JP2007201126A - Copper concentration estimation method in fused solder, and printed board used therefor - Google Patents

Copper concentration estimation method in fused solder, and printed board used therefor Download PDF

Info

Publication number
JP2007201126A
JP2007201126A JP2006017282A JP2006017282A JP2007201126A JP 2007201126 A JP2007201126 A JP 2007201126A JP 2006017282 A JP2006017282 A JP 2006017282A JP 2006017282 A JP2006017282 A JP 2006017282A JP 2007201126 A JP2007201126 A JP 2007201126A
Authority
JP
Japan
Prior art keywords
copper
copper pattern
molten solder
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017282A
Other languages
Japanese (ja)
Inventor
Takeshi Tanabe
剛 田邊
Yutaka Kawakami
豊 川上
Mitsuyasu Matsuo
光恭 松尾
Yoshiyuki Ueda
淑之 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006017282A priority Critical patent/JP2007201126A/en
Publication of JP2007201126A publication Critical patent/JP2007201126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molten Solder (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper concentration estimation method in fused solder which is carried out simply on a production site without requiring a conventional large-scale and expensive equipment, time and effort, special knowledge, a complicated device or the like; and to provide a printed board to be used for the method. <P>SOLUTION: The copper concentration in molten solder is estimated according to the molten state of the copper pattern formed on the substrate, by bringing the copper pattern formed on the substrate into contact with the fused solder, while utilizing the relation that the rate of dissolution of solid metal is dependent on the solute concentration in fluid metal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶融はんだ中に含まれる銅濃度を推定する方法とその方法に用いるプリント基板に関するものである。 The present invention relates to a method for estimating a copper concentration contained in molten solder and a printed circuit board used in the method.

環境保護の観点からプリント配線板への電子部品実装において、接合用に使用されるはんだから鉛を除外したいわゆる鉛フリーはんだが適用されており、Sn-Ag-Cu系はんだが業界標準となりつつある。しかし、これまでの鉛入りはんだに対して、鉛フリーはんだは金属との反応性が高いことから、溶融はんだにプリント配線板を接触させるディップはんだ付(例えば、フローはんだ付、部分噴流はんだ付等)において、スルーホール銅電極が溶解して溶融はんだ槽中の銅濃度が増加するという問題が顕在化している。 From the viewpoint of environmental protection, so-called lead-free solder, which excludes lead from solder used for bonding, has been applied in mounting electronic components on printed wiring boards, and Sn-Ag-Cu solder is becoming the industry standard . However, lead-free solder is more reactive with metals than conventional lead-containing solder, so dip soldering (for example, flow soldering, partial jet soldering, etc.) that brings a printed wiring board into contact with molten solder ), The problem that the through-hole copper electrode is melted to increase the copper concentration in the molten solder bath has become apparent.

溶融はんだ中の銅濃度増加は液相線温度の上昇を招くため、工作性(特にブリッジ不良)に悪影響を及ぼす。また、はんだの組織状態としてCu−Sn化合物であるCu6Sn5の硬く脆い針状結晶が晶出するため、はんだ接合部の信頼性低下が懸念される。一方、溶融はんだ中の銅濃度低下は、スルーホールの銅電極の溶解を促進して断線を引き起こす。以上の理由により、溶融はんだ中の銅濃度は適正範囲に管理する必要がある。 An increase in the copper concentration in the molten solder causes an increase in the liquidus temperature, which adversely affects workability (particularly bridging failure). Moreover, since the hard and brittle needle-like crystal of Cu6Sn5 which is a Cu-Sn compound crystallizes out as a structure state of the solder, there is a concern about a decrease in reliability of the solder joint. On the other hand, a decrease in the copper concentration in the molten solder promotes the dissolution of the through-hole copper electrode and causes disconnection. For the above reasons, it is necessary to manage the copper concentration in the molten solder within an appropriate range.

溶融はんだ中の元素分析方法としては、蛍光X線分析が一般的に用いられている。はんだ槽から一定量のはんだを採取し、冷却固化させ、旋盤で所望のサイズに加工した後に蛍光X線分析装置により、測定対象元素の重量比を測定する。 As an elemental analysis method in molten solder, fluorescent X-ray analysis is generally used. A certain amount of solder is collected from the solder bath, cooled and solidified, processed into a desired size with a lathe, and then the weight ratio of the measurement target element is measured with a fluorescent X-ray analyzer.

また、金属部材と探触子を溶融はんだに浸漬させ両者間の導通を測定し、溶解速度を利用して金属部材が溶融はんだに溶解して導通がなくなった時間から、はんだ元素濃度を算出する方法がある。(例えば特許文献1参照) Also, immersing the metal member and the probe in the molten solder, measuring the continuity between them, and using the dissolution rate, calculate the solder element concentration from the time when the metal member was dissolved in the molten solder and the continuity was lost There is a way. (For example, see Patent Document 1)

特開2002-340884号公報JP 2002-340884 A

しかしながら、蛍光X線分析装置は高精度の分析は可能であるが、測定試料作製に手間と時間を要し、装置が大がかりで高価であり、測定にあたっては専門知識等が必要であるため、生産現場で簡易に分析することができないという課題があった。また、特開2002-340884号公報記載の方法は、生産現場での分析は可能であるが、導通を測定する煩雑な装置が必要であるという課題を有していた。 However, the X-ray fluorescence analyzer can perform highly accurate analysis, but it requires labor and time to prepare a measurement sample, the device is large and expensive, and measurement requires specialized knowledge. There was a problem that it could not be easily analyzed on site. Further, the method described in Japanese Patent Application Laid-Open No. 2002-340884 can be analyzed at the production site, but has a problem that a complicated device for measuring continuity is required.

本発明は、上記のような課題を解決するためになされたもので、溶融はんだ中の銅濃度を生産現場で簡易に推定する方法及びその方法に用いるプリント基板を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a method for easily estimating the copper concentration in molten solder at a production site and a printed circuit board used in the method. It is.

この発明に係る溶融はんだ中の銅濃度を推定する方法は、基板上に形成された銅パターンの溶解状態により溶融はんだ中の銅濃度を推定するものである。 The method for estimating the copper concentration in the molten solder according to the present invention estimates the copper concentration in the molten solder based on the dissolved state of the copper pattern formed on the substrate.

本発明によれば、銅パターンを形成したプリント基板を一定時間の間 溶融はんだ中に浸漬し、銅パターンの溶解状態により溶融はんだ中の銅濃度を推定するため、従来のような大がかりで高価な装置と手間と時間を要し測定にあたっては専門知識等が必要であるとか、あるいは煩雑な装置が必要であるといったことが無くなり、非常に短時間かつ低コストで生産現場において簡易に溶融はんだ中の銅濃度を推定することができるという効果がある。 According to the present invention, the printed circuit board on which the copper pattern is formed is immersed in the molten solder for a certain period of time, and the copper concentration in the molten solder is estimated based on the dissolved state of the copper pattern. No need for specialized knowledge, etc. for measurement due to equipment, labor and time, or complicated equipment, eliminating the need for complicated equipment. There is an effect that the copper concentration can be estimated.

実施の形態1.
以下、本発明の実施の形態1について図を用いて説明する。
尚,本実施の形態においては、基板上に銅パターンを形成したプリント基板を、溶融はんだ中に浸漬させ、溶融はんだ中の銅濃度を推定する方法を例に挙げて説明する。
図1(a)は本発明におけるプリント基板7の一実施例であり、基板1上に三角形の銅パターン2を形成することによりプリント基板7を構成している。当該プリント基板7に銅表面の酸化物を除去するフラックスを塗布した後、図示しない溶融はんだ中に浸漬させる。一定時間後、当該プリント基板7を溶融はんだ中から引き上げると図1(b)のように三角形の銅パターン2の先端部が選択的に溶解して消失する。この先端部が選択的に溶解する現象は、当該部分が銅パターンの体積に対して溶融はんだが接触する表面積の割合が大きいことによるものである。
すなわち、銅パターンの単位長さ当たりの体積が、(高さ×幅)であるのに対し、表面積が、(高さ×2+幅)であり、三角形の先端部の方が銅パターンの体積に対して溶融はんだが接触する表面積の割合が大きくなるためである。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.
In the present embodiment, a method for estimating the copper concentration in the molten solder by immersing a printed board having a copper pattern formed on the substrate in the molten solder will be described as an example.
FIG. 1A shows an embodiment of a printed circuit board 7 according to the present invention. The printed circuit board 7 is formed by forming a triangular copper pattern 2 on the substrate 1. After applying a flux for removing oxide on the copper surface to the printed circuit board 7, it is immersed in a molten solder (not shown). When the printed circuit board 7 is lifted from the molten solder after a certain time, the tip of the triangular copper pattern 2 is selectively dissolved and disappears as shown in FIG. The phenomenon in which the tip portion is selectively dissolved is due to the fact that the ratio of the surface area where the molten solder contacts the volume of the copper pattern is large.
That is, the volume per unit length of the copper pattern is (height × width), whereas the surface area is (height × 2 + width), and the tip of the triangle is the volume of the copper pattern. This is because the ratio of the surface area with which the molten solder contacts is increased.

図2は図1に示したプリント基板7を用いて、ある一定時間、温度、噴流状態における銅パターン消失部5の長さと溶融はんだ中の銅濃度との関係を示した検量線である。溶融はんだ中の銅濃度が高いほど銅パターンの消失部5の長さは短くなる。この検量線をあらかじめ作成しておくことで、目盛3で読み取った銅パターンの消失部5の長さより溶融はんだ中の銅濃度の推定が可能となる。 FIG. 2 is a calibration curve showing the relationship between the length of the copper pattern disappearing portion 5 and the copper concentration in the molten solder at a certain time, temperature, and jet state using the printed circuit board 7 shown in FIG. The higher the copper concentration in the molten solder, the shorter the length of the disappearance portion 5 of the copper pattern. By preparing this calibration curve in advance, the copper concentration in the molten solder can be estimated from the length of the disappearing portion 5 of the copper pattern read by the scale 3.

尚、図1の実施例では、基板1上に三角形の銅パターン2が形成されているが、三角形の銅パターンの形状は、円形、長円形、多角形等の形状でもよい。この場合、図4及び図5のように周辺部あるいは先端部が選択的に溶解し消失していく。
また、銅パターンの消失部5の長さを測定する代わりに銅パターンの残存部4の長さ、あるいは残存面積を測定して溶融はんだ中の銅濃度を推定してもよい。この場合は、それぞれ測定する銅パターンの残存部4の長さや残存面積に対応する溶融はんだ中の銅濃度との関係を示した検量線を、あらかじめ作成しておく必要がある。
In the embodiment shown in FIG. 1, the triangular copper pattern 2 is formed on the substrate 1. However, the triangular copper pattern may be circular, oval, polygonal or the like. In this case, as shown in FIGS. 4 and 5, the peripheral portion or the tip portion is selectively dissolved and disappears.
Further, instead of measuring the length of the disappearance portion 5 of the copper pattern, the length of the remaining portion 4 or the remaining area of the copper pattern may be measured to estimate the copper concentration in the molten solder. In this case, it is necessary to prepare in advance a calibration curve showing the relationship between the length of the remaining portion 4 of the copper pattern to be measured and the copper concentration in the molten solder corresponding to the remaining area.

また、図1の実施例では、目盛3を設けることにより、銅パターンの消失部5の長さの測定を容易にし、ひいては溶融はんだ中の銅濃度の推定を容易にするという効果があるが、目盛3を設けない場合には定規、ノギス等の測定器具を用いて測定するという方法もある。 Further, in the embodiment of FIG. 1, by providing the scale 3, it is easy to measure the length of the disappearing portion 5 of the copper pattern, and thus has an effect of facilitating estimation of the copper concentration in the molten solder. When the scale 3 is not provided, there is a method of measuring using a measuring instrument such as a ruler or a caliper.

表1は本発明による銅濃度推定結果と精密分析方法である蛍光X線装置による分析結果との比較結果の例を示した表である。この表1のように精密分析方法である蛍光X線装置による分析結果に対し、簡易な推定方法である本発明による銅濃度の推定結果が非常に近い値を示すような結果が得られている。 Table 1 is a table showing an example of a comparison result between the copper concentration estimation result according to the present invention and the analysis result by the fluorescent X-ray apparatus which is a precise analysis method. As shown in Table 1, the result of the estimation of the copper concentration according to the present invention, which is a simple estimation method, is very close to the analysis result by the fluorescent X-ray apparatus, which is a precise analysis method. .

Figure 2007201126
Figure 2007201126

実施の形態2.
次に実施の形態2について説明する。
図3(a)はサイズの異なる複数の円形銅パターン6を形成したプリント基板7である。当該プリント基板7を溶融はんだ中に浸漬させると、図3(b)に示すように小径パターンから消失し、溶融はんだ中の銅濃度が低いほど大径パターンまで消失する。この円形銅パターンの消失部5の数、または円形銅パターンの残存部4の数により溶融はんだ中の銅濃度の推定が可能となる。
尚、この場合は円形銅パターンの消失部5の数、または円形銅パターンの残存部4の数に対応した溶融はんだ中の銅濃度との関係を示した検量線をあらかじめ作成しておく必要がある。
Embodiment 2. FIG.
Next, a second embodiment will be described.
FIG. 3A shows a printed circuit board 7 on which a plurality of circular copper patterns 6 having different sizes are formed. When the printed circuit board 7 is immersed in the molten solder, it disappears from the small diameter pattern as shown in FIG. 3B, and disappears to the large diameter pattern as the copper concentration in the molten solder is lower. The copper concentration in the molten solder can be estimated from the number of disappearing portions 5 of the circular copper pattern or the number of remaining portions 4 of the circular copper pattern.
In this case, it is necessary to prepare in advance a calibration curve indicating the relationship between the number of disappearing portions 5 of the circular copper pattern or the copper concentration in the molten solder corresponding to the number of remaining portions 4 of the circular copper pattern. is there.

また、図3(a)の実施例では、基板1上にサイズの異なる複数の円形銅パターン6が形成されているが、円形銅パターン6の形状は、長円形、多角形等その他の形状でもよい。 In the embodiment of FIG. 3 (a), a plurality of circular copper patterns 6 having different sizes are formed on the substrate 1. However, the circular copper pattern 6 may have other shapes such as an oval and a polygon. Good.

尚、実施の形態1及び2では、基板1上に銅パターン6を形成したプリント基板7を用いて銅濃度を推定しているが、本発明はこれに限定されるものではなく、基板1の代わりに溶融はんだに浸漬させた時に溶解しにくい材料、例えばガラス、セラミック、ステンレス等の上に銅パターン6を形成したプリント基板を用いてもよい。 In the first and second embodiments, the copper concentration is estimated using the printed circuit board 7 in which the copper pattern 6 is formed on the substrate 1, but the present invention is not limited to this, and the substrate 1 Instead, a printed board in which a copper pattern 6 is formed on a material that is difficult to dissolve when immersed in molten solder, such as glass, ceramic, stainless steel, or the like, may be used.

また、上記各実施の形態においては、銅パターン6を形成したプリント基板7を溶融はんだ中に浸漬させる場合について説明したが、溶融はんだを銅パターン6を形成したプリント基板7に接触させれば所期の目的は達成されるものである。 In each of the above embodiments, the case where the printed circuit board 7 on which the copper pattern 6 is formed is immersed in the molten solder has been described. However, if the molten solder is brought into contact with the printed circuit board 7 on which the copper pattern 6 is formed, The purpose of the period is achieved.

本発明は、溶融はんだ中の銅濃度を生産現場で簡易に推定することに適しており産業上の利用可能性は大である。 The present invention is suitable for simply estimating the copper concentration in the molten solder at the production site, and has great industrial applicability.

本発明の実施の形態1を説明するもので、溶融はんだ中の銅濃度の推定に用いるプリント基板上の三角形銅パターン形状とその銅パターン消失状態を表した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a first embodiment of the present invention, and is an explanatory diagram illustrating a triangular copper pattern shape on a printed circuit board used for estimating a copper concentration in molten solder and a copper pattern disappearance state. 図1の三角形銅パターンを用いた場合の銅パターン消失長さと溶融はんだ中の銅濃度との関係を表した検量線の一例である。FIG. 2 is an example of a calibration curve showing a relationship between a copper pattern disappearance length and a copper concentration in molten solder when the triangular copper pattern of FIG. 1 is used. 本発明の実施の形態2を説明するもので、溶融はんだ中の銅濃度推定に用いるプリント基板上の円形銅パターン形状とその銅パターンの消失状態を表した説明図である。FIG. 9 is an explanatory diagram for explaining a second embodiment of the present invention and showing a circular copper pattern shape on a printed circuit board used for estimating a copper concentration in molten solder and a disappearance state of the copper pattern. 本発明の実施の形態1における三角形銅パターンの形状を円形銅パターンにした他の実施例を説明するもので、溶融はんだ中の銅濃度推定に用いるプリント基板上の円形銅パターン形状とその銅パターンの消失状態を表した説明図である。The other example which made the shape of the triangular copper pattern in Embodiment 1 of this invention into the circular copper pattern is demonstrated, The circular copper pattern shape on the printed circuit board used for copper concentration estimation in molten solder, and its copper pattern It is explanatory drawing showing the disappearance state of. 本発明の実施の形態1における三角形銅パターンの形状を四角形銅パターンにした他の実施例を説明するもので、溶融はんだ中の銅濃度推定に用いるプリント基板上の四角形銅パターン形状とその銅パターンの消失状態を表した説明図である。Another example in which the shape of the triangular copper pattern in the first embodiment of the present invention is a rectangular copper pattern will be described, and the rectangular copper pattern shape on the printed circuit board used for estimating the copper concentration in the molten solder and the copper pattern It is explanatory drawing showing the disappearance state of.

符号の説明Explanation of symbols

1 基板
2 三角形の銅パターン
3 目盛
4 銅パターンの残存部
5 銅パターンの消失部
6 円形の銅パターン
7 プリント基板
1 Board
2 triangle copper pattern
3 scale
4 Remaining copper pattern
5 Loss of copper pattern
6 circular copper pattern
7 Printed circuit board

Claims (9)

基板上に銅パターンを形成し、上記銅パターンを溶融はんだと接触させ、上記溶融はんだとの接触により溶解する上記銅パターンの溶解量により上記溶融はんだ中の銅濃度を推定することを特徴とする溶融はんだ中の銅濃度推定方法。 A copper pattern is formed on a substrate, the copper pattern is brought into contact with molten solder, and the copper concentration in the molten solder is estimated from the amount of the copper pattern dissolved by contact with the molten solder. Method for estimating copper concentration in molten solder. 上記銅パターンは、体積に対する表面積の割合が連続的に変化する形状であることを特徴とする請求項1記載の溶融はんだ中の銅濃度推定方法。 2. The method for estimating a copper concentration in molten solder according to claim 1, wherein the copper pattern has a shape in which the ratio of the surface area to the volume changes continuously. 基板と、上記基板上に形成され、溶融はんだとの接触により溶解状態になる銅パターンと、を備えたことを特徴とするプリント基板。 A printed circuit board comprising: a substrate; and a copper pattern formed on the substrate and brought into a molten state upon contact with molten solder. 上記銅パターンは、体積に対する表面積の割合が連続的に変化する形状であることを特徴とする請求項3記載のプリント基板。 The printed circuit board according to claim 3, wherein the copper pattern has a shape in which a ratio of a surface area to a volume continuously changes. 上記銅パターンは、形状が円形、長円形、多角形のいずれかであることを特徴とする請求項3又は4記載のプリント基板。 The printed circuit board according to claim 3 or 4, wherein the copper pattern has a circular shape, an oval shape, or a polygonal shape. 上記銅パターンは、三角形であることを特徴とする請求項4記載のプリント基板。 The printed circuit board according to claim 4, wherein the copper pattern is a triangle. 上記銅パターンは、体積に対する表面積の割合が異なる大小複数個の形状であることを特徴とする請求項3記載のプリント基板。 4. The printed circuit board according to claim 3, wherein the copper pattern has a plurality of large and small shapes having different ratios of surface area to volume. 上記銅パターンは、円形であることを特徴とする請求項7記載のプリント基板。 The printed circuit board according to claim 7, wherein the copper pattern is circular. 上記銅パターンの形状を読み取ることができる目盛を備えたことを特徴とする請求項3乃至8のいずれかに記載のプリント基板。 The printed circuit board according to any one of claims 3 to 8, further comprising a scale capable of reading the shape of the copper pattern.
JP2006017282A 2006-01-26 2006-01-26 Copper concentration estimation method in fused solder, and printed board used therefor Pending JP2007201126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017282A JP2007201126A (en) 2006-01-26 2006-01-26 Copper concentration estimation method in fused solder, and printed board used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017282A JP2007201126A (en) 2006-01-26 2006-01-26 Copper concentration estimation method in fused solder, and printed board used therefor

Publications (1)

Publication Number Publication Date
JP2007201126A true JP2007201126A (en) 2007-08-09

Family

ID=38455411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017282A Pending JP2007201126A (en) 2006-01-26 2006-01-26 Copper concentration estimation method in fused solder, and printed board used therefor

Country Status (1)

Country Link
JP (1) JP2007201126A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935254A (en) * 1972-08-07 1974-04-01
JPS5563183U (en) * 1978-10-25 1980-04-30
JPH10326959A (en) * 1997-05-26 1998-12-08 Sony Corp Printed wiring board and method for evaluating wettability of solder by printed wiring board
JP2005003520A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd Method and device for detecting composition of lead-free solder in dip tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935254A (en) * 1972-08-07 1974-04-01
JPS5563183U (en) * 1978-10-25 1980-04-30
JPH10326959A (en) * 1997-05-26 1998-12-08 Sony Corp Printed wiring board and method for evaluating wettability of solder by printed wiring board
JP2005003520A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd Method and device for detecting composition of lead-free solder in dip tank

Similar Documents

Publication Publication Date Title
KR930001686B1 (en) Copper doped low metal solder for component assembly and rework
Jung et al. Review of the wettability of solder with a wetting balance test for recent advanced microelectronic packaging
CN105451928A (en) Lead-free solder alloy
CN105121677A (en) Lead-free solder alloy
JP2008185387A (en) Measuring method of concentration of copper in molten solder and printed circuit board used therein
Ramli et al. The effect of Ni and Bi additions on the solderability of Sn-0.7 Cu solder coatings
JP2007201126A (en) Copper concentration estimation method in fused solder, and printed board used therefor
Hillman et al. Dissolution rate of electronics packaging surface finish elements in Sn3. 0Ag0. 5Cu solder
JP2006269508A (en) Printed-wiring board and method of determining erosion state
JP4919863B2 (en) Evaluation method of solder joints
Steiner et al. Correlation analysis of wettability, intermetallic compound formation and PCB contamination
Rudajevová et al. Study of Undercooling and Recalescence During Solidification of Sn 62.5 Pb 36.5 Ag 1 and Sn 96.5 Ag 3 Cu 0.5 Solders in Real Electronic Joints
JP2006292688A (en) Methods of manufacturing and analyzing solder sample, and control system for solder vessel
Izuta et al. Simplified measuring method of copper concentration in solder bath utilizing copper dissolution
JP2008170406A (en) Measuring method for solder component, analyzer used in measurement of solder component and solder sample manufacturing device
Di Maio et al. On the factors affecting the dissolution of copper in molten lead‐free solders and development of a method to assess the soldering parameters
JP2007256078A (en) Mutilayer-type probe pin and probe card
JP2005077400A (en) Method and apparatus for evaluating wettability of lead-free solder paste
Chung et al. Influence of halogen-free compound and lead-free solder paste on on-board reliability of green CSP (chip scale package)
Lamprecht et al. Ageing characteristics of immersion tin surface finishes
Lea Solderability and its measurement
JP2010133853A (en) Method of measuring temperature and manufacturing method of semiconductor device
JP2008130633A (en) Printed circuit board structure
WO2010137714A1 (en) Device and method for evaluating wettability of solder paste
Barros Reflow soldering in an oxidant atmosphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101102

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101224

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118