JP2007201146A - Light emitting element and its manufacturing method - Google Patents

Light emitting element and its manufacturing method Download PDF

Info

Publication number
JP2007201146A
JP2007201146A JP2006017553A JP2006017553A JP2007201146A JP 2007201146 A JP2007201146 A JP 2007201146A JP 2006017553 A JP2006017553 A JP 2006017553A JP 2006017553 A JP2006017553 A JP 2006017553A JP 2007201146 A JP2007201146 A JP 2007201146A
Authority
JP
Japan
Prior art keywords
barrier layer
layer
light emitting
algan
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006017553A
Other languages
Japanese (ja)
Other versions
JP2007201146A5 (en
Inventor
Koji Okuno
浩司 奥野
Shuhei Yamada
修平 山田
Yoshiki Saito
義樹 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2006017553A priority Critical patent/JP2007201146A/en
Publication of JP2007201146A publication Critical patent/JP2007201146A/en
Publication of JP2007201146A5 publication Critical patent/JP2007201146A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain sufficient crystallinity with little surface roughness and to sufficiently maintain an Ir characteristic while high output is realized by thinning an AlGaN barrier layer in an MQW light emitting layer of a group III nitride compound semiconductor light emitting element. <P>SOLUTION: The barrier layer is set to be a two-layered structure of a first barrier layer formed of AlGaN and a second barrier layer formed of GaN. It is desirable that film thickness of the first barrier is set to be 3 nm or below. The first barrier layer is directly brought into contact with an InGaN well layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はIII族窒化物系化合物半導体からなる発光素子及びその製造方法に関する。   The present invention relates to a light emitting device made of a group III nitride compound semiconductor and a method for manufacturing the same.

高い発光効率を確保するため、III族窒化物系化合物半導体発光素子の発光層は多重量子井戸構造を持つことが多い。この多重量子井戸構造では、井戸層をバリア層でサンドイッチにして、電子及び正孔を井戸層に閉じ込めている。
上記多重量子井戸構造においてバリア層の構成が発光効率に影響することが知られており、バリア層に関して各種の改良がなされている。
例えば特許文献1では、InGaNからなる井戸層をGaNからなるバリア層とAlGaNからなるバリア層で挟んでいる。
また、特許文献2では、InAlN/AlGaNの2層構造のバリア層が提案されている。
In order to ensure high luminous efficiency, the light emitting layer of a group III nitride compound semiconductor light emitting device often has a multiple quantum well structure. In this multiple quantum well structure, a well layer is sandwiched between barrier layers, and electrons and holes are confined in the well layer.
In the multiple quantum well structure, it is known that the configuration of the barrier layer affects the light emission efficiency, and various improvements have been made with respect to the barrier layer.
For example, in Patent Document 1, a well layer made of InGaN is sandwiched between a barrier layer made of GaN and a barrier layer made of AlGaN.
Patent Document 2 proposes a barrier layer having a two-layer structure of InAlN / AlGaN.

特開2003−60231号公報JP 2003-60231 A 特開2001−237456号公報JP 2001-237456 A

本発明者らは、多重量子井戸構造におけるバリア層について鋭意検討を重ねてきた結果、AlGaNからなるバリア層を採用することにより井戸層の歪が緩和されて発光効率が向上することを見出している(特願2005−154382号参照)。
本発明者らは、AlGaNのみからなるバリア層につき、更に検討を重ねた結果、当該AlGaNバリア層を薄くすることによりn型層やp型層から電荷や正孔が多重量子井戸層全体に効率よく供給され、もって発光出力の向上が図れることを見出した。
As a result of intensive studies on the barrier layer in the multiple quantum well structure, the present inventors have found that the use of a barrier layer made of AlGaN relaxes the strain of the well layer and improves the light emission efficiency. (See Japanese Patent Application No. 2005-154382).
As a result of further studies on the barrier layer made of only AlGaN, the inventors have made the AlGaN barrier layer thinner so that charges and holes are efficiently transferred from the n-type layer and the p-type layer to the entire multiple quantum well layer. It was found that the light emission output can be improved by being supplied well.

しかしながら、AlGaNバリア層の成長温度は比較的低温(850〜900℃程度)であるため、薄いAlGaN層に良好な結晶性を保つことは困難である。その結果、AlGaN層を薄くし過ぎると効率よく井戸中に電子や正孔を閉込めることができず、発光効率の低下をきたす。また、表面荒れが発生し、結晶中に転移が発生してIr特性が低下する。   However, since the growth temperature of the AlGaN barrier layer is relatively low (about 850 to 900 ° C.), it is difficult to maintain good crystallinity in the thin AlGaN layer. As a result, if the AlGaN layer is made too thin, electrons and holes cannot be efficiently confined in the well, resulting in a decrease in light emission efficiency. In addition, surface roughness occurs, transition occurs in the crystal, and the Ir characteristics deteriorate.

この発明は上記課題を解決すべくなされたものであり、次のように規定される。即ち、
バリア層と井戸層とが交互に積層される多重量子井戸構造の発光層を備えるIII族窒化物系化合物半導体発光素子であって、
前記バリア層はAlGaNからなる第1のバリア層とアルミニウムを実質的含まないIII族窒化物系化合物半導体からなる第2のバリア層とを含んでいる、ことを特徴とする発光素子。
このように構成された発光素子によれば、AlGaNからなる第1のバリア層を薄くすることによる高出力化を達成しつつ、低温成長温度においてAlGaNよりも良好な結晶品質の得られるGaNその他のアルミニウムを含まないIII族窒化物系化合物半導体からなる第2のバリア層を導入することで、表面あれの少ない良好な結晶性を維持可能となる。また、Ir特性も良好に維持できる。
The present invention has been made to solve the above-described problems, and is defined as follows. That is,
A group III nitride compound semiconductor light emitting device comprising a light emitting layer having a multiple quantum well structure in which barrier layers and well layers are alternately stacked,
The light emitting device, wherein the barrier layer includes a first barrier layer made of AlGaN and a second barrier layer made of a group III nitride compound semiconductor substantially free of aluminum.
According to the light emitting device configured as described above, while achieving high output by thinning the first barrier layer made of AlGaN, it is possible to obtain GaN and the like that can obtain better crystal quality than AlGaN at a low temperature growth temperature. By introducing the second barrier layer made of a group III nitride compound semiconductor not containing aluminum, it is possible to maintain good crystallinity with little surface roughness. In addition, the Ir characteristics can be maintained well.

この発明の第2の局面によれば、InGaNからなる井戸層に対して、バリア層の組成は、第1のバリア層がAlGaNからなるものとし、第2のバリア層はGaNからなるものとすることが好ましい。
かかる構成を採用することにより、確実に高出力化を達成できる。
According to the second aspect of the present invention, with respect to the well layer made of InGaN, the composition of the barrier layer is such that the first barrier layer is made of AlGaN and the second barrier layer is made of GaN. It is preferable.
By adopting such a configuration, it is possible to reliably achieve high output.

また、この発明の第3の局面によれば、AlGaNからなる第1のバリア層が井戸層に直接接するようにする。
AlGaNからなる第1のバリア層が井戸層に確実に接するようにするため、バリア層の最上層を当該AlGaN層とする。バリア層の上に次の井戸層が形成されるので、この点においてAlGaN層が井戸層へ直接接することとなる。
なお、InGaN井戸層の上には、通常、GaNからなるキャップ層がInGaN層と同じ成長温度で形成される。キャップ層はバリア層を形成する際InGaN井戸層が消失しないようにするためのものであり、換言すれば、バリア層の形成時に、InGaN井戸層の代りに当該キャップ層の全部又は一部が飛散消失する。しかしながら、成長条件の如何によっては、キャップ層がInGaN井戸層とバリア層との間に残存する場合がある。従って、井戸層の上にAlGaNバリア層を形成し、更にその上にGaNバリア層を形成すると、AlGaNバリア層は井戸層に直接接することができない場合がある。この場合、AlGaN層の障壁としてパフォーマンスが低下するので好ましくない。
According to the third aspect of the present invention, the first barrier layer made of AlGaN is in direct contact with the well layer.
In order to ensure that the first barrier layer made of AlGaN is in contact with the well layer, the uppermost layer of the barrier layer is the AlGaN layer. Since the next well layer is formed on the barrier layer, the AlGaN layer is in direct contact with the well layer at this point.
Note that a cap layer made of GaN is usually formed on the InGaN well layer at the same growth temperature as the InGaN layer. The cap layer is for preventing the InGaN well layer from disappearing when forming the barrier layer. In other words, when forming the barrier layer, all or part of the cap layer is scattered instead of the InGaN well layer. Disappear. However, depending on the growth conditions, the cap layer may remain between the InGaN well layer and the barrier layer. Therefore, if an AlGaN barrier layer is formed on the well layer and further formed thereon, the AlGaN barrier layer may not be in direct contact with the well layer. In this case, the performance of the AlGaN layer is lowered, which is not preferable.

本発明者らの検討によれば、この発明の第4の局面として規定されるように、AlGaNからなる第1のバリア層は1〜3nmとすることが好ましい。第1のバリア層が1nm未満であると充分な結晶性が得られないため井戸層に電荷を確実に閉込めることができない。また、3nmを超えて第1のバリア層を厚くすることも可能であるが、発光出力の低下をきたす。
GaNからなる第2のバリア層は1〜3nmとすることが好ましい。第2のバリア層の膜厚が1nm未満であると充分な結晶性が得られない。また、3nmを超えて第2のバリア層を厚くすることも可能であるが、発光出力の低下をきたす。
According to the study by the present inventors, the first barrier layer made of AlGaN is preferably 1 to 3 nm as defined as the fourth aspect of the present invention. If the first barrier layer is less than 1 nm, sufficient crystallinity cannot be obtained, so that charges cannot be reliably confined in the well layer. Although it is possible to increase the thickness of the first barrier layer beyond 3 nm, the light emission output is reduced.
The second barrier layer made of GaN is preferably 1 to 3 nm. If the thickness of the second barrier layer is less than 1 nm, sufficient crystallinity cannot be obtained. Although it is possible to increase the thickness of the second barrier layer beyond 3 nm, the light emission output is reduced.

以下、この発明の実施例及び比較例を説明する。
図1に実施例の発光素子1を示す。
この発光素子1の各層のスペックは次の通りである。
層 : 組成
pコンタクト層11 : p−GaN:Mg 100nm
pクラッド層9 : p−AlGaN/GaN:Mg 3.5〜10.5ペア
MQW発光層7 : InGaN/(AlGaN/GaN) 3〜8ペア
nクラッド層6 : InGaN/GaN:Si 5〜20ペア
ESD層5 : i−GaN/n−GaN
nコンタクト層4 : n−GaN:Si
基板2 : サファイア
Examples of the present invention and comparative examples will be described below.
FIG. 1 shows a light-emitting element 1 of an example.
The specifications of each layer of the light emitting element 1 are as follows.
Layer: Composition p contact layer 11: p-GaN: Mg 100 nm
p-clad layer 9: p-AlGaN / GaN: Mg 3.5-10.5 pair MQW light emitting layer 7: InGaN / (AlGaN / GaN) 3-8 pairs n-clad layer 6: InGaN / GaN: Si 5-20 pairs ESD layer 5: i-GaN / n-GaN
n contact layer 4: n-GaN: Si
Substrate 2: Sapphire

上記において、基板にはサファイアを用いたが、これに限定されることはなく、サファイア、スピネル、シリコン、炭化シリコン、酸化亜鉛、リン化ガリウム、ヒ化ガリウム、酸化マグネシウム、酸化マンガン、III族窒化物系化合物半導体単結晶等を用いることができる。
n型層としてはGaNが例示されているが、AlGaN、InGaN若しくはAlInGaN、その他のIII族窒化物系化合物半導体を用いることができる。ここに、III族窒化物系化合物半導体とは、一般式としてAlGaIn1−X−YN(0≦X≦1、0≦Y≦1、0≦X+Y≦1)の四元系で表され、AlN、GaN及びInNのいわゆる2元系、AlGa1−xN、AlIn1−xN及びGaIn1−xN(以上において0<x<1)のいわゆる3元系を包含する。III族元素の一部をボロン(B)、タリウム(Tl)等で置換しても良く、また、窒素(N)の一部も リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等で置換できる。また、発光層は任意のドーパントを含有するものであってもよい。
また、n型層にドープされるn型不純物としてSiの他、Ge、Se、Te、C等を用いることもできる。
p型層も同様にIII族窒化物系化合物半導体で形成することができる。p型層にドープされるp型不純物としてMgの他に、Zn、Be、Ca、Sr、Baを用いることもできる。
In the above, sapphire was used for the substrate, but the substrate is not limited to this, and sapphire, spinel, silicon, silicon carbide, zinc oxide, gallium phosphide, gallium arsenide, magnesium oxide, manganese oxide, group III nitride A physical compound semiconductor single crystal or the like can be used.
GaN is exemplified as the n-type layer, but AlGaN, InGaN or AlInGaN, and other group III nitride compound semiconductors can be used. Here, the group III nitride compound semiconductor is a quaternary system of Al X Ga Y In 1- XYN (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ X + Y ≦ 1) as a general formula. A so-called binary system of AlN, GaN and InN, Al x Ga 1-x N, Al x In 1-x N and Ga x In 1-x N (where 0 <x <1). Includes the original system. Part of group III elements may be substituted with boron (B), thallium (Tl), etc., and part of nitrogen (N) may also be phosphorus (P), arsenic (As), antimony (Sb), bismuth. It can be replaced with (Bi) or the like. Moreover, the light emitting layer may contain an arbitrary dopant.
In addition to Si, Ge, Se, Te, C, or the like can be used as the n-type impurity doped in the n-type layer.
Similarly, the p-type layer can be formed of a group III nitride compound semiconductor. In addition to Mg, Zn, Be, Ca, Sr, or Ba can be used as the p-type impurity doped in the p-type layer.

上記構成の発光素子において、各III族窒化物系化合物半導体層はMOCVD法を実行して形成されている。そのほか、分子線結晶成長法(MBE法)、ハライド系気相成長法(HVPE法)、スパッタ法、イオンプレーティング法、電子シャワー法等の方法で形成することもできる。
p型層、発光層、nクラッド層及びnコンタクト層の一部がエッチングされて、nコンタクト層にn電極が蒸着により形成される。このn電極はAlとVの2層で構成される。
pコンタクト層の全面に金を含む薄膜の透光性電極が積層される。透光性電極の上に蒸着により金を含むp電極が形成される。
上記の工程により各半導体層及び各電極を形成した後、各チップの分離工程を行う。
このように構成された実施例の発光素子に電流を印加すると青色系の発光(波長:460nm)が得られる。
In the light emitting device having the above structure, each group III nitride compound semiconductor layer is formed by performing MOCVD. In addition, it can also be formed by methods such as molecular beam crystal growth (MBE), halide vapor phase epitaxy (HVPE), sputtering, ion plating, and electron shower.
A part of the p-type layer, the light emitting layer, the n-cladding layer, and the n-contact layer is etched, and an n-electrode is formed on the n-contact layer by vapor deposition. The n electrode is composed of two layers of Al and V.
A thin-film translucent electrode containing gold is laminated on the entire surface of the p-contact layer. A p-electrode containing gold is formed on the translucent electrode by vapor deposition.
After forming each semiconductor layer and each electrode by the above process, a separation process of each chip is performed.
Blue light emission (wavelength: 460 nm) can be obtained by applying a current to the light emitting element of the embodiment configured as described above.

上記構成の発光素子において、多重量子井戸構造の発光層7は、定法のMOCVD成長方法に従い、770℃の成長温度(第1の温度)でInGaNからなる井戸層を3nmの膜厚に成長させた後、当該成長温度を維持した状態でGaNからなるキャップ層72を2nmの膜厚に成長させる。
その後、成長温度を880℃(第2の温度)まで昇温し、GaNからなる第2のバリア層73(3nm)とAlGaNからなる第1のバリア層74(3nm以下)とを形成した。当該バリア層74を形成する際に、キャップ層72の全部若しくは一部は井戸層71の上から消失する。
In the light emitting device having the above-described configuration, the light emitting layer 7 having a multiple quantum well structure is obtained by growing a well layer made of InGaN to a thickness of 3 nm at a growth temperature (first temperature) of 770 ° C. according to a conventional MOCVD growth method. Thereafter, a cap layer 72 made of GaN is grown to a thickness of 2 nm while maintaining the growth temperature.
Thereafter, the growth temperature was raised to 880 ° C. (second temperature) to form a second barrier layer 73 (3 nm) made of GaN and a first barrier layer 74 (3 nm or less) made of AlGaN. When the barrier layer 74 is formed, all or part of the cap layer 72 disappears from the well layer 71.

上記構成において、AlGaNからなる第1のバリア層74の膜厚を変化させたときの出力の変化を図2に示す。また、同様に第1のバリア層74の膜厚を変化させたときのIrの変化を図3に示す。
図2及び図3の結果より、AlGaNからなる第1のバリア層74の膜厚を3nm以下にすると出力が向上するものの、Ir特性は維持されていることが確認できる。これは、AlGaNの薄膜化により発光層全体に電荷が効率よく供給される一方で結晶性も維持されていることによると考えられる。
FIG. 2 shows a change in output when the thickness of the first barrier layer 74 made of AlGaN is changed in the above configuration. Similarly, FIG. 3 shows changes in Ir when the thickness of the first barrier layer 74 is changed.
From the results of FIGS. 2 and 3, it can be confirmed that although the output is improved when the thickness of the first barrier layer 74 made of AlGaN is 3 nm or less, the Ir characteristic is maintained. This is considered to be due to the fact that, by thinning the AlGaN, charges are efficiently supplied to the entire light emitting layer while maintaining the crystallinity.

図4には、比較例の発光素子21を示す。なお、図4において図1と同一の要素には同一の符号を付してその説明を省略する。
比較例の発光素子21ではその発光層80においてバリア層81がAlGaNの一層構造である。
かかる発光素子21によれば、AlGaNバリア層81の膜厚が4nmを超えると出力が低下する(図5参照)。また、その膜厚を4nm以下とすると、Ir特性が低下して逆電流が流れやすくなる(図6参照)。
以上の比較結果より、この発明の実施例の発光素子のように多重量子井戸層のバリア層をAlGaNからなる第1のバリア層とGaNからなる第2のバリア層との2層構造とすることにより、高い発光効率が確保できることがわかる。
FIG. 4 shows a light emitting element 21 of a comparative example. In FIG. 4, the same elements as those in FIG.
In the light emitting element 21 of the comparative example, the barrier layer 81 of the light emitting layer 80 has a single layer structure of AlGaN.
According to the light emitting element 21, the output decreases when the thickness of the AlGaN barrier layer 81 exceeds 4 nm (see FIG. 5). Further, when the film thickness is 4 nm or less, the Ir characteristic is lowered and the reverse current easily flows (see FIG. 6).
From the above comparison results, the barrier layer of the multi-quantum well layer has a two-layer structure of a first barrier layer made of AlGaN and a second barrier layer made of GaN as in the light emitting device of the embodiment of the present invention. Thus, it can be seen that high luminous efficiency can be secured.

上記の説明では、バリア層を第1のバリア層と第2のバリア層とからなる2層構造としているが、バリア層が第3の層を含むことを妨げるものではない。
また、多重量子井戸構造を構成する全部又は一部のバリア層がこの発明の構成を具備すればよい。
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
In the above description, the barrier layer has a two-layer structure including the first barrier layer and the second barrier layer, but this does not prevent the barrier layer from including the third layer.
Further, all or a part of the barrier layers constituting the multiple quantum well structure may have the structure of the present invention.
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

この発明の実施例の発光素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the light emitting element of the Example of this invention. 同じく第1のバリア層の膜厚と出力との関係を示すグラフである。It is a graph which similarly shows the relationship between the film thickness of a 1st barrier layer, and an output. 同じく第1のバリア層の膜厚とIrとの関係を示すグラフである。It is a graph which similarly shows the relationship between the film thickness of a 1st barrier layer, and Ir. この発明の比較例の発光素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the light emitting element of the comparative example of this invention. 同じく第1のバリア層の膜厚と出力との関係を示すグラフである。It is a graph which similarly shows the relationship between the film thickness of a 1st barrier layer, and an output. 同じく第1のバリア層の膜厚とIrとの関係を示すグラフである。It is a graph which similarly shows the relationship between the film thickness of a 1st barrier layer, and Ir.

符号の説明Explanation of symbols

1、21 発光素子
7、80 発光層
71 井戸層
72 キャップ層
73 第2のバリア層
74 第1のバリア層
81 比較例のバリア層
1, 21 Light emitting element 7, 80 Light emitting layer 71 Well layer 72 Cap layer 73 Second barrier layer 74 First barrier layer 81 Barrier layer of comparative example

Claims (5)

バリア層と井戸層とが交互に積層される多重量子井戸構造の発光層を備えるIII族窒化物系化合物半導体発光素子であって、
前記バリア層はAlGaNからなる第1のバリア層とアルミニウムを実質的含まないIII族窒化物系化合物半導体からなる第2のバリア層とを含んでいる、ことを特徴とする発光素子。
A group III nitride compound semiconductor light emitting device comprising a light emitting layer having a multiple quantum well structure in which barrier layers and well layers are alternately stacked,
The light emitting device, wherein the barrier layer includes a first barrier layer made of AlGaN and a second barrier layer made of a group III nitride compound semiconductor substantially free of aluminum.
前記井戸層はInGaNからなり、前記バリア層はAlGaNからなる前記第1のバリア層とGaNからなる前記第2のバリア層とからなる、ことを特徴とする請求項1に記載の発光素子。 2. The light emitting device according to claim 1, wherein the well layer is made of InGaN, and the barrier layer is made of the first barrier layer made of AlGaN and the second barrier layer made of GaN. 前記井戸層に前記第1のバリア層が直接接触する、ことを特徴とする請求項1又は2に記載の発光素子。 The light emitting device according to claim 1, wherein the first barrier layer is in direct contact with the well layer. 前記第1のバリア層は1〜3nmであり、前記第2のバリア層は1〜3nmである、ことを特徴とする請求項2又は3に記載の発光素子。 4. The light-emitting element according to claim 2, wherein the first barrier layer has a thickness of 1 to 3 nm and the second barrier layer has a thickness of 1 to 3 nm. InGaNからなる井戸層とその上にキャップ層を第1の温度で形成する井戸層形成ステップと、
前記キャップ層の上にGaNからなる第2のバリア層を、前記第1の温度より高温の第2の温度で形成し、該第2の温度を維持したまま前記第2のバリア層の上にAlGaNからなる第1のバリア層を形成するバリア層形成ステップと、含み、
前記井戸層形成ステップと前記バリア層形成ステップとを繰り返して、多重量子井戸構造の発光層を形成する、ことを特徴とするIII族窒化物系化合物半導体発光素子の製造方法。
A well layer forming step of forming a well layer made of InGaN and a cap layer thereon at a first temperature;
A second barrier layer made of GaN is formed on the cap layer at a second temperature higher than the first temperature, and the second barrier layer is maintained on the second barrier layer while maintaining the second temperature. A barrier layer forming step of forming a first barrier layer made of AlGaN,
A method of manufacturing a group III nitride compound semiconductor light emitting device, characterized in that a light emitting layer having a multiple quantum well structure is formed by repeating the well layer forming step and the barrier layer forming step.
JP2006017553A 2006-01-26 2006-01-26 Light emitting element and its manufacturing method Withdrawn JP2007201146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017553A JP2007201146A (en) 2006-01-26 2006-01-26 Light emitting element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017553A JP2007201146A (en) 2006-01-26 2006-01-26 Light emitting element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007201146A true JP2007201146A (en) 2007-08-09
JP2007201146A5 JP2007201146A5 (en) 2010-03-04

Family

ID=38455429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017553A Withdrawn JP2007201146A (en) 2006-01-26 2006-01-26 Light emitting element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007201146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035156A (en) * 2009-07-31 2011-02-17 Toyoda Gosei Co Ltd Method for manufacturing group iii nitride semiconductor light emitting device
CN105633228A (en) * 2016-02-23 2016-06-01 华灿光电股份有限公司 Light emitting diode epitaxial wafer with novel quantum barrier and preparation method for light emitting diode epitaxial wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084132A (en) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd Semiconductor light emitting element
JPH1168159A (en) * 1997-06-13 1999-03-09 Toyoda Gosei Co Ltd Group-iii nitride semiconductor element and manufacture thereof
JP2000261106A (en) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, its manufacture and optical disk device
WO2005020396A1 (en) * 2003-08-26 2005-03-03 Sony Corporation GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084132A (en) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd Semiconductor light emitting element
JPH1168159A (en) * 1997-06-13 1999-03-09 Toyoda Gosei Co Ltd Group-iii nitride semiconductor element and manufacture thereof
JP2000261106A (en) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, its manufacture and optical disk device
WO2005020396A1 (en) * 2003-08-26 2005-03-03 Sony Corporation GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035156A (en) * 2009-07-31 2011-02-17 Toyoda Gosei Co Ltd Method for manufacturing group iii nitride semiconductor light emitting device
CN105633228A (en) * 2016-02-23 2016-06-01 华灿光电股份有限公司 Light emitting diode epitaxial wafer with novel quantum barrier and preparation method for light emitting diode epitaxial wafer

Similar Documents

Publication Publication Date Title
US7576363B2 (en) Group III nitride compound semiconductor light emitting device
JP4872450B2 (en) Nitride semiconductor light emitting device
JP2011176240A (en) Semiconductor light emitting device, and method of manufacturing the same
JP2018531514A (en) Group III nitride semiconductor light emitting device having amber to red emission (&gt; 600 nm) and method for making the same
JP2018531514A6 (en) Group III nitride semiconductor light emitting device having amber to red emission (&gt; 600 nm) and method for making the same
JP4853198B2 (en) Group III nitride compound semiconductor light emitting device
TW202221938A (en) Led and method of manufacture
JP7447151B2 (en) Light emitting diode precursor including passivation layer
JP7481618B2 (en) Method for manufacturing nitride semiconductor device
JP2006310488A (en) Group iii nitride-based semiconductor light emitting device and its manufacturing method
US8164109B2 (en) Nitride semiconductor element and method for producing the same
JP2021019075A (en) Manufacturing method of light-emitting device and the light-emitting device
KR101928479B1 (en) Iii-nitride semiconductor light emitting device
JP2010040692A (en) Nitride based semiconductor device and method of manufacturing the same
JP4292925B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JP2007200933A (en) Method of manufacturing nitride-based semiconductor element
US20140284550A1 (en) Light-emitting device
JP5380516B2 (en) Nitride semiconductor light emitting device
JP2008294018A (en) Method of manufacturing group iii nitride-based compound semiconductor light emitting element
JP2007201146A (en) Light emitting element and its manufacturing method
JP2007324546A (en) Method of manufacturing gallium nitride compound semiconductor light-emitting element, gallium nitride compound semiconductor light-emitting element, and lamp
TW202008614A (en) Nitride semiconductor light-emitting element and method for manufacturing same
JP2008227103A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2004134787A (en) Group iii nitride compound semiconductor light-emitting device
JP6477642B2 (en) Light emitting element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110610