JP2007201397A - Electrode member having two undercoating layers for nonaqueous electronic part - Google Patents

Electrode member having two undercoating layers for nonaqueous electronic part Download PDF

Info

Publication number
JP2007201397A
JP2007201397A JP2006158264A JP2006158264A JP2007201397A JP 2007201397 A JP2007201397 A JP 2007201397A JP 2006158264 A JP2006158264 A JP 2006158264A JP 2006158264 A JP2006158264 A JP 2006158264A JP 2007201397 A JP2007201397 A JP 2007201397A
Authority
JP
Japan
Prior art keywords
electrode
electrode member
undercoat layer
layer
collector electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006158264A
Other languages
Japanese (ja)
Other versions
JP3971441B2 (en
Inventor
Hidetoshi Ota
秀利 太田
Keiichi Hayashi
圭一 林
Takashi Tanigawa
孝志 谷川
Atsushi Shimizu
敦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2006158264A priority Critical patent/JP3971441B2/en
Publication of JP2007201397A publication Critical patent/JP2007201397A/en
Application granted granted Critical
Publication of JP3971441B2 publication Critical patent/JP3971441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collector electrode member where a clearance is difficult to be produced on an interface between a collector electrode and a working electrode, and the surface of the collector electrode does not contact with a electrolytic solution even when coating and drying slurry of electrode material to manufacture an electrode member. <P>SOLUTION: The collector electrode member for an electronic parts has a conductive material and a first undercoating layer and second undercoating layer which are positioned on the surface of the conductive material in order, the first undercoating layer is a layer composed of elastomer, and the second undercoating layer is a layer which contains an auxiliary material and a binding resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電子部品の集電極部材に関し、特に電解液中に電極が浸されてなる電子部品の集電極部材に関する。   The present invention relates to a collector electrode member for an electronic component, and more particularly to a collector electrode member for an electronic component in which an electrode is immersed in an electrolytic solution.

電気二重層キャパシタ、非水系電池及び電解コンデンサのような電子部品は電解液中に電極部材が浸された構成を有している。電極部材とは、電解液を保持している電解槽に電気を導入し、又は電解槽から電気を取り出すアセンブリをいう。本明細書において、電極部材は集電極と作用電極との結合体をいう。作用電極とは、電極活物質を含有し、電子部品の充放電時に電解液と作用する電極をいい、集電極とは作用電極を支持する電極をいう。例えば、一般的な電気二重層キャパシタでは、分極性電極が上記作用電極に該当する。   Electronic parts such as electric double layer capacitors, non-aqueous batteries, and electrolytic capacitors have a configuration in which an electrode member is immersed in an electrolytic solution. An electrode member refers to an assembly that introduces electricity into or removes electricity from an electrolytic cell holding an electrolytic solution. In this specification, the electrode member refers to a combined body of a collecting electrode and a working electrode. The working electrode refers to an electrode that contains an electrode active material and acts with an electrolyte during charging / discharging of an electronic component, and the collecting electrode refers to an electrode that supports the working electrode. For example, in a general electric double layer capacitor, a polarizable electrode corresponds to the working electrode.

特許文献1には、活性炭のような分極性電極材料を含んでなる電極のシートを予め作製し、この電極シート表面に集電極を重ね合わせて圧延ローラーなどで一体化した電極部材が記載されている。この場合、集電極と分極性電極シートを貼り合わせるための導電性接着材として、炭素材を分散させた合成ゴムが用いられている。しかしながら、まず電極シートを形成し、その後集電極と貼り合わるのは工程が煩雑であり、製造コストが高くなる。   Patent Document 1 describes an electrode member in which a sheet of an electrode including a polarizable electrode material such as activated carbon is prepared in advance, and a collecting electrode is superimposed on the surface of the electrode sheet and integrated with a rolling roller or the like. Yes. In this case, a synthetic rubber in which a carbon material is dispersed is used as a conductive adhesive for bonding the collector electrode and the polarizable electrode sheet. However, forming the electrode sheet first and then bonding it to the collector electrode is a complicated process and increases the manufacturing cost.

非特許文献1には、電極シートを予め作成するのではなく、分極性電極材料に接着剤を混ぜてスラリー状にし、これを集電極に塗布、乾燥させて電極部材を形成することが記載されている。塗布及び乾燥は連続的に行うことができるため工程は簡単であり、この方法(以下、「スラリー塗布法」という。)によれば電極部材を低コストで製造することができる。   Non-Patent Document 1 describes that, instead of preparing an electrode sheet in advance, a polarizable electrode material is mixed with an adhesive to form a slurry, which is applied to a collecting electrode and dried to form an electrode member. ing. Since the coating and drying can be performed continuously, the process is simple. According to this method (hereinafter referred to as “slurry coating method”), the electrode member can be manufactured at low cost.

スラリー塗布法によれば、同じ量の電極活物質を用いた場合、独立した電極シートを形成するよりもかなり薄く成膜することが可能であり、セルの出力密度が向上する。またスラリー塗布法によれば、電極のシートよりも接着剤の量をかなり減少させることが可能であり、セルの内部抵抗が低下する。更に、スラリー塗布法によれば電極の密度の調節を容易に行うことができる。   According to the slurry coating method, when the same amount of electrode active material is used, it is possible to form a film much thinner than when an independent electrode sheet is formed, and the output density of the cell is improved. Further, according to the slurry application method, the amount of the adhesive can be considerably reduced as compared with the electrode sheet, and the internal resistance of the cell is lowered. Furthermore, according to the slurry application method, the density of the electrodes can be easily adjusted.

しかしながら、電極材料のスラリーを集電極に直接塗布し乾燥させると、集電極と分極性電極層との界面に隙間が生じ易く、集電極の表面には接着剤に覆われない部分が発生し易い。集電極のかかる部分は、電解槽内で電解液と直接接触する。そのため、電気二重層キャパシタの充放電時に集電極に電圧が印加されると、電解液が酸化または還元反応を受けて分解または劣化し易くなる。   However, when the electrode material slurry is directly applied to the collector electrode and dried, a gap is likely to be formed at the interface between the collector electrode and the polarizable electrode layer, and a portion not covered with the adhesive is likely to occur on the surface of the collector electrode. . This part of the collector electrode is in direct contact with the electrolyte in the electrolytic cell. Therefore, when a voltage is applied to the collector electrode during charging / discharging of the electric double layer capacitor, the electrolytic solution is easily decomposed or deteriorated due to an oxidation or reduction reaction.

特に、分極性電極として非多孔性炭素質材料や黒鉛系炭素質材料を使用する次世代高エネルギー密度電気二重層キャパシタは定格電圧が高く、スラリー塗布法で形成した電極部材を用いると、電解液が早期に劣化して耐用寿命が短くなる可能性がある。
特開2005−136401 特開2005−286178 岡村廸夫「電気二重層キャパシタと蓄電システム」第2版、日刊工業新聞社、2001年、第40〜41頁
In particular, next-generation high energy density electric double layer capacitors that use non-porous carbonaceous materials or graphite-based carbonaceous materials as polarizable electrodes have a high rated voltage, and when an electrode member formed by a slurry coating method is used, an electrolyte solution May deteriorate early and the service life may be shortened.
JP 2005-136401 A JP 2005-286178 A Ikuo Okamura "Electric Double Layer Capacitor and Power Storage System" 2nd Edition, Nikkan Kogyo Shimbun, 2001, 40-41

本発明は上記従来の問題を解決するものであり、その目的とするところは、電極材料のスラリーを塗布、乾燥させて電極部材を製造した場合でも集電極と作用電極との界面に隙間が生じ難く、集電極の表面が電解液に接触しない集電極部材を提供することにある。   The present invention solves the above-mentioned conventional problems, and the object is to create a gap at the interface between the collecting electrode and the working electrode even when an electrode member is produced by applying and drying a slurry of electrode material. It is difficult to provide a collector electrode member in which the surface of the collector electrode is not in contact with the electrolytic solution.

本発明は、導電性材料と、導電性材料の表面上に順次設けられた第1下塗り層と、第2下塗り層とを有する電子部品用集電極部材において、 該第1下塗り層がエラストマーからなる層であり、
該第2下塗り層が導電補助剤及び結合樹脂を含んでなる層である、電子部品用集電極部材を提供するものであり、そのことにより上記目的が達成される。
The present invention provides a collector electrode member for an electronic component having a conductive material, a first undercoat layer sequentially provided on the surface of the conductive material, and a second undercoat layer, wherein the first undercoat layer is made of an elastomer. Layer,
The second undercoat layer provides a collector electrode member for an electronic component, which is a layer comprising a conductive auxiliary agent and a binding resin, whereby the above object is achieved.

本発明の電子部品用集電極部材は、
導電性材料を準備する工程;
導電性材料の表面上にエラストマーからなる第1下塗り層を形成する工程;及び
第1下塗り層の表面上に導電補助剤及び結合樹脂を含んでなる第2下塗り層を形成する工程;
を包含する方法により製造することが好ましい。
The collector electrode member for electronic parts of the present invention is
Preparing a conductive material;
Forming a first undercoat layer made of an elastomer on the surface of the conductive material; and forming a second undercoat layer comprising a conductive additive and a binding resin on the surface of the first undercoat layer;
It is preferable to manufacture by the method of including.

本発明の集電極部材を用いると、高い電圧で使用しても電解液が劣化し難く、電子部品のサイクル特性、耐用寿命が向上する。   When the collector electrode member of the present invention is used, the electrolyte solution hardly deteriorates even when used at a high voltage, and the cycle characteristics and the service life of the electronic component are improved.

導電性材料は電子部品の集電極として通常用いられる形態を有する材料を使用する。集電極の形態はシート状、角柱状、および円柱状等であればよい。電子部品が電気二重層キャパシタである場合、集電極の材料はアルミニウム、銅、銀、ニッケル、チタンなどであればよい。好ましい形態は、シート状又は箔状であり、好ましい材料はアルミニウムである。アルミニウムは金属としての電気抵抗が低く、電気二重層キャパシタとして組み立てた状態で耐電圧の劣化が少ないからである。   As the conductive material, a material having a form normally used as a collecting electrode of an electronic component is used. The form of the collecting electrode may be a sheet shape, a prismatic shape, a cylindrical shape, or the like. When the electronic component is an electric double layer capacitor, the material of the collector electrode may be aluminum, copper, silver, nickel, titanium, or the like. A preferred form is a sheet or foil, and a preferred material is aluminum. This is because aluminum has a low electric resistance as a metal, and the withstand voltage is less deteriorated in an assembled state as an electric double layer capacitor.

第1下塗り層は導電性材料と電解液との接触を阻害するために設ける。第1下塗り層は電解液の遮断性、耐酸化還元性、耐薬品性に優れ、電気二重層キャパシタの寿命にわたって良好な安定性を示す必要がある。更に、第1下塗り層は導電性材料と第2下塗り層とを電気的に導通させる必要がある。   The first undercoat layer is provided to inhibit contact between the conductive material and the electrolytic solution. The first undercoat layer is excellent in the electrolyte barrier property, oxidation-reduction resistance, and chemical resistance, and needs to exhibit good stability over the life of the electric double layer capacitor. Furthermore, the first undercoat layer needs to electrically connect the conductive material and the second undercoat layer.

第1下塗り層を構成するのに好ましい材料はエラストマー、より好ましくは合成ゴムである。合成ゴムの具体例としては、イソプレンゴム(ポリイソプレン)などのイソプレン系ゴム;ブタジエンゴム(シス−1,4−ポリブタジエン)、スチレン・ブタジエンゴム(SBR)などのブタジエン系ゴム;ニトリルゴム(NBR)、クロロプレンゴムなどのジエン系特殊ゴム;エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、アクリルゴムなどのオレフィン系ゴム;ヒドリンゴム;ウレタンゴム;フッ素ゴム;などが挙げられる。   A preferred material for constituting the first undercoat layer is an elastomer, more preferably a synthetic rubber. Specific examples of the synthetic rubber include isoprene rubbers such as isoprene rubber (polyisoprene); butadiene rubbers such as butadiene rubber (cis-1,4-polybutadiene) and styrene-butadiene rubber (SBR); nitrile rubber (NBR) And diene special rubbers such as chloroprene rubber; olefin rubbers such as ethylene / propylene rubber, ethylene / propylene / diene rubber and acrylic rubber; hydrin rubber; urethane rubber; fluorine rubber;

上記合成ゴムの中でも、安価で多様の品種のあるSBRが好適である。さらに、SBRとしては、ガラス転移温度(Tg)が、−5℃〜30℃、特に0℃〜10℃のものがより好ましい。SBRのTgが−5℃未満であると電解液の遮断性が不十分となり、30℃を越えると導通性が不十分となる。ここで、SBRのTgは、JISK 7121の規定に従って測定した値である。   Among the above synthetic rubbers, SBR having various varieties is inexpensive and suitable. Furthermore, as SBR, a glass transition temperature (Tg) of −5 ° C. to 30 ° C., particularly 0 ° C. to 10 ° C. is more preferable. When the TBR of SBR is less than −5 ° C., the blocking property of the electrolyte is insufficient, and when it exceeds 30 ° C., the conductivity is insufficient. Here, TBR of SBR is a value measured in accordance with JISK 7121.

第1下塗り層は上記合成ゴムおよび分散媒を含有する液体を塗布乾燥して形成される。塗布法は特に限定されないが、通常グラビア印刷方式かダイヘッド方式で塗布を行う。第1下塗り層の厚さは乾燥状態で1〜5μm、好ましくは1〜2μmとする。第1下塗り層の厚さが1μm未満であると電解液の遮断性が不十分となり、5μmを越えると導通性が不十分となる。   The first undercoat layer is formed by applying and drying a liquid containing the synthetic rubber and the dispersion medium. The application method is not particularly limited, but is usually applied by a gravure printing method or a die head method. The thickness of the first undercoat layer is 1 to 5 μm, preferably 1 to 2 μm in a dry state. When the thickness of the first undercoat layer is less than 1 μm, the barrier property of the electrolytic solution is insufficient, and when it exceeds 5 μm, the conductivity is insufficient.

分散媒は特に限定されないが、水、低級アルコール(メタノール、エタノール、n−プロパノール、イソプロパノールなど)が好適である。なお、通常、合成ゴムは、そのままでは、これらの分散媒には溶解または分散しないため、公知の界面活性剤や保護コロイド形成用の水溶性重合体などを添加すればよい。   The dispersion medium is not particularly limited, but water and lower alcohols (methanol, ethanol, n-propanol, isopropanol, etc.) are preferable. In general, synthetic rubbers are not dissolved or dispersed in these dispersion media as they are, so that a known surfactant or a water-soluble polymer for forming a protective colloid may be added.

また、上記合成ゴムのうち、ラテックスの入手が容易なものについては、ラテックスを用いてもよい。例えば、SBRやNBRなどのラテックスが一般的である。この場合、導電性接着剤の分散媒は、全てがラテックス由来のものであってもよく、別途分散媒を添加してもよい。 Of the above synthetic rubbers, latex may be used for those for which latex is easily available. For example, latex such as SBR and NBR is common. In this case, all of the conductive adhesive dispersion medium may be derived from latex, or a dispersion medium may be added separately.

第2下塗り層は導電性材料と分極性電極との接触抵抗を低減するために設ける。   The second undercoat layer is provided to reduce the contact resistance between the conductive material and the polarizable electrode.

第2下塗り層を構成するのに好ましい材料は導電補助剤を分散した結合樹脂である。導電補助剤の具体例としては、非局在化したπ電子の存在によって高い導電性を有する黒鉛;黒鉛質の炭素微結晶が数層集まって乱層構造を形成した球状集合体であるカーボンブラック(アセチレンブラック、ケッチェンブラック、その他のファーネスブラック、チャンネルブラック、サーマルランプブラックなど);メタン、プロパン、アセチレンなどの炭化水素を気相熱分解し、基板となる黒板上に薄膜の状態で析出させてなる熱分解黒鉛などが挙げられる。中でも、高い導電性確保が可能な点で、薄片状黒鉛[特に、天然の黒鉛(鱗片状黒鉛)]が、また、比較的小粒径であり且つ導電性も比較的良好な点で、アセチレンブラックが好ましい。   A preferable material for constituting the second undercoat layer is a binder resin in which a conductive auxiliary agent is dispersed. Specific examples of conductive aids include graphite having high conductivity due to the presence of delocalized π electrons; carbon black which is a spherical aggregate in which several layers of graphitic carbon microcrystals gather to form a turbulent structure (Acetylene black, ketjen black, other furnace blacks, channel blacks, thermal lamp blacks, etc.); Hydrocarbons such as methane, propane, acetylene, etc. are vapor-phase pyrolyzed and deposited in a thin film on the blackboard as a substrate And pyrolytic graphite. Among them, flaky graphite [particularly natural graphite (scaly graphite)] is also a acetylene because it has a relatively small particle size and a relatively good conductivity because it can ensure high conductivity. Black is preferred.

導電補助剤を分散させる樹脂は一般にスラリーを作製するときに用いられている樹脂で有機電解液に安定でかつ電気化学的に安定であればよい。例としてイソプレンゴム(ポリイソプレン)などのイソプレン系ゴム;ブタジエンゴム(シス−1,4−ポリブタジエン)、スチレン・ブタジエンゴム(SBR)などのブタジエン系ゴム;ニトリルゴム(NBR)、クロロプレンゴムなどのジエン系特殊ゴム;エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、アクリルゴムなどのオレフィン系ゴム;ヒドリンゴム;ウレタンゴム;フッ素ゴム;などが挙げられる。また、カルボキシメチルセルロース(CMC)などの増粘剤を単独で用いてよく、CMCと上記合成ゴムの混合物等を用いてもよい。   The resin in which the conductive auxiliary agent is dispersed is generally used when a slurry is prepared, and may be any resin that is stable in an organic electrolyte and electrochemically stable. Examples include isoprene rubbers such as isoprene rubber (polyisoprene); butadiene rubbers such as butadiene rubber (cis-1,4-polybutadiene) and styrene-butadiene rubber (SBR); dienes such as nitrile rubber (NBR) and chloroprene rubber Olefin rubbers such as ethylene / propylene rubber, ethylene / propylene / diene rubber, and acrylic rubber; hydrin rubber; urethane rubber; fluorine rubber; A thickener such as carboxymethyl cellulose (CMC) may be used alone, or a mixture of CMC and the above synthetic rubber may be used.

第2下塗り層中における導電補助剤の量(固形分基準)は、例えば50〜99質量%、80〜99質量%、90〜99質量%、特に95〜99質量%であることが好ましい。導電補助剤の量が50質量%未満であると導電性確保が困難となり、99質量%を越えると塗工性が悪くなる。   The amount (based on solid content) of the conductive auxiliary agent in the second undercoat layer is, for example, preferably 50 to 99% by mass, 80 to 99% by mass, 90 to 99% by mass, particularly 95 to 99% by mass. When the amount of the conductive auxiliary is less than 50% by mass, it is difficult to ensure conductivity, and when it exceeds 99% by mass, the coating property is deteriorated.

第2下塗り層は上記導電補助剤、結合樹脂および分散媒を含有する液体を用いること以外は第1下塗り層と同様にして形成される。第2下塗り層の厚さは乾燥状態で1〜5μm、好ましくは1〜3μmとする。第2下塗り層の厚さが1μm未満であると導電性確保が困難となり、5μmを越えると電極として有効な作用電極層の体積が減少する。   The second undercoat layer is formed in the same manner as the first undercoat layer except that the liquid containing the conductive auxiliary agent, the binding resin, and the dispersion medium is used. The thickness of the second undercoat layer is 1 to 5 μm, preferably 1 to 3 μm in a dry state. If the thickness of the second undercoat layer is less than 1 μm, it is difficult to ensure conductivity, and if it exceeds 5 μm, the volume of the working electrode layer effective as an electrode decreases.

この様にして得られた集電極部材は、電気二重層キャパシタ等の電子部品の電極部材を製造するのに用いることができる。例えば、シート状の電極部材は、分極性電極材料と結合樹脂と導電補助剤を混合し、適当な分散媒に分散させて電極材料のスラリーを得、これを集電極部材の表面に塗布し、分散媒が完全に蒸発するまで乾燥させて形成される。   The collector member thus obtained can be used to manufacture electrode members for electronic parts such as electric double layer capacitors. For example, a sheet-like electrode member is a mixture of a polarizable electrode material, a binding resin, and a conductive auxiliary agent, and dispersed in an appropriate dispersion medium to obtain a slurry of the electrode material, which is applied to the surface of the collector electrode member, It is formed by drying until the dispersion medium is completely evaporated.

集電極部材は第2下塗り層を形成した後に加熱することが好ましい。加熱することで作用電極との間の導電性が向上するからである。集電極部材を加熱する工程は作用電極を形成する前に行なってもよく、作用電極を形成した後に行なってもよい。また、分散媒を蒸発させる工程と同時に行ってもよい。   The collector electrode member is preferably heated after the second undercoat layer is formed. It is because the electrical conductivity between the working electrodes is improved by heating. The step of heating the collector electrode member may be performed before the working electrode is formed, or may be performed after the working electrode is formed. Moreover, you may carry out simultaneously with the process of evaporating a dispersion medium.

加熱温度は、一般に100〜220℃、好ましくは130〜190℃である。加熱温度が100℃未満であると集電局部材の導電性の向上が不十分となり、220℃を越えるとその他の電極構成材料の劣化が進行する。加熱時間は、一般に1〜12時間、好ましくは4〜8時間である。加熱時間が1時間未満であると導電性の向上が不十分となり、12時間を越えて加熱処理を行っても諸特性は向上しない。   The heating temperature is generally 100 to 220 ° C, preferably 130 to 190 ° C. When the heating temperature is less than 100 ° C., the conductivity of the current collecting station member is not sufficiently improved, and when it exceeds 220 ° C., the deterioration of other electrode constituent materials proceeds. The heating time is generally 1 to 12 hours, preferably 4 to 8 hours. When the heating time is less than 1 hour, the conductivity is not improved sufficiently, and various properties are not improved even if the heat treatment is performed for more than 12 hours.

分極性電極材料としては、活性炭等電気二重層キャパシタに通常使用される炭素質材料を使用できる。分極性電極材料は、電気二重層キャパシタの充電を行なう際に実質的に膨張する炭素材料を含んでいてもよい。膨張性炭素は黒鉛類似の微結晶炭素であり、電圧が印加されると黒鉛類似の微結晶炭素の層間に電解質イオンが溶媒を伴いながらインターカレートし、その結果、電極の実質的な膨張が生じると考えられている。   As the polarizable electrode material, a carbonaceous material usually used for electric double layer capacitors such as activated carbon can be used. The polarizable electrode material may include a carbon material that substantially expands when the electric double layer capacitor is charged. Expandable carbon is graphite-like microcrystalline carbon, and when a voltage is applied, electrolyte ions intercalate with a solvent between the layers of graphite-like microcrystalline carbon, resulting in substantial expansion of the electrode. It is thought to occur.

好ましい非多孔性炭素は、例えば、特許文献2に記載されているものであり、以下のようにして製造することができる。   A preferable non-porous carbon is, for example, described in Patent Document 2, and can be produced as follows.

ニードルコークスグリーンパウダーの粉末を不活性雰囲気下、例えば窒素やアルゴンの雰囲気下で、500〜900℃、好ましくは600〜800℃、より好ましくは650〜750℃で、2〜4時間焼成する。この焼成工程において炭素組織の結晶構造が形成されると考えられている。   The powder of needle coke green powder is baked at 500 to 900 ° C., preferably 600 to 800 ° C., more preferably 650 to 750 ° C. for 2 to 4 hours in an inert atmosphere, for example, an atmosphere of nitrogen or argon. It is considered that a crystal structure of a carbon structure is formed in this firing step.

焼成した炭素粉末は、重量比で、1.8〜2.2倍、好ましくは2倍程度の水酸化アルカリと混合する。そして粉末混合物を不活性雰囲気下650〜850℃、好ましくは700℃から750℃で2〜4時間焼成する。この工程はアルカリ賦活と呼ばれ、アルカリ金属原子の蒸気が炭素組織に浸透して炭素の結晶構造を緩める効果があると考えられている。   The calcined carbon powder is mixed with an alkali hydroxide having a weight ratio of 1.8 to 2.2 times, preferably about 2 times. The powder mixture is calcined at 650 to 850 ° C., preferably 700 to 750 ° C. for 2 to 4 hours under an inert atmosphere. This process is called alkali activation, and it is considered that alkali metal atom vapor penetrates the carbon structure and has the effect of relaxing the crystal structure of carbon.

次いで、得られた粉末混合物を洗浄して水酸化アルカリを除去する。洗浄は、例えば上記アルカリ処理後の炭素から粒子を回収し、ステンレス製のカラムに充填し、120℃〜150℃、10〜100kgf、好ましくは10〜50kgfの加圧水蒸気をカラムに導入し、排水のpHが〜7となるまで加圧水蒸気を導入し続けることにより行うことができる(通常6〜10時間)。アルカリ除去工程の終了後、アルゴンや窒素のような不活性ガスをカラムに流し、乾燥して目的の非多孔性炭素の粉末を得る。   The resulting powder mixture is then washed to remove the alkali hydroxide. In the washing, for example, particles are collected from the carbon after the alkali treatment, filled in a stainless steel column, 120 to 150 ° C., 10 to 100 kgf, preferably 10 to 50 kgf of pressurized water vapor is introduced into the column, This can be done by continuing to introduce pressurized steam until the pH is ˜7 (usually 6-10 hours). After completion of the alkali removal step, an inert gas such as argon or nitrogen is passed through the column and dried to obtain the desired non-porous carbon powder.

作用電極の導電性補助剤としては、カーボンブラックの他、粉末グラファイトなどを用いることができ、また、結合樹脂としては、PTFEの他、PVDF、PE、PPなどを使用することができる。この際、非多孔性炭素と導電性補助剤(カーボン・ブラック)と結合樹脂(PTFE)との配合比は、一般に、10〜1:0.5〜10:0.5〜0.25程度である。   In addition to carbon black, powder graphite or the like can be used as the conductive auxiliary agent for the working electrode. In addition to PTFE, PVDF, PE, PP, or the like can be used as the binding resin. In this case, the blending ratio of non-porous carbon, conductive auxiliary agent (carbon black) and binder resin (PTFE) is generally about 10: 1: 0.5-10: 0.5-0.25. is there.

本発明の電極部材は、従来から知られている電子部品、例えば、電気二重層キャパシタに使用することができる。電気二重層キャパシタは、例えば、シート状の電極部材を、セパレータを介して重ね合わせることにより正極と負極とを形成した後、電解液を含浸させて組み立てることができる。   The electrode member of the present invention can be used for conventionally known electronic components such as electric double layer capacitors. An electric double layer capacitor can be assembled by, for example, forming a positive electrode and a negative electrode by overlapping sheet-like electrode members with a separator interposed therebetween, and then impregnating the electrolyte.

以下の実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されない。尚、実施例中「部」又は「%」で表される量は特にことわりなき限り重量基準である。   The following examples further illustrate the present invention, but the present invention is not limited thereto. In the examples, “part” or “%” is based on weight unless otherwise specified.

実施例1
水酸化カリウムペレットをあらかじめミルにて粉砕し、粉末状とした。日本製鋼製の石炭系ニードルコークスグリーンパウダー(NCGP)をアルミナ製の坩堝にて、これをマッフル炉にて窒素を循環させながら、約800℃にて3時間焼成し自然冷却した。次に、概焼成品を重量比あたり1.5倍の水酸化カリウム粉末と混合した。これをそれぞれニッケル製の坩堝に入れ同じくニッケル製の蓋をかぶせて外気を遮断した。これをマッフル炉にて窒素を循環させながら、750℃にて保持時間4時間賦活した。本焼成品を取り出し、純水にて軽く洗浄した後、超音波をかけて洗浄した。時間は1分である。次にブフナーロートを用いて水分を分離した。同様の洗浄操作を繰り返し、洗浄処理水のペーハーが7付近になるまで行った。これを真空乾燥機にて200℃にて10時間乾燥を行った。
Example 1
The potassium hydroxide pellets were pulverized in advance with a mill to obtain powder. Nippon Steel-made coal-based needle coke green powder (NCGP) was calcined at about 800 ° C. for 3 hours in an alumina crucible while circulating nitrogen in a muffle furnace and naturally cooled. Next, the roughly fired product was mixed with 1.5 times the potassium hydroxide powder per weight ratio. Each was put in a nickel crucible and covered with a nickel lid to shut off the outside air. This was activated for 4 hours at 750 ° C. while circulating nitrogen in a muffle furnace. The fired product was taken out, washed lightly with pure water, and then washed by applying ultrasonic waves. The time is 1 minute. Next, water was separated using a Buchner funnel. The same washing operation was repeated until the pH of the washing water reached around 7. This was dried in a vacuum dryer at 200 ° C. for 10 hours.

得られたカーボンを、ボールミル(藤原製作所製AV-1)を用い、10mmΦのアルミナボールにて1時間粉砕した。これをコールターカウンターにて粒度を測定したところ、いずれも中心粒子径10ミクロン程度の粉状となった。得られた粉状のカーボンの比表面積をBET法によって測定したところ80m2/gであった。また、細孔径0.8nm以下の細孔容積が0.04ml/gであった。 The obtained carbon was pulverized for 1 hour with 10 mmφ alumina balls using a ball mill (AV-1 manufactured by Fujiwara Seisakusho). When the particle size was measured with a Coulter counter, all of them became powdery with a center particle diameter of about 10 microns. It was 80 m < 2 > / g when the specific surface area of the obtained powdery carbon was measured by BET method. The pore volume with a pore diameter of 0.8 nm or less was 0.04 ml / g.

SBRを第1層として5μmの厚みで塗工した。次にアセチレンブラックを、固形分基準で97質量%となる量でCMC水溶液に分散させたスラリーを、第2層として5μmの厚みで塗工した。次に粉状のカーボンをCMC水溶液に分散したものにSBRを添加し粘度を調整したスラリーを作製した。そのスラリーを作用電極層として第3層目に塗工した。得られた塗工物をプレスマシンにてプレスし、100ミクロン厚の塗工電極を得た。出来上がった電極層を160℃で6時間加熱処理して乾燥し、塗工電極を作製した。   SBR was applied as a first layer with a thickness of 5 μm. Next, a slurry in which acetylene black was dispersed in an aqueous CMC solution in an amount of 97% by mass based on the solid content was applied as a second layer with a thickness of 5 μm. Next, a slurry was prepared by adding SBR to a dispersion of powdered carbon in a CMC aqueous solution to adjust the viscosity. The slurry was applied to the third layer as a working electrode layer. The obtained coated product was pressed with a press machine to obtain a coated electrode having a thickness of 100 microns. The completed electrode layer was heat-treated at 160 ° C. for 6 hours and dried to produce a coated electrode.

この塗工電極を20mmΦのディスクに打ち抜き、図1に示すような、3電極セルに組み立てた。参照電極は呉羽化学社製「#1711」活性炭をCMC溶液に分散しSBRで粘度調整しスラリーを作製し塗工電極としたものを用いた。これらセルを真空中220℃で24時間乾燥し冷却した。スピロビピロリジニウムテトラフルオロボレート(SBPBF)を2.0モル%となるようにプロピレンカーボネートに溶解させて電解液を調製した。そして、得られた電解液をセルに注入して電気二重層キャパシタを作製した。 This coated electrode was punched into a 20 mmφ disk and assembled into a three-electrode cell as shown in FIG. As the reference electrode, “# 1711” activated carbon manufactured by Kureha Chemical Co., Ltd. was dispersed in a CMC solution, the viscosity was adjusted with SBR, and a slurry was prepared to be a coated electrode. These cells were dried in a vacuum at 220 ° C. for 24 hours and cooled. An electrolyte solution was prepared by dissolving spirobipyrrolidinium tetrafluoroborate (SBPBF 4 ) in propylene carbonate so as to be 2.0 mol%. And the obtained electrolyte solution was inject | poured into the cell, and the electrical double layer capacitor was produced.

組み立てた電気二重層キャパシタにパワーシステム製充放電試験装置「CDT−RD20」を接続し、電界賦活を行った後、周囲の温度を25℃に保ち、5mAにて7200秒間の定電流充電を行い、設定電圧に到達した後、5mAにての定電流放電を行った。設定電圧は4.2Vとし、3サイクル実施し3サイクル目のデータを採用した。   Power system charge / discharge test device “CDT-RD20” is connected to the assembled electric double layer capacitor, and after electric field activation, the ambient temperature is kept at 25 ° C. and constant current charging is performed at 5 mA for 7200 seconds. After reaching the set voltage, constant current discharge at 5 mA was performed. The set voltage was 4.2 V, 3 cycles were performed, and the data for the third cycle was adopted.

放電電力より容量(F/cc)を算出した。
定電流放電時のIRドロップより直流抵抗(Ω)を算出した。
The capacity (F / cc) was calculated from the discharge power.
The DC resistance (Ω) was calculated from the IR drop during constant current discharge.

ついで、周囲の温度を70℃に上昇させ、上記条件の充放電を100サイクル行った。その後、周囲の温度を25℃に戻し、充放電を3サイクル行い容量維持率を測定し、以下の式により内部抵抗増加率(%)を算出した。表1は電気二重層キャパシタの106サイクル後の容量維持率(%)と内部抵抗増加率(%)とを示した表である。   Next, the ambient temperature was raised to 70 ° C., and charging and discharging under the above conditions were performed 100 cycles. Thereafter, the ambient temperature was returned to 25 ° C., charge and discharge were performed for 3 cycles, the capacity retention rate was measured, and the internal resistance increase rate (%) was calculated by the following formula. Table 1 shows the capacity retention rate (%) and the internal resistance increase rate (%) after 106 cycles of the electric double layer capacitor.

実施例2
第1下塗り層にNBRを用いること以外は実施例1と同様にして、電気二重層キャパシタを作製し、試験した。試験結果を表1に示す。
Example 2
An electric double layer capacitor was prepared and tested in the same manner as in Example 1 except that NBR was used for the first undercoat layer. The test results are shown in Table 1.

比較例1
アンダーコートを有しない電極層用いること以外は実施例1と同様にして、電気二重層キャパシタを作製し、試験した。試験結果を表1に示す。
Comparative Example 1
An electric double layer capacitor was produced and tested in the same manner as in Example 1 except that an electrode layer having no undercoat was used. The test results are shown in Table 1.

[表1]

Figure 2007201397
容量維持率(%)=C106/C3×100
抵抗増加率(%)=(R106/R3−1)×100
C3:3サイクル目容量(25℃)、C106:106サイクル目容量(25℃)
R3:3サイクル目抵抗(25℃)、R106:106サイクル目抵抗(25℃) [Table 1]
Figure 2007201397
Capacity maintenance rate (%) = C106 / C3 × 100
Resistance increase rate (%) = (R106 / R3-1) × 100
C3: 3rd cycle capacity (25 ° C), C106: 106th cycle capacity (25 ° C)
R3: 3rd cycle resistance (25 ° C), R106: 106th cycle resistance (25 ° C)

実施例の電気二重層キャパシタの構造を示す組み立て図である。It is an assembly drawing which shows the structure of the electric double layer capacitor of an Example.

符号の説明Explanation of symbols

1、11…絶縁ワッシャ、
2…トップカバー、
3…スプリング、
4、8…集電極、
5、7…炭素質電極、
6…セパレータ、
9…ガイド、
10、13…Oリング、
12…本体、
14…押え板、
15…参照電極、
16…ボトムカバー。
1, 11 ... Insulating washer,
2 ... Top cover,
3 ... Spring,
4, 8 ... collector electrode,
5, 7 ... carbonaceous electrode,
6 ... separator,
9 ... Guide,
10, 13 ... O-ring,
12 ... the body,
14 ... Presser plate,
15 ... Reference electrode,
16 ... Bottom cover.

第1下塗り層は上記エラストマーおよび分散媒を含有する液体を塗布乾燥して形成される。塗布法は特に限定されないが、通常グラビア印刷方式かダイヘッド方式で塗布を行う。第1下塗り層の厚さは乾燥状態で1〜5μm、好ましくは1〜2μmとする。第1下塗り層の厚さが1μm未満であると電解液の遮断性が不十分となり、5μmを越えると導通性が不十分となる。
The first undercoat layer is formed by applying and drying a liquid containing the elastomer and the dispersion medium. The application method is not particularly limited, but is usually applied by a gravure printing method or a die head method. The thickness of the first undercoat layer is 1 to 5 μm, preferably 1 to 2 μm in a dry state. When the thickness of the first undercoat layer is less than 1 μm, the barrier property of the electrolytic solution is insufficient, and when it exceeds 5 μm, the conductivity is insufficient.

本発明は非水系電子部品電極部材に関し、特に電解液中に電極が浸されてなる非水系電子部品電極部材に関する。 The present invention relates to electrode member nonaqueous electronic components, for the non-aqueous electrode of the electronic component member, particularly formed by electrodes immersed in the electrolyte.

電気二重層キャパシタ、非水系電池及び電解コンデンサのような非水系電子部品は電解液中に電極部材が浸された構成を有している。電極部材とは、電解液を保持している電解槽に電気を導入し、又は電解槽から電気を取り出すアセンブリをいう。本明細書において、電極部材は集電極と作用電極との結合体をいう。作用電極とは、電極活物質を含有し、非水系電子部品の充放電時に電解液と作用する電極をいい、集電極とは作用電極を支持する電極をいう。例えば、一般的な電気二重層キャパシタでは、分極性電極が上記作用電極に該当する。 Non-aqueous electronic components such as electric double layer capacitors, non-aqueous batteries, and electrolytic capacitors have a configuration in which an electrode member is immersed in an electrolytic solution. An electrode member refers to an assembly that introduces electricity into or removes electricity from an electrolytic cell holding an electrolytic solution. In this specification, the electrode member refers to a combined body of a collecting electrode and a working electrode. The working electrode refers to an electrode that contains an electrode active material and acts with an electrolyte during charging / discharging of a non-aqueous electronic component , and the collecting electrode refers to an electrode that supports the working electrode. For example, in a general electric double layer capacitor, a polarizable electrode corresponds to the working electrode.

本発明は上記従来の問題を解決するものであり、その目的とするところは、電極材料のスラリーを塗布、乾燥させて電極部材を製造した場合でも集電極と作用電極との界面に隙間が生じ難く、集電極の表面が電解液に接触しない電極部材を提供することにある。 The present invention solves the above-mentioned conventional problems, and the object is to create a gap at the interface between the collecting electrode and the working electrode even when an electrode member is produced by applying and drying a slurry of electrode material. It is difficult to provide an electrode member in which the surface of the collecting electrode is not in contact with the electrolytic solution.

本発明は、導電性材料と、導電性材料の表面上に順次設けられた第1下塗り層と、第2下塗り層と、スラリー塗布法によって形成された作用電極の層とを有する非水系電子部品用電極部材であって
該第1下塗り層は、合成ゴムのラテックスを含有する液体を塗布乾燥することにより形成された、エラストマーからなる層であり、
該第2下塗り層導電補助剤及び結合樹脂を含んでなる層である、非水系電子部品用電極部材を提供するものであり、そのことにより上記目的が達成される。
The present invention relates to a non-aqueous electronic component having a conductive material, a first undercoat layer sequentially provided on the surface of the conductive material, a second undercoat layer, and a working electrode layer formed by a slurry coating method. a use electrode member,
The first undercoat layer is a layer made of an elastomer formed by applying and drying a liquid containing latex of synthetic rubber .
Second undercoat layer is Ru layer der comprising a conductive auxiliary agent and a binder resin, there is provided a nonaqueous electronic component electrode member, the objects can be achieved.

本発明の非水系電子部品用電極部材は、
導電性材料を準備する工程;
導電性材料の表面上に、合成ゴムのラテックスを含有する液体を塗布乾燥することにより、エラストマーからなる第1下塗り層を形成する工程;
第1下塗り層の表面上に導電補助剤及び結合樹脂を含んでなる第2下塗り層を形成する工程;および
第2下塗り層の表面上に、スラリー塗布法によって作用電極の層を形成する工程;
を包含する方法により製造することが好ましい。
The electrode member for non-aqueous electronic components of the present invention is
Preparing a conductive material;
Forming a first undercoat layer made of an elastomer by applying and drying a liquid containing latex of synthetic rubber on the surface of the conductive material;
Forming a second undercoat layer comprising a conductive additive and a binding resin on the surface of the first undercoat layer; and
Forming a working electrode layer on the surface of the second undercoat layer by a slurry coating method;
It is preferable to manufacture by the method of including.

本発明の電極部材を用いると、高い電圧で使用しても電解液が劣化し難く、非水系電子部品のサイクル特性、耐用寿命が向上する。 When the electrode member of the present invention is used, the electrolyte solution hardly deteriorates even when used at a high voltage, and the cycle characteristics and the useful life of the non-aqueous electronic component are improved.

導電性材料は非水系電子部品の集電極として通常用いられる形態を有する材料を使用する。集電極の形態はシート状、角柱状、および円柱状等であればよい。非水系電子部品が電気二重層キャパシタである場合、集電極の材料はアルミニウム、銅、銀、ニッケル、チタンなどであればよい。好ましい形態は、シート状又は箔状であり、好ましい材料はアルミニウムである。アルミニウムは金属としての電気抵抗が低く、電気二重層キャパシタとして組み立てた状態で耐電圧の劣化が少ないからである。 As the conductive material, a material having a form normally used as a collecting electrode of a non-aqueous electronic component is used. The form of the collecting electrode may be a sheet shape, a prismatic shape, a cylindrical shape, or the like. When the non-aqueous electronic component is an electric double layer capacitor, the material for the collector electrode may be aluminum, copper, silver, nickel, titanium, or the like. A preferred form is a sheet or foil, and a preferred material is aluminum. This is because aluminum has a low electric resistance as a metal, and the withstand voltage is less deteriorated in an assembled state as an electric double layer capacitor.

この様にして得られた集電極部材は、電気二重層キャパシタ等の非水系電子部品の電極部材を製造するのに用いることができる。例えば、シート状の電極部材は、分極性電極材料と結合樹脂と導電補助剤を混合し、適当な分散媒に分散させて電極材料のスラリーを得、これを集電極部材の表面に塗布し、分散媒が完全に蒸発するまで乾燥させて形成される。 The thus obtained collector electrode member can be used for manufacturing an electrode member of a non-aqueous electronic component such as an electric double layer capacitor. For example, a sheet-like electrode member is a mixture of a polarizable electrode material, a binding resin, and a conductive auxiliary agent, and dispersed in an appropriate dispersion medium to obtain a slurry of the electrode material, which is applied to the surface of the collector electrode member, It is formed by drying until the dispersion medium is completely evaporated.

本発明の電極部材は、従来から知られている非水系電子部品、例えば、電気二重層キャパシタに使用することができる。電気二重層キャパシタは、例えば、シート状の電極部材を、セパレータを介して重ね合わせることにより正極と負極とを形成した後、電解液を含浸させて組み立てることができる。
The electrode member of the present invention can be used for conventionally known non-aqueous electronic components such as an electric double layer capacitor. An electric double layer capacitor can be assembled by, for example, forming a positive electrode and a negative electrode by overlapping sheet-like electrode members with a separator interposed therebetween, and then impregnating the electrolyte.

Claims (6)

導電性材料と、導電性材料の表面上に順次設けられた第1下塗り層と、第2下塗り層とを有する電子部品用集電極部材において、
該第1下塗り層がエラストマーからなる層であり、
該第2下塗り層が導電補助剤及び結合樹脂を含んでなる層である、電子部品用集電極部材。
In a collector electrode member for an electronic component having a conductive material, a first undercoat layer sequentially provided on the surface of the conductive material, and a second undercoat layer,
The first undercoat layer is an elastomer layer;
A collector electrode member for electronic parts, wherein the second undercoat layer is a layer comprising a conductive additive and a binding resin.
前記エラストマーが合成ゴムである請求項1記載の電子部品用集電極部材。   The collector electrode member for electronic parts according to claim 1, wherein the elastomer is a synthetic rubber. 請求項1又は2記載の集電極部材の表面上に作用電極の層を有する電子部品用電極部材。   The electrode member for electronic components which has a layer of a working electrode on the surface of the collector electrode member of Claim 1 or 2. 導電性材料を準備する工程;
導電性材料の表面上にエラストマーからなる第1下塗り層を形成する工程;及び
第1下塗り層の表面上に導電補助剤及び結合樹脂を含んでなる第2下塗り層を形成する工程;
を包含する、電子部品用集電極部材の製造方法。
Preparing a conductive material;
Forming a first undercoat layer made of an elastomer on the surface of the conductive material; and forming a second undercoat layer comprising a conductive additive and a binding resin on the surface of the first undercoat layer;
The manufacturing method of the collector electrode member for electronic components containing this.
請求項1又は2記載の集電極部材の表面上に作用電極の層を形成する工程を包含する、電子部品用電極部材の製造方法。   The manufacturing method of the electrode member for electronic components including the process of forming the layer of a working electrode on the surface of the collector electrode member of Claim 1 or 2. 請求項5記載の電子部品用電極部材を加熱する工程を更に包含する電子部品用電極部材の製造方法。
The manufacturing method of the electrode member for electronic components which further includes the process of heating the electrode member for electronic components of Claim 5.
JP2006158264A 2005-12-28 2006-06-07 Electrode member for non-aqueous electronic component having two undercoat layers Active JP3971441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158264A JP3971441B2 (en) 2005-12-28 2006-06-07 Electrode member for non-aqueous electronic component having two undercoat layers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005377442 2005-12-28
JP2005377442 2005-12-28
JP2006158264A JP3971441B2 (en) 2005-12-28 2006-06-07 Electrode member for non-aqueous electronic component having two undercoat layers

Publications (2)

Publication Number Publication Date
JP2007201397A true JP2007201397A (en) 2007-08-09
JP3971441B2 JP3971441B2 (en) 2007-09-05

Family

ID=38455630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158264A Active JP3971441B2 (en) 2005-12-28 2006-06-07 Electrode member for non-aqueous electronic component having two undercoat layers

Country Status (1)

Country Link
JP (1) JP3971441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226100A (en) * 2009-02-25 2010-10-07 Daikin Ind Ltd Electric double layer capacitor
JP2013030410A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
WO2022268038A1 (en) * 2021-06-22 2022-12-29 重庆文理学院 Method for preparing supercapacitor with good cyclic stability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226100A (en) * 2009-02-25 2010-10-07 Daikin Ind Ltd Electric double layer capacitor
JP2013030410A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
WO2022268038A1 (en) * 2021-06-22 2022-12-29 重庆文理学院 Method for preparing supercapacitor with good cyclic stability

Also Published As

Publication number Publication date
JP3971441B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
Gómez-Urbano et al. Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors
Li et al. A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@ carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
EP2565887B1 (en) Polarizable electrode material for electric double layer capacitor having improved withstand voltage, and electric double layer capacitor using same
JP2015167127A (en) Negative electrode material for lithium secondary battery and manufacturing method therefor, negative electrode active material composition for lithium secondary battery using negative electrode material, negative electrode for lithium secondary battery and lithium secondary battery
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
JP4620634B2 (en) Electrode member for non-aqueous electronic parts
JP2006338963A (en) Lithium ion capacitor
Emin et al. One-step electrodeposited Co and Mn layered double hydroxides on Ni foam for high-performance aqueous asymmetric supercapacitors
Eguchi et al. Energy density maximization of Li-ion capacitor using highly porous activated carbon cathode and micrometer-sized Si anode
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP6504378B1 (en) Hybrid capacitor
JP3971441B2 (en) Electrode member for non-aqueous electronic component having two undercoat layers
JP4838152B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor
TWI625886B (en) Cathode for secondary battery, secondary battery, and method for manufacturing the same
JP4731974B2 (en) Lithium ion capacitor
CN110993883A (en) Electrode plate and preparation method and application thereof
JP4731979B2 (en) Lithium ion capacitor
KR100928224B1 (en) Manufacturing method of nano active material electrode for energy storage device
JP4718320B2 (en) Porous material and electric double layer capacitor
JP2008288549A (en) Collector electrode member for nonaqueous electrical double layer capacitor which is produced by providing undercoat layer on high-purity aluminum plane foil
EP3136409A1 (en) Positive electrode for lithium ion capacitor, and lithium ion capacitor
WO2019017380A1 (en) Hybrid capacitor
JP2009054978A (en) Method for manufacturing electrode member for nonaqueous electronic component by dry compression
JP2013046053A (en) Electrode active material, method for preparing the same, and electrochemical capacitor including electrode using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250