JP2004172229A - Solid-state imaging device and its manufacturing method - Google Patents

Solid-state imaging device and its manufacturing method Download PDF

Info

Publication number
JP2004172229A
JP2004172229A JP2002334085A JP2002334085A JP2004172229A JP 2004172229 A JP2004172229 A JP 2004172229A JP 2002334085 A JP2002334085 A JP 2002334085A JP 2002334085 A JP2002334085 A JP 2002334085A JP 2004172229 A JP2004172229 A JP 2004172229A
Authority
JP
Japan
Prior art keywords
region
gate insulating
insulating film
type impurity
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334085A
Other languages
Japanese (ja)
Inventor
Atsushi Kuroiwa
淳 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002334085A priority Critical patent/JP2004172229A/en
Publication of JP2004172229A publication Critical patent/JP2004172229A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To lower the voltage VT for reading electric charges without further developing white blemish and degrading such characteristics as a blooming margin. <P>SOLUTION: Prior to implantation of n-type impurity ions for forming an electric charge accumulation region of a photo diode (photoelectric conversion section), a gate insulation film is made thin and is formed with steps along both sides of a photo detection region of the photo diode. On both sides of the photo detection region, thick film portions are formed which are formed thicker than the other parts to attenuate ion implantation energy. By implanting n-type impurity ions under this condition, both side portions of an N layer which will become the electric charge accumulation region can be formed at a shallow position of a semiconductor substrate than the other portions due to the existence of the thick film portions of the gate insulation film. Consequently, the doping concentration of a P layer in the front surface of the substrate can be lowered near an electric charge reading section without damaging the whole structure, resulting in facilitating the read-out of electric charges. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、CCD型イメージセンサやCMOS型イメージセンサ等の各種の固体撮像素子及びその製造方法に関する。
【0002】
【従来の技術】
従来より、この種の固体撮像素子として、例えば図12に示すような構造のものが知られている。
この固体撮像素子は、CCD型イメージセンサの例であり、半導体基板10の上層領域に、フォトダイオード(光電変換部)20、電荷読み出し部30、垂直電荷転送部40、チャネルストップ部50が設けられている。
また、半導体基板10の上面には、ゲート絶縁膜60を介して垂直転送電極70が設けられ、その上層に層間絶縁膜80を介して遮光膜90が設けられている。
【0003】
フォトダイオード(光電変換部)20は、上層の正孔蓄積領域(P+層)22と下層の電荷蓄積領域(N層)24とを含んで構成され、正孔蓄積領域(P+層)22は入射光によって電子と分離された正孔を半導体基板10の表面側に吸収する機能を有し、電荷蓄積領域(N層)24は電子を下層の空乏層に蓄積する機能を有する。
これら正孔蓄積領域(P+層)22と電荷蓄積領域(N層)24は、それぞれ基板上からのイオン注入によってP型不純物イオンまたはN型不純物イオンを添加されることにより形成される。
【0004】
電荷読み出し部(P層)30は、フォトダイオード20の電荷蓄積領域24に蓄積された信号電荷をP−層32を介して読み出すものである。なお、P−層32は、イオン注入後の活性化アニール処理によって電荷読み出し部30のP層中に電荷蓄積領域24のN型不純物が横方向に拡散することにより形成されたものである。
垂直電荷転送部40は、上層のN層42と下層のP層44よりなり、電荷読み出し部(P層)30によって読み出した信号電荷を垂直方向(図12の紙面方向)に転送するものである。
チャネルストップ部(P層)50は、フォトダイオード20と隣接画素の垂直電荷転送部40との間を分離するものである。
【0005】
また、ゲート絶縁膜60は、例えば窒化珪素膜を上下の酸化珪素膜で挟んだMONOS構造よりなり、フォトダイオード20の受光領域に対応する部分が薄膜化され、下層の酸化珪素膜だけ残った状態となっている。
また、垂直転送電極70は、多結晶珪素膜よりなり、ゲート絶縁膜60を介して垂直電荷転送部40を駆動する。
また、層間絶縁膜80は、酸化珪素膜等であり、垂直転送電極70からフォトダイオード20の受光領域にわたる全体領域に配置されている。
さらに、遮光膜90は、アルミ等の膜であり、層間絶縁膜80の上面に沿って配置されるが、フォトダイオード20の受光領域に対応する開口部90Aを有し、この開口部90Aを通してフォトダイオード20の受光領域に光が入射され、垂直電荷転送部40への入射を遮光する。
【0006】
【発明が解決しようとする課題】
ところで、上述のような構造を有する固体撮像素子において、フォトダイオード20の電荷蓄積領域24に蓄積された電子を読み出すのに必要な電圧(以下、VTと略称する)は、消費電力の低減及び製造の歩留まり向上等の観点から低い方が望ましい。
そこで、このVTを下げるには、電荷読み出し部30のP層の不純物濃度を下げ、電荷読み出し部30のポテンシャルバリアを低くすれば良い。
しかし、一様にP層の不純物濃度を下げると、ブルーミングマージン(以下、VABと略称する)も同時に下がるデメリットがある。
【0007】
ここで、フォトダイオード20から垂直電荷転送部40に読み出す時の電荷の通り道は、ブルーミングが発生する時の電荷の通り道に比べて、半導体基板10の表面側にあると考えられる。
ゆえに、ブルーミングを発生させずに読み出し易くするには、電荷読み出し部30の基板表面近くのボロン(B)の濃度を下げれば良い。
例えば、フォトダイオード20の電荷蓄積領域(n層)24を形成するためのイオン注入の打ち込みエネルギを低くすると、その後の熱処理工程を経てN型不純物が横方向に拡散し、基板10の表面近くの電荷読み出し部30のP層の不純物濃度を下げることができる。
しかし、この方法は、フォトダイオード20の正孔蓄積領域(P+層)22との距離が縮まり、フォトダイオード20のP+層22とN層24との間の電界が強まるので、白傷と呼ばれる点欠陥が増加するデメリットがある。
【0008】
そこで本発明の目的は、白傷及びブルーミングマージンなどの特性を悪化させずに、電荷読み出し用の電圧VTを下げることができる固体撮像素子及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は前記目的を達成するため、半導体基板に受光量に応じた信号電荷を生成する光電変換部と、前記光電変換部で生成した信号電荷を読み出す読み出し部とを形成し、前記半導体基板上にゲート絶縁膜を含む上層膜を形成する固体撮像素子の製造方法であって、前記半導体基板上に形成したゲート絶縁膜に対し、前記光電変換部の受光領域に対応する薄膜部を形成する薄膜部形成工程と、前記ゲート絶縁膜の薄膜部を通して半導体基板中にイオン注入を行うことにより、前記光電変換部の第1導電型不純物領域を形成する第1導電型不純物領域形成工程と、前記ゲート絶縁膜の薄膜部を通して半導体基板中にイオン注入を行うことにより、前記第1導電型不純物領域の上層部に前記光電変換部の第2導電型不純物領域を形成する第2導電型不純物領域形成工程とを有し、前記薄膜部形成工程によってゲート絶縁膜に薄膜部を形成する際に、前記光電変換部の受光領域上のゲート絶縁膜のうち、少なくとも電荷読み出し部に近接する領域のゲート絶縁膜の膜厚を、前記受光領域の他の領域のゲート絶縁膜の膜厚よりも大きい膜厚に形成することを特徴とする。
【0010】
また本発明は、半導体基板に受光量に応じた信号電荷を生成する光電変換部と、前記光電変換部で生成した信号電荷を読み出す読み出し部とを有するとともに、前記光電変換部が半導体基板に形成された第1導電型不純物領域と、前記第1導電型不純物領域の上層に形成された第2導電型不純物領域とを有し、前記第1導電型不純物領域は、前記光電変換部の受光領域の少なくとも電荷読み出し部に近接する領域の不純物分布が、前記受光領域の他の領域の不純物分布より半導体基板の浅い位置に形成されていることを特徴とする。
【0011】
本発明の固体撮像素子の製造方法では、光電変換部の受光領域上のゲート絶縁膜のうち、少なくとも電荷読み出し部に近接する領域のゲート絶縁膜の膜厚を、受光領域の他の領域のゲート絶縁膜の膜厚よりも大きい膜厚に形成することにより、その後の第1導電型不純物領域形成工程において、電荷読み出し部の近傍では第1導電型不純物領域が基板表面近くに形成されることになる。したがって、活性化アニール時に第1導電型不純物は横方向に拡散し、従来構造より基板表面側の電荷読み出し部の第2導電型不純物濃度が減ることになり、電荷の読み出しが容易になる。
一方、光電変換部の中央部では、第1導電型不純物領域が深い位置に形成されるので、光電変換部表面の第2導電型不純物領域との距離が拡がるため、第1導電型と第2導電型の接合部の間の電界が弱まり、白傷が発生しにくくなる。
この結果、白傷及びブルーミングマージンなどの特性を悪化させずに、電荷読み出し用の電圧VTを下げることができる。
【0012】
また、本発明の固体撮像素子では、光電変換部の第1導電型不純物領域が電荷読み出し部に近接する領域で基板表面近くに形成されている。したがって、活性化アニール時に第1導電型不純物は横方向に拡散し、従来構造より基板表面側の電荷読み出し部の第2導電型不純物濃度が減ることになり、電荷の読み出しが容易になる。
一方、光電変換部の中央部では、第1導電型不純物領域が深い位置に形成されるので、光電変換部表面の第2導電型不純物領域との距離が拡がるため、第1導電型と第2導電型の接合部の間の電界が弱まり、白傷が発生しにくくなる。
この結果、白傷及びブルーミングマージンなどの特性を悪化させずに、電荷読み出し用の電圧VTを下げることができる。
【0013】
【発明の実施の形態】
以下、本発明による固体撮像素子及びその製造方法の実施の形態例について詳細に説明する。
図1〜図11は、本発明の実施の形態例による固体撮像素子の製造方法を用いた各工程における固体撮像素子の積層状態を示す断面図及び平面図である。なお、本実施の形態例では、N型が第1導電型に相当し、P型が第2導電型に相当している。
本実施の形態例による製造方法は、フォトダイオード(光電変換部)の電荷蓄積領域を形成するためのN型不純物イオンの注入作業に先立って、ゲート絶縁膜の薄膜化作業を行い、このゲート絶縁膜にフォトダイオードの受光領域の両側部に沿って段差を形成し、受光領域の両側部(すなわち、電荷読み出し部及びチャネルストップ部に近接する領域)にその他の部分よりも厚膜に形成されてイオン注入エネルギを減衰させる厚膜部を設けておく。
そして、この状態で、N型不純物イオンの注入作業を行うことにより、ゲート絶縁膜の厚膜部によって電荷蓄積領域となるN層の両側部をその他の部分に比して半導体基板の浅い位置に形成する。
【0014】
このような方法を用いることにより、電荷読み出し部の近傍ではゲート絶縁膜が厚い分、N層が基板表面近くに形成されることになる。したがって、活性化アニール時にN型不純物は横方向に拡散し、従来構造より基板表面側の読み出し部のP層濃度が減ることになり、電荷の読み出しが容易になる。
一方、フォトダイオードの中央部のゲート絶縁膜が薄い領域では、N層が深い位置に形成されるので、フォトダイオード表面のP+層との距離が拡がるため、P−N接合間の電界が弱まり、白傷が発生しにくくなる。
また、チャネルストップ部側のゲート絶縁膜を厚くしておくことにより、基板の表面近傍で光電変換した電子が電荷転送部へ入り込む成分(スミア)を減らすことができる。
【0015】
具体的には、受光領域の両側部とその他の部分とでゲート絶縁膜につける段差は、20nmから100nm程度とし、N型不純物イオンの注入は、0.4から1.5MeVのエネルギで、1e12cm−2から5e12cm−2の濃度でイオン注入を行うことにより、白傷やブルーミングマージンなどの特性を悪化させずに、電荷読み出し用の電圧VTを有効に下げることが可能となる。
【0016】
以下、図1〜図11に沿って本例の製造方法を具体的に説明する。
まず、図1は、半導体基板の上面にゲート絶縁膜を形成する工程を示している。この時点で、半導体基板(シリコン基板)110には、既に電荷読み出し部(P層)130、垂直電荷転送部(N層142及びP層144)140、チャネルストップ部(P層)150が設けられているものとする。そして、この半導体基板110上にゲート絶縁膜160を形成する。
本例のゲート絶縁膜160は、図12に示した従来例と同様に、窒化珪素膜を上下の酸化珪素膜で挟んだMONOS構造を有している。なお、ゲート絶縁膜160の作成は、最初に半導体基板110上に熱酸化または減圧CVD等によって下層の酸化珪素膜を形成し、次に、その上に減圧CVD等によって窒化珪素膜を形成し、さらにその上に熱酸化または減圧CVD等によって下層の酸化珪素膜を形成するものとする。
そして、上層の酸化珪素膜と中層の窒化珪素膜を順次エッチングによって除去していくことにより、上述した両側部とその他の部分の間の段差(両側部の厚膜部)の形成、及び、両側部に残した厚膜部の除去を行うようになっている。
【0017】
次に、図2は、ゲート絶縁膜160に段差を形成するためのエッチングマスク用のフォトレジスト膜170をパターニングし、ゲート絶縁膜160の上層の酸化珪素膜をエッチングによって除去する工程を示している。
フォトレジスト膜170は、フォトダイオードの受光領域(図6以降に示す)の中央部だけを開口し、受光領域の両側部をマスクした状態で形成されている。そして、このフォトレジスト膜170をマスクとしてウエットエッチングまたはドライエッチングを行うことにより、ゲート絶縁膜160の上層の酸化珪素膜を除去する。
【0018】
次に、図3では、図2で形成したフォトレジスト膜170をマスクとしてウエットエッチングまたはドライエッチングを行い、ゲート絶縁膜160の中層の窒化珪素膜を除去する。
このようなエッチングにより、ゲート絶縁膜160のにおける受光領域の中央部(両側部を除く部分)を薄膜化する。
この結果、受光領域の両側部だけ厚膜部162を残し、その他の部分では下層の酸化珪素膜よりなる薄膜部164を形成する。
【0019】
図4は、図3で実行したエッチング後におけるゲート絶縁膜160のパターンを受光領域及び転送電極のパターンとともに示す説明図である。なお、図3は図4のA−A’線の断面に対応している。
図中の細かい斜線で示す領域180Aが下層に配置される転送電極のパターンを示し、太枠で示す領域180Bが上層の転送電極のパターンを示している。
そして、これらの転送電極の間隙部分200Aがフォトダイオードの受光領域となる部分であり、中央の薄膜部164の両側にストライプ状に厚膜部162が形成されている。
【0020】
次に、図5では、図4で示したフォトレジスト膜170を除去した後、ゲート絶縁膜160上に垂直転送電極180を形成する。これは、例えばCVD(chemical vapor deposition )法などによって電極材をで成膜後、フォトレジスト法によって窓開けし、所望のパターンを形成する。そして、この垂直転送電極180の上にフォトレジスト膜190を形成する。
次に、図6では、N型不純物のイオン注入を行い、フォトダイオード200の電荷蓄積領域(N層)204を形成する。
この際、ゲート絶縁膜160の厚膜部162と薄膜部164の膜厚差により、厚膜部162を設けた領域の方がイオン注入エネルギを大きく減衰させることになり、電荷蓄積領域(N層)204の中央部のN型不純物領域204Aに比較して両側部のN型不純物領域204Bの方が半導体基板110の浅い位置に形成される。
【0021】
次に、図7では、ゲート絶縁膜160の厚膜部162をエッチングで除去し、薄膜部164の膜厚にそろえる。その後、図8では、P型不純物のイオン注入を行い、フォトダイオード200の正孔蓄積領域(P+層)202を形成する。
したがって、正孔蓄積領域(P+層)202は、均等な深さに形成される。この結果、半導体基板110の浅い位置に形成された電荷蓄積領域(N層)204のN型不純物領域204Bの上部領域と正孔蓄積領域(P+層)202の両側の下部領域とが重なり合う領域には低濃度のN−領域206が形成されることになる。
次に、図9では、全面に層間絶縁膜210を形成し、図10では、活性化アニール処理を行う。なお、この活性化アニール処理によって電荷読み出し部130のP層中に電荷蓄積領域204のN型不純物が横方向に拡散することにより、P−層132が形成される。
そして、図11では、遮光膜220の形成を行い、この後は図示しないが、遮光膜220の上層に、各種の絶縁膜や配線層を形成し、さらにその上層に平坦化を設け、オンチップカラーフィルタやオンチップレンズを配置してイメージセンサを完成する。
【0022】
以上のような方法により、電荷読み出し部130の近傍では、フォトダイオード200の電荷蓄積領域(N層)204が基板の表面近くに形成されることになるので、活性化アニール時にN型不純物は横方向に拡散し、従来構造より基板表面側の読み出し部130のP層濃度が減ることになり、電荷の読み出しが容易になる一方、フォトダイオード200の中央部では、電荷蓄積領域(N層)204が深い位置に形成されるので、正孔蓄積領域(P+層)202との距離が拡がるため、P−N接合間の電界が弱まり、白傷が発生しにくくなる。
また、チャネルストップ部150を厚くしておくことにより、基板の表面近傍で光電変換した電子が垂直電荷転送部140へ入り込む成分(スミア)を減らすことができる。
【0023】
なお、以上は本発明をCCDイメージセンサに適用した例を説明したが、本発明を適用する固体撮像素子としては、半導体基板に光電変換部と電荷読み出し部を設けたものであれば、CCDイメージセンサ以外の固体撮像素子にも適用することが可能である。
また、ゲート絶縁膜の膜種やイオン注入条件等、具体的な構成については、上記の例に限定されるものではなく、適宜変形が可能なものである。
【0024】
【発明の効果】
以上説明したように本発明の固体撮像素子の製造方法では、光電変換部の受光領域上のゲート絶縁膜のうち、少なくとも電荷読み出し部に近接する領域のゲート絶縁膜の膜厚を、受光領域の他の領域のゲート絶縁膜の膜厚よりも大きい膜厚に形成することにより、その後の第1導電型不純物領域形成工程において、電荷読み出し部の近傍では第1導電型不純物領域が基板表面近くに形成されることになる。
したがって、活性化アニール時に第1導電型不純物は横方向に拡散し、従来構造より基板表面側の電荷読み出し部の第2導電型不純物濃度が減ることになり、電荷の読み出しが容易になる一方、光電変換部の中央部では、第1導電型不純物領域が深い位置に形成されるので、光電変換部表面の第2導電型不純物領域との距離が拡がるため、第1導電型と第2導電型の接合部の間の電界が弱まり、白傷が発生しにくくなる。
この結果、白傷及びブルーミングマージンなどの特性を悪化させずに、電荷読み出し用の電圧VTを下げることができる。
【0025】
また、本発明の固体撮像素子では、光電変換部の第1導電型不純物領域が電荷読み出し部に近接する領域で基板表面近くに形成されている。
したがって、活性化アニール時に第1導電型不純物は横方向に拡散し、従来構造より基板表面側の電荷読み出し部の第2導電型不純物濃度が減ることになり、電荷の読み出しが容易になる一方、光電変換部の中央部では、第1導電型不純物領域が深い位置に形成されるので、光電変換部表面の第2導電型不純物領域との距離が拡がるため、第1導電型と第2導電型の接合部の間の電界が弱まり、白傷が発生しにくくなる。
この結果、白傷及びブルーミングマージンなどの特性を悪化させずに、電荷読み出し用の電圧VTを下げることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図2】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図3】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図4】本発明の実施の形態例による固体撮像素子の製造方法を示す平面図である。
【図5】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図6】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図7】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図8】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図9】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図10】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図11】本発明の実施の形態例による固体撮像素子の製造方法を示す断面図である。
【図12】従来の固体撮像素子の製造方法を示す断面図である。
【符号の説明】
110……半導体基板、130……電荷読み出し部、140……垂直電荷転送部、143……N層、144……P層、150……チャネルストップ部、160……ゲート絶縁膜、162……厚膜部、164……薄膜部、170、190……フォトレジスト膜、180……垂直転送電極、200……フォトダイオード、202……正孔蓄積領域(P+層)、204……電荷蓄積領域(N層)、206……N−領域、210……層間絶縁膜、220……遮光膜。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to various solid-state imaging devices such as a CCD image sensor and a CMOS image sensor and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, as this type of solid-state imaging device, for example, one having a structure as shown in FIG. 12 is known.
This solid-state imaging device is an example of a CCD type image sensor. A photodiode (photoelectric conversion unit) 20, a charge readout unit 30, a vertical charge transfer unit 40, and a channel stop unit 50 are provided in an upper layer region of a semiconductor substrate 10. ing.
A vertical transfer electrode 70 is provided on the upper surface of the semiconductor substrate 10 with a gate insulating film 60 interposed therebetween, and a light-shielding film 90 is provided thereon with an interlayer insulating film 80 interposed therebetween.
[0003]
The photodiode (photoelectric conversion unit) 20 includes an upper hole accumulation region (P + layer) 22 and a lower charge accumulation region (N layer) 24, and the hole accumulation region (P + layer) 22 is incident. It has a function of absorbing holes separated from electrons by light on the surface side of the semiconductor substrate 10, and the charge storage region (N layer) 24 has a function of storing electrons in a lower depletion layer.
The hole accumulation region (P + layer) 22 and the charge accumulation region (N layer) 24 are formed by adding P-type impurity ions or N-type impurity ions by ion implantation from above the substrate, respectively.
[0004]
The charge readout section (P layer) 30 reads out the signal charges stored in the charge storage region 24 of the photodiode 20 via the P− layer 32. Note that the P − layer 32 is formed by the N-type impurity of the charge storage region 24 being diffused in the P layer of the charge readout unit 30 in the lateral direction by the activation annealing process after the ion implantation.
The vertical charge transfer section 40 includes an upper N layer 42 and a lower P layer 44, and transfers the signal charges read by the charge read section (P layer) 30 in the vertical direction (the direction of the paper surface of FIG. 12). .
The channel stop section (P layer) 50 separates the photodiode 20 from the vertical charge transfer section 40 of an adjacent pixel.
[0005]
The gate insulating film 60 has, for example, a MONOS structure in which a silicon nitride film is sandwiched between upper and lower silicon oxide films, and a portion corresponding to a light receiving region of the photodiode 20 is thinned, leaving only a lower silicon oxide film. It has become.
The vertical transfer electrode 70 is made of a polycrystalline silicon film, and drives the vertical charge transfer unit 40 via the gate insulating film 60.
The interlayer insulating film 80 is a silicon oxide film or the like, and is disposed in the entire region from the vertical transfer electrode 70 to the light receiving region of the photodiode 20.
Further, the light-shielding film 90 is a film made of aluminum or the like, and is disposed along the upper surface of the interlayer insulating film 80. The light-shielding film 90 has an opening 90A corresponding to the light receiving region of the photodiode 20. Light is incident on the light receiving region of the diode 20 and blocks incident light on the vertical charge transfer unit 40.
[0006]
[Problems to be solved by the invention]
By the way, in the solid-state imaging device having the above-described structure, the voltage (hereinafter abbreviated as VT) required to read out the electrons stored in the charge storage region 24 of the photodiode 20 is reduced in power consumption and manufacturing. The lower the better, from the viewpoint of improving the yield.
Therefore, in order to lower the VT, the impurity concentration of the P layer of the charge reading unit 30 may be reduced, and the potential barrier of the charge reading unit 30 may be reduced.
However, if the impurity concentration of the P layer is uniformly reduced, there is a disadvantage that the blooming margin (hereinafter, abbreviated as VAB) also decreases.
[0007]
Here, it is considered that the path of the charge when reading from the photodiode 20 to the vertical charge transfer unit 40 is on the surface side of the semiconductor substrate 10 as compared with the path of the charge when blooming occurs.
Therefore, in order to facilitate reading without causing blooming, the concentration of boron (B) near the substrate surface of the charge reading unit 30 may be reduced.
For example, if the implantation energy of the ion implantation for forming the charge storage region (n layer) 24 of the photodiode 20 is reduced, the N-type impurity diffuses laterally through a subsequent heat treatment step, and the vicinity of the surface of the substrate 10 is reduced. The impurity concentration of the P layer of the charge reading section 30 can be reduced.
However, in this method, the distance between the hole accumulation region (P + layer) 22 of the photodiode 20 is reduced, and the electric field between the P + layer 22 and the N layer 24 of the photodiode 20 is increased. There is a disadvantage that defects increase.
[0008]
Accordingly, an object of the present invention is to provide a solid-state imaging device capable of lowering the voltage VT for charge reading without deteriorating characteristics such as white flaws and blooming margin, and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention forms, on a semiconductor substrate, a photoelectric conversion unit that generates a signal charge according to an amount of received light, and a reading unit that reads out the signal charge generated by the photoelectric conversion unit. A method for manufacturing a solid-state imaging device, wherein an upper layer film including a gate insulating film is formed on the semiconductor substrate, wherein a thin film portion corresponding to a light receiving region of the photoelectric conversion unit is formed on the gate insulating film formed on the semiconductor substrate. Forming a first conductivity type impurity region of the photoelectric conversion portion by performing ion implantation into a semiconductor substrate through a thin film portion of the gate insulating film; Ion implantation into the semiconductor substrate through the thin film portion of the insulating film to form a second conductivity type impurity region of the photoelectric conversion unit in an upper layer portion of the first conductivity type impurity region; An impurity region forming step, wherein when the thin film portion is formed in the gate insulating film by the thin film portion forming step, at least a region of the gate insulating film on the light receiving region of the photoelectric conversion portion which is close to the charge readout portion The thickness of the gate insulating film is formed to be larger than the thickness of the gate insulating film in the other region of the light receiving region.
[0010]
In addition, the present invention includes a photoelectric conversion unit that generates a signal charge according to an amount of received light on a semiconductor substrate, and a reading unit that reads out the signal charge generated by the photoelectric conversion unit, and the photoelectric conversion unit is formed on the semiconductor substrate. A first conductivity type impurity region, and a second conductivity type impurity region formed above the first conductivity type impurity region, wherein the first conductivity type impurity region is a light receiving region of the photoelectric conversion unit. Wherein the impurity distribution in at least the region near the charge readout portion is formed at a position shallower in the semiconductor substrate than the impurity distribution in other regions of the light receiving region.
[0011]
In the method for manufacturing a solid-state imaging device according to the present invention, in the gate insulating film on the light receiving region of the photoelectric conversion unit, at least the thickness of the gate insulating film in the region close to the charge readout unit is changed to the gate of the other region of the light receiving region. By forming the first conductive type impurity region to a thickness larger than the thickness of the insulating film, in the subsequent first conductive type impurity region forming step, the first conductive type impurity region is formed near the substrate surface near the charge readout portion. Become. Therefore, the first conductivity type impurity diffuses in the lateral direction during the activation annealing, and the concentration of the second conductivity type impurity in the charge readout portion on the substrate surface side is lower than in the conventional structure, so that the charge readout becomes easy.
On the other hand, since the first conductivity type impurity region is formed at a deep position at the center of the photoelectric conversion unit, the distance between the first conductivity type impurity region and the second conductivity type impurity region on the surface of the photoelectric conversion unit is increased. The electric field between the junctions of the conductivity type is weakened, and white scratches are less likely to occur.
As a result, the charge reading voltage VT can be reduced without deteriorating characteristics such as white scratches and blooming margin.
[0012]
In the solid-state imaging device according to the present invention, the first conductivity type impurity region of the photoelectric conversion unit is formed near the substrate surface in a region close to the charge readout unit. Therefore, the first conductivity type impurity diffuses in the lateral direction during the activation annealing, and the concentration of the second conductivity type impurity in the charge readout portion on the substrate surface side is lower than in the conventional structure, so that the charge readout becomes easy.
On the other hand, since the first conductivity type impurity region is formed at a deep position at the center of the photoelectric conversion unit, the distance between the first conductivity type impurity region and the second conductivity type impurity region on the surface of the photoelectric conversion unit is increased. The electric field between the junctions of the conductivity type is weakened, and white scratches are less likely to occur.
As a result, the charge reading voltage VT can be reduced without deteriorating characteristics such as white scratches and blooming margin.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a solid-state imaging device and a method for manufacturing the same according to the present invention will be described in detail.
1 to 11 are a cross-sectional view and a plan view illustrating a stacked state of a solid-state imaging device in each step using a method for manufacturing a solid-state imaging device according to an embodiment of the present invention. In this embodiment, the N-type corresponds to the first conductivity type, and the P-type corresponds to the second conductivity type.
In the manufacturing method according to the present embodiment, prior to the operation of implanting N-type impurity ions for forming the charge accumulation region of the photodiode (photoelectric conversion unit), the operation of thinning the gate insulating film is performed. A step is formed in the film along both sides of the light receiving region of the photodiode, and formed on both sides of the light receiving region (that is, a region near the charge readout portion and the channel stop portion) to be thicker than other portions. A thick film portion for attenuating ion implantation energy is provided.
In this state, by implanting N-type impurity ions, both sides of the N layer serving as a charge storage region due to the thick film portion of the gate insulating film are located at a shallower position of the semiconductor substrate than other portions. Form.
[0014]
By using such a method, the N layer is formed closer to the substrate surface because the gate insulating film is thicker near the charge readout portion. Therefore, at the time of activation annealing, the N-type impurity diffuses in the horizontal direction, and the P layer concentration in the reading portion on the substrate surface side is reduced as compared with the conventional structure, so that the charge can be easily read.
On the other hand, in a region where the gate insulating film at the center of the photodiode is thin, the N layer is formed at a deep position, so that the distance from the P + layer on the photodiode surface is increased, and the electric field between the PN junctions is weakened. White scratches are less likely to occur.
Further, by increasing the thickness of the gate insulating film on the channel stop portion side, it is possible to reduce a component (smear) in which electrons photoelectrically converted into the charge transfer portion near the surface of the substrate.
[0015]
Specifically, a step formed on the gate insulating film between both sides of the light receiving region and the other portion is set to about 20 nm to 100 nm, and N-type impurity ions are implanted at an energy of 0.4 to 1.5 MeV and 1 e. By performing ion implantation at a concentration of 12 cm −2 to 5e 12 cm −2 , the charge reading voltage VT can be effectively reduced without deteriorating characteristics such as white flaws and blooming margin.
[0016]
Hereinafter, the manufacturing method of this example will be specifically described with reference to FIGS.
First, FIG. 1 shows a step of forming a gate insulating film on an upper surface of a semiconductor substrate. At this point, the semiconductor substrate (silicon substrate) 110 is already provided with the charge readout unit (P layer) 130, the vertical charge transfer unit (N layer 142 and P layer 144) 140, and the channel stop unit (P layer) 150. It is assumed that Then, a gate insulating film 160 is formed on the semiconductor substrate 110.
The gate insulating film 160 of this example has a MONOS structure in which a silicon nitride film is sandwiched between upper and lower silicon oxide films, similarly to the conventional example shown in FIG. Note that the gate insulating film 160 is formed by first forming a lower silicon oxide film on the semiconductor substrate 110 by thermal oxidation or low-pressure CVD, and then forming a silicon nitride film thereon by low-pressure CVD or the like. Further, a lower silicon oxide film is formed thereon by thermal oxidation or low-pressure CVD.
Then, the upper silicon oxide film and the middle silicon nitride film are sequentially removed by etching to form a step between the both sides and the other part (thick film part on both sides), and The thick film portion left in the portion is removed.
[0017]
Next, FIG. 2 shows a step of patterning a photoresist film 170 for an etching mask for forming a step in the gate insulating film 160 and removing the silicon oxide film on the gate insulating film 160 by etching. .
The photoresist film 170 is formed in such a manner that only the central portion of the light receiving region (shown in FIG. 6 and thereafter) of the photodiode is opened, and both sides of the light receiving region are masked. Then, wet etching or dry etching is performed using the photoresist film 170 as a mask, whereby the silicon oxide film on the gate insulating film 160 is removed.
[0018]
Next, in FIG. 3, wet etching or dry etching is performed using the photoresist film 170 formed in FIG. 2 as a mask to remove the middle silicon nitride film of the gate insulating film 160.
By such etching, the central portion (the portion excluding both side portions) of the light receiving region in the gate insulating film 160 is thinned.
As a result, a thick film portion 162 is left only on both sides of the light receiving region, and a thin film portion 164 made of a lower silicon oxide film is formed in other portions.
[0019]
FIG. 4 is an explanatory diagram showing the pattern of the gate insulating film 160 after the etching performed in FIG. 3 together with the pattern of the light receiving region and the transfer electrode. FIG. 3 corresponds to a cross section taken along line AA ′ of FIG.
In the drawing, a region 180A indicated by a thin oblique line indicates a pattern of a transfer electrode arranged in a lower layer, and a region 180B indicated by a thick frame indicates a pattern of a transfer electrode in an upper layer.
The gap portion 200A between these transfer electrodes is a portion to be a light receiving region of the photodiode. Thick film portions 162 are formed in stripes on both sides of the central thin film portion 164.
[0020]
Next, in FIG. 5, after the photoresist film 170 shown in FIG. 4 is removed, a vertical transfer electrode 180 is formed on the gate insulating film 160. In this method, a desired pattern is formed by, for example, forming a film of an electrode material by a CVD (chemical vapor deposition) method or the like and then opening a window by a photoresist method. Then, a photoresist film 190 is formed on the vertical transfer electrode 180.
Next, in FIG. 6, N-type impurities are ion-implanted to form a charge storage region (N-layer) 204 of the photodiode 200.
At this time, due to the difference in film thickness between the thick film portion 162 and the thin film portion 164 of the gate insulating film 160, the ion implantation energy is attenuated more in the region where the thick film portion 162 is provided, and the charge storage region (N layer The N-type impurity region 204B on both sides is formed at a shallower position in the semiconductor substrate 110 than the N-type impurity region 204A at the center of the semiconductor substrate 110.
[0021]
Next, in FIG. 7, the thick film portion 162 of the gate insulating film 160 is removed by etching, and the thickness of the thin film portion 164 is made uniform. Thereafter, in FIG. 8, ion implantation of a P-type impurity is performed to form a hole accumulation region (P + layer) 202 of the photodiode 200.
Therefore, the hole accumulation region (P + layer) 202 is formed at a uniform depth. As a result, the upper region of the N-type impurity region 204B of the charge storage region (N layer) 204 formed at the shallow position of the semiconductor substrate 110 and the lower region on both sides of the hole storage region (P + layer) 202 overlap. Means that a low concentration N- region 206 is formed.
Next, in FIG. 9, an interlayer insulating film 210 is formed on the entire surface, and in FIG. 10, an activation annealing process is performed. The N-type impurity in the charge storage region 204 diffuses in the P layer of the charge readout unit 130 in the lateral direction by the activation annealing process, so that the P − layer 132 is formed.
In FIG. 11, a light-shielding film 220 is formed, and thereafter, although not shown, various insulating films and wiring layers are formed on the light-shielding film 220, and further flattening is provided on the upper layer to form an on-chip The color filter and on-chip lens are arranged to complete the image sensor.
[0022]
According to the above-described method, the charge accumulation region (N layer) 204 of the photodiode 200 is formed near the surface of the substrate near the charge readout unit 130. In the central portion of the photodiode 200, the charge accumulation region (N layer) 204 is provided in the central portion of the photodiode 200. Is formed at a deep position, so that the distance from the hole accumulation region (P + layer) 202 is increased, the electric field between the PN junctions is weakened, and white defects are less likely to occur.
In addition, by making the channel stop portion 150 thick, it is possible to reduce a component (smear) in which electrons photoelectrically converted near the surface of the substrate enter the vertical charge transfer portion 140.
[0023]
In the above, an example in which the present invention is applied to a CCD image sensor has been described. However, as a solid-state imaging device to which the present invention is applied, if a semiconductor substrate is provided with a photoelectric conversion unit and a charge readout unit, a CCD image sensor is used. It is also possible to apply to a solid-state imaging device other than the sensor.
Further, the specific configuration such as the type of the gate insulating film and the ion implantation conditions is not limited to the above example, but can be appropriately modified.
[0024]
【The invention's effect】
As described above, in the method for manufacturing a solid-state imaging device of the present invention, in the gate insulating film on the light receiving region of the photoelectric conversion unit, at least the film thickness of the gate insulating film in the region close to the charge readout unit is reduced. By forming the gate insulating film to a thickness larger than the thickness of the gate insulating film in the other region, in the subsequent first conductive type impurity region forming step, the first conductive type impurity region is located near the substrate surface near the charge readout portion. Will be formed.
Therefore, at the time of activation annealing, the first conductivity type impurity diffuses in the horizontal direction, and the second conductivity type impurity concentration in the charge readout portion on the substrate surface side is reduced as compared with the conventional structure. Since the first conductivity type impurity region is formed at a deep position in the center of the photoelectric conversion unit, the distance between the first conductivity type impurity region and the second conductivity type impurity region on the surface of the photoelectric conversion unit is increased. The electric field between the junctions is weakened, and white scratches hardly occur.
As a result, the charge reading voltage VT can be reduced without deteriorating characteristics such as white scratches and blooming margin.
[0025]
In the solid-state imaging device according to the present invention, the first conductivity type impurity region of the photoelectric conversion unit is formed near the substrate surface in a region close to the charge readout unit.
Therefore, at the time of activation annealing, the first conductivity type impurity diffuses in the horizontal direction, and the second conductivity type impurity concentration in the charge readout portion on the substrate surface side is reduced as compared with the conventional structure. Since the first conductivity type impurity region is formed at a deep position in the center of the photoelectric conversion unit, the distance between the first conductivity type impurity region and the second conductivity type impurity region on the surface of the photoelectric conversion unit is increased. The electric field between the junctions is weakened, and white scratches hardly occur.
As a result, the charge reading voltage VT can be reduced without deteriorating characteristics such as white scratches and blooming margin.
[Brief description of the drawings]
FIG. 1 is a sectional view illustrating a method for manufacturing a solid-state imaging device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a solid-state imaging device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating a method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 4 is a plan view illustrating the method for manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 5 is a cross-sectional view illustrating the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 6 is a sectional view showing the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 7 is a sectional view showing the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 8 is a cross-sectional view illustrating the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 9 is a sectional view illustrating the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 10 is a sectional view illustrating the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 11 is a sectional view illustrating the method of manufacturing the solid-state imaging device according to the embodiment of the present invention.
FIG. 12 is a cross-sectional view illustrating a method for manufacturing a conventional solid-state imaging device.
[Explanation of symbols]
110 semiconductor substrate, 130 charge readout unit, 140 vertical charge transfer unit, 143 N layer, 144 P layer, 150 channel stop unit, 160 gate insulating film, 162 Thick film portion, 164 thin film portion, 170, 190 photoresist film, 180 vertical transfer electrode, 200 photodiode, 202, hole accumulation region (P + layer), 204 charge accumulation region (N layer), 206... N-region, 210... Interlayer insulating film, 220.

Claims (8)

半導体基板に受光量に応じた信号電荷を生成する光電変換部と、前記光電変換部で生成した信号電荷を読み出す読み出し部とを形成し、前記半導体基板上にゲート絶縁膜を含む上層膜を形成する固体撮像素子の製造方法であって、
前記半導体基板上に形成したゲート絶縁膜に対し、前記光電変換部の受光領域に対応する薄膜部を形成する薄膜部形成工程と、
前記ゲート絶縁膜の薄膜部を通して半導体基板中にイオン注入を行うことにより、前記光電変換部の第1導電型不純物領域を形成する第1導電型不純物領域形成工程と、
前記ゲート絶縁膜の薄膜部を通して半導体基板中にイオン注入を行うことにより、前記第1導電型不純物領域の上層部に前記光電変換部の第2導電型不純物領域を形成する第2導電型不純物領域形成工程とを有し、
前記薄膜部形成工程によってゲート絶縁膜に薄膜部を形成する際に、前記光電変換部の受光領域上のゲート絶縁膜のうち、少なくとも電荷読み出し部に近接する領域のゲート絶縁膜の膜厚を、前記受光領域の他の領域のゲート絶縁膜の膜厚よりも大きい膜厚に形成する、
ことを特徴とする固体撮像素子の製造方法。
Forming a photoelectric conversion unit that generates signal charges according to the amount of received light on a semiconductor substrate, and a reading unit that reads out signal charges generated by the photoelectric conversion unit, and forming an upper layer film including a gate insulating film on the semiconductor substrate A method for manufacturing a solid-state imaging device,
For a gate insulating film formed on the semiconductor substrate, a thin film portion forming step of forming a thin film portion corresponding to a light receiving region of the photoelectric conversion portion,
A first conductivity type impurity region forming step of forming a first conductivity type impurity region of the photoelectric conversion portion by performing ion implantation into the semiconductor substrate through the thin film portion of the gate insulating film;
A second conductivity type impurity region forming a second conductivity type impurity region of the photoelectric conversion unit in an upper layer portion of the first conductivity type impurity region by performing ion implantation into a semiconductor substrate through a thin film portion of the gate insulating film; And a forming step,
When forming a thin film portion in the gate insulating film by the thin film portion forming step, of the gate insulating film on the light receiving region of the photoelectric conversion unit, at least the thickness of the gate insulating film in the region close to the charge readout unit, Forming a film thickness larger than the film thickness of the gate insulating film in the other region of the light receiving region;
A method for manufacturing a solid-state imaging device, comprising:
前記薄膜部形成工程は、前記光電変換部の受光領域上のゲート絶縁膜のうち、大きい膜厚に形成した部分を前記第1導電型不純物領域のイオン注入後に除去し、受光領域全体でゲート絶縁膜の膜厚をそろえる工程を含むことを特徴とする請求項1記載の固体撮像素子の製造方法。In the thin film portion forming step, a portion of the gate insulating film formed on the light receiving region of the photoelectric conversion portion having a large thickness is removed after ion implantation of the first conductivity type impurity region. 2. The method for manufacturing a solid-state imaging device according to claim 1, further comprising a step of adjusting the thickness of the film. 前記受光領域全体でゲート絶縁膜の膜厚をそろえた後に、前記第2導電型不純物領域形成工程のイオン注入を行うことを特徴とする請求項2記載の固体撮像素子の製造方法。3. The method according to claim 2, wherein the ion implantation in the second conductivity type impurity region forming step is performed after the thickness of the gate insulating film is uniformed in the entire light receiving region. 前記薄膜部形成工程によってゲート絶縁膜に薄膜部を形成する際に、前記光電変換部の受光領域上のゲート絶縁膜のうち、電荷読み出し部に近接する領域のゲート絶縁膜の膜厚とチャネルストップ部に近接する領域のゲート絶縁膜の膜厚を、前記受光領域の他の領域のゲート絶縁膜の膜厚よりも大きい膜厚に形成することを特徴とする請求項1記載の固体撮像素子の製造方法。When forming the thin film portion on the gate insulating film by the thin film portion forming step, the thickness of the gate insulating film in the region near the charge readout portion and the channel stop of the gate insulating film on the light receiving region of the photoelectric conversion portion 2. The solid-state imaging device according to claim 1, wherein the thickness of the gate insulating film in a region close to the portion is formed to be larger than the thickness of the gate insulating film in another region of the light receiving region. Production method. 前記ゲート絶縁膜は、膜種の異なる複数の膜による積層構造を有し、前記複数の膜の内の上層の膜をエッチングで除去することにより前記薄膜部を形成することを特徴とする請求項1記載の固体撮像素子の製造方法。The gate insulating film has a stacked structure of a plurality of films of different film types, and the thin film portion is formed by removing an upper layer film of the plurality of films by etching. 2. A method for manufacturing the solid-state imaging device according to 1. 前記ゲート絶縁膜は、窒化珪素膜を上下の酸化珪素膜で挟んだ構造を有することを特徴とする請求項5記載の固体撮像素子の製造方法。6. The method according to claim 5, wherein the gate insulating film has a structure in which a silicon nitride film is sandwiched between upper and lower silicon oxide films. 半導体基板に受光量に応じた信号電荷を生成する光電変換部と、前記光電変換部で生成した信号電荷を読み出す読み出し部とを有するとともに、前記光電変換部が半導体基板に形成された第1導電型不純物領域と、前記第1導電型不純物領域の上層に形成された第2導電型不純物領域とを有し、
前記第1導電型不純物領域は、前記光電変換部の受光領域の少なくとも電荷読み出し部に近接する領域の不純物分布が、前記受光領域の他の領域の不純物分布より半導体基板の浅い位置に形成されている、
ことを特徴とする固体撮像素子。
A photoelectric conversion unit that generates a signal charge according to the amount of light received on the semiconductor substrate; and a read unit that reads out the signal charge generated by the photoelectric conversion unit. A first conductivity type impurity region, and a second conductivity type impurity region formed above the first conductivity type impurity region,
In the first conductivity type impurity region, an impurity distribution of at least a region of the light receiving region of the photoelectric conversion unit close to the charge readout unit is formed at a shallower position of the semiconductor substrate than an impurity distribution of another region of the light receiving region. Yes,
A solid-state imaging device characterized by the above-mentioned.
前記第1導電型不純物領域は、前記光電変換部の受光領域の電荷読み出し部に近接する領域と前記光電変換部の受光領域のチャネルストップ部に近接する領域の不純物分布が、前記受光領域の他の部分の不純物分布より半導体基板の浅い位置に形成されていることを特徴とする請求項7記載の固体撮像素子。In the first conductivity type impurity region, an impurity distribution of a region of the light receiving region of the photoelectric conversion unit near the charge readout unit and an impurity distribution of a region of the light receiving region of the photoelectric conversion unit near the channel stop unit are different from those of the light receiving region. 8. The solid-state imaging device according to claim 7, wherein the solid-state imaging device is formed at a position shallower in the semiconductor substrate than the impurity distribution in the portion.
JP2002334085A 2002-11-18 2002-11-18 Solid-state imaging device and its manufacturing method Pending JP2004172229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334085A JP2004172229A (en) 2002-11-18 2002-11-18 Solid-state imaging device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334085A JP2004172229A (en) 2002-11-18 2002-11-18 Solid-state imaging device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004172229A true JP2004172229A (en) 2004-06-17

Family

ID=32698626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334085A Pending JP2004172229A (en) 2002-11-18 2002-11-18 Solid-state imaging device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004172229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728016A (en) * 2017-10-27 2019-05-07 佳能株式会社 Electrooptical device, its manufacturing method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728016A (en) * 2017-10-27 2019-05-07 佳能株式会社 Electrooptical device, its manufacturing method and apparatus
CN109728016B (en) * 2017-10-27 2023-03-17 佳能株式会社 Photoelectric conversion device, method and apparatus for manufacturing the same

Similar Documents

Publication Publication Date Title
US11276722B2 (en) Solid-state image sensor and method of manufacturing the same
US7304338B2 (en) Solid-state image sensor and method for fabricating the same
JP4051059B2 (en) CMOS image sensor and manufacturing method thereof
JP5100988B2 (en) Image sensor and manufacturing method thereof
US20100109060A1 (en) Image sensor with backside photodiode implant
US7005315B2 (en) Method and fabricating complementary metal-oxide semiconductor image sensor with reduced etch damage
JP2001345439A (en) Solid-state image sensing device and its manufacturing method
US20090236645A1 (en) Cmos image sensor and method for manufacturing the same
JP2005072236A (en) Semiconductor device and method for manufacturing same
KR20050109050A (en) Solid-state imaging device
JP5161475B2 (en) Method of manufacturing a CMOS image sensor for protecting a photodiode from plasma damage
JP2002190586A (en) Solid-state image pickup device and method of manufacturing the same
US6541329B1 (en) Method for making an active pixel sensor
US20090166687A1 (en) Image Sensor and Method for Manufacturing the Same
US20090068784A1 (en) Method for Manufacturing of the Image Sensor
JP2004172229A (en) Solid-state imaging device and its manufacturing method
JP2010287610A (en) Solid state imaging device, and method of manufacturing the same
JP2007201088A (en) Solid-state image pickup element
JP3105781B2 (en) Solid-state imaging device
JP2003318383A (en) Solid-state image sensor and method for manufacturing the same
KR20040058697A (en) CMOS image sensor with curing photo diode&#39;s surface defects and method for fabricating thereof
JP2007201087A (en) Solid-state image pickup element and manufacturing method thereof
KR100700266B1 (en) Fabricating method for Image sensor
JP2002190587A (en) Method of manufacturing solid-state image pickup device
JPH05183184A (en) Manufacture of solid-state image sensor