limited. That is, optically active α-trifluoromethyl lactic acid as a raw material is dissolved in the recrystallization solvent under heating, and can be precipitated by cooling after that. Moreover, you may precipitate a crystal | crystallization by adding the poor solvent of optically active alpha-trifluoromethyl lactic acid. Furthermore, in order to precipitate crystals smoothly and efficiently, crystal seeds can be seeded. The crystal seed is not particularly limited, but it is preferable to use a crystal with high optical purity, a racemic crystal, or the like depending on the purpose.

再結晶操作の温度条件は、使用する溶媒の沸点及び凝固点により適宜決定することができ、一般には、室温(25℃)から溶媒の沸点温度で原料を溶解させ、−80℃〜50℃で結晶を析出させることができる。溶媒としてトルエン(1気圧下、凝固点:−95℃、沸点:110.6℃)を使用する場合には、90℃〜110℃で原料を溶解させ、−20℃〜50℃で結晶を析出させることが好ましい。また、再結晶溶媒及び原料となる光学活性α−トリフルオロメチル乳酸の量関係は、完全に溶解する範囲内であれば、特に制限はないが、用いる原料の光学純度、目的とする光学純度等に応じて、目的物の回収率を勘案して適宜決定することができる。   The temperature conditions for the recrystallization operation can be appropriately determined depending on the boiling point and freezing point of the solvent used. In general, the raw material is dissolved from room temperature (25 ° C.) to the boiling point of the solvent, and crystallized at −80 ° C. to 50 ° C. Can be deposited. When using toluene (under 1 atm, freezing point: -95 ° C., boiling point: 110.6 ° C.) as a solvent, the raw materials are dissolved at 90 ° C. to 110 ° C., and crystals are precipitated at −20 ° C. to 50 ° C. preferable. In addition, the amount relationship between the recrystallization solvent and the optically active α-trifluoromethyl lactic acid used as a raw material is not particularly limited as long as it is within a completely soluble range. Depending on the situation, it can be appropriately determined in consideration of the recovery rate of the object.

次に、精製された光学活性α−トリフルオロメチル乳酸の回収は、濾過、遠心分離等、常法に従い行うことができる。   Next, the recovery of the purified optically active α-trifluoromethyl lactic acid can be performed according to a conventional method such as filtration or centrifugation.

これら光学活性α−トリフルオロメチル乳酸の光学純度は、常法によりエステル化し、光学分割用GCキャピラリーカラムを用いるガスクロマトグラフィーにより容易に測定することができる。光学純度(エナンチオマー過剰率;%e.e.)は、一般的に、GCによる(S)-α−トリフルオロメチル乳酸及び(R)-α−トリフルオロメチル乳酸の各ピーク面積から、以下の式によって算出することができる。   The optical purity of these optically active α-trifluoromethyllactic acids can be easily measured by gas chromatography using a GC capillary column for optical resolution after esterification by a conventional method. The optical purity (enantiomeric excess;% ee) is generally calculated from the peak areas of (S) -α-trifluoromethyllactic acid and (R) -α-trifluoromethyllactic acid by GC using the following formula: can do.

[数1]
R>Sの場合:
R体の光学純度(%e.e.)=(R−S/R+S)×100
S>Rの場合:
S体の光学純度(%e.e.)=(S−R/R+S)×100
S:(S)-α−トリフルオロメチル乳酸のピーク面積
R:(R)-α−トリフルオロメチル乳酸のピーク面積
[Equation 1]
If R> S:
Optical purity of R-form (% ee) = (R−S / R + S) × 100
If S> R:
Optical purity of S-form (% ee) = (S−R / R + S) × 100
S: Peak area of (S) -α-trifluoromethyl lactic acid R: Peak area of (R) -α-trifluoromethyl lactic acid

以上のようにして得られる光学活性α−トリフルオロメチル乳酸は、上記の再結晶による精製を更に1回又は複数回同様に繰り返すことにより、更に光学純度の高い光学活性体とすることができる。   The optically active α-trifluoromethyllactic acid obtained as described above can be made into an optically active substance with higher optical purity by repeating the purification by recrystallization one or more times in the same manner.

以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれらの実施例の範囲に限定されるものではない。
〔参考例1〕
ラセミ体α−トリフルオロメチル乳酸n-ブチルエステルの合成
n-ブタノール65mlにラセミ体α−トリフルオロメチル乳酸60g及び濃硫酸1mlを加え、還流しながら15時間反応を行った。次いで、蒸留にて過剰のブタノールを除去した。残液を氷水に入れた後、それぞれ60mlのジエチルエーテルにて3回抽出を行った。3回の抽出操作で得られたジエチルエーテル層を一つにまとめて減圧にて蒸留して精製し、ラセミ体α−トリフルオロメチル乳酸n-ブチルエステル64gを得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to the scope of these examples.
[Reference Example 1]
Synthesis of racemic α-trifluoromethyl lactate n-butyl ester
To 65 ml of n-butanol, 60 g of racemic α-trifluoromethyl lactic acid and 1 ml of concentrated sulfuric acid were added and reacted for 15 hours while refluxing. The excess butanol was then removed by distillation. The remaining solution was put into ice water and extracted three times with 60 ml of diethyl ether. The diethyl ether layers obtained by three extraction operations were combined and purified by distillation under reduced pressure to obtain 64 g of racemic α-trifluoromethyl lactate n-butyl ester.

〔実施例1〕
pHコントローラーのついた反応器に、0.1Mリン酸緩衝液 300ml、ラセミ体α−トリフルオロメチル乳酸n-ブチルエステル15g及びデナチームAP(ナガセ生化学工業社製)3gを加えて、2Nの水酸化ナトリウム水溶液で反応液のpHを7.0に調整しながら30℃で一昼夜反応させた。
[Example 1]
To a reactor equipped with a pH controller, 300 ml of 0.1 M phosphate buffer, 15 g of racemic α-trifluoromethyl lactate n-butyl ester and 3 g of Denateam AP (manufactured by Nagase Seikagaku Corporation) were added, and 2N hydroxide was added. The reaction was carried out at 30 ° C. for one day while adjusting the pH of the reaction solution to 7.0 with an aqueous sodium solution.

反応終了後、それぞれ100mlのジイソプロピルエーテルを用いて3回抽出を行った。3回の抽出操作で得られたジイソプロピルエーテル層を一つにまとめて無水硫酸マグネシウムを加えて脱水した後、蒸留にてジイソプロピルエーテルを除いた。このようにして得られたα−トリフルオロメチル乳酸n-ブチルエステル(4.8g)について、光学分割カラム(クロムパック社製Chirasil-DEX CB カラム)をつけたキャピラリーガスクロマトグラフィーにて分析したところ、光学活性体(S体)であり、光学純度は96.5%e.e.であった。   After completion of the reaction, extraction was performed 3 times using 100 ml of diisopropyl ether. The diisopropyl ether layers obtained by the three extraction operations were combined and dehydrated by adding anhydrous magnesium sulfate, and then diisopropyl ether was removed by distillation. The α-trifluoromethyl lactate n-butyl ester (4.8 g) thus obtained was analyzed by capillary gas chromatography equipped with an optical resolution column (Chirasil-DEX CB column manufactured by Chrome Pack). It was an optically active substance (S form), and its optical purity was 96.5% ee.

上記で得られた光学活性エステルに5%水酸化ナトリウム水溶液50mlを加えて、室温にて2時間加水分解反応を行った。次いで、硫酸を加えてpHを1.5に調整し、それぞれ50mlの酢酸エチルにて3回抽出を行った。3回の抽出操作で得られた酢酸エチル層を一つにまとめて硫酸マグネシウムで脱水した後、溶媒を除去した。このようにして得られたα−トリフルオロメチル乳酸(2.3g)についてジアゾメタンでエステル化後、光学分割カラム(クロムパック社製Chirasil-DEX CBカラム)をつけたキャピラリーガスクロマトグラフィーにて分析したところ、光学活性体(S体)であり、光学純度は96.5%e.e.であった。   To the optically active ester obtained above, 50 ml of 5% aqueous sodium hydroxide solution was added, and a hydrolysis reaction was carried out at room temperature for 2 hours. Subsequently, sulfuric acid was added to adjust the pH to 1.5, and extraction was performed three times with 50 ml of ethyl acetate each time. The ethyl acetate layers obtained by three extraction operations were combined and dehydrated with magnesium sulfate, and then the solvent was removed. The α-trifluoromethyl lactic acid (2.3 g) thus obtained was esterified with diazomethane and then analyzed by capillary gas chromatography equipped with an optical resolution column (Chirasil-DEX CB column manufactured by Chrome Pack). The optical purity was 96.5% ee.

また、(S)-α−トリフルオロメチル乳酸n-ブチルエステル抽出残液(水層)を100mlに濃縮した。これに濃硫酸を加えてpH1.0に調整した後、それぞれ50mlの酢酸エチルを加えて3回抽出を行った。3回の抽出操作で得られた酢酸エチル層を一つにまとめて無水硫酸マグネシウムを加えて脱水した後、溶媒を除去した。このようにして得られたα−トリフルオロメチル乳酸(3.3g)についてジアゾメタンでエステル化後、光学分割カラム(クロムパック社製Chirasil-DEX CB カラム)をつけたキャピラリーガスクロマトグラフィーにて分析したところ、光学活性体(R体)であり、光学純度は58.9%e.e.であった。   Further, (S) -α-trifluoromethyllactic acid n-butyl ester extraction residual liquid (aqueous layer) was concentrated to 100 ml. Concentrated sulfuric acid was added to adjust the pH to 1.0, and 50 ml of ethyl acetate was added for each extraction. The ethyl acetate layers obtained by the three extraction operations were combined and dehydrated by adding anhydrous magnesium sulfate, and then the solvent was removed. The α-trifluoromethyl lactic acid (3.3 g) thus obtained was esterified with diazomethane and analyzed by capillary gas chromatography with an optical resolution column (Chirasil-DEX CB column manufactured by Chrome Pack). The optical purity was 58.9% ee.

〔実施例2〜45〕
各実施例において、ラセミ体α−トリフルオロメチル乳酸n-ブチルエステルを1重量%懸濁した0.1Mリン酸緩衝液(pH=7.0)0.5mlに、表1に示した酵素をそれぞれ10mg添加して、30℃にて24時間振盪した後、0.5mlのジイソプロピルエーテルを加えて攪拌した。ジイソプロピルエーテル層に含まれる光学活性α−トリフルオロメチル乳酸n-ブチルエステルを実施例1と同様にして光学分割カラム(クロムパック社製Chirasil-DEX CB カラム)を付けたガスクロマトグラフィーにて分析し立体配置及び光学純度を測定した結果を表1に示す。
[Examples 2-45]
In each Example, 10 mg of each of the enzymes shown in Table 1 was added to 0.5 ml of 0.1 M phosphate buffer (pH = 7.0) in which 1% by weight of racemic α-trifluoromethyl lactate n-butyl ester was suspended. After shaking for 24 hours at 30 ° C., 0.5 ml of diisopropyl ether was added and stirred. The optically active α-trifluoromethyl lactate n-butyl ester contained in the diisopropyl ether layer was analyzed by gas chromatography with an optical resolution column (Chirasil-DEX CB column manufactured by Chrome Pack) in the same manner as in Example 1. Table 1 shows the results of measurement of configuration and optical purity.

Figure 2007202563
Figure 2007202563

〔実施例46〕
ペプトン(Difco社製)10g、酵母エキス(Difco社製)5g、食塩5g、蒸留水1Lからなる組成の液体培地を調製し、この液体培地を300mlエルレンマイヤーフラスコに50mlづつ分注し、120℃で15分間蒸気滅菌した。このフラスコ5本にシュードモナス sp. MR-2301(FERM BP-4870)を1白金耳植菌し、30℃で1日間振盪培養した。次に各フラスコ内の培養液から遠心分離により菌体を集めて水洗した後、50mMリン酸緩衝液(pH=7.0)10mlに懸濁した。この菌体懸濁液0.5mlにラセミ体α−トリフルオロメチル乳酸n−ブチルエステルを2重量%懸濁した0.1Mリン酸緩衝液(pH=7.0)4.5mlを添加して、30℃にて24時間振盪しながら反応した。
Example 46
A liquid medium composed of 10 g of peptone (Difco), 5 g of yeast extract (Difco), 5 g of sodium chloride, and 1 L of distilled water was prepared. Steam sterilized at 15 ° C. for 15 minutes. Five platinum flasks were inoculated with 1 platinum ear of Pseudomonas sp. MR-2301 (FERM BP-4870) and cultured with shaking at 30 ° C. for 1 day. Next, the cells were collected from the culture solution in each flask by centrifugation, washed with water, and then suspended in 10 ml of 50 mM phosphate buffer (pH = 7.0). 4.5 ml of 0.1 M phosphate buffer (pH = 7.0) in which 2% by weight of racemic α-trifluoromethyl lactic acid n-butyl ester is suspended is added to 0.5 ml of this cell suspension, and the mixture is heated at 30 ° C. The reaction was carried out with shaking for 24 hours.

反応液に、5mlのジイソプロピルエーテルを加えて攪拌した。ジイソプロピルエーテル層に含まれる光学活性α−トリフルオロメチル乳酸n−ブチルエステルを実施例1と同様にして光学分割カラム(クロムパック社製Chirasil-DEX CB カラム)を付けたガスクロマトグラフィーにて分析し、立体配置及び光学純度を測定した結果、R体であり光学純度は30%e.e.であった。   5 ml of diisopropyl ether was added to the reaction solution and stirred. The optically active α-trifluoromethyl lactic acid n-butyl ester contained in the diisopropyl ether layer was analyzed by gas chromatography with an optical resolution column (Chirasil-DEX CB column manufactured by Chrome Pack) in the same manner as in Example 1. As a result of measuring the steric configuration and the optical purity, it was an R form and the optical purity was 30% ee.

〔実施例47〜61〕
実施例2と同様にして、ラセミ体α−トリフルオロメチル乳酸メチルエステルを1重量%懸濁した0.1Mリン酸緩衝液(pH=7.0)0.5mlに、表2に示した酵素をそれぞれ10mg添加して、30℃にて24時間振盪した後、0.5mlのジイソプロピルエーテルを加えて攪拌した。ジイソプロピルエーテル層に含まれる光学活性α−トリフルオロメチル乳酸メチルエステルを実施例1と同様にして光学分割カラム(クロムパック社製Chirasil-DEX CB カラム)を付けたガスクロマトグラフィーにて分析し立体配置及び光学純度を測定した結果を表2に示す。
[Examples 47 to 61]
In the same manner as in Example 2, 10 mg of each of the enzymes shown in Table 2 was added to 0.5 ml of 0.1 M phosphate buffer (pH = 7.0) in which 1% by weight of racemic α-trifluoromethyl lactate was suspended. Then, after shaking for 24 hours at 30 ° C., 0.5 ml of diisopropyl ether was added and stirred. The optically active α-trifluoromethyl lactate methyl ester contained in the diisopropyl ether layer was analyzed by gas chromatography with an optical resolution column (Chirasil-DEX CB column manufactured by Chrome Pack Co., Ltd.) in the same manner as in Example 1. Table 2 shows the results of measuring the optical purity.

Figure 2007202563
Figure 2007202563

〔実施例62〕
実施例1で得られた96.5%e.e.の(S)-α−トリフルオロメチル乳酸1.0gにトルエン10mlを加え、100℃にて溶解させ、室温で一晩静置した。析出した結晶を回収したところ、99%e.e.以上の(S)-α−トリフルオロメチル乳酸0.8gが得られた。
Example 62
10 ml of toluene was added to 1.0 g of 96.5% ee (S) -α-trifluoromethyllactic acid obtained in Example 1, dissolved at 100 ° C., and allowed to stand overnight at room temperature. The precipitated crystals were collected to obtain 0.8 g of (S) -α-trifluoromethyllactic acid having 99% ee or more.

なお、光学純度の測定は、次のようにして行った。得られた結晶に、ジアゾメタンのエーテル溶液を加え、メチルエステル化し、この溶液を以下の条件のガスクロマトグラフィー(GC)によって分析し、(S)-α−トリフルオロメチル乳酸及び(R)-α−トリフルオロメチル乳酸のピーク面積から上記式により光学純度(エナンチオマー過剰率)を算出した。
カラム:CP-Chirasil DEX CB 0.25mm × 25 m(クロムパック社製)
カラム温度:70℃
検出器:FID
The optical purity was measured as follows. To the obtained crystals, an ether solution of diazomethane is added to form a methyl ester, and this solution is analyzed by gas chromatography (GC) under the following conditions to obtain (S) -α-trifluoromethyllactic acid and (R) -α. -Optical purity (enantiomeric excess) was calculated from the peak area of trifluoromethyllactic acid by the above formula.
Column: CP-Chirasil DEX CB 0.25mm x 25m (made by Chrome Pack)
Column temperature: 70 ° C
Detector: FID

〔実施例63〕
実施例1で得られた58.9%e.e.の(R)-α−トリフルオロメチル乳酸1.0gにトルエン50mlを加え、100℃にて溶解させ、30℃で3時間静置した。析出した結晶を回収したところ、79%e.e.の(R)-α−トリフルオロメチル乳酸0.28gを得た。なお、光学純度の測定は、実施例62に記載の方法によって行った。
Example 63
50 ml of toluene was added to 1.0 g of 58.9% ee (R) -α-trifluoromethyllactic acid obtained in Example 1, dissolved at 100 ° C, and allowed to stand at 30 ° C for 3 hours. The precipitated crystals were collected to obtain 0.28 g of 79% ee (R) -α-trifluoromethyllactic acid. The optical purity was measured by the method described in Example 62.

〔実施例64〕
実施例1で得られた58.9%e.e.の(R)-α−トリフルオロメチル乳酸1.0gにn-ヘキサン500mlを加え、沸点近傍に加温して溶解させ、室温にて一晩静置した。析出した結晶を回収したところ、70%e.e.の(R)-α−トリフルオロメチル乳酸0.4gが得られた。なお、光学純度の測定は、実施例62に記載の方法によって行った。
[Example 64]
500 g of n-hexane was added to 1.0 g of 58.9% ee (R) -α-trifluoromethyllactic acid obtained in Example 1, and the mixture was dissolved by heating near the boiling point and allowed to stand overnight at room temperature. When the precipitated crystals were recovered, 0.4 g of 70% ee (R) -α-trifluoromethyllactic acid was obtained. The optical purity was measured by the method described in Example 62.

〔実施例65〕
反応時間を半分にした以外は実施例1と同様にして得られた64%e.e.の(S)-α−トリフルオロメチル乳酸2.0gを表3に示す溶媒に加温して溶解させ、室温にて3時間静置して結晶を析出させた。使用した溶媒、溶媒量、結晶回収量及び得られた結晶の光学純度を表3に示す。なお、光学純度の測定は、実施例62に記載の方法によって行った。
Example 65
Except for halving the reaction time, 2.0 g of 64% ee (S) -α-trifluoromethyllactic acid obtained in the same manner as in Example 1 was dissolved in the solvent shown in Table 3 by heating to room temperature. And allowed to stand for 3 hours to precipitate crystals. Table 3 shows the solvent used, the amount of solvent, the amount of recovered crystals, and the optical purity of the obtained crystals. The optical purity was measured by the method described in Example 62.

Figure 2007202563
Figure 2007202563

〔実施例66〕
反応時間を半分にした以外は実施例1と同様にして得られた64%e.e.の(S)-α−トリフルオロメチル乳酸2.0gを酢酸エチル又はイソプロピルエーテルに溶解させ、更にn-ヘキサンを加えた後、−20℃にて5時間静置して結晶を析出させた。使用した溶媒、溶媒量、結晶回収量及び得られた結晶の光学純度を表4に示す。なお、光学純度の測定は、実施例62に記載の方法によって行った。
Example 66
Except for halving the reaction time, 2.0 g of 64% ee (S) -α-trifluoromethyllactic acid obtained in the same manner as in Example 1 was dissolved in ethyl acetate or isopropyl ether, and n-hexane was further added. Then, the mixture was allowed to stand at −20 ° C. for 5 hours to precipitate crystals. Table 4 shows the solvent used, the solvent amount, the crystal recovery amount, and the optical purity of the obtained crystal. The optical purity was measured by the method described in Example 62.

Figure 2007202563
Figure 2007202563

〔実施例67〕
反応時間を半分にした以外は実施例1と同様にして得られた64%e.e.の(S)-α−トリフルオロメチル乳酸2.0gをアセトニトリル又はアセトンに溶解させ、更に室温にてトルエンを加えた後、−20℃にて5時間静置して結晶を析出させた。使用した溶媒、溶媒量、結晶回収量及び得られた結晶の光学純度を表5に示す。なお、光学純度の測定は、実施例62に記載の方法によって行った。
Example 67
Except for halving the reaction time, 2.0 g of (S) -α-trifluoromethyllactic acid 64% ee obtained in the same manner as in Example 1 was dissolved in acetonitrile or acetone, and toluene was further added at room temperature. Thereafter, the crystals were allowed to stand at −20 ° C. for 5 hours to precipitate crystals. Table 5 shows the solvent used, the amount of solvent, the amount of recovered crystals, and the optical purity of the obtained crystals. The optical purity was measured by the method described in Example 62.

Figure 2007202563
Figure 2007202563

Claims (2)

一般式(I):
Figure 2007202563
(式中、Rは置換又は非置換の炭素原子数1〜12の炭化水素基である。)
で表されるラセミ体α−トリフルオロメチル乳酸エステルを、エステル不斉加水分解能力を有する酵素、酵素固定化物、微生物、菌体培養液、又は菌体処理物の存在下で不斉加水分解することを特徴とする、光学活性α−トリフルオロメチル乳酸及びその対掌体エステルの製造方法。
Formula (I):
Figure 2007202563
(In the formula, R is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms.)
Is asymmetrically hydrolyzed in the presence of an enzyme having an asymmetric hydrolysis ability, an enzyme-immobilized product, a microorganism, a cell culture broth, or a cell-treated product. A process for producing optically active α-trifluoromethyl lactic acid and its enantiomer ester.
請求項1記載の方法で得られる光学活性α−トリフルオロメチル乳酸、又は請求項1記載の方法で得られる対掌体エステルを加水分解して得られる対掌体光学活性α−トリフルオロメチル乳酸を再結晶し、結晶を回収することを特徴とする光学活性α−トリフルオロメチル乳酸の精製方法。   The optically active α-trifluoromethyl lactic acid obtained by the method according to claim 1, or the enantiomer optically active α-trifluoromethyl lactic acid obtained by hydrolyzing the enantiomer ester obtained by the method according to claim 1. A method for purifying optically active α-trifluoromethyl lactic acid, which comprises recrystallizing and recovering the crystals.
JP2007061892A 1997-07-15 2007-03-12 METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND Pending JP2007202563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061892A JP2007202563A (en) 1997-07-15 2007-03-12 METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18952597 1997-07-15
JP2007061892A JP2007202563A (en) 1997-07-15 2007-03-12 METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15130798A Division JPH1175889A (en) 1997-07-15 1998-06-01 Production and purification of optically active alpha-trifluoromethyllactic acid and its enantiomer ester

Publications (1)

Publication Number Publication Date
JP2007202563A true JP2007202563A (en) 2007-08-16

Family

ID=38482582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061892A Pending JP2007202563A (en) 1997-07-15 2007-03-12 METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND

Country Status (1)

Country Link
JP (1) JP2007202563A (en)

Similar Documents

Publication Publication Date Title
Koul et al. Enzymatic resolution of naproxen
EP0912755B1 (en) The bioresolution of n-acylazetidine-2-carboxylic acids
US6121025A (en) Process for producing optically active 3-quinuclidinol derivatives
JPH1175889A (en) Production and purification of optically active alpha-trifluoromethyllactic acid and its enantiomer ester
JP3819082B2 (en) Optically active 3-N-substituted aminoisobutyric acids and salts thereof and process for producing them
JP2007202563A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-TRIFLUOROMETHYLLACTIC ACID AND ITS CHIRAL ESTER AND METHOD FOR PURIFYING THE COMPOUND
WO2007078176A1 (en) The method of making optically active 2-chloromandelic acid esters and 2-chloromandelic acids by enzymatic method
US6455302B1 (en) Method for optically resolving a racemic α-substituted heterocyclic carboxylic acid using enzyme
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP3583798B2 (en) Method for producing optically active 2-methylbutanoic acid and derivatives thereof
JP2003299495A (en) Method for producing optically active monoester of 3- methylglutaric acid
JP4565672B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP4476963B2 (en) Optically active 3-N-substituted aminoisobutyric acids and salts thereof and process for producing them
JP4746019B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP3960667B2 (en) β-carbamoylisobutyric acid and process for producing the same
JP4392812B2 (en) Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same
JPH07194392A (en) Production of optically active 2-(4-hydroxy) phenylpropionic acid derivative and its ester
JP2006001862A (en) 3-cyanoglutaric acid monoesters and method for producing the same
JPS63109797A (en) Production of optically active cyclopentenones
JPH05336992A (en) Production of optically active pyrrolidine compounds
JPH02240045A (en) Method for separating optically active 4-hydroxy-2-cyclopentenones
JP2003000295A (en) Method for producing optically active 2-hydroxymethyl-3- arylpropionic acid and antipode ester thereof
JPH0965891A (en) Production of optically active alpha-methylalkanoic acid derivative
JPH05192188A (en) Production of optically active substituted butyric acid or its ester derivative

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080310

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A02