JP2007201708A - Wireless communication circuit - Google Patents

Wireless communication circuit Download PDF

Info

Publication number
JP2007201708A
JP2007201708A JP2006016577A JP2006016577A JP2007201708A JP 2007201708 A JP2007201708 A JP 2007201708A JP 2006016577 A JP2006016577 A JP 2006016577A JP 2006016577 A JP2006016577 A JP 2006016577A JP 2007201708 A JP2007201708 A JP 2007201708A
Authority
JP
Japan
Prior art keywords
signal
ghz
frequency
transmission
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006016577A
Other languages
Japanese (ja)
Other versions
JP4571591B2 (en
Inventor
Takuya Oi
卓也 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2006016577A priority Critical patent/JP4571591B2/en
Publication of JP2007201708A publication Critical patent/JP2007201708A/en
Application granted granted Critical
Publication of JP4571591B2 publication Critical patent/JP4571591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)
  • Transceivers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wireless communication circuit capable of lowering a maximum frequency of a local signal generating circuit, narrowing a frequency range to be set, facilitating the design of the local signal generating circuit thereby, and improving the immunity against variations in the characteristics due to a temperature change and the manufacturing yield. <P>SOLUTION: A first stage mixer 7 mixes a local signal whose frequency is divided into 1/4 with a received signal at 2.4 MHz band in the case of reception, second stage mixers (demodulators) 9, 10 mix the local signal whose frequency is halved with the mixed signal, the first stage mixes the local signal without any modification to the received signal at 5 GHz band, and the second stage mixes the local signal whose frequency is halved to the mixed signal. First stage mixers (modulators) 29, 30 mix the local signal whose frequency is halved with a baseband signal for the 2.4 GHz band in the case of transmission, a second stage mixer 31 mixes the local signal whose frequency is divided into 1/4 with the mixed signal, the first stage mixes the local signal whose frequency is halved with the baseband signal for the 5 GHz band, and the second stage mixes the local signal without any modification with the mixed signal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2つの異なる周波数帯の無線通信用信号、例えば2.4GHz帯及び5GHz帯の無線通信用信号とベースバンド信号との間の周波数変換を、2周波数帯に共用のローカル信号発生回路、分周回路、ミキサ及び変複調器を用いて行う無線通信回路に関する。   The present invention relates to a local signal generation circuit that uses two frequency bands for frequency conversion between radio communication signals in two different frequency bands, for example, radio communication signals in the 2.4 GHz band and 5 GHz band and a baseband signal. The present invention relates to a wireless communication circuit that uses a frequency divider, a mixer, and a modulator / modulator.

無線ローカルエリアネットワーク(無線LAN)は、IEEE(Institute of Electrical and Electronics Engineers)の規格で802.11b/g(2.4GHz帯使用)と802.11a(5GHz帯使用)に基づいており、当初は周波数帯が低く、低伝送レートの2.4GHz帯を使用した802.11b規格のものが普及していた。
しかし、伝送レートの高速化と、5GHz帯には他の妨害電波(電子レンジ等)が存在しないこともあり、5GHz帯を使用する802.11aも普及している。また、2.4GHzを使用するが、802.11aと同じ伝送レートで高速なデータのやりとりが可能な802.11gも普及してきており、現状では用途、場所に分けてこの3つの規格を使いわけるようになっている。そのため、この3つの規格に対応した(周波数的には2.4GHzと5GHzの2周波数帯)無線通信回路が求められている。
Wireless local area networks (wireless LANs) are based on IEEE (Institute of Electrical and Electronics Engineers) standards based on 802.11b / g (using 2.4 GHz band) and 802.11a (using 5 GHz band). An 802.11b standard using a 2.4 GHz band having a low frequency band and a low transmission rate has been widespread.
However, since the transmission rate is increased and other interfering radio waves (such as a microwave oven) are not present in the 5 GHz band, 802.11a using the 5 GHz band is also widespread. Also, although 2.4 GHz is used, 802.11g, which can exchange high-speed data at the same transmission rate as 802.11a, has become widespread, and at present, these three standards are divided according to use and location. It is like that. Therefore, a wireless communication circuit corresponding to these three standards (in terms of frequency, two frequency bands of 2.4 GHz and 5 GHz) is required.

このような無線通信回路の中で、2.4GHz帯及び5GHz帯の周波数帯の信号とベースバンド信号との間で変復調する方式が報告されている(例えば、特許文献1参照)。この方式を図6(a)〜(d)に示す。
この方式では、(a)に示す2.4GHz側では、受信時においては受信信号の2倍の周波数(4.824GHz〜4.944GHz)を図示せぬローカル信号発生回路で発生させ、その2分周信号(2.412GHz〜2.472GHz)を使い受信信号をミキサ101でベースバンド信号に復調している。
Among such wireless communication circuits, a method of modulating / demodulating between a signal in the frequency band of 2.4 GHz band and 5 GHz band and a baseband signal has been reported (for example, see Patent Document 1). This method is shown in FIGS.
In this method, on the 2.4 GHz side shown in (a), a frequency twice the reception signal (4.824 GHz to 4.944 GHz) is generated by a local signal generation circuit (not shown) at the time of reception. The received signal is demodulated into a baseband signal by the mixer 101 using the circumferential signal (2.412 GHz to 2.472 GHz).

(c)に示す送信時においては、送信信号の2倍の周波数(4.824GHz〜4.944GHz)をローカル信号発生回路で発生させ、その2分周信号(2.412〜2.472GHz)を用いて送信信号をベースバンド信号からミキサ102で変調している。
(b)に示す5GHz側では、受信時においては受信信号の4/5の周波数(4.136GHz〜4.266GHz)をローカル信号発生回路で発生させ、1つ目のミキサ102で1度ダウンコンバートした信号を2段目のミキサ(復調器)104において、ローカル信号発生回路で発生した受信信号の4/5の周波数を4分周した信号(1.034GHz〜1.064GHz)を用いてベースバンド信号に復調している。
At the time of transmission shown in (c), a frequency (4.824 GHz to 4.944 GHz) twice as high as that of the transmission signal is generated by the local signal generation circuit, and the divided signal by 2 (2.412 to 2.472 GHz) is generated. The transmission signal is modulated by the mixer 102 from the baseband signal.
On the 5 GHz side shown in (b), at the time of reception, a 4/5 frequency (4.136 GHz to 4.266 GHz) of the received signal is generated by the local signal generation circuit, and the first mixer 102 performs down-conversion once. Baseband using a signal (1.034 GHz to 1.064 GHz) obtained by dividing the 4/5 frequency of the received signal generated by the local signal generation circuit by 4 in the second stage mixer (demodulator) 104. The signal is demodulated.

(d)に示す送信時においては、送信信号の4/5の周波数(4.136GHz〜4.256GHz)をローカル信号発生回路で発生させ、1段目のミキサにおいて、ベースバンド信号と、ローカル信号発生回路で発生させた信号の周波数の4分周信号(1.034GHz〜1.064GHz)でアップコンバートし、この信号をローカル信号発生回路で発生させた送信信号の4/5の周波数の信号(4.136GHz〜4.256GHz)で2段目のミキサ106によって変調し、これを送信している。
特開2003−258662号公報
At the time of transmission shown in (d), a 4/5 frequency (4.136 GHz to 4.256 GHz) of the transmission signal is generated by the local signal generation circuit, and the baseband signal and the local signal are generated in the first-stage mixer. The signal generated by the generator circuit is up-converted by a signal divided by 4 (1.034 GHz to 1.064 GHz), and this signal is a signal (4/5 frequency of the transmission signal generated by the local signal generator circuit). (4.136 GHz to 4.256 GHz) is modulated by the second-stage mixer 106 and transmitted.
JP 2003-258661 A

ところで、従来の無線通信回路においては、上述したような周波数変換を実施しているため、ローカル信号発生回路の発生する周波数を最大4.944GHzと高くする必要があり、また最小4.136GHzなので周波数範囲を808MHzと広く設定する必要がある。このようにローカル信号発生回路の発生する周波数が高く、また周波数範囲が広いと、ローカル信号発生回路の設計が困難となり、また、その温度変化による特性の変動に対する耐性が低下すると共に製造上の歩留りが低下するという問題がある。   By the way, in the conventional wireless communication circuit, since the frequency conversion as described above is performed, it is necessary to increase the frequency generated by the local signal generation circuit to a maximum of 4.944 GHz, and the minimum frequency is 4.136 GHz. It is necessary to set the range as wide as 808 MHz. Thus, when the frequency generated by the local signal generation circuit is high and the frequency range is wide, the design of the local signal generation circuit becomes difficult, and the resistance to fluctuations in characteristics due to temperature changes is reduced and the manufacturing yield is reduced. There is a problem that decreases.

本発明は、このような課題に鑑みてなされたものであり、ローカル信号発生回路の最大周波数を低く、尚且つ設定すべき周波数範囲を狭くすることができ、これによってローカル信号発生回路の設計を容易とすることができ、その温度変化による特性の変動に対する耐性及び製造上の歩留りを向上させることができる無線通信回路装置を提供することを目的としている。   The present invention has been made in view of such problems, and can reduce the maximum frequency of the local signal generation circuit and narrow the frequency range to be set, thereby designing the local signal generation circuit. It is an object of the present invention to provide a wireless communication circuit device that can be easily improved and can improve resistance to fluctuations in characteristics due to temperature changes and manufacturing yield.

上記目的を達成するために、本発明の請求項1による無線通信回路は、2つの異なる第1及び第2の周波数帯の無線通信用の信号とベースバンド信号との間の周波数変換を行う無線通信回路において、所定周波数のローカル信号を発生する信号発生手段と、受信時に、前記第1の周波数帯では受信信号に1段目のミキサで前記ローカル信号を4分周した信号を混合し、この混合後の信号に2段目の復調用のミキサで前記ローカル信号を2分周した信号を混合してベースバンド信号とし、前記第2の周波数帯では受信信号には1段目のミキサで前記ローカル信号をそのまま混合し、この混合後の信号に2段目の復調用のミキサで前記ローカル信号を2分周した信号を混合してベースバンド信号とする周波数変換を行う受信手段と、送信時に、前記第1の周波数帯では、ベースバンド信号に1段目の変調用のミキサで前記ローカル信号を2分周した信号を混合し、この混合後の信号に2段目のミキサで前記ローカル信号を4分周した信号を混合して送信信号とし、前記第2の周波数帯では、ベースバンド信号に1段目の変調用のミキサで前記ローカル信号を2分周した信号を混合し、この混合後の信号に2段目のミキサで前記ローカル信号をそのまま混合して送信信号とする周波数変換を行う送信手段とを備えたことを特徴とする。   To achieve the above object, a radio communication circuit according to claim 1 of the present invention is a radio that performs frequency conversion between a radio communication signal and a baseband signal in two different first and second frequency bands. In the communication circuit, a signal generating means for generating a local signal of a predetermined frequency, and at the time of reception, in the first frequency band, the received signal is mixed with a signal obtained by dividing the local signal by 4 using a first-stage mixer. The mixed signal is mixed with a signal obtained by dividing the local signal by 2 in a second-stage demodulating mixer to form a baseband signal, and in the second frequency band, the received signal is transmitted to the received signal in the first-stage mixer. Receiving means for mixing the local signal as it is, mixing the mixed signal with the signal obtained by dividing the local signal by 2 using a demodulating mixer in the second stage, and converting it to a baseband signal; ,in front In the first frequency band, the baseband signal is mixed with a signal obtained by dividing the local signal by 2 using a first-stage modulation mixer, and the mixed signal is mixed with the local signal by 4 using a second-stage mixer. The frequency-divided signal is mixed into a transmission signal, and in the second frequency band, the baseband signal is mixed with the signal obtained by dividing the local signal by 2 using the first-stage modulation mixer, And a transmission means for performing frequency conversion to mix the local signal with the signal as it is by a second-stage mixer to obtain a transmission signal.

また、本発明の請求項2による無線通信回路は、請求項1において、前記ローカル信号の中心周波数をfLで周波数レンジをΔfLとし、前記第1の周波数帯の周波数範囲をfBl〜fB2とし、前記第2の周波数帯の周波数範囲をfA1〜fA2とした場合、fA1=(3/2)×fL−(3/4)×ΔfLの第1式と、fA2=(3/2)×fL+(3/4)×ΔfLの第2式と、fB1=(3/4)×fL−(3/8)×ΔfLの第3式と、fB2=(3/4)×fL+(3/8)×ΔfLの第4式とが成立することを特徴とする。 A wireless communication circuit according to claim 2 of the present invention is the wireless communication circuit according to claim 1, wherein the local frequency of the local signal is f L , the frequency range is Δf L, and the frequency range of the first frequency band is f Bl to f If B2 and the frequency range of the second frequency band is f A1 to f A2 , the first expression of f A1 = (3/2) × f L − (3/4) × Δf L and f A2 = (3/2) × f L + (3/4) × Δf L second equation, f B1 = (3/4) × f L − (3/8) × Δf L third equation, It is characterized in that the fourth equation of f B2 = (3/4) × f L + (3/8) × Δf L is established.

また、本発明の請求項3による無線通信回路は、請求項1または2において、前記第1の周波数帯が2.4GHz帯、前記第2の周波数帯が5GHz帯である場合、前記2.4GHz帯の信号は2.412GHz〜2.484GHzの周波数範囲をとり、前記5GHz帯は4.9GHz〜5.25GHzの周波数範囲をとり、また、前記ローカル信号は3.216〜3.5GHzの周波数範囲をとり、前記ローカル信号を2分周した信号は1.608GHz〜1.75GHzの周波数範囲をとり、前記ローカル信号を4分周した信号は804MHz〜875MHzの周波数範囲をとることを特徴とする。   According to claim 3 of the present invention, in the wireless communication circuit according to claim 1 or 2, when the first frequency band is 2.4 GHz band and the second frequency band is 5 GHz band, the 2.4 GHz band is used. The band signal has a frequency range of 2.412 GHz to 2.484 GHz, the 5 GHz band has a frequency range of 4.9 GHz to 5.25 GHz, and the local signal has a frequency range of 3.216 to 3.5 GHz. The signal obtained by dividing the local signal by 2 takes a frequency range of 1.608 GHz to 1.75 GHz, and the signal obtained by dividing the local signal by 4 takes a frequency range of 804 MHz to 875 MHz.

また、本発明の請求項4による無線通信回路は、請求項1から3の何れか1項において、前記変調用及び前記復調用のミキサを直交変復調型のミキサとしたことを特徴とする。
また、本発明の請求項5による無線通信回路は、請求項1から4の何れか1項において、前記受信信号が入力される1段目のミキサをイメージリジェクションミキサとしたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a radio communication circuit according to any one of the first to third aspects, wherein the modulation and demodulation mixers are quadrature modulation / demodulation mixers.
According to a fifth aspect of the present invention, in the wireless communication circuit according to any one of the first to fourth aspects, the first-stage mixer to which the received signal is input is an image rejection mixer. .

これらの構成によれば、信号発生手段の発生するローカル信号の最大周波数が3.5GHzと抑えられ、最小周波数が3.216GHzとなり、周波数範囲も284MHzと大幅に抑えることができる。従って、第1の周波数帯である2.4GHz帯と、第2の周波数帯である5GHz帯の2つの周波数帯の信号の変換を、従来の4.136GHz〜4.944GHz(周波数範囲808MHz)に比べ、本発明では3.216GHz〜3.5GHz(周波数範囲284MHz)と最大周波数を低く、しかも狭い範囲の信号周波数の生成で賄えるようになる。これによって、ローカル信号発生回路の設計を容易とすることができ、その温度変化による特性の変動に対する耐性及び製造上の歩留りを向上させることができる。
また、イメージリジェクションミキサを用いた場合、受信信号を周波数変換したIF信号に混在する希望波成分とイメージ妨害波成分のうち、復調時に受信品質の劣化要因となるイメージ妨害波成分を除去することができるので、受信特性を向上させることができる。
According to these configurations, the maximum frequency of the local signal generated by the signal generating means is suppressed to 3.5 GHz, the minimum frequency is 3.216 GHz, and the frequency range can be significantly suppressed to 284 MHz. Therefore, conversion of signals in the two frequency bands of the first frequency band, 2.4 GHz band and the second frequency band, 5 GHz band, to the conventional 4.136 GHz to 4.944 GHz (frequency range 808 MHz). In comparison, in the present invention, the maximum frequency can be reduced to 3.216 GHz to 3.5 GHz (frequency range 284 MHz), and the signal frequency in a narrow range can be generated. As a result, the design of the local signal generation circuit can be facilitated, and the tolerance to the variation in characteristics due to the temperature change and the manufacturing yield can be improved.
In addition, when using an image rejection mixer, the image interference wave component that causes degradation in reception quality during demodulation is removed from the desired wave component and image interference wave component mixed in the IF signal obtained by frequency conversion of the reception signal. Therefore, reception characteristics can be improved.

以上説明したように本発明の無線通信回路によれば、ローカル信号発生回路の最大周波数を低く、尚且つ設定すべき周波数範囲を狭くすることができ、これによってローカル信号発生回路の設計を容易とすることができ、その温度変化による特性の変動に対する耐性及び製造上の歩留りを向上させることができるという効果がある。   As described above, according to the wireless communication circuit of the present invention, the maximum frequency of the local signal generation circuit can be lowered and the frequency range to be set can be narrowed, thereby facilitating the design of the local signal generation circuit. Therefore, there is an effect that it is possible to improve the tolerance to the variation in characteristics due to the temperature change and the manufacturing yield.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の実施の形態に係る無線通信回路の主要部の構成を示すブロック図である。
図1に示す無線通信回路は、大きく分けて、受信部RX1と、送信部TX1と、ローカル信号発生部38とを備え、ローカル信号発生部38に、受信部RX1及び送信部TX1がスイッチ17,22により接続されて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a main part of a wireless communication circuit according to an embodiment of the present invention.
The radio communication circuit shown in FIG. 1 is roughly divided into a reception unit RX1, a transmission unit TX1, and a local signal generation unit 38. The reception unit RX1 and the transmission unit TX1 are connected to the switch 17, 22 is connected.

受信部RX1は、5GHz帯信号受信端子1と、2.4GHz帯信号受信端子2と、5GHz帯側低ノイズ増幅器3と、2.4GHz帯側低ノイズ増幅器4と、5GHz帯側バンドパスフィルタ5と、2.4GH帯側バンドパスフィルタ6と、受信側ミキサ7と、2.4GHz帯と、5GHz帯共用バンドパスフィルタ8と、受信同相信号用複調器9と、受信直交信号用複調器10と、受信同相信号用ローパスフィルタ11と、受信直交信号用ローパスフィルタ12と、受信同相ベースバンド信号増幅器13と、受信直交ベースバンド信号増幅器14と、受信同相ベースバンド信号出力端子15と、受信直交ベースバンド信号出力端子16とを備えて構成されている。   The receiving unit RX1 includes a 5 GHz band signal receiving terminal 1, a 2.4 GHz band signal receiving terminal 2, a 5 GHz band side low noise amplifier 3, a 2.4 GHz band side low noise amplifier 4, and a 5 GHz band side band pass filter 5. A 2.4 GHz band side band pass filter 6, a reception side mixer 7, a 2.4 GHz band and a 5 GHz band shared band pass filter 8, a reception in-phase signal duplexer 9, and a reception quadrature signal duplexer. The tuner 10, the reception in-phase signal low-pass filter 11, the reception quadrature signal low-pass filter 12, the reception in-phase baseband signal amplifier 13, the reception quadrature baseband signal amplifier 14, and the reception in-phase baseband signal output terminal 15 And a reception quadrature baseband signal output terminal 16.

送信部TX1は、送信同相ベースバンド信号入力端子23と、送信直交ベースバンド信号入力端子24と、同相ベースバンド信号用ローパスフィルタ25と、直交ベースバンド信号用ローパスフィルタ26と、送信同相ベースバンド信号用利得制御増幅器27と、送信直交ベースバンド信号用利得制御増幅器28と、送信同相ベースバンド信号用変調器29と、送信直交ベースバンド信号用変調器30と、送信側ミキサ31と、送信5GHz信号用バンドパスフィルタ32と、送信2.4GHz信号用バンドパスフィルタ33と、送信5GHz信号用高周波増幅器34と、送信2.4GHz信号用高周波増幅器35と、送信5GHz用出力端子36と、送信2.4GHz用出力端子37とを備えて構成されている。   The transmission unit TX1 includes a transmission in-phase baseband signal input terminal 23, a transmission quadrature baseband signal input terminal 24, an in-phase baseband signal low-pass filter 25, an orthogonal baseband signal low-pass filter 26, and a transmission in-phase baseband signal. Gain control amplifier 27, transmission quadrature baseband signal gain control amplifier 28, transmission in-phase baseband signal modulator 29, transmission quadrature baseband signal modulator 30, transmission side mixer 31, and transmission 5 GHz signal Band-pass filter 32 for transmission, band-pass filter 33 for 2.4 GHz signal for transmission, high-frequency amplifier 34 for transmission 5 GHz signal, high-frequency amplifier 35 for transmission 2.4 GHz signal, output terminal 36 for transmission 5 GHz, and transmission 2. 4 GHz output terminal 37 is provided.

ローカル信号発生部38は、電圧制御発振器18a、分周器18b、位相比較器18c、チャージポンプ18d、ループフィルタ18eで構成される位相同期ループ回路18と、4分周回路19と、2分周回路20と、基準信号入力端子21とを備えて構成されている。
受信部RX1では、5GHz帯信号受信端子1に、5GHz帯側低ノイズ増幅器3の入力端が接続され、5GHz帯側低ノイズ増幅器3の出力端に5GHz帯側バンドパスフィルタ5の入力端が接続されている。5GHz帯側バンドパスフィルタ5の出力端は受信側ミキサ7の第1入力端に接続され、受信側ミキサの出力端は受信側共用バンドパスフィルタ8の入力端に接続されている。
The local signal generator 38 includes a voltage-controlled oscillator 18a, a frequency divider 18b, a phase comparator 18c, a charge pump 18d, and a loop filter 18e. A circuit 20 and a reference signal input terminal 21 are provided.
In the receiving unit RX1, the input end of the 5 GHz band side low noise amplifier 3 is connected to the 5 GHz band signal receiving terminal 1, and the input end of the 5 GHz band side band pass filter 5 is connected to the output end of the 5 GHz band side low noise amplifier 3. Has been. The output end of the 5 GHz band side band pass filter 5 is connected to the first input end of the reception side mixer 7, and the output end of the reception side mixer is connected to the input end of the reception side shared band pass filter 8.

受信側共用バンドパスフィルタ8の出力は、受信同相信号用複調器9及び受信直交信号用複調器10の入力端にそれぞれ接続されている。受信同相信号用複調器9と受信直交信号用複調器10の出力端は、それぞれ受信同相信号用ローパスフィルタ11と受信直交信号用ローパスフィルタ12の入力端に接続されている。受信同相信号用ローパスフィルタ11と受信直交信号用ローパスフィルタ12の出力端は、それぞれ受信同相ベースバンド信号増幅器13と受信直交ベースバンド信号増幅器14の入力端に接続されている。   The output of the reception-side shared bandpass filter 8 is connected to the input ends of the reception in-phase signal duplexer 9 and the reception quadrature signal duplexer 10, respectively. The output ends of the reception in-phase signal duplexer 9 and the reception quadrature signal duplexer 10 are connected to the input ends of the reception in-phase signal low pass filter 11 and the reception quadrature signal low pass filter 12, respectively. The output ends of the reception in-phase signal low-pass filter 11 and the reception quadrature signal low-pass filter 12 are connected to the input ends of the reception in-phase baseband signal amplifier 13 and the reception quadrature baseband signal amplifier 14, respectively.

受信同相ベースバンド信号増幅器13と受信直交ベースバンド信号増幅器14の出力端は、それぞれ受信同相ベースバンド信号出力端子15と受信直交ベースバンド信号出力端子16に接続されている。
送信部TX1では、送信同相ベースバンド信号入力端子23と送信直交ベースバンド信号入力端子24が、それぞれ同相ベースバンド信号用ローパスフィルタ25と直交ベースバンド信号用ローパスフィルタ26の入力端に接続されている。同相ベースバンド信号用ローパスフィルタ25と直交ベースバンド信号用ローパスフィルタ26の出力端は、それぞれ送信同相ベースバンド信号用利得制御増幅器27と送信直交ベースバンド信号用利得制御増幅器28の入力端に接続されている。
Output terminals of the reception in-phase baseband signal amplifier 13 and the reception quadrature baseband signal amplifier 14 are connected to a reception in-phase baseband signal output terminal 15 and a reception quadrature baseband signal output terminal 16, respectively.
In the transmission unit TX1, a transmission in-phase baseband signal input terminal 23 and a transmission quadrature baseband signal input terminal 24 are connected to input terminals of an in-phase baseband signal low-pass filter 25 and an orthogonal baseband signal low-pass filter 26, respectively. . The output terminals of the in-phase baseband signal low-pass filter 25 and the quadrature baseband signal low-pass filter 26 are connected to the input terminals of the transmission in-phase baseband signal gain control amplifier 27 and the transmission quadrature baseband signal gain control amplifier 28, respectively. ing.

送信同相ベースバンド信号用利得制御増幅器27と送信直交ベースバンド信号用利得制御増幅器28の出力端は、それぞれ送信同相ベースバンド信号用変調器29と送信直交ベースバンド信号用変調器30の第1入力端に接続されている。送信同相ベースバンド信号用変調器29と送信直交ベースバンド信号用変調器30の出力は、送信側ミキサ31の第1入力端に接続され、送信側ミキサ3ユの出力端は送信5GHz信号用バンドパスフィルタ32と送信2.4GHz信号用バンドパスフィルタ33の入力端に接続されている。   The output terminals of the transmission in-phase baseband signal gain control amplifier 27 and the transmission quadrature baseband signal gain control amplifier 28 are the first inputs of the transmission in-phase baseband signal modulator 29 and the transmission quadrature baseband signal modulator 30, respectively. Connected to the end. The outputs of the transmission in-phase baseband signal modulator 29 and the transmission quadrature baseband signal modulator 30 are connected to the first input terminal of the transmission-side mixer 31, and the output terminal of the transmission-side mixer 3 is the transmission 5 GHz signal band. The pass filter 32 and the transmission 2.4 GHz signal band-pass filter 33 are connected to the input terminals.

送信5GHz信号用バンドパスフィルタ32と送信2.4GHz信号用バンドパスフィルタ33との出力端は、それぞれ送信5GHz信号用高周波増幅器34と送信2.4GHz信号用高周波増幅器35の入力端に接続されている。送信5GHz信号用高周波増幅器34と送信2.4GHz信号用高周波増幅器35の出力端は、それぞれ送信5GHz用出力端子36と送信2.4GHz用出力端子37に接続されている。   The output ends of the transmission 5 GHz signal band pass filter 32 and the transmission 2.4 GHz signal band pass filter 33 are connected to the input ends of the transmission 5 GHz signal high frequency amplifier 34 and the transmission 2.4 GHz signal high frequency amplifier 35, respectively. Yes. The output ends of the transmission 5 GHz signal high-frequency amplifier 34 and the transmission 2.4 GHz signal high-frequency amplifier 35 are connected to a transmission 5 GHz output terminal 36 and a transmission 2.4 GHz output terminal 37, respectively.

ローカル信号発生部38では、基準信号端子21が位相同期ループ回路18の基準信号入力端に接続され、位相同期ループ回路18の出力端である電圧制御発振器出力は4分周回路19の入力端、2分周回路20の入力端、スイッチ17の第1入力端及びスイッチ22の第1入力端に接続されている。
4分周回路19の出力端は、スイッチ17の第2入力端及びスイッチ22の第2入力端に接続されている。スイッチ17の出力端は、受信側ミキサ7の第2入力端に接続され、スイッチ22の出力端は送信側ミキサ31の第2入力端に接続されている。
In the local signal generator 38, the reference signal terminal 21 is connected to the reference signal input terminal of the phase locked loop circuit 18, and the voltage controlled oscillator output that is the output terminal of the phase locked loop circuit 18 is connected to the input terminal of the divide-by-4 circuit 19. The input terminal of the divide-by-2 circuit 20, the first input terminal of the switch 17, and the first input terminal of the switch 22 are connected.
The output terminal of the divide-by-4 circuit 19 is connected to the second input terminal of the switch 17 and the second input terminal of the switch 22. The output end of the switch 17 is connected to the second input end of the reception side mixer 7, and the output end of the switch 22 is connected to the second input end of the transmission side mixer 31.

2分周回路20の同相信号出力端は、受信同相信号用複調器9の第2入力端及び送信同相ベースバンド信号用変調器29の第2入力端に接続され、また2分周回路20の直交信号出力端は受信直交信号用複調器10の第2入力端及び送信直交ベースバンド信号用変調器30の第2入力端に接続されている。
次に、このような構成の無線通信回路の動作を説明する。最初に、受信時の動作を説明する。
The in-phase signal output terminal of the divide-by-2 circuit 20 is connected to the second input terminal of the receiving common-mode signal duplexer 9 and the second input terminal of the transmission in-phase baseband signal modulator 29, and further divided by two. The quadrature signal output terminal of the circuit 20 is connected to the second input terminal of the reception quadrature signal duplexer 10 and the second input terminal of the transmission quadrature baseband signal modulator 30.
Next, the operation of the wireless communication circuit having such a configuration will be described. First, the operation during reception will be described.

まず2.4GHz帯信号受信時において、受信信号は受信端子2から低ノイズ増幅器4、バンドパスフィルタ6を通り、受信側ミキサ7の第1入力端に入力される。この時、スイッチ17は4分周回路19の出力が選択されるように設定される。2.4GHz帯信号受信時において、位相同期ループ回路18は3.216GHz〜3.312GHzの周波数範囲の信号を発生し、それに応じて4分周回路19は804MHz〜828MHzの周波数範囲の信号を発生し、2分周回路20は1.608GHz〜1.656GHzの周波数範囲の信号を発生する。   First, when a 2.4 GHz band signal is received, the received signal passes through the low noise amplifier 4 and the band pass filter 6 from the receiving terminal 2 and is input to the first input terminal of the receiving mixer 7. At this time, the switch 17 is set so that the output of the divide-by-4 circuit 19 is selected. When receiving a 2.4 GHz band signal, the phase-locked loop circuit 18 generates a signal in the frequency range of 3.216 GHz to 3.312 GHz, and accordingly, the divide-by-4 circuit 19 generates a signal in the frequency range of 804 MHz to 828 MHz. The divide-by-2 circuit 20 generates a signal having a frequency range of 1.608 GHz to 1.656 GHz.

このため、受信側ミキサ7の第2入力端には4分周回路19からの804MHz〜828MHzの信号が入力される。受信側ミキサ7で周波数変換された信号はバンドパスフィルタ8を通り、受信同相信号用複調器9、受信直交信号用複調器10の第1入力端に入力される。受信同棺信号用複調器9の第2入力端には2分周回路20で発生した1.608GHz〜1.656GHzの同相信号が入力され、受信直交信号用複調器10の第2入力端には2分周回路20で発生した1.608GHz〜1.656GHzの直交信号が入力される。   For this reason, the 804 MHz to 828 MHz signal from the divide-by-4 circuit 19 is input to the second input terminal of the reception-side mixer 7. The signal frequency-converted by the reception-side mixer 7 passes through the band-pass filter 8 and is input to the first input terminals of the reception in-phase signal duplexer 9 and the reception quadrature signal duplexer 10. The in-phase signal of 1.608 GHz to 1.656 GHz generated by the divide-by-2 circuit 20 is input to the second input terminal of the reception co-simultaneous signal double tone unit 9, and the second signal of the reception quadrature signal double tone unit 10 is received. An orthogonal signal of 1.608 GHz to 1.656 GHz generated by the divide-by-2 circuit 20 is input to the input terminal.

直交信号は同相信号と位相が90度ずれた信号である。受信同相信号用複調器9で周波数変換された信号は、受信同相信号用ローパスフィルタ11を通り、受信同相ベースバンド信号増幅器13を通り、受信同相ベースバンド信号出力端子15に出力される。受信直交信号複調器10で周波数変換された信号は、受信直交信号用ローパスフィルタ12を通り、受信直交ベースバンド信号増幅器14を通り、受信直交ベースバンド信号出力端子16に出力される。   A quadrature signal is a signal that is 90 degrees out of phase with the in-phase signal. The signal frequency-converted by the reception common-mode signal duplexer 9 passes through the reception common-mode signal low-pass filter 11, passes through the reception common-mode baseband signal amplifier 13, and is output to the reception common-mode baseband signal output terminal 15. . The signal frequency-converted by the reception quadrature signal duplexer 10 passes through the reception quadrature signal low-pass filter 12, passes through the reception quadrature baseband signal amplifier 14, and is output to the reception quadrature baseband signal output terminal 16.

位相同期ループ回路18で発生される信号の周波数は受信信号の周波数に応じて設定される。5GHz帯信号受信時において、受信信号は受信端子1から低ノイズ増幅器3、バンドパスフィルタ5を通り、受信側ミキサ7の第1入力端に入力される。この時、スイッチ17は位相同期ループ回路18のそのままの出力が選択されるように設定される。5GHz帯信号受信時において、位相同期ループ回路は3.267GHz〜3.5GHzの周波数範囲の信号を発生し、それに応じて4分周回路19は816.75MHz〜875MHzの周波数範囲の信号を発生し、2分周回路20は1.6335GHz〜1.75GHzの周波数範囲の信号を発生する。
このため、受信側ミキサ7の第2入力端には4分周回路19からの816.75MHz〜875MHzの信号が入力される。受信側ミキサ7で周波数変換された信号はバンドパスフィルタ8を通り、受信同相信号用複調器9、受信直交信号用複調器10の第1入力端に入力される。
The frequency of the signal generated by the phase locked loop circuit 18 is set according to the frequency of the received signal. When receiving a 5 GHz band signal, the received signal passes through the low noise amplifier 3 and the band pass filter 5 from the receiving terminal 1 and is input to the first input terminal of the receiving side mixer 7. At this time, the switch 17 is set so that the output of the phase locked loop circuit 18 is selected as it is. When receiving a 5 GHz band signal, the phase-locked loop circuit generates a signal in the frequency range of 3.267 GHz to 3.5 GHz, and accordingly, the divide-by-4 circuit 19 generates a signal in the frequency range of 816.75 MHz to 875 MHz. The divide-by-2 circuit 20 generates a signal having a frequency range of 1.6335 GHz to 1.75 GHz.
For this reason, a signal of 816.75 MHz to 875 MHz from the divide-by-4 circuit 19 is input to the second input terminal of the reception-side mixer 7. The signal frequency-converted by the reception-side mixer 7 passes through the band-pass filter 8 and is input to the first input terminals of the reception in-phase signal duplexer 9 and the reception quadrature signal duplexer 10.

受信同相信号用複調器9の第2入力端には2分周回路20で発生した1.6335GHz〜1.75GHzの同相信号が入力され、受信直交信号用複調器10の第2入力端には2分周回路20で発生した1.6335GHz〜1.75GHzの直交信号が入力される。直交信号は同相信号と位相が90度ずれた信号である。受信同相信号用複調器9で周波数変換された信号は、受信同相信号用ローパスフィルタ11を通り、受信同相ベースバンド信号増幅器13を通り、受信同相ベースバンド信号出力端子15に出力される。受信直交信号複調器10で周波数変換された信号は、受信直交信号用ローパスフィルタ12を通り、受信直交ベースバンド信号増幅器14を通り、受信直交ベースバンド信号出力端子16に出力される。ローカル信号発生部38で発生させる信号の周波数は受信信号の周波数に応じて設定される。   The in-phase signal of 1.6335 GHz to 1.75 GHz generated by the divide-by-2 circuit 20 is input to the second input terminal of the received common-mode signal double tone unit 9, and the second signal of the received quadrature signal double tone unit 10 is received. An orthogonal signal of 1.6335 GHz to 1.75 GHz generated by the divide-by-2 circuit 20 is input to the input terminal. A quadrature signal is a signal that is 90 degrees out of phase with the in-phase signal. The signal frequency-converted by the reception common-mode signal duplexer 9 passes through the reception common-mode signal low-pass filter 11, passes through the reception common-mode baseband signal amplifier 13, and is output to the reception common-mode baseband signal output terminal 15. . The signal frequency-converted by the reception quadrature signal duplexer 10 passes through the reception quadrature signal low-pass filter 12, passes through the reception quadrature baseband signal amplifier 14, and is output to the reception quadrature baseband signal output terminal 16. The frequency of the signal generated by the local signal generator 38 is set according to the frequency of the received signal.

次に送信時についての動作を説明する。
まず2.4GHz帯信号送信時においては、送信同相ベースバンド信号入力端子23に同相信号が入力され、送信直交ベースバンド信号入力端子24に直交信号が入力される。直交信号は同相信号と位相が90度ずれた信号である。送信同相ベースバンド信号入力端子23から入力された信号は、同相ベースバンド信号用ローパスフィルタ25、送信同相ベースバンド信号用利得制御増幅器27を通り、送信同相ベースバンド信号用変調器29の第1入力端に入力される。また、送信直交ベースバンド信号入力端子24から入力された信号は直交ベースバンド信号用ローパスフィルタ26、送信直交ベースバンド信号用利得制御増幅器28を通り、送信直交ベースバンド信号用変調器30の第1入力端に入力される。
Next, the operation at the time of transmission will be described.
First, when transmitting a 2.4 GHz band signal, the in-phase signal is input to the transmission in-phase baseband signal input terminal 23 and the quadrature signal is input to the transmission quadrature baseband signal input terminal 24. A quadrature signal is a signal that is 90 degrees out of phase with the in-phase signal. The signal input from the transmission in-phase baseband signal input terminal 23 passes through the in-phase baseband signal low-pass filter 25 and the transmission in-phase baseband signal gain control amplifier 27, and the first input of the transmission in-phase baseband signal modulator 29. Input at the end. The signal input from the transmission quadrature baseband signal input terminal 24 passes through the quadrature baseband signal low-pass filter 26 and the transmission quadrature baseband signal gain control amplifier 28, and passes through the first transmitter quadrature baseband signal modulator 30. Input to the input terminal.

送信同相ベースバンド信号用変調器29の第2入力端には2分周回路20の出力の同相信号が入力され、送信直交ベースバンド信号用変調器30の第1入力端には2分周回路20の出力の直交信号が入力される。2.4GHz帯信号送信時においては、位相同期ループ回路18は3.216GHz〜3.312GHzの周波数範囲の信号を発生し、それに応じて4分周回路19は804MHz〜828MHzの周波数範囲の信号を発生し、2分周回路20は1.608GHz〜1.656GHzの周波数範囲の信号を発生する。   The in-phase signal output from the divide-by-2 circuit 20 is input to the second input terminal of the transmission in-phase baseband signal modulator 29, and the divide-by-two signal is input to the first input terminal of the transmission quadrature baseband signal modulator 30. An orthogonal signal output from the circuit 20 is input. At the time of 2.4 GHz band signal transmission, the phase-locked loop circuit 18 generates a signal in the frequency range of 3.216 GHz to 3.312 GHz, and accordingly, the divide-by-4 circuit 19 generates a signal in the frequency range of 804 MHz to 828 MHz. The divide-by-2 circuit 20 generates a signal having a frequency range of 1.608 GHz to 1.656 GHz.

送信同相ベースバンド信号用変調器29と送信直交ベースバンド信号用変調器30で周波数変換された信号は加算され送信側ミキサ31の第1入力端に入力される。送信側ミキサ31の第2入力端にはスイッチ22の出力信号が入力されるが、この時スイッチ22は4分周回路19の出力が選択されるよう設定される。
送信側ミキサ31で周波数変換された信号は、送信2.4GHz信号用バンドパスフィルタ33、送信2.4GHz信号用高周波増幅器35を通り、送信2.4GHz用出力端子37に出力される。
The signals subjected to frequency conversion by the transmission in-phase baseband signal modulator 29 and the transmission quadrature baseband signal modulator 30 are added and input to the first input terminal of the transmission-side mixer 31. The output signal of the switch 22 is input to the second input terminal of the transmission-side mixer 31. At this time, the switch 22 is set so that the output of the divide-by-4 circuit 19 is selected.
The signal frequency-converted by the transmission side mixer 31 passes through the transmission 2.4 GHz signal band-pass filter 33 and the transmission 2.4 GHz signal high-frequency amplifier 35 and is output to the transmission 2.4 GHz output terminal 37.

5GHz帯信号送信においては、送信同相ベースバンド信号入力端子23に同相信号が入力され、送信直交ベースバンド信号入力端子24に直交信号が入力される。直交信号は同相信号と位相が90度ずれた信号である。送信同相ベースバンド信号入力端子23から入力された信号は、同相ベースバンド信号用ローパスフィルタ25、送信同相ベースバンド信号用利得制御増幅器27を通り、送信同相ベースバンド信号用変調器29の第1入力端に入力される。   In 5 GHz band signal transmission, the in-phase signal is input to the transmission in-phase baseband signal input terminal 23, and the quadrature signal is input to the transmission quadrature baseband signal input terminal 24. A quadrature signal is a signal that is 90 degrees out of phase with the in-phase signal. The signal input from the transmission in-phase baseband signal input terminal 23 passes through the in-phase baseband signal low-pass filter 25 and the transmission in-phase baseband signal gain control amplifier 27, and the first input of the transmission in-phase baseband signal modulator 29. Input at the end.

また、送信直交ベースバンド信号入力端子24から入力された信号は、直交ベースバンド信号用ローパスフィルタ26、送信直交ベースバンド信号用利得制御増幅器28を通り、送信直交ベースバンド信号用変調器30の第1入力端に入力される。送信同相ベースバンド信号用変調器29の第2入力端には2分周回路20の出力の同相信号が入力され、送信直交ベースバンド信号用変調器30の第1入力端には2分周回路20の出力の直交信号が入力される。   The signal input from the transmission quadrature baseband signal input terminal 24 passes through the quadrature baseband signal low-pass filter 26 and the transmission quadrature baseband signal gain control amplifier 28, and passes through the second signal of the transmission quadrature baseband signal modulator 30. 1 is input to the input terminal. The in-phase signal output from the divide-by-2 circuit 20 is input to the second input terminal of the transmission in-phase baseband signal modulator 29, and the divide-by-two signal is input to the first input terminal of the transmission quadrature baseband signal modulator 30. An orthogonal signal output from the circuit 20 is input.

5GHz帯信号送信時において、位相同期ループ回路18は3.267GHz〜3.5GHzの周波数範囲の信号を発生し、それに応じて、2分周回路20は1.6335GHz〜1.75GHzの周波数範囲の信号を発生する。送信同相ベースバンド信号用変調器29と送信直交ベースバンド信号用変調器30で周波数変換された信号は加算され、送信側ミキサ31の第1入力端に入力される。   When transmitting a 5 GHz band signal, the phase-locked loop circuit 18 generates a signal having a frequency range of 3.267 GHz to 3.5 GHz, and accordingly, the divide-by-2 circuit 20 has a frequency range of 1.6335 GHz to 1.75 GHz. Generate a signal. The signals subjected to frequency conversion by the transmission in-phase baseband signal modulator 29 and the transmission quadrature baseband signal modulator 30 are added and input to the first input terminal of the transmission-side mixer 31.

送信側ミキサ31の第2入力端にはスイッチ22の出力信号が入力されるが、この時スイッチ22は位相同期ループ回路18の出力が選択されるよう設定される。送信側ミキサ31で周渡数変換された信号は送信5GHz信号用バンドパスフィルタ32、送信5GHz信号用高周波増幅器34を通り、送信5GHz用出力端子36に出力される。
本実施の形態での周波数プランを図2(a)〜(d)に示し、その説明を行う。
The output signal of the switch 22 is input to the second input terminal of the transmission-side mixer 31. At this time, the switch 22 is set so that the output of the phase-locked loop circuit 18 is selected. The signal whose frequency is converted by the transmission-side mixer 31 passes through the transmission 5 GHz signal band-pass filter 32 and the transmission 5 GHz signal high-frequency amplifier 34 and is output to the transmission 5 GHz output terminal 36.
The frequency plan in this embodiment is shown in FIGS. 2A to 2D and will be described.

図2(a)及び(c)に示すように、2・4GHz帯信号の送受信時においては、2.412GHz〜2.484GHzの信号を1段目のミキサ7と、2段目のミキサ9,10との2段階の周波数変換を用いてベースバンド信号を生成している。
これを図2(a)の受信側を代表して説明する。この説明に当たって図3(a)及び(b)の周波数スペクトル図も参照する。1段目のミキサ7では、2.412GHz〜2.484GHzで中心周波数がf0の受信信号を、804MHz〜828MHzで中心周波数がf0/3の第1のミキシング信号でミキシングする。これによって受信信号が1.608GHz〜1.656GHzで中心周波数が2f0/3の信号に周波数変換される。
As shown in FIGS. 2A and 2C, at the time of transmission / reception of a 2.4 GHz band signal, a 2.412 GHz to 2.484 GHz signal is converted into a first-stage mixer 7, a second-stage mixer 9, The baseband signal is generated using a two-stage frequency conversion with 10.
This will be described on behalf of the receiving side in FIG. In this description, reference is also made to the frequency spectrum diagrams of FIGS. 3 (a) and 3 (b). In the first-stage mixer 7, a reception signal having a center frequency f0 at 2.412 GHz to 2.484 GHz is mixed with a first mixing signal having a center frequency of f0 / 3 from 804 MHz to 828 MHz. As a result, the received signal is frequency-converted to a signal having a center frequency of 2f0 / 3 with a frequency of 1.608 GHz to 1.656 GHz.

この周波数変換後の1.608GHz〜1.656GHzの信号を、2段目のミキサ9,10で、1.608GHz〜1.656GHzで中心周波数2f0/3の第2のミキシング信号でミキシングする。これによってベースバンド信号が生成される。但し、その第1及び第2のミキシング信号は、それぞれ位相同期ループ回路18で生成される信号をそれぞれ4分周、2分周した信号である。   The 1.608 GHz to 1.656 GHz signal after the frequency conversion is mixed by the second mixer 9 and 10 with the second mixing signal having a center frequency of 2f0 / 3 at 1.608 GHz to 1.656 GHz. As a result, a baseband signal is generated. However, the first and second mixing signals are signals obtained by dividing the signal generated by the phase-locked loop circuit 18 by 4 and 2, respectively.

次に、図2(b)及び(d)に示すように、5GHz帯信号の送受信時においては、4.9GHz〜5.25GHzの信号を2段階の周波数変換を用いてベースバンド信号を生成している。
これを図2(b)の受信側を代表して説明する。この説明に当たって図4(a)及び(b)の周波数スペクトル図も参照する。1段目のミキサ7では、4.9GHz〜5.25GHzで中心周波数がf0の受信信号を、3.267MHz〜3.5MHzで中心周波数が2f0/3の第1のミキシング信号でミキシングする。これによって受信信号が1.6335GHz〜1・75GHzで中心周波数がf0/3の信号に周波数変換される。
Next, as shown in FIGS. 2B and 2D, when transmitting and receiving a 5 GHz band signal, a baseband signal is generated by using a two-stage frequency conversion of a signal of 4.9 GHz to 5.25 GHz. ing.
This will be described on behalf of the receiving side in FIG. In this description, reference is also made to the frequency spectrum diagrams of FIGS. 4 (a) and 4 (b). The mixer 7 at the first stage mixes a received signal having a center frequency of f0 at 4.9 GHz to 5.25 GHz with a first mixing signal having a center frequency of 3.267 MHz to 3.5 MHz and a center frequency of 2f0 / 3. As a result, the received signal is frequency-converted into a signal having a center frequency of f0 / 3 at 1.6335 GHz to 1.75 GHz.

この周波数変換後の1.6335GHz〜1・75GHzの信号を、2段目のミキサ9,10で、1.6335GHz〜1・75GHzで中心周波数2f0/3の第2のミキシング信号でミキシングする。これによってベースバンド信号が生成される。但し、その第1及び第2のミキシング信号は、それぞれ位相同期ループ回路18で生成される信号を2分周した信号である。   The 1.6335 GHz to 1 · 75 GHz signal after this frequency conversion is mixed by the second mixer 9 and 10 with the second mixing signal of 1.6335 GHz to 1 · 75 GHz and the center frequency 2f0 / 3. As a result, a baseband signal is generated. However, the first and second mixing signals are signals obtained by dividing the signal generated by the phase-locked loop circuit 18 by 2, respectively.

以上説明したように本実施の形態の無線通信回路によれば、受信側の2.4GHz帯の信号に対して1段目のミキサ7でローカル信号発生部38の位相同期ループ18の発生する信号を4分周回路19で4分周した信号を混合し、この混合後の信号に対して2段目のミキサ(複調器)9,10で位相同期ループ18の発生する信号を2分周回路20で2分周した信号を混合することによりベースバンド信号を得る。   As described above, according to the radio communication circuit of the present embodiment, the signal generated by the phase locked loop 18 of the local signal generator 38 in the mixer 7 at the first stage with respect to the 2.4 GHz band signal on the receiving side. The signal divided by 4 by the divide-by-4 circuit 19 is mixed, and the signal generated by the phase-locked loop 18 is divided by 2 in the second stage mixers (duplexer) 9 and 10 with respect to the mixed signal. A baseband signal is obtained by mixing the signals divided by 2 in the circuit 20.

受信側の5GHz帯の信号に対して1段目のミキサ7で位相同期ループ18の発生する信号をそのまま混合し、この混合後の信号に対して2段目のミキサ(複調器)9,10で位相同期ループ18の発生する信号を2分周した信号を混合することによりベースバンド信号を得る。
送信側の2.4GHz帯の信号においては、ベースバンド信号を1段目のミキサ(変調器)29,30で位相同期ループ18の発生する信号の2分周信号を混合し、この混合後の信号に対して2段目のミキサ31で位相同期ループ18の出力信号を4分周した信号を混合することによって2.4GHz帯の高周波信号を得る。
The signal generated by the phase-locked loop 18 is mixed as it is with the first-stage mixer 7 with respect to the 5 GHz band signal on the receiving side, and the second-stage mixer (double tone) 9, 10, the baseband signal is obtained by mixing the signal generated by dividing the signal generated by the phase locked loop 18 by two.
In the 2.4 GHz band signal on the transmitting side, the baseband signal is mixed by the first-stage mixers (modulators) 29 and 30 with the frequency-divided signal generated by the phase-locked loop 18, and this mixed signal A high frequency signal in the 2.4 GHz band is obtained by mixing the signal obtained by dividing the output signal of the phase locked loop 18 by 4 with the mixer 31 in the second stage.

送信側の5GHz帯の信号においては、ベースバンド信号を1段目のミキサ(変調器)29,30で位相同期ループ18の出力信号の2分周信号を混合し、この混合後の信号に対して2段目のミキサ31で位相同期ループ18の出力信号をそのまま混合することにより5GHz帯の高周波信号を得る。
本構成を採用することで、ローカル信号発生部38の発生する信号の最大周波数は3.5GHzと抑えられ、最小周波数は3.216GHzとなり、周波数範囲も284MHzと大幅に抑えることができる。
In the 5 GHz band signal on the transmission side, the baseband signal is mixed with the half-divided signal of the output signal of the phase locked loop 18 by the first-stage mixers (modulators) 29 and 30, and the mixed signal is Then, the second-stage mixer 31 mixes the output signal of the phase-locked loop 18 as it is to obtain a high-frequency signal in the 5 GHz band.
By adopting this configuration, the maximum frequency of the signal generated by the local signal generator 38 is suppressed to 3.5 GHz, the minimum frequency is 3.216 GHz, and the frequency range can be significantly suppressed to 284 MHz.

従って、このように周波数変換を行うことで、2.4GHz帯と5GHz帯の2つの周波数帯の信号の変換を、従来は4.136GHz〜4.944GHz(周波数レンジ808MHz)だったが、本実施の形態では3.216GHz〜3.5GHz(周波数レンジ284MHz)と最大周波数を低く、しかも狭い範囲の信号周波数の生成で賄えるようになるので、ローカル信号発生回路の設計を容易とすることができ、その温度変化による特性の変動に対する耐性及び製造上の歩留りを向上させることができる。   Therefore, by performing the frequency conversion in this way, the conversion of signals in the two frequency bands of 2.4 GHz band and 5 GHz band was conventionally performed from 4.136 GHz to 4.944 GHz (frequency range 808 MHz). In the form of 3.216 GHz to 3.5 GHz (frequency range 284 MHz), the maximum frequency is low and can be covered by generation of a narrow range of signal frequencies, so the design of the local signal generation circuit can be facilitated, It is possible to improve the tolerance to the variation in characteristics due to the temperature change and the manufacturing yield.

この他、上記実施の形態の無線通信回路の変形例として、図5に示す無線通信回路のようにすることもできる。
即ち、受信部RX2において、2.4GHz帯受信側の1段目の受信側ミキサに、後述のイメージリジェクションミキサ7,7Aを使用することで、受信特性の性能を向上させることを可能とした。これは2.4GHz帯受信時には、受信側ミキサ7,7Aに対して、位相同期ループ回路18で発生させる信号周波数を4分周回路で、お互い90度位相のずれた2つの4分周信号を容易に生成することができることによる。
In addition, as a modification of the wireless communication circuit of the above embodiment, a wireless communication circuit shown in FIG. 5 can be used.
That is, in the receiving unit RX2, the performance of reception characteristics can be improved by using the image rejection mixers 7 and 7A described later as the first receiving mixer on the 2.4 GHz band receiving side. . This means that when receiving the 2.4 GHz band, the signal frequency generated by the phase-locked loop circuit 18 is received by the quadrature dividing circuit 18 for the receiving-side mixers 7 and 7A, and two quadrant signals that are 90 degrees out of phase with each other. Because it can be easily generated.

なお、上述のように受信信号を周波数変換した信号(IF信号)には、希望波成分とイメージ妨害波成分が混在しているため、IF信号をそのまま復調しようとすると、受信感度等の受信品質が劣化してしまう。このため、受信信号を周波数変換するミキサとして、IF信号からイメージ妨害波成分を除去することができるイメージリジェクションミキサを用いた。   In addition, since the desired signal component and the image interference wave component are mixed in the signal (IF signal) obtained by frequency-converting the reception signal as described above, if the IF signal is demodulated as it is, reception quality such as reception sensitivity is received. Will deteriorate. For this reason, an image rejection mixer that can remove an image interference wave component from the IF signal is used as a mixer that converts the frequency of the received signal.

一方、2.4GHz帯送信側は、送信部TX2において、2段目のミキサ31に更にミキサ31Aを用意し、1段目の変調器に更に変調器29A,30Aを用意することで実現することができる。この時、5GHz帯の信号については受信時においては受信側ミキサ7、送信側ミキサ29A、30A、31Aをオフ状態にして動作させる。
更に、以上の内容では、5GHz帯と2.4GHz帯の2つのバンドについて実施の形態を説明したが、次の関係式(1)〜(4)を満足する別の2つの周波数帯であるバンドA(周波数レンジfA1〜fA2)とバンドB(周波数レンジfBl〜fB2)とに対しても、以下に説明する通り実施が可能である。但し、バンドAは5GHz帯に対応し、バンドBは2.4GHz帯に対応するものとする。
On the other hand, the 2.4 GHz band transmission side can be realized by preparing the mixer 31A in the second-stage mixer 31 and further preparing the modulators 29A and 30A in the first-stage modulator in the transmission unit TX2. Can do. At this time, when receiving a signal in the 5 GHz band, the reception-side mixer 7 and the transmission-side mixers 29A, 30A, and 31A are turned off during operation.
Furthermore, in the above description, the embodiment has been described with respect to two bands of 5 GHz band and 2.4 GHz band. However, the band is another two frequency bands satisfying the following relational expressions (1) to (4). For A (frequency range f A1 to f A2 ) and band B (frequency range f Bl to f B2 ), implementation can be performed as described below. However, band A corresponds to the 5 GHz band, and band B corresponds to the 2.4 GHz band.

A1=(3/2)×fL−(3/4)×ΔfL …(1)
A2=(3/2)×fL+(3/4)×ΔfL …(2)
B1=(3/4)×fL−(3/8)×ΔfL …(3)
B2=(3/4)×fL+(3/8)×ΔfL …(4)
例えば図1において、5GHz帯と2.4GHz帯の2つのバンドに代え、上式(1)〜(4)を満足するバンドA(周波数レンジfA1〜fA2)とバンドB(周波数レンジfBl〜fB2)とが受信部RXにおいて受信されたとする。また、ローカル信号発生部38の位相同期ループ回路18が、中心周波数fL、周波数レンジΔfLの信号を発生したとする。
f A1 = (3/2) × f L − (3/4) × Δf L (1)
f A2 = (3/2) × f L + (3/4) × Δf L (2)
f B1 = (3/4) × f L − (3/8) × Δf L (3)
f B2 = (3/4) × f L + (3/8) × Δf L (4)
For example, in FIG. 1, instead of two bands of 5 GHz band and 2.4 GHz band, band A (frequency range f A1 to f A2 ) and band B (frequency range f Bl ) satisfying the above formulas (1) to (4) ˜f B2 ) are received by the receiving unit RX. Further, it is assumed that the phase locked loop circuit 18 of the local signal generator 38 generates a signal having a center frequency f L and a frequency range Δf L.

この場合、バンドBに対しては、1段目のミキサ7が位相同期ループ回路18の発生信号を4分周回路19で4分周した信号を用いて周波数変換を行い、2段目の復調器であるミキサ9,10が同発生信号を2分周回路20で2分周した信号を用いて周波数変換を行うといった2段階で周波数変換を行う。
一方、バンドAに対しては、1段目のミキサ7が位相同期ループ回路18の発生信号を用いて周波数変換を行い、2段目の復調器であるミキサ9,10が同発生信号を2分周回路202分周した信号を用いて周波数変換を行うといった2段階で周波数変換を行う。
In this case, for band B, the first-stage mixer 7 performs frequency conversion using the signal generated by the phase-locked loop circuit 18 by dividing it by 4 by the divide-by-4 circuit 19, and the second-stage demodulation. The mixers 9 and 10, which are the devices, perform frequency conversion in two stages such as frequency conversion using the signal obtained by frequency-dividing the generated signal by the frequency divider circuit 20.
On the other hand, for band A, the first-stage mixer 7 performs frequency conversion using the generated signal of the phase-locked loop circuit 18, and the second-stage demodulator mixers 9 and 10 convert the generated signal to 2 Frequency conversion is performed in two stages, such as frequency conversion using the frequency-divided circuit 202 signal.

そして、その時の位相同期ループ回路18の発生信号の中心周波数fL及び周波数レンジΔfLと、バンドA及びBの中心周波数及び周波数レンジ(周波数レンジfA1〜fA2及び周波数レンジfBl〜fB2)との間が、上式(1)〜(4)の関係を満足するようにする。送信部TXにおいても復調処理が変調処理となるだけで受信部RXと同様である。 Then, the center frequency f L and frequency range Δf L of the signal generated by the phase-locked loop circuit 18 at that time, the center frequencies and frequency ranges of the bands A and B (frequency ranges f A1 to f A2 and frequency ranges f Bl to f B2). ) So as to satisfy the relationships of the above formulas (1) to (4). The transmitter TX is the same as the receiver RX except that the demodulation process is a modulation process.

本発明は、無線通信回路、特に無線ローカルエリアネットワーク用の回路に好適である。   The present invention is suitable for a wireless communication circuit, particularly a circuit for a wireless local area network.

本発明の実施の形態に係る無線通信回路の主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of the radio | wireless communication circuit which concerns on embodiment of this invention. 上記実施の形態に係る無線通信回路における2.4GHz帯と5GHz帯の送受信信号の周波数変換を説明するための図である。It is a figure for demonstrating the frequency conversion of the transmission-and-reception signal of 2.4 GHz band and 5 GHz band in the radio | wireless communication circuit which concerns on the said embodiment. 2.4GHz帯における周波数変換時の周波数スペクトル図である。It is a frequency spectrum figure at the time of frequency conversion in a 2.4 GHz band. 5GHz帯における周波数変換時の周波数スペクトル図である。It is a frequency spectrum figure at the time of frequency conversion in a 5 GHz band. 上記実施の形態に係る無線通信回路の変形例による無線通信回路の主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of the radio | wireless communication circuit by the modification of the radio | wireless communication circuit which concerns on the said embodiment. 従来の無線通信回路における2.4GHz帯と5GHz帯の送受信信号の周波数変換を説明するための図である。It is a figure for demonstrating the frequency conversion of the transmission-and-reception signal of 2.4 GHz band and 5 GHz band in the conventional radio | wireless communication circuit.

符号の説明Explanation of symbols

1 5GHz帯信号受信端子
2 2.4GHz帯信号受信端子
3 5GHz帯側低ノイズ増幅器
4 2.4GHz帯側低ノイズ増幅器
5 5GHz帯側バンドパスフィルタ
6 2.4GH帯側バンドパスフィルタ
7 受信側ミキサ
8 2.4GHz帯及び5GHz帯共用バンドパスフィルタ
9 受信同相信号用複調器
10 受信直交信号用複調器
11 受信同相信号用ローパスフィルタ
12 受信直交信号用ローパスフィルタ
13 受信同相ベースバンド信号増幅器
14 受信直交ベースバンド信号増幅器
15 受信同相ベースバンド信号出力端子
16 受信直交ベースバンド信号出力端子
17,22 スイッチ
18 位相同期ループ回路
18a 電圧制御発振器
18b 分周器
18c 位相比較器
18d チャージポンプ
18e ループフィルタ
19 4分周回路
20 2分周回路
21 基準信号入力端子
23 送信同相ベースバンド信号入力端子
24 送信直交ベースバンド信号入力端子
25 同相ベースバンド信号用ローパスフィルタ
26 直交ベースバンド信号用ローパスフィルタ
27 送信同相ベースバンド信号用利得制御増幅器
28 送信直交ベースバンド信号用利得制御増幅器
29 送信同相ベースバンド信号用変調器
30 送信直交ベースバンド信号用変調器
31 送信側ミキサ
32 送信5GHz信号用バンドパスフィルタ
33 送信2.4GHz信号用バンドパスフィルタ
34 送信5GHz信号用高周波増幅器
35 送信2.4GHz信号用高周波増幅器
36 送信5GHz用出力端子
37 送信2.4GHz用出力端子
38 ローカル信号発生部
RX1,RX2 受信部
TX1,TX2 送信部
1 5 GHz band signal receiving terminal 2 2.4 GHz band signal receiving terminal 3 5 GHz band side low noise amplifier 4 2.4 GHz band side low noise amplifier 5 5 GHz band side band pass filter 6 2.4 GHz band side band pass filter 7 Reception side mixer 8 2.4 GHz band and 5 GHz band shared bandpass filter 9 Received in-phase signal duplexer 10 Received quadrature signal duplexer 11 Received inphase signal lowpass filter 12 Received orthogonal signal lowpass filter 13 Received inphase baseband signal Amplifier 14 Reception Quadrature Baseband Signal Amplifier 15 Reception In-phase Baseband Signal Output Terminal 16 Reception Quadrature Baseband Signal Output Terminal 17, 22 Switch 18 Phase Locked Loop Circuit 18a Voltage Control Oscillator 18b Frequency Divider 18c Phase Comparator 18d Charge Pump 18e Loop Filter 19 4 minutes Circuit 20 Divider circuit 21 Reference signal input terminal 23 Transmission in-phase baseband signal input terminal 24 Transmission quadrature baseband signal input terminal 25 Low-pass filter for in-phase baseband signal 26 Low-pass filter for quadrature baseband signal 27 For transmission in-phase baseband signal Gain control amplifier 28 Gain control amplifier for transmitting quadrature baseband signal 29 Transmitter in-phase baseband signal modulator 30 Transmitter quadrature baseband signal modulator 31 Transmitter mixer 32 Bandpass filter for transmitting 5 GHz signal 33 Transmitting for 2.4 GHz signal Bandpass filter 34 High-frequency amplifier for transmission 5 GHz signal 35 High-frequency amplifier for transmission 2.4 GHz signal 36 Output terminal for transmission 5 GHz 37 Output terminal for 2.4 GHz transmission 38 Local signal generator RX1, RX2 Receiver TX1, TX2 Shin part

Claims (5)

2つの異なる第1及び第2の周波数帯の無線通信用の信号とベースバンド信号との間の周波数変換を行う無線通信回路において、
所定周波数のローカル信号を発生する信号発生手段と、
受信時に、前記第1の周波数帯では受信信号に1段目のミキサで前記ローカル信号を4分周した信号を混合し、この混合後の信号に2段目の復調用のミキサで前記ローカル信号を2分周した信号を混合してベースバンド信号とし、前記第2の周波数帯では受信信号には1段目のミキサで前記ローカル信号をそのまま混合し、この混合後の信号に2段目の復調用のミキサで前記ローカル信号を2分周した信号を混合してベースバンド信号とする周波数変換を行う受信手段と、
送信時に、前記第1の周波数帯では、ベースバンド信号に1段目の変調用のミキサで前記ローカル信号を2分周した信号を混合し、この混合後の信号に2段目のミキサで前記ローカル信号を4分周した信号を混合して送信信号とし、前記第2の周波数帯では、ベースバンド信号に1段目の変調用のミキサで前記ローカル信号を2分周した信号を混合し、この混合後の信号に2段目のミキサで前記ローカル信号をそのまま混合して送信信号とする周波数変換を行う送信手段と
を備えたことを特徴とする無線通信回路。
In a radio communication circuit that performs frequency conversion between a radio communication signal and a baseband signal in two different first and second frequency bands,
Signal generating means for generating a local signal of a predetermined frequency;
At the time of reception, in the first frequency band, the received signal is mixed with a signal obtained by dividing the local signal by 4 by a first-stage mixer, and the mixed signal is mixed with the local signal by a second-stage demodulation mixer. Is mixed into a baseband signal, and in the second frequency band, the received signal is mixed with the local signal as it is by the first-stage mixer, and the second-stage signal is mixed with the mixed signal. Receiving means for performing frequency conversion by mixing a signal obtained by dividing the local signal by 2 with a demodulating mixer into a baseband signal;
At the time of transmission, in the first frequency band, the baseband signal is mixed with a signal obtained by dividing the local signal by 2 using a first-stage modulation mixer, and the mixed signal is mixed with the second-stage mixer. A signal obtained by dividing a local signal by 4 is mixed to obtain a transmission signal. In the second frequency band, a baseband signal is mixed with a signal obtained by dividing the local signal by 2 using a first-stage modulation mixer, A radio communication circuit, comprising: a transmission means for performing frequency conversion by mixing the local signal with the mixed signal as it is by a second-stage mixer to obtain a transmission signal.
前記ローカル信号の中心周波数をfLで周波数レンジをΔfLとし、前記第1の周波数帯の周波数範囲をfBl〜fB2とし、前記第2の周波数帯の周波数範囲をfA1〜fA2とした場合、
A1=(3/2)×fL−(3/4)×ΔfLの第1式と、
A2=(3/2)×fL+(3/4)×ΔfLの第2式と、
B1=(3/4)×fL−(3/8)×ΔfLの第3式と、
B2=(3/4)×fL+(3/8)×ΔfLの第4式と
が成立することを特徴とする請求項1に記載の無線通信回路。
Wherein the center frequency of the local signal frequency range in f L and Delta] f L, the frequency range of the first frequency band and f Bl ~f B2, the frequency range of the second frequency band and f A1 ~f A2 if you did this,
The first equation of f A1 = (3/2) × f L − (3/4) × Δf L ,
a second equation of f A2 = (3/2) × f L + (3/4) × Δf L ;
a third expression of f B1 = (3/4) × f L − (3/8) × Δf L ;
The wireless communication circuit according to claim 1, wherein f B2 = (3/4) × f L + (3/8) × Δf L is satisfied.
前記第1の周波数帯が2.4GHz帯、前記第2の周波数帯が5GHz帯である場合、前記2.4GHz帯の信号は2.412GHz〜2.484GHzの周波数範囲をとり、前記5GHz帯は4.9GHz〜5.25GHzの周波数範囲をとり、また、前記ローカル信号は3.216〜3.5GHzの周波数範囲をとり、前記ローカル信号を2分周した信号は1.608GHz〜1.75GHzの周波数範囲をとり、前記ローカル信号を4分周した信号は804MHz〜875MHzの周波数範囲をとることを特徴とする請求項1または2に記載の無線通信回路。   When the first frequency band is 2.4 GHz band and the second frequency band is 5 GHz band, the 2.4 GHz band signal ranges from 2.412 GHz to 2.484 GHz, and the 5 GHz band is The frequency range of 4.9 GHz to 5.25 GHz is taken, the local signal takes the frequency range of 3.216 to 3.5 GHz, and the signal obtained by dividing the local signal by 2 is 1.608 GHz to 1.75 GHz. The radio communication circuit according to claim 1 or 2, wherein a frequency range is taken and the signal obtained by dividing the local signal by 4 has a frequency range of 804 MHz to 875 MHz. 前記変調用及び前記復調用のミキサを直交変復調型のミキサとしたことを特徴とする請求項1から3の何れか1項に記載の無線通信回路。   4. The wireless communication circuit according to claim 1, wherein the modulation and demodulation mixers are quadrature modulation / demodulation mixers. 前記受信信号が入力される1段目のミキサをイメージリジェクションミキサとしたことを特徴とする請求項1から4の何れか1項に記載の無線通信回路。   The wireless communication circuit according to claim 1, wherein the first-stage mixer to which the received signal is input is an image rejection mixer.
JP2006016577A 2006-01-25 2006-01-25 Wireless communication circuit Expired - Fee Related JP4571591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016577A JP4571591B2 (en) 2006-01-25 2006-01-25 Wireless communication circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016577A JP4571591B2 (en) 2006-01-25 2006-01-25 Wireless communication circuit

Publications (2)

Publication Number Publication Date
JP2007201708A true JP2007201708A (en) 2007-08-09
JP4571591B2 JP4571591B2 (en) 2010-10-27

Family

ID=38455853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016577A Expired - Fee Related JP4571591B2 (en) 2006-01-25 2006-01-25 Wireless communication circuit

Country Status (1)

Country Link
JP (1) JP4571591B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000910A1 (en) * 1997-06-27 1999-01-07 Asahi Kasei Kogyo Kabushiki Kaisha Communication device
JPH11251951A (en) * 1998-03-04 1999-09-17 Hitachi Ltd Multi-band radio terminal equipment
JP2000124829A (en) * 1998-10-12 2000-04-28 Toshiba Corp Radio communication equipment and integrated circuit used therefor
JP2001024543A (en) * 1999-06-10 2001-01-26 Nokia Mobile Phones Ltd Transceiver
JP2001086024A (en) * 1999-09-10 2001-03-30 Matsushita Electric Ind Co Ltd Radio circuit and radio communications equipment
JP2003258662A (en) * 2002-03-06 2003-09-12 Alps Electric Co Ltd Dual-frequency converter unit in common use
JP2006191409A (en) * 2005-01-07 2006-07-20 Renesas Technology Corp Transmitting/receiving circuit, transmitting circuit and receiving circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000910A1 (en) * 1997-06-27 1999-01-07 Asahi Kasei Kogyo Kabushiki Kaisha Communication device
JPH11251951A (en) * 1998-03-04 1999-09-17 Hitachi Ltd Multi-band radio terminal equipment
JP2000124829A (en) * 1998-10-12 2000-04-28 Toshiba Corp Radio communication equipment and integrated circuit used therefor
JP2001024543A (en) * 1999-06-10 2001-01-26 Nokia Mobile Phones Ltd Transceiver
JP2001086024A (en) * 1999-09-10 2001-03-30 Matsushita Electric Ind Co Ltd Radio circuit and radio communications equipment
JP2003258662A (en) * 2002-03-06 2003-09-12 Alps Electric Co Ltd Dual-frequency converter unit in common use
JP2006191409A (en) * 2005-01-07 2006-07-20 Renesas Technology Corp Transmitting/receiving circuit, transmitting circuit and receiving circuit

Also Published As

Publication number Publication date
JP4571591B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP3564480B2 (en) Wireless communication method and system for performing communication between a plurality of wireless communication terminals
JPH1032520A (en) Transmitter-receiver sending/receiving radio frequency signal for two frequency bands
JP2008178135A (en) Radio receiving circuit, radio transmitting circuit, and method of operating radio receiving circuit
JP2006109476A (en) Frequency-shift-keying demodulator and frequency-shift keying demodulation
JP2005012648A (en) Radio communication apparatus and its transmitting/receiving circuit
US20130130632A1 (en) Signal generator circuit and radio transmission and reception device including the same
WO2020118627A1 (en) Radio-frequency topological system and communication apparatus
CN103209004B (en) A kind of multi-time slot transceiver
US8718190B2 (en) Receiver/transmitter capable of simultaneously receiving/transmitting discontinuous frequency signals and method thereof
RU2348104C2 (en) Frequency synthesiser for support of voice communication standards and wireless networks standards
TWI707551B (en) Wlan transceiver and method thereof
KR20050009477A (en) High Frequency Transceiver
CN108540149B (en) Wireless radio frequency transmitter
JP3828077B2 (en) Frequency conversion circuit and communication device
JP4571591B2 (en) Wireless communication circuit
JP3993573B2 (en) Wireless communication device compatible with multiple wireless systems
US9300507B2 (en) Local oscillation generator and associated communication system and method for local oscillation generation
JP2009060476A (en) Frequency synthesizer, control method of frequency synthesizer, multi-band telecommunication device
CN112689961A (en) Receiving device, transmitting device and signal processing method
JP2003528529A (en) Communication system with frequency modulator and single local oscillator
JP2001086024A (en) Radio circuit and radio communications equipment
CN115473558B (en) Signal transfer circuit, signal transfer method and electronic equipment
JP2014187428A (en) Reception circuit and reception method
TWI774254B (en) Wireless transceiver having in-phase quadrature-phase calibration function
JP2011109518A (en) Transmitting and receiving apparatus, and receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees