JP2007201087A - Solid-state image pickup element and manufacturing method thereof - Google Patents

Solid-state image pickup element and manufacturing method thereof Download PDF

Info

Publication number
JP2007201087A
JP2007201087A JP2006016532A JP2006016532A JP2007201087A JP 2007201087 A JP2007201087 A JP 2007201087A JP 2006016532 A JP2006016532 A JP 2006016532A JP 2006016532 A JP2006016532 A JP 2006016532A JP 2007201087 A JP2007201087 A JP 2007201087A
Authority
JP
Japan
Prior art keywords
impurity layer
concentration impurity
layer
solid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006016532A
Other languages
Japanese (ja)
Inventor
Taketo Watanabe
武人 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006016532A priority Critical patent/JP2007201087A/en
Publication of JP2007201087A publication Critical patent/JP2007201087A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid-state image pickup element capable of manufacturing a solid-stage image pickup element having satisfactory characteristics easily. <P>SOLUTION: The solid-state image pickup element comprises a photoelectric conversion element including an n layer 2 made of an n-type impurity for accumulating charge read from a vertical CCD 5, and a p layer 3 made of a p-type impurity formed on the n layer 2. The p layer 3 is in a two-layer structure comprising a high-concentration impurity layer 3b having a relatively high impurity concentration, and a low-concentration impurity layer 3a having a relatively low impurity concentration formed between the high-concentration impurity layer 3b and the n layer 2. In the formation process of the high-concentration impurity layer 3b, ion implantation having a different amount of dose and injection energy is performed for a plurality of times to form the high-concentration impurity layer 3b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CCD(Charge Coupled Device)型の固体撮像素子の製造方法に関する。   The present invention relates to a method for manufacturing a CCD (Charge Coupled Device) type solid-state imaging device.

特許文献1には、n型不純物層を有し光電変換により信号電荷を生成するフォトダイオード部と、信号電荷を転送する電荷転送部と、フォトダイオード部のn型不純物層の上に形成されノイズを低減するためのノイズ低減用p型不純物層とを備えたCCD固体撮像装置において、ノイズ低減用p型不純物層が、受光面側に形成された不純物濃度が相対的に高い高濃度不純物層とフォトダイオード部側に形成された不純物濃度が相対的に低い低濃度不純物層とからなるCCD固体撮像装置が開示されている。   In Patent Document 1, a photodiode portion that has an n-type impurity layer and generates signal charges by photoelectric conversion, a charge transfer portion that transfers signal charges, and a noise formed on the n-type impurity layer of the photodiode portion. In a CCD solid-state imaging device including a noise-reducing p-type impurity layer for reducing noise, the noise-reducing p-type impurity layer includes a high-concentration impurity layer having a relatively high impurity concentration formed on the light-receiving surface side. There is disclosed a CCD solid-state imaging device comprising a low-concentration impurity layer formed on the photodiode portion side and having a relatively low impurity concentration.

上記CCD型固体撮像装置では、ノイズ低減用p型不純物層を形成する際、まず、所定のドーズ量及び注入エネルギによりイオン注入を行って低濃度不純物層を形成し、その後、ドーズ量及び注入エネルギを変更してイオン注入を行って高濃度不純物層を形成している。   In the CCD solid-state imaging device, when forming the p-type impurity layer for noise reduction, first, ion implantation is performed with a predetermined dose and implantation energy to form a low concentration impurity layer, and then the dose and implantation energy. The high-concentration impurity layer is formed by performing ion implantation while changing the above.

特開平8−97392号公報JP-A-8-97392

上記高濃度不純物層の基板内深さ方向の不純物濃度は、その勾配が緩すぎると、高濃度不純物層で発生した電荷が隣接する電荷転送部に漏れてしまい、スミアや感度低下の原因となる。逆に、その勾配が急すぎると、電界が強くなって、ノイズ低減用p型不純物層と電荷転送部の間でブレークダウンが発生したり、白キズが発生したりする。このため、ノイズ低減用p型不純物層を形成する際には、上記高濃度不純物層の不純物濃度の勾配を、緩すぎず且つ急すぎない適度な範囲に収める必要がある。しかし、特許文献1記載の製造方法では、この勾配の微調整を行うことが難しく、良好な特性を持つ固体撮像素子を製造することが困難である。   If the gradient of the impurity concentration in the substrate depth direction of the high-concentration impurity layer is too gentle, the charge generated in the high-concentration impurity layer leaks to the adjacent charge transfer section, which causes smear and sensitivity reduction. . On the other hand, if the gradient is too steep, the electric field becomes strong, causing breakdown between the p-type impurity layer for noise reduction and the charge transfer portion, or white flaws. For this reason, when forming the p-type impurity layer for noise reduction, it is necessary to keep the gradient of the impurity concentration of the high-concentration impurity layer within an appropriate range that is neither too slow nor too steep. However, in the manufacturing method described in Patent Document 1, it is difficult to finely adjust the gradient, and it is difficult to manufacture a solid-state imaging device having good characteristics.

本発明は、上記事情に鑑みてなされたものであり、良好な特性を持つ固体撮像素子を容易に製造することが可能な固体撮像素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a solid-state imaging device capable of easily manufacturing a solid-state imaging device having good characteristics.

本発明の固体撮像素子の製造方法は、CCD型の固体撮像素子の製造方法であって、前記固体撮像素子は、CCDに読み出される電荷を蓄積する第一の導電型の不純物からなる第一の不純物層と、前記第一の不純物層上に形成された前記第一の導電型とは反対の第二の導電型の不純物からなる第二の不純物層とを含む光電変換素子を有し、前記第二の不純物層は、不純物濃度が相対的に低い低濃度不純物層と、前記低濃度不純物層の表面部に形成された不純物濃度が相対的に高い高濃度不純物層との2層構造であり、前記高濃度不純物層の形成工程では、ドーズ量と注入エネルギの異なるイオン注入を複数回行って前記高濃度不純物層を形成する。   The solid-state imaging device manufacturing method of the present invention is a CCD-type solid-state imaging device manufacturing method, wherein the solid-state imaging device includes a first conductivity type impurity that accumulates charges read to the CCD. A photoelectric conversion element including an impurity layer and a second impurity layer made of an impurity of a second conductivity type opposite to the first conductivity type formed on the first impurity layer; The second impurity layer has a two-layer structure of a low-concentration impurity layer having a relatively low impurity concentration and a high-concentration impurity layer formed on the surface portion of the low-concentration impurity layer. In the step of forming the high-concentration impurity layer, the high-concentration impurity layer is formed by performing ion implantation different in dose amount and implantation energy a plurality of times.

本発明の固体撮像素子の製造方法は、前記高濃度不純物層の形成工程では、ドーズ量が相対的に多く注入エネルギが相対的に低い第一のイオン注入と、ドーズ量が相対的に少なく注入エネルギが相対的に高い第二のイオン注入との2回のイオン注入を行って前記高濃度不純物層を形成する。   In the solid-state imaging device manufacturing method according to the present invention, in the step of forming the high-concentration impurity layer, a first ion implantation having a relatively large dose and a relatively low implantation energy and an implantation having a relatively small dose. The high concentration impurity layer is formed by performing ion implantation twice with the second ion implantation having relatively high energy.

本発明の固体撮像素子の製造方法は、前記高濃度不純物層の形成工程では、前記第一のイオン注入を行ってから、前記第二のイオン注入を行う。   In the method for manufacturing a solid-state imaging device of the present invention, in the step of forming the high-concentration impurity layer, the second ion implantation is performed after the first ion implantation.

本発明の固体撮像素子の製造方法は、前記高濃度不純物層の形成工程では、前記高濃度不純物層を、その受光面以外が前記低濃度不純物層によって囲まれるように形成する。   In the solid-state imaging device manufacturing method of the present invention, in the step of forming the high-concentration impurity layer, the high-concentration impurity layer is formed so as to be surrounded by the low-concentration impurity layer except for its light receiving surface.

本発明の固体撮像素子の製造方法は、前記固体撮像素子が、前記第一の不純物層に蓄積された電荷を前記CCDに読み出すための電荷読み出し領域と、前記電荷読み出し領域を除く前記光電変換素子の周囲に形成された前記第二の導電型からなる素子分離層とを備え、前記低濃度不純物層の形成工程では、前記低濃度不純物層の不純物濃度が前記素子分離層の不純物濃度よりも低くなるように、前記低濃度不純物層を形成する。   The method for manufacturing a solid-state imaging device according to the present invention includes: a charge reading region for the solid-state imaging device to read charges accumulated in the first impurity layer to the CCD; and the photoelectric conversion device excluding the charge reading region In the step of forming the low-concentration impurity layer, the impurity concentration of the low-concentration impurity layer is lower than the impurity concentration of the element isolation layer. Thus, the low concentration impurity layer is formed.

本発明の固体撮像素子の製造方法は、前記高濃度不純物層の形成工程では、前記低濃度不純物層の端部から前記高濃度不純物層の端部までの長さが0.1μm以上となるように前記高濃度不純物層を形成する。   In the solid-state imaging device manufacturing method of the present invention, in the step of forming the high-concentration impurity layer, the length from the end portion of the low-concentration impurity layer to the end portion of the high-concentration impurity layer is 0.1 μm or more. The high concentration impurity layer is formed.

本発明の固体撮像素子は、前記製造方法によって製造された固体撮像素子である。   The solid-state imaging device of the present invention is a solid-state imaging device manufactured by the manufacturing method.

本発明によれば、良好な特性を持つ固体撮像素子を容易に製造することが可能な固体撮像素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid-state image sensor which can manufacture the solid-state image sensor with a favorable characteristic easily can be provided.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態を説明するための固体撮像素子の断面模式図である。図2は、図1に示す固体撮像素子の半導体基板上方の部材を取り去った状態の平面模式図である。
半導体基板1は、第一の導電型であるn型の半導体基板1aと、n型半導体基板1a上に形成された第二の導電型であるp型のpウェル層1bとから構成される。pウェル層1bの表面部には、p型不純物層(以下、p層と略す)3が形成され、p層3の下にn型不純物層(以下、n層と略す)2が形成されている。n層2内及びn層2とpウェル層1bとのpn接合で光電変換されて発生した電荷(電子及び正孔)がn層2に蓄積される。又、p層3で発生した電荷もn層2に蓄積される。p層3とn層2とpウェル層1bとによって光電変換素子が構成される。p層3は、n層2の上部の空乏層から半導体基板1表面にノイズが発生するのを防ぐために設けられている。p層3についての詳細は後述する。
FIG. 1 is a schematic cross-sectional view of a solid-state imaging device for explaining an embodiment of the present invention. FIG. 2 is a schematic plan view showing a state in which the member above the semiconductor substrate of the solid-state imaging device shown in FIG. 1 is removed.
The semiconductor substrate 1 includes an n-type semiconductor substrate 1a having a first conductivity type and a p-type p-well layer 1b having a second conductivity type formed on the n-type semiconductor substrate 1a. A p-type impurity layer (hereinafter abbreviated as p layer) 3 is formed on the surface portion of the p well layer 1b, and an n-type impurity layer (hereinafter abbreviated as n layer) 2 is formed under the p layer 3. Yes. Charges (electrons and holes) generated by photoelectric conversion in the n layer 2 and at the pn junction between the n layer 2 and the p well layer 1 b are accumulated in the n layer 2. Further, the charges generated in the p layer 3 are also accumulated in the n layer 2. The p layer 3, the n layer 2, and the p well layer 1b constitute a photoelectric conversion element. The p layer 3 is provided to prevent noise from being generated on the surface of the semiconductor substrate 1 from the depletion layer above the n layer 2. Details of the p layer 3 will be described later.

p層3及びn層2の右隣には、少し離間してn層からなる垂直CCD5が形成されている。p層3及びn層2と垂直CCD5との間のpウェル層1bには、光電変換素子で発生してn層2に蓄積された電荷を垂直CCD5に読み出すための電荷読み出し領域6が形成される。垂直CCD5上方には、ONO膜等からなるゲート絶縁膜10を介して、垂直CCD5を駆動するための駆動電極と電荷読み出し電極とを兼ねたポリシリコン等からなる電極8が形成されている。電極8上にはタングステンやアルミニウム等からなる遮光膜9が形成されている。遮光膜9には、光電変換素子の上方において開口が形成されている。   A vertical CCD 5 composed of n layers is formed on the right side of the p layer 3 and the n layer 2 with a slight distance therebetween. In the p-well layer 1 b between the p-layer 3 and the n-layer 2 and the vertical CCD 5, a charge reading region 6 for reading out the charges generated in the photoelectric conversion element and accumulated in the n-layer 2 to the vertical CCD 5 is formed. The Above the vertical CCD 5, an electrode 8 made of polysilicon or the like serving as a drive electrode for driving the vertical CCD 5 and a charge readout electrode is formed via a gate insulating film 10 made of an ONO film or the like. A light shielding film 9 made of tungsten, aluminum or the like is formed on the electrode 8. An opening is formed in the light shielding film 9 above the photoelectric conversion element.

光電変換素子の周囲には、その光電変換素子に蓄積された電荷が読み出される垂直CCD5との間に形成される電荷読み出し領域6を除く部分に、その光電変換素子に蓄積された電荷が読み出されない隣接する垂直CCD5(以下隣接垂直CCD5という)や、その光電変換素子に隣接する光電変換素子等の他の素子との分離を図るための高濃度のp型不純物からなる素子分離層7が形成されている。   Around the photoelectric conversion element, the charge accumulated in the photoelectric conversion element is read out in a portion excluding the charge readout region 6 formed between the photoelectric conversion element and the vertical CCD 5 from which the charge accumulated in the photoelectric conversion element is read out. An element isolation layer 7 made of a high-concentration p-type impurity is formed to separate the adjacent vertical CCD 5 (hereinafter referred to as the adjacent vertical CCD 5) and other elements such as the photoelectric conversion element adjacent to the photoelectric conversion element. Has been.

p層3は、p型不純物の不純物濃度が相対的に低い低濃度不純物層3aと、低濃度不純物層3aの表面部に形成された不純物濃度が低濃度不純物層3aよりも高い高濃度不純物層3bとからなる2層構造である。ここで、低濃度不純物層3aの表面部とは、低濃度不純物層3aの表面を含む表面付近の内部のことを示す。低濃度不純物層3aの不純物濃度は、素子分離層7の不純物濃度や、電荷読み出し領域6の不純物濃度よりも低くなっており、これにより、スミアを防止することが可能である。   The p-layer 3 includes a low-concentration impurity layer 3a having a relatively low impurity concentration of p-type impurities, and a high-concentration impurity layer having an impurity concentration higher than that of the low-concentration impurity layer 3a formed on the surface portion of the low-concentration impurity layer 3a. It is a two-layer structure consisting of 3b. Here, the surface portion of the low-concentration impurity layer 3a indicates the inside of the vicinity of the surface including the surface of the low-concentration impurity layer 3a. The impurity concentration of the low-concentration impurity layer 3a is lower than the impurity concentration of the element isolation layer 7 and the impurity concentration of the charge readout region 6, thereby preventing smear.

図2に示すように、高濃度不純物層3bは、低濃度不純物層3aの表面部で且つ平面視において低濃度不純物層3aが形成されている領域よりも内側の領域に形成されている。ここで、低濃度不純物層3aが形成されている領域よりも内側の領域は、低濃度不純物層3aの形成された領域の周縁部を含まない領域とする。つまり、高濃度不純物層3bは、その受光面を除く部分が低濃度不純物層3aによって囲まれるように形成されている。
電荷読み出し領域6や素子分離層7と、高濃度不純物層3bとが直接接続されていると、隣接垂直CCD5と高濃度不純物層3bとの間でリーク電流が大きくなり、白キズが発生する恐れがある。そこで、図1,2に示すように、電荷読み出し領域6や素子分離層7と、高濃度不純物層3bとの間に低濃度不純物層3aが介在するような構造にすることで、白キズの発生を防止することができる。又、低濃度不純物層3aは、高濃度不純物層3bとn層2との間の電界を緩和して白キズを抑える機能も果たす。又、図1,2に示すように、電荷読み出し領域6と高濃度不純物層3bとの間に低濃度不純物層3aが介在するような構造にすることで、n層2に蓄積された電荷を垂直CCD5に読み出す際の読み出し電圧を下げられるという効果も得ることができる。
As shown in FIG. 2, the high-concentration impurity layer 3b is formed in a region inside the surface portion of the low-concentration impurity layer 3a and the region where the low-concentration impurity layer 3a is formed in plan view. Here, the region inside the region where the low concentration impurity layer 3a is formed is a region not including the peripheral portion of the region where the low concentration impurity layer 3a is formed. That is, the high-concentration impurity layer 3b is formed so that the portion other than the light receiving surface is surrounded by the low-concentration impurity layer 3a.
If the charge readout region 6 or the element isolation layer 7 and the high concentration impurity layer 3b are directly connected, a leakage current increases between the adjacent vertical CCD 5 and the high concentration impurity layer 3b, and white scratches may occur. There is. Therefore, as shown in FIGS. 1 and 2, by adopting a structure in which the low-concentration impurity layer 3a is interposed between the charge readout region 6 and the element isolation layer 7 and the high-concentration impurity layer 3b, Occurrence can be prevented. The low-concentration impurity layer 3a also functions to relieve an electric field between the high-concentration impurity layer 3b and the n layer 2 and suppress white scratches. Also, as shown in FIGS. 1 and 2, the charge accumulated in the n layer 2 can be reduced by adopting a structure in which the low concentration impurity layer 3a is interposed between the charge readout region 6 and the high concentration impurity layer 3b. It is also possible to obtain an effect that the reading voltage when reading to the vertical CCD 5 can be lowered.

図3は、図2に示した低濃度不純物層3aの端部から高濃度不純物層3bの端部までの長さLと、隣接垂直CCD5と高濃度不純物層3b間のリーク電流との関係を示すシミュレーション結果を示す図である。図3に示すように、図2に示した長さLが0.1μm以上になると、リーク電流が急激に少なくなることが分かる。このように、リーク電流を抑えて白キズの発生を効果的に防ぐためには、長さLが0.1μm以上であることが特に好ましい。   FIG. 3 shows the relationship between the length L from the end of the low concentration impurity layer 3a to the end of the high concentration impurity layer 3b shown in FIG. 2 and the leakage current between the adjacent vertical CCD 5 and the high concentration impurity layer 3b. It is a figure which shows the simulation result shown. As shown in FIG. 3, it can be seen that when the length L shown in FIG. 2 is 0.1 μm or more, the leakage current decreases rapidly. Thus, in order to suppress leakage current and effectively prevent white scratches from occurring, the length L is particularly preferably 0.1 μm or more.

図4は、図2に示した低濃度不純物層3aの端部から高濃度不純物層3bの端部までの長さLと、電荷読み出し領域6に印加する読み出し電圧との関係を示すシミュレーション結果を示す図である。図4に示すように、図2に示した長さLが大きくなるほど、読み出し電圧を低くできることが分かる。   FIG. 4 shows simulation results showing the relationship between the length L from the end of the low-concentration impurity layer 3a shown in FIG. 2 to the end of the high-concentration impurity layer 3b and the read voltage applied to the charge read region 6. FIG. As can be seen from FIG. 4, the read voltage can be lowered as the length L shown in FIG. 2 increases.

上述したように、高濃度不純物層3bの基板内深さ方向の不純物濃度の勾配は、緩すぎず且つ急すぎない適度な範囲に収める必要がある。この勾配は、イオンの注入エネルギを変えることで調整することができる。しかし、基板1表面に近い深さでの勾配をある程度急にしようとすると、基板1表面から離れた深い位置でも勾配が急になってしまい、好ましくない。一方、基板1表面から離れた位置での勾配がそれほど急にならないようにしようとすると、基板1表面に近い位置での勾配が緩くなり過ぎてしまい、好ましくない。つまり、注入エネルギを変えるだけでは、基板1表面付近での浅い位置での不純物濃度の勾配と、基板1表面から離れた深い位置での不純物濃度の勾配とを同時に最適化することが困難である。そこで、本実施形態では、高濃度不純物層3bを、ドーズ量と注入エネルギの異なるイオン注入を複数回行って形成することで、この勾配の最適化を可能にしている。   As described above, the gradient of the impurity concentration in the depth direction in the substrate of the high concentration impurity layer 3b needs to be within an appropriate range that is neither too loose nor too steep. This gradient can be adjusted by changing the ion implantation energy. However, if the gradient at a depth close to the surface of the substrate 1 is to be steeped to some extent, the gradient becomes steep even at a deep position away from the surface of the substrate 1, which is not preferable. On the other hand, if an attempt is made to prevent the gradient at a position away from the surface of the substrate 1 from becoming so steep, the gradient at a position close to the surface of the substrate 1 becomes too loose. That is, it is difficult to simultaneously optimize the impurity concentration gradient at a shallow position near the surface of the substrate 1 and the impurity concentration gradient at a deep position away from the surface of the substrate 1 only by changing the implantation energy. . Therefore, in the present embodiment, the gradient can be optimized by forming the high concentration impurity layer 3b by performing ion implantation with different dose amount and implantation energy a plurality of times.

以下、図1に示す固体撮像素子の製造方法を説明する。p層3を形成するまでの製造工程は従来と同様である。p層3の形成工程は、低濃度不純物層3aを形成する低濃度不純物層3a形成工程と、高濃度不純物層3bを形成する高濃度不純物層3b形成工程とを含む。低濃度不純物層3a形成工程と高濃度不純物層3b形成工程では、所定のマスクを用いてボロンを用いたイオン注入を行った後、900℃〜1000℃の熱処理を行うことにより、p層3を形成する。又、p層3の形成工程では、低濃度不純物層3aを形成した後、低濃度不純物層3aの表面部で且つ平面視において低濃度不純物層3aの内側の領域にイオン注入を行って高濃度不純物層3bを形成する。   Hereinafter, a method for manufacturing the solid-state imaging device shown in FIG. 1 will be described. The manufacturing process until the p-layer 3 is formed is the same as the conventional process. The formation process of the p layer 3 includes a low concentration impurity layer 3a formation process for forming the low concentration impurity layer 3a and a high concentration impurity layer 3b formation process for forming the high concentration impurity layer 3b. In the low-concentration impurity layer 3a forming step and the high-concentration impurity layer 3b forming step, ion implantation using boron is performed using a predetermined mask, and then heat treatment is performed at 900 ° C. to 1000 ° C. Form. In the step of forming the p layer 3, after the low concentration impurity layer 3a is formed, ion implantation is performed on the surface portion of the low concentration impurity layer 3a and in the region inside the low concentration impurity layer 3a in plan view. Impurity layer 3b is formed.

まず、低濃度不純物層3a形成工程では、所定のマスクを用いて、低濃度不純物層3aの不純物濃度が、電荷読み出し領域6及び素子分離層7の不純物濃度よりも低くなる条件で、例えば、ドーズ量:3×1012/cm,注入エネルギ:20keVの条件によるイオン注入を行って低濃度不純物層3aを形成する。その後、高濃度不純物層3b形成工程へと移る。高濃度不純物層3b形成工程では、ドーズ量:7×1013/cm,注入エネルギ:7keVの条件による第一のイオン注入と、ドーズ量:3×1013/cm,注入エネルギ:10keVの条件による第二のイオン注入とを行うことで、高濃度不純物層3bを形成する。第一のイオン注入の条件は、第二のイオン注入よりもドーズ量が多く、注入エネルギが低い条件とする。第一のイオン注入及び第二のイオン注入は、低濃度不純物層3a形成工程で用いたマスクよりも小さいマスクを用いて、平面視での低濃度不純物層3aの形成された領域よりも内側の領域に対して行う。高濃度不純物層3b形成工程では、低濃度不純物層3aの端部から高濃度不純物層3bの端部までの長さLが0.1μm以上となるように領域を設定して、イオン注入を行うことが好ましい。 First, in the low concentration impurity layer 3a formation step, for example, a dose is used under the condition that the impurity concentration of the low concentration impurity layer 3a is lower than the impurity concentration of the charge readout region 6 and the element isolation layer 7 using a predetermined mask. The low concentration impurity layer 3a is formed by performing ion implantation under the conditions of an amount: 3 × 10 12 / cm 2 and an implantation energy: 20 keV. Thereafter, the process proceeds to the high concentration impurity layer 3b forming step. In the step of forming the high concentration impurity layer 3b, the first ion implantation under the condition of dose amount: 7 × 10 13 / cm 2 and implantation energy: 7 keV, dose amount: 3 × 10 13 / cm 2 , implantation energy: 10 keV The high concentration impurity layer 3b is formed by performing the second ion implantation under conditions. The conditions for the first ion implantation are such that the dose is larger than that of the second ion implantation and the implantation energy is low. The first ion implantation and the second ion implantation are performed using a mask smaller than the mask used in the low-concentration impurity layer 3a formation step, and inward of the region where the low-concentration impurity layer 3a is formed in plan view. To the region. In the high-concentration impurity layer 3b formation step, ion implantation is performed by setting a region so that the length L from the end of the low-concentration impurity layer 3a to the end of the high-concentration impurity layer 3b is 0.1 μm or more. It is preferable.

以上で説明したイオン注入の条件範囲は、ゲート絶縁膜10の膜厚が100nm〜150nmの範囲内で、低濃度不純物層3aの半導体基板1表面からの深さが200nmとなり、高濃度不純物層3bの半導体基板1表面からの深さが20nmとなるように、シミュレーション及び実験により最適化したものである。   The condition range of the ion implantation described above is that the thickness of the gate insulating film 10 is in the range of 100 nm to 150 nm, the depth of the low concentration impurity layer 3a from the surface of the semiconductor substrate 1 is 200 nm, and the high concentration impurity layer 3b. This is optimized by simulation and experiment so that the depth from the surface of the semiconductor substrate 1 becomes 20 nm.

ドーズ量:1×1014/cm,注入エネルギ:7keVの条件による1回のイオン注入を行って高濃度不純物層3bを形成したときの、高濃度不純物層3bの基板1内深さ方向の不純物濃度は、図5の符号aで示す曲線のようになり、勾配が急になっていることが分かる。このような勾配では、浅い位置(0μm〜0.05μm)での勾配が急なため、スミアを抑制することはできるが、ブレークダウンや白キズを抑制することは難しい。又、ドーズ量:1×1014/cm,注入エネルギ:10keVの条件による1回のイオン注入を行って高濃度不純物層3bを形成したときの、高濃度不純物層3bの基板1内深さ方向の不純物濃度は、図5の符号bで示す曲線のようになり、勾配が緩やかになっていることが分かる。このような勾配では、ブレークダウンや白キズの心配は少ないが、浅い位置での勾配が緩やかすぎるため、スミアが発生してしまう。 When the high concentration impurity layer 3b is formed by performing one ion implantation under the conditions of a dose amount of 1 × 10 14 / cm 2 and an implantation energy of 7 keV, the high concentration impurity layer 3b in the depth direction in the substrate 1 is formed. It can be seen that the impurity concentration is as shown by the curve indicated by symbol a in FIG. With such a gradient, since the gradient at a shallow position (0 μm to 0.05 μm) is steep, it is possible to suppress smear, but it is difficult to suppress breakdown and white scratches. Further, the depth of the high concentration impurity layer 3b in the substrate 1 when the high concentration impurity layer 3b is formed by performing one ion implantation under the conditions of a dose amount of 1 × 10 14 / cm 2 and an implantation energy of 10 keV. It can be seen that the impurity concentration in the direction is as shown by a curve indicated by symbol b in FIG. With such a gradient, there is little concern about breakdown or white scratches, but since the gradient at a shallow position is too gentle, smear occurs.

図5の符号cで示す曲線は、第一のイオン注入後、第二のイオン注入を行って高濃度不純物層3bを形成したときの高濃度不純物層3bの基板1内深さ方向の不純物濃度である。符号cで示す曲線は、浅い位置での勾配が曲線aよりも緩く且つ曲線bよりも急になっており、深い位置での勾配が曲線bとほぼ同じになっている。このように、第一のイオン注入と第二のイオン注入の2回に分けることで、深い位置での勾配をあまり急にしないようにしながら、浅い位置での勾配を急にすることが可能となる。   The curve indicated by symbol c in FIG. 5 indicates the impurity concentration in the depth direction in the substrate 1 of the high concentration impurity layer 3b when the second ion implantation is performed after the first ion implantation to form the high concentration impurity layer 3b. It is. The curve indicated by reference symbol c has a shallower slope at a shallower position than the curve a and steeper than the curve b, and the slope at a deep position is substantially the same as the curve b. In this way, by dividing the first ion implantation and the second ion implantation into two times, it is possible to make the gradient at the shallow position steep while not making the gradient at the deep position so steep. Become.

以上のように、第一のイオン注入と第二のイオン注入を行って高濃度不純物層3bを形成することで、スミア、ブレークダウン、及び白キズの発生を抑制することが可能な固体撮像素子を製造することができる。   As described above, by performing the first ion implantation and the second ion implantation to form the high-concentration impurity layer 3b, a solid-state imaging device capable of suppressing the occurrence of smear, breakdown, and white scratches. Can be manufactured.

尚、第一のイオン注入と第二のイオン注入は逆順で行っても良いが、上述したように、第一のイオン注入を先に行うことが好ましい。不純物濃度のピークを浅い位置に形成してから、そのピーク位置を深い方向に移動させる調整を行う方が、ピーク位置の調整が容易であるからである。   The first ion implantation and the second ion implantation may be performed in reverse order, but as described above, it is preferable to perform the first ion implantation first. This is because it is easier to adjust the peak position when the peak of the impurity concentration is formed at a shallow position and then the adjustment is performed by moving the peak position in the deep direction.

又、以上の説明では、低濃度不純物層3aが高濃度不純物層3bを囲う構成としたが、特許文献1記載のように、単純に、高濃度不純物層3bの下に低濃度不純物層3aが形成された2層構造であっても、上述した効果を得ることができる。低濃度不純物層3aが高濃度不純物層3bを囲う構成にすると、特許文献1記載の構成に比べて、高濃度不純物層3bの基板1内深さ方向の不純物濃度の勾配の調整がより困難となる。このため、上述した方法によって高濃度不純物層3bを形成することが効果的である。   In the above description, the low-concentration impurity layer 3a surrounds the high-concentration impurity layer 3b. However, as described in Patent Document 1, the low-concentration impurity layer 3a is simply formed under the high-concentration impurity layer 3b. Even with the formed two-layer structure, the above-described effects can be obtained. When the low-concentration impurity layer 3a surrounds the high-concentration impurity layer 3b, it is more difficult to adjust the impurity concentration gradient in the depth direction in the substrate 1 of the high-concentration impurity layer 3b than the configuration described in Patent Document 1. Become. For this reason, it is effective to form the high concentration impurity layer 3b by the method described above.

又、以上の説明では、高濃度不純物層3bを、ドーズ量と注入エネルギの異なる2回のイオン注入によって形成するものとしたが、ドーズ量と注入エネルギの異なる3回以上のイオン注入によって高濃度不純物層3bを形成しても良い。このようにすることで、高濃度不純物層3bの不純物濃度勾配の調整をより細かく行うことができる。   In the above description, the high-concentration impurity layer 3b is formed by two ion implantations having different dose amounts and implantation energies. However, the high concentration impurity layer 3b is formed by three or more ion implantations having different dose amounts and implantation energies. The impurity layer 3b may be formed. By doing in this way, adjustment of the impurity concentration gradient of the high concentration impurity layer 3b can be performed more finely.

又、以上の説明において、n層2は特許請求の範囲の第一の不純物層に相当し、p層3は特許請求の範囲の第二の不純物層に相当する。   In the above description, the n layer 2 corresponds to the first impurity layer in the claims, and the p layer 3 corresponds to the second impurity layer in the claims.

本発明の実施形態を説明するための固体撮像素子の断面模式図Schematic cross-sectional view of a solid-state imaging device for explaining an embodiment of the present invention 図1に示す固体撮像素子の半導体基板上方の部材を取り去った状態の平面模式図FIG. 1 is a schematic plan view showing a state where a member above a semiconductor substrate of the solid-state imaging device shown in FIG. 図2に示した低濃度不純物層の端部から高濃度不純物層の端部までの長さLと、隣接垂直CCDと高濃度不純物層間のリーク電流との関係を示すシミュレーション結果を示す図The figure which shows the simulation result which shows the relationship between the length L from the edge part of the low concentration impurity layer shown in FIG. 2 to the edge part of a high concentration impurity layer, and the leakage current between adjacent vertical CCD and a high concentration impurity layer 図2に示した低濃度不純物層の端部から高濃度不純物層の端部までの長さLと、電荷読み出し領域に印加する読み出し電圧との関係を示すシミュレーション結果を示す図The figure which shows the simulation result which shows the relationship between the length L from the edge part of the low concentration impurity layer shown in FIG. 2 to the edge part of a high concentration impurity layer, and the read-out voltage applied to a charge read-out area | region イオン注入条件と不純物濃度曲線との関係を示す図Diagram showing the relationship between ion implantation conditions and impurity concentration curve

符号の説明Explanation of symbols

1 半導体基板
2 n層
3 p層
3a 低濃度不純物層
3b 高濃度不純物層
5 垂直CCD
6 電荷読み出し領域
7 素子分離層
8 電極
9 遮光膜
10 ゲート絶縁膜
1 Semiconductor substrate 2 n layer 3 p layer 3a low concentration impurity layer 3b high concentration impurity layer 5 vertical CCD
6 charge readout region 7 element isolation layer 8 electrode 9 light shielding film 10 gate insulating film

Claims (7)

CCD型の固体撮像素子の製造方法であって、
前記固体撮像素子は、CCDに読み出される電荷を蓄積する第一の導電型の不純物からなる第一の不純物層と、前記第一の不純物層上に形成された前記第一の導電型とは反対の第二の導電型の不純物からなる第二の不純物層とを含む光電変換素子を有し、
前記第二の不純物層は、不純物濃度が相対的に低い低濃度不純物層と、前記低濃度不純物層の表面部に形成された不純物濃度が相対的に高い高濃度不純物層との2層構造であり、
前記高濃度不純物層の形成工程では、ドーズ量と注入エネルギの異なるイオン注入を複数回行って前記高濃度不純物層を形成する固体撮像素子の製造方法。
A manufacturing method of a CCD type solid-state imaging device,
The solid-state imaging device has a first impurity layer made of an impurity of a first conductivity type that accumulates charges read out to the CCD, and is opposite to the first conductivity type formed on the first impurity layer. And a second impurity layer made of impurities of the second conductivity type,
The second impurity layer has a two-layer structure of a low-concentration impurity layer having a relatively low impurity concentration and a high-concentration impurity layer formed on the surface portion of the low-concentration impurity layer. Yes,
In the step of forming the high concentration impurity layer, a method of manufacturing a solid-state imaging device, wherein the high concentration impurity layer is formed by performing ion implantation with different dose amount and implantation energy a plurality of times.
請求項1記載の固体撮像素子の製造方法であって、
前記高濃度不純物層の形成工程では、ドーズ量が相対的に多く注入エネルギが相対的に低い第一のイオン注入と、ドーズ量が相対的に少なく注入エネルギが相対的に高い第二のイオン注入との2回のイオン注入を行って前記高濃度不純物層を形成する固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1,
In the step of forming the high-concentration impurity layer, a first ion implantation having a relatively large dose and a relatively low implantation energy and a second ion implantation having a relatively small dose and a relatively high implantation energy. The solid-state imaging device manufacturing method of forming the high-concentration impurity layer by performing ion implantation twice.
請求項2記載の固体撮像素子の製造方法であって、
前記高濃度不純物層の形成工程では、前記第一のイオン注入を行ってから、前記第二のイオン注入を行う固体撮像素子の製造方法。
A method for producing a solid-state imaging device according to claim 2,
In the step of forming the high-concentration impurity layer, a method of manufacturing a solid-state imaging device in which the second ion implantation is performed after the first ion implantation is performed.
請求項1〜3のいずれか記載の固体撮像素子の製造方法であって、
前記高濃度不純物層の形成工程では、前記高濃度不純物層を、その受光面以外が前記低濃度不純物層によって囲まれるように形成する固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to any one of claims 1 to 3,
In the high concentration impurity layer forming step, the high concentration impurity layer is formed such that the portion other than the light receiving surface is surrounded by the low concentration impurity layer.
請求項4記載の固体撮像素子の製造方法であって、
前記固体撮像素子が、前記第一の不純物層に蓄積された電荷を前記CCDに読み出すための電荷読み出し領域と、前記電荷読み出し領域を除く前記光電変換素子の周囲に形成された前記第二の導電型からなる素子分離層とを備え、
前記低濃度不純物層の形成工程では、前記低濃度不純物層の不純物濃度が前記素子分離層の不純物濃度よりも低くなるように、前記低濃度不純物層を形成する固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 4,
The solid-state imaging device has a charge readout region for reading out the charges accumulated in the first impurity layer to the CCD, and the second conductive formed around the photoelectric conversion element excluding the charge readout region. An element isolation layer made of a mold,
A method of manufacturing a solid-state imaging device, wherein the low concentration impurity layer is formed in the low concentration impurity layer forming step so that an impurity concentration of the low concentration impurity layer is lower than an impurity concentration of the element isolation layer.
請求項4又は5記載の固体撮像素子の製造方法であって、
前記高濃度不純物層の形成工程では、前記低濃度不純物層の端部から前記高濃度不純物層の端部までの長さが0.1μm以上となるように前記高濃度不純物層を形成する固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 4 or 5,
In the step of forming the high-concentration impurity layer, the solid-state imaging in which the high-concentration impurity layer is formed so that the length from the end portion of the low-concentration impurity layer to the end portion of the high-concentration impurity layer is 0.1 μm or more. Device manufacturing method.
請求項1〜6のいずれか記載の製造方法によって製造された固体撮像素子。   A solid-state imaging device manufactured by the manufacturing method according to claim 1.
JP2006016532A 2006-01-25 2006-01-25 Solid-state image pickup element and manufacturing method thereof Withdrawn JP2007201087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016532A JP2007201087A (en) 2006-01-25 2006-01-25 Solid-state image pickup element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016532A JP2007201087A (en) 2006-01-25 2006-01-25 Solid-state image pickup element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007201087A true JP2007201087A (en) 2007-08-09

Family

ID=38455378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016532A Withdrawn JP2007201087A (en) 2006-01-25 2006-01-25 Solid-state image pickup element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007201087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007108A1 (en) * 2012-07-03 2014-01-09 ソニー株式会社 Solid state imaging element, solid state imaging device, and camera device
WO2014185643A1 (en) * 2013-05-13 2014-11-20 주식회사 레이언스 Image sensor using photodiode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168077A (en) * 1997-08-19 1999-03-09 Toshiba Corp Solid-state image-pickup device and manufacture thereof
JP2001057421A (en) * 1999-06-08 2001-02-27 Fuji Film Microdevices Co Ltd Solid state image sensor
JP2005197682A (en) * 2003-12-31 2005-07-21 Dongbuanam Semiconductor Inc Cmos image sensor and its fabrication process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168077A (en) * 1997-08-19 1999-03-09 Toshiba Corp Solid-state image-pickup device and manufacture thereof
JP2001057421A (en) * 1999-06-08 2001-02-27 Fuji Film Microdevices Co Ltd Solid state image sensor
JP2005197682A (en) * 2003-12-31 2005-07-21 Dongbuanam Semiconductor Inc Cmos image sensor and its fabrication process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007108A1 (en) * 2012-07-03 2014-01-09 ソニー株式会社 Solid state imaging element, solid state imaging device, and camera device
CN104488083A (en) * 2012-07-03 2015-04-01 索尼公司 Solid state imaging element, solid state imaging device, and camera device
TWI506777B (en) * 2012-07-03 2015-11-01 Sony Corp A solid-state imaging device, a solid-state imaging device, and a camera device
US9247166B2 (en) 2012-07-03 2016-01-26 Sony Corporation Solid-state image sensor, solid-state imaging device, and camera device
JPWO2014007108A1 (en) * 2012-07-03 2016-06-02 ソニー株式会社 Solid-state imaging device, solid-state imaging device, and camera device
WO2014185643A1 (en) * 2013-05-13 2014-11-20 주식회사 레이언스 Image sensor using photodiode

Similar Documents

Publication Publication Date Title
US7329557B2 (en) Method of manufacturing solid-state imaging device with P-type diffusion layers
US7217961B2 (en) Solid-state image pickup device and method for producing the same
JP5100988B2 (en) Image sensor and manufacturing method thereof
KR20050058977A (en) Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
JP2010192483A (en) Solid-state image sensor and method of manufacturing the same
JP2007053217A (en) Solid-state imaging device
JP4649390B2 (en) Manufacturing method of back-illuminated image sensor
JP5458135B2 (en) Manufacturing method of solid-state imaging device
JP2008153566A (en) Solid-state imaging apparatus, and method of manufacturing the same
US9899444B2 (en) Solid-state image capturing device and manufacturing method for the same
WO2014002365A1 (en) Solid-state image pickup apparatus and method for manufacturing same
US20070004076A1 (en) CMOS image sensor including two types of device isolation regions and method of fabricating the same
JP2011108839A (en) Solid-state imaging device, manufacturing method thereof, and camera
JP4587187B2 (en) CMOS photoelectric conversion device and imaging system
JP2007201088A (en) Solid-state image pickup element
JP2007201087A (en) Solid-state image pickup element and manufacturing method thereof
JP2008294479A (en) Solid-state imaging apparatus
JP2011258613A (en) Solid-state imaging device and method for manufacturing the same
JP2010287610A (en) Solid state imaging device, and method of manufacturing the same
JP2003318383A (en) Solid-state image sensor and method for manufacturing the same
JP2007234874A (en) Method of manufacturing solid-state imaging apparatus
KR100644523B1 (en) Method for fabricating image sensor with decreased dark signal
JP2004172229A (en) Solid-state imaging device and its manufacturing method
JP2007115872A (en) Solid-state imaging apparatus and manufacturing method thereof
JP2006303026A (en) Solid-state imaging apparatus and its fabrication process

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606