JP2007198276A - Heat-exchanger generator - Google Patents

Heat-exchanger generator Download PDF

Info

Publication number
JP2007198276A
JP2007198276A JP2006018545A JP2006018545A JP2007198276A JP 2007198276 A JP2007198276 A JP 2007198276A JP 2006018545 A JP2006018545 A JP 2006018545A JP 2006018545 A JP2006018545 A JP 2006018545A JP 2007198276 A JP2007198276 A JP 2007198276A
Authority
JP
Japan
Prior art keywords
heat
medium liquid
heat medium
pipe
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018545A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006018545A priority Critical patent/JP2007198276A/en
Publication of JP2007198276A publication Critical patent/JP2007198276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize energy by converting waste heat energy into electrical energy and utilizing as electrical energy, the waste heat energy being the one discharged from the internal combustion engines of an automobile and a ship, that is, thermal energy in exhaust gas discharged from an exhaust pipe into the atmosphere and thermal energy emitted from the heat exchanger of an internal combustion engine cooling system into the atmosphere or sea water. <P>SOLUTION: In this heat-exchanger generator, the heat exchanger is provided in the exhaust passage of the internal combustion engine, thereby thermal energy in exhaust gas in the internal combustion engine is recovered into heat medium liquid. In the case of recovering thermal energy contained in cooling fluid and lubricating oil in the internal combustion engine by an air-cooled heat exchanger, a Peltier element module 1 is sandwiched between a heat medium liquid radiating pipe and a radiating fin. In the case of a water-cooled heat exchanger, the Peltier element module is sandwiched between the heat medium liquid radiating pipe and a heat absorbing cold water pipe, and thermal energy wasted in the conventional case is utilized as electrical energy by using the Seebeck effect of the Peltier element. Thereby, it contributes to energy saving and a decrease in a load on the global atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車や船舶の内燃機関の排気管 及び 前記内燃機関冷却用熱交換器から出る廃熱を熱電変換素子によって電気に変換する熱交換発電機に関するものである。   The present invention relates to an exhaust pipe of an internal combustion engine of an automobile or a ship and a heat exchange generator that converts waste heat from the heat exchanger for cooling the internal combustion engine into electricity by a thermoelectric conversion element.

1、従来の自動車や船舶は内燃機関から出る排気ガスに含まれる熱エネルギーはそのまま排気管から大気中に廃出していた。
2、従来の自動車は前記内燃機関の内燃機関冷却液に含まれる熱エネルギーを熱交換器より大気中に廃熱していた。
3、従来の船舶は前記内燃機関の内燃機関冷却液に含まれる熱エネルギーを内燃機関冷却用熱交換器より海水中や湖水中へ廃熱していた。
1. In conventional automobiles and ships, the heat energy contained in the exhaust gas emitted from the internal combustion engine is directly discharged from the exhaust pipe into the atmosphere.
2. Conventional automobiles waste heat energy contained in the coolant of the internal combustion engine from the heat exchanger into the atmosphere.
3. The conventional ship has exhausted the heat energy contained in the internal combustion engine coolant of the internal combustion engine into seawater or lake water from the heat exchanger for cooling the internal combustion engine.

4、従来の自動車や船舶は内燃機関の回転力を利用して発電機を回転し発電をしていたが これは前記内燃機関の大きな回転負荷となり燃費を大変悪くしていた。
上記1、2及び3の廃熱量はディーゼル内燃機関で使用した燃料から発生する熱エネルギーの約65%を、 同じくガソリン内燃機関で約75%を大気中あるいは海水中に廃熱として捨てていた事になる、これも地球温暖化の大きな原因の一つであり又大変不経済であった。
又 上記4の回転式発電機(オルタネータ)は大小あるが前記内燃機関に対する回転負荷は 前記内燃機関出力の数馬力も損失していた。
4. Conventional automobiles and ships use the rotational force of the internal combustion engine to rotate the generator to generate electricity, but this is a large rotational load of the internal combustion engine, which greatly reduces fuel consumption.
The amount of waste heat in the above 1, 2 and 3 was about 65% of the heat energy generated from the fuel used in the diesel internal combustion engine, and about 75% in the gasoline internal combustion engine was discarded as waste heat in the atmosphere or seawater. This is one of the major causes of global warming and was very uneconomical.
Further, although the rotary generator (alternator) 4 is large and small, the rotational load on the internal combustion engine lost several horsepower of the output of the internal combustion engine.

5、(特許文献1)(特許文献2)の排気熱を熱電変換素子で電気に変換する方法もあったがこの方法では熱電変換素子を直接排気管に取り付けるようになっている為一見熱効率は高いように見えるが排気管は高温になる為 熱電変換素子は半導体に電極をハンダ付けによって連結しているため長期間安定動作するか疑問である。 5. There was also a method of converting the exhaust heat of (Patent Document 1) (Patent Document 2) to electricity with a thermoelectric conversion element, but in this method the thermoelectric conversion element is directly attached to the exhaust pipe, so the thermal efficiency at first glance is Although it seems to be high, the exhaust pipe becomes hot, so it is doubtful whether the thermoelectric conversion element will operate stably for a long time because the electrodes are connected to the semiconductor by soldering.

又 排気管は殆ど自動車の下部にあり水跳ねや跳ね飛物等による漏電 損傷の可能性も大である。
前記内燃機関の廃熱は大きく分けて内燃機関冷却用熱交換器の大気中あるいは海水中へ放熱する分と排気管から大気中へ排出する分の二つ有るが文献1及び文献2の方法では排気管から排出する一つの熱エネルギーだけ利用するものである。
特開平07−012009広報 特開2005−299417広報
Also, the exhaust pipe is almost at the bottom of the car, and there is a great possibility of leakage damage due to water splashes and splashing objects.
The waste heat of the internal combustion engine is roughly divided into two parts, one for radiating heat into the atmosphere or seawater of the heat exchanger for cooling the internal combustion engine and the other for exhausting it from the exhaust pipe to the atmosphere. Only one thermal energy discharged from the exhaust pipe is used.
JP 07-012009 PR JP 2005-299417 PR

解決しようとする問題点は 自動車や船舶の内燃機関に投入した燃料の75%以上の熱エネルギーが廃熱として無駄になっている。   The problem to be solved is that 75% or more of the heat energy used in the internal combustion engines of automobiles and ships is wasted as waste heat.

1.内燃機関冷却用熱交換器の温度差が生じて熱エネルギーが移動する熱媒液放熱管と放熱フィンの間に熱電変換用ゼーベック効果を利用したペルチエ素子モジュールを挟設して廃熱を電気エネルギーに変換しエネルギーの有効利用を図る、又 前記放熱フィンを設けたものは空冷式熱交換器で主に自動車、建設機械、農業機械、鉄道車両、産業機械等に使用するが船舶等の内燃機関冷却用水冷式熱交換器の場合前記熱媒液放熱管と吸熱冷水管の間に熱電変換用ゼーベック効果を利用したペルチエ素子モジュールを挟設してペルチエ素子モジュールの一方を高温の熱媒液で過熱し他方を大気又は海水で冷却し発電をする。
2.前記内燃機関排気ガス中の熱エネルギーを排気ガス通路の一部を熱交換器として熱媒液に熱エネルギーを回収して前記内燃機関冷却用熱媒液と同様熱交換発電機に循環し発電を行う。
3.回転式発電は前記内燃機関の大きな回転負荷となるので廃止する。
1. A Peltier element module that uses the Seebeck effect for thermoelectric conversion is sandwiched between the heat transfer medium heat radiation pipe and the heat radiation fin, where the temperature difference occurs in the heat exchanger for cooling the internal combustion engine and the heat energy is transferred, and the waste heat is converted into electrical energy. The one provided with the heat radiation fins is an air-cooled heat exchanger that is mainly used for automobiles, construction machinery, agricultural machinery, railway vehicles, industrial machinery, etc., but is an internal combustion engine such as a ship. In the case of a water-cooled heat exchanger for cooling, a Peltier element module using the Seebeck effect for thermoelectric conversion is sandwiched between the heat medium liquid radiation pipe and the endothermic cold water pipe, and one of the Peltier element modules is replaced with a high-temperature heat medium liquid. Overheat and cool the other with air or seawater to generate electricity.
2. Heat energy in the exhaust gas of the internal combustion engine is collected in a heat medium liquid using a part of the exhaust gas passage as a heat exchanger, and is circulated to the heat exchange generator in the same manner as the heat medium liquid for cooling the internal combustion engine to generate power. Do.
3. The rotary power generation is abolished because it causes a large rotational load on the internal combustion engine.

従来は 使用した燃料から出る熱エネルギーの約65%〜75%を大気中及び海水中に廃熱として捨てていたものを本発明に於いては電気に変換して電気エネルギーとして電気モーターを設けて内燃機関の補助動力、電装機器及び灯火類に使用するために
搭載する内燃機関が従来より小型で小馬力のものでよくなる。
燃費が大変良くなる。
使用する燃料が少なくなるので 経済的 且つ 地球温暖化などの原因となる二酸化炭 窒素酸化物等の排出量が低減し地球環境負荷が小さくなる。
騒音が小さくなる。
又 前記回転式発電を廃止するので前記内燃機関出力損失なくなるため一段と燃費がよくなる
Conventionally, about 65% to 75% of the heat energy emitted from the used fuel is discarded as waste heat in the atmosphere and seawater. In the present invention, an electric motor is provided as electric energy by converting it into electricity. An internal combustion engine to be mounted for use in auxiliary power, electrical equipment, and lights of the internal combustion engine is smaller and has a smaller horsepower than before.
Fuel consumption is greatly improved.
Since less fuel is used, the emissions of carbon dioxide, nitrogen oxides, etc., which are economical and cause global warming, etc., are reduced, reducing the global environmental burden.
Noise is reduced.
In addition, since the rotary power generation is abolished, the output loss of the internal combustion engine is eliminated, and the fuel efficiency is further improved

現在の自動車や船舶の生産技術と電気製品(半導体温冷製品)の生産技術で低燃費 且つ地球環境負荷の小さい自動車や船舶の生産が可能となった   The current production technology for automobiles and ships and production technology for electrical products (semiconductor thermal / cooled products) have made it possible to produce automobiles and ships with low fuel consumption and low environmental impact.

請求項第1項より図1、図2、図3、図4に基づいて説明をすると 先ず熱媒液放熱管2を数十本並べその上に熱媒液タンク4と下にも熱媒液タンク5をハンダ付けしその前記熱媒液放熱管2全ての両側にペルチエ素子モジュール1を耐熱高熱伝導接着剤又は耐熱高熱伝導両面テープで接着し その前記ペルチエ素子モジュール1と前記ペルチエ素子モジュール1の間に放熱フィン3を前記耐熱高熱伝導接着剤又は前記耐熱高熱伝導両面テープで挟設する、この場合前記熱媒液放熱管2が二分割になっているのは熱媒液の内部圧で前記熱媒液放熱管2の変形を防止するためで、幅が広い設計となる場合は三分割、四分割とする必要がある。   Description will be made based on FIGS. 1, 2, 3 and 4 from the first claim. First, dozens of heat medium liquid heat radiating pipes 2 are arranged, and a heat medium liquid tank 4 and a heat medium liquid are also provided below. The tank 5 is soldered, and the Peltier element module 1 is bonded to both sides of the heat medium liquid radiating tube 2 with a heat-resistant and high-heat conductive adhesive or a heat-resistant and high-heat conductive double-sided tape. The Peltier element module 1 and the Peltier element module 1 The heat-radiating fin 3 is sandwiched between the heat-resistant and high heat-conductive adhesive or the heat-resistant and high heat-conductive double-sided tape. In this case, the heat medium liquid heat radiating pipe 2 is divided into two parts by the internal pressure of the heat medium liquid. In order to prevent deformation of the heat transfer liquid radiating tube 2, it is necessary to divide into three and four when the width is wide.

前記ペルチエ素子モジュール1及び前記熱媒液放熱管2の前後に断熱材14を耐熱接着剤で接着、 前記熱媒液タンク4と前記熱媒液タンク5の表面にも断熱材14bを貼り付ける、図4の熱交換排気マニホールド6は内燃機関の排気ガス通穴と熱媒液通穴ができるよう二重構造に鋳物等で排気通穴の排気流抵抗を小さく熱交換効率の良い構造とし 前記内燃機関冷却用熱媒液循環回路の高温側に熱媒液循環管2eeを接続、熱媒液循環管2eと、熱交換発電機の熱媒液循環管2aを接続、熱媒液循環管2aaと内燃機関冷却用熱媒液循環回路の低温側と連結する。   Adhering the heat insulating material 14 with a heat-resistant adhesive before and after the Peltier element module 1 and the heat medium liquid heat radiating tube 2, affixing the heat insulating material 14b to the surfaces of the heat medium liquid tank 4 and the heat medium liquid tank 5, The heat exchange exhaust manifold 6 shown in FIG. 4 has a double structure, such as a casting structure, which has an exhaust gas through hole and a heat medium liquid through hole, and has a structure in which the exhaust flow resistance of the exhaust through hole is small and heat exchange efficiency is good. Heat medium liquid circulation pipe 2ee is connected to the high temperature side of the engine cooling heat medium liquid circulation circuit, heat medium liquid circulation pipe 2e and heat medium liquid circulation pipe 2a of the heat exchange generator are connected, and heat medium liquid circulation pipe 2aa It is connected to the low temperature side of the heat transfer fluid circulation circuit for cooling the internal combustion engine.

動作については前記内燃機関を始動すると前記内燃機関とその冷却用熱媒液及び前記熱交換排気マニホールド6とその熱媒液は昇温し前記内燃機関で約80℃になり前記熱交換排気マニホールド6で約100℃になるよう設定し(内部圧を高く設定するので沸騰はしない)前記熱媒液は熱交換発電機の前記熱媒液タンク4に循環し前記熱媒液放熱管2内を降下する、この時熱媒液の熱エネルギーは前記ペルチエ素子モジュール1内を前記放熱フィン3へ向かって移動し前記放熱フィン3から大気中へ放熱されると前記ペルチエ素子モジュール1内部ではゼーベック効果により電気エネルギーが発生する。   Regarding the operation, when the internal combustion engine is started, the internal combustion engine and its cooling heat transfer fluid and the heat exchange exhaust manifold 6 and the heat transfer exhaust manifold 6 are heated to about 80 ° C. in the internal combustion engine and become the heat exchange exhaust manifold 6. The heat transfer fluid circulates in the heat transfer fluid tank 4 of the heat exchange generator and descends in the heat transfer fluid discharge pipe 2. At this time, when the heat energy of the heat transfer fluid moves in the Peltier element module 1 toward the radiation fins 3 and is radiated from the radiation fins 3 into the atmosphere, the Peltier element module 1 generates electric energy by the Seebeck effect. Energy is generated.

請求項第2項を図2、図3、図5、図6、図9について説明すると、構造的には請求項第1項とほとんど同じであるが熱交換発電機上下のタンク つまり熱媒液タンク4a及び熱媒液タンク5aが内部で2分割されていて熱媒液回路が2回路になっているという違いと排気管熱交換器6aが排気管7の途中に有るという違いである為実施例の一部説明を省略する。   The second claim will be described with reference to FIGS. 2, 3, 5, 6, and 9. The structure is almost the same as the first claim, but the tanks above and below the heat exchange generator, that is, the heat transfer liquid. This is because the difference is that the tank 4a and the heat transfer medium tank 5a are divided into two and the heat transfer liquid circuit is divided into two circuits, and that the exhaust pipe heat exchanger 6a is in the middle of the exhaust pipe 7. Some explanations of the examples are omitted.

排気管熱交換器6aは金属板製大円筒内部に排気ガス通穴用小円管を多数設けたもの、 又は前記金属板製大円筒内部に螺旋状の熱媒液熱交換管を設ける。
内燃機関冷却用熱媒液循環回路の高温側と熱交換発電機の熱媒液循環管2bと接続、 熱媒液循環管2bbを前記内燃機関冷却用熱媒液循環回路の低温側と接続、 又 前記熱交換発電機の熱媒液循環管2cと排気管熱交換器6aの熱媒液循環管2dと接続、 熱媒液循環管2dd及び熱媒液循環ポンプ15と熱媒液循環管2ccと連結する。
The exhaust pipe heat exchanger 6a is provided with a large number of exhaust gas through holes small circular tubes inside a large metal plate cylinder, or a spiral heat transfer fluid heat exchange tube inside the large metal plate cylinder.
Connecting the high temperature side of the heat transfer fluid circulation circuit for cooling the internal combustion engine and the heat transfer fluid circulation pipe 2b of the heat exchange generator, connecting the heat transfer fluid circulation pipe 2bb to the low temperature side of the heat transfer fluid circulation circuit for cooling the internal combustion engine, Also connected to the heat transfer medium circulation pipe 2c of the heat exchange generator and the heat transfer liquid circulation pipe 2d of the exhaust pipe heat exchanger 6a, the heat transfer liquid circulation pipe 2dd, the heat transfer medium circulation pump 15, and the heat transfer liquid circulation pipe 2cc. Concatenate with

動作について説明すると、 前記内燃機関を始動すると前記内燃機関とその冷却用熱媒液及び排気管の途中に設けた前記排気管熱交換器6aとその熱媒液が昇温する、前記内燃機関冷却用熱媒液は熱媒液循環管2b及び熱媒液循環管2bb(熱交換発電機図5の左半分)を循環する、又 前記排気管熱交換器6aの熱媒液は熱媒液循環管2dから前記熱交換発電機の熱媒液循環管2cへ、熱媒液循環管2cc及び熱媒液循環ポンプ15から熱媒液循環管2ddへ循環する 前記ペルチエ素子モジュール1内部を熱エネルギーが移動しゼーベック効果により前記ペルチエ素子モジュール1に電力が発生する、このとき前記内燃機関の冷却用熱媒液と排気ガス中の両方の熱エネルギーの一部が熱交換発電機で電力となりその他は放熱フィン3から大気中へ放熱される。 In terms of operation, when the internal combustion engine is started, the internal combustion engine, its cooling heat medium liquid, and the exhaust pipe heat exchanger 6a provided in the middle of the exhaust pipe and its heat medium liquid are heated. The heat transfer fluid is circulated through the heat transfer fluid circulation pipe 2b and the heat transfer fluid circulation pipe 2bb (the left half of the heat exchange generator Fig. 5), and the heat transfer fluid in the exhaust pipe heat exchanger 6a is the heat transfer fluid circulation. Heat energy is circulated from the pipe 2d to the heat transfer medium circulation pipe 2c of the heat exchange generator, to the heat transfer liquid circulation pipe 2cc and from the heat transfer liquid circulation pump 15 to the heat transfer liquid circulation pipe 2dd. Electric power is generated in the Peltier element module 1 by the Seebeck effect, and at this time, a part of the heat energy in both the heat transfer liquid for cooling and the exhaust gas of the internal combustion engine becomes electric power in the heat exchange generator, and the others are radiated Heat is released from the fin 3 to the atmosphere.

請求項第3項を図6、図7、図8に基づいて説明すると 吸熱冷水管13ペルチエ素子モジュール11熱媒液放熱管12又前記ペルチエ素子モジュール11吸熱冷水管13の順に耐熱高熱伝導接着剤又は耐熱高熱伝導両面テープで熱結合連結し前記熱媒液放熱管12の上部に熱媒液循環管12aをハンダ連結付けし下部も熱媒液循環管12aaをハンダ連結付けする、 又 前記吸熱冷水管13の上部に吸熱冷水循環管13aをハンダ連結付けし下部も吸熱冷水循環管13aaをハンダ連結付けし全体を断熱材14aで被い、内燃機関冷却用熱媒液循環回路の高温側と排気管熱交換器6aの熱媒液循環管2dと接続し、又熱媒液循環管2ddを熱交換発電機の熱媒液循環管12aに接続、 熱媒液循環管12aaを前記内燃機関冷却用熱媒液循環回路の低温側に接続する。   The third aspect of the present invention will be described with reference to FIGS. 6, 7, and 8. Heat-absorbing cold water pipe 13 Peltier element module 11 Heat medium liquid radiation pipe 12 or Peltier element module 11 Endothermic cold water pipe 13 Alternatively, the heat medium liquid circulation pipe 12a is solder-connected to the upper part of the heat medium liquid radiating pipe 12, and the heat medium liquid circulation pipe 12aa is also solder-connected to the lower part of the heat medium liquid heat radiating pipe 12. The endothermic cold water circulation pipe 13a is solder-connected to the upper part of the pipe 13, the lower end is also connected to the endothermic cold water circulation pipe 13aa, and the whole is covered with a heat insulating material 14a. Connected to the heat medium liquid circulation pipe 2d of the pipe heat exchanger 6a, connected to the heat medium liquid circulation pipe 2dd to the heat medium liquid circulation pipe 12a of the heat exchange generator, and the heat medium liquid circulation pipe 12aa for cooling the internal combustion engine Connect to the low temperature side of the heat transfer medium circulation circuit.

又 前記熱交換発電機の吸熱冷水循環管13a及び吸熱冷水循環管13aaを内燃機関冷却用海水循環回路に接続する。
動作については 前期内燃機関を始動すると前記内燃機関とその冷却用熱媒液及び排気管熱交換器6aとその熱媒液が昇温し熱交換発電機の熱媒液放熱管12を循環する 又 熱交換発電機の吸熱冷水管13内を海水が循環するので熱交換発電機内の前記熱媒液放熱管12より前記ペルチエ素子モジュール11、吸熱冷水管13へと熱エネルギーが移動するため前記ペルチエ素子モジュール11に電気エネルギーが発生する、上記実施例に於いては内燃機関の冷却用熱媒液と前記内燃機関の排気ガスに含まれる熱エネルギーを電力に変換するものであるが その他に前記内燃機関の潤滑油に含まれる熱エネルギーを熱交換発電機に潤滑油を循環して電気エネルギーに変換することも可能である。
Further, the endothermic cold water circulation pipe 13a and the endothermic cold water circulation pipe 13aa of the heat exchange generator are connected to a seawater circulation circuit for cooling the internal combustion engine.
Regarding the operation, when the internal combustion engine is started in the previous period, the internal combustion engine and its cooling heat medium liquid and the exhaust pipe heat exchanger 6a and its heat medium liquid are heated and circulated through the heat medium liquid heat radiating pipe 12 of the heat exchange generator. Since seawater circulates in the endothermic cold water pipe 13 of the heat exchange generator, the heat energy moves from the heat medium liquid radiating pipe 12 in the heat exchange generator to the Peltier element module 11 and the endothermic cold water pipe 13, so that the Peltier element Electric energy is generated in the module 11. In the above embodiment, the heat energy contained in the cooling medium for cooling the internal combustion engine and the exhaust gas of the internal combustion engine is converted into electric power. It is also possible to convert the thermal energy contained in the lubricating oil into electrical energy by circulating the lubricating oil through the heat exchange generator.

本発明は 従来より少ない燃料で従来と同等の仕事を熟す、自動車、建設機械、農業機械、産業機械、鉄道車両、内燃機関式発電装置、船舶に大変有用で省資源、省エネルギー、経済性、低環境負荷に貢献する   The present invention is very useful for automobiles, construction machinery, agricultural machinery, industrial machinery, railway vehicles, internal combustion engine power generators, ships, and ripens the same work as before with less fuel than conventional ones. Contribute to environmental impact

請求項第1項の熱交換発電機の全体正面図Whole front view of heat exchange generator according to claim 1 図3のA-A部断図A-A section view of Fig. 3 図1図2図5のA−A部断面一部拡大図Fig. 1 Fig. 2 AA cross-section partially enlarged view of Fig. 5 熱交換排気マニホールドの正面図Front view of heat exchange exhaust manifold 請求項第2項の熱交換発電機の全体正面図Whole front view of heat exchange generator according to claim 2 排気管熱交換器の全体正面図Overall front view of exhaust pipe heat exchanger 請求項第3項の熱交換発電機の全体正面図Whole front view of heat exchange generator of claim 3 図7のA-A部断面拡大図A-A section enlarged view of Fig. 7 熱媒液循環ポンプHeat transfer medium circulation pump

符号の説明Explanation of symbols

1 ペルチエ素子モジュール
2 熱媒液放熱管
2a 熱媒液循環管
2aa 熱媒液循環管
2b 熱媒液循環管
2bb 熱媒液循環管
2c 熱媒液循環管
2cc 熱媒液循環管
2d 熱媒液循環管
2dd 熱媒液循環管
3 放熱フィン
4 熱媒液タンク
4a 熱媒液タンク
5 熱媒液タンク
5a 熱媒液タンク
6 熱交換排気マニホールド
6a 排気管熱交換器
7 排気管
11 ペルチエ素子モジュール
12 熱媒液放熱管
12a 熱媒液循環管
12aa 熱媒液循環管
13 吸熱冷水管
13a 吸熱冷水循環管
13aa 吸熱冷水循環管
14 断熱材
14a 断熱材
14b 断熱材
15 熱媒液循環ポンプ
1 Peltier element module
2 Heat transfer fluid radiator pipe
2a Heat transfer medium circulation pipe
2aa Heat transfer medium circulation pipe
2b Heat transfer fluid circulation pipe
2bb Heat transfer fluid circulation pipe
2c Heat transfer medium circulation tube
2cc heat transfer fluid circulation pipe
2d Heat transfer medium circulation pipe
2dd heat transfer medium circulation pipe
3 Heat dissipation fin
4 Heat transfer fluid tank
4a Heat transfer fluid tank
5 Heat transfer fluid tank
5a Heat transfer fluid tank
6 Heat exchange exhaust manifold
6a Exhaust pipe heat exchanger
7 Exhaust pipe
11 Peltier element module
12 Heat transfer fluid radiator tube
12a Heat transfer medium circulation pipe
12aa Heat transfer medium circulation pipe
13 Endothermic cold water pipe
13a Endothermic cold water circulation pipe
13aa Endothermic cold water circulation pipe
14 Insulation
14a Insulation
14b insulation
15 Heat transfer medium circulation pump

Claims (3)

ペルチエ素子モジュール1 熱媒液放熱管2 放熱フィン3をそれぞれ数十本交互に熱結合連結し 前記ペルチエ素子モジュール1 及び 前記熱媒液放熱管2の前後を断熱材14で被い 上部に熱媒液循環管2aを設け表面を断熱材14bで被った熱媒液タンク4を、 又下部に熱媒液循環管2aaを設け表面を断熱材14bで被った熱媒液タンク5を設け 且つ 内燃機関に熱交換排気マニホールド6を設け、 前記熱媒液循環管2aと前記熱媒液循環管2aa及び前記内燃機関冷却用熱媒液循環回路と前記内燃機関に設けた前記熱交換排気マニホールド6の熱媒液循環管2e及び熱媒液循環管2eeを連結した前記内燃機関冷却用空冷式熱交換器に熱発電用ゼーベック効果を利用した前記ペルチエ素子モジュール1を組み込んだ事を特徴とする熱交換発電機。   Peltier element module 1 Heat medium liquid radiating pipe 2 Dozens of radiating fins 3 are thermally coupled and connected to each other by covering the front and back of the Peltier element module 1 and the heat medium liquid radiating pipe 2 with a heat insulating material 14 and heat medium on the upper part. A heat medium liquid tank 4 provided with a liquid circulation pipe 2a and covered with a heat insulating material 14b; a heat medium liquid tank 5 provided with a heat medium liquid circulation pipe 2aa at the lower part and covered with a heat insulating material 14b; and an internal combustion engine The heat exchange exhaust manifold 6 is provided in the heat exchange liquid manifold 2a, the heat medium liquid circulation pipe 2aa, the heat medium liquid circulation circuit for cooling the internal combustion engine, and the heat exchange exhaust manifold 6 provided in the internal combustion engine. Heat exchange power generation characterized in that the Peltier element module 1 utilizing the Seebeck effect for thermoelectric power generation is incorporated in the air-cooled heat exchanger for cooling the internal combustion engine connected to the medium-liquid circulation pipe 2e and the heat medium-liquid circulation pipe 2ee. Machine. ペルチエ素子モジュール1 熱媒液放熱管2 放熱フィン3をそれぞれ数十本交互に熱結合連結し 前記ペルチエ素子モジュール1及び前記熱媒液放熱管2の前後を断熱材14で被い 上部に熱媒液循環管2b及び熱媒液循環管2cを設け表面を断熱材14bで被い内部を2分割した熱媒液タンク4aを、 又下部に熱媒液循環管2bb及び熱媒液循環管2ccを設け表面を断熱材14bで被い内部を2分割した熱媒液タンク5aを設け 且つ 内燃機関排気管に排気管熱交換器6aを設け 前記内燃機関冷却用熱媒液循環回路に前記熱媒液循環管2b及び前記熱媒液循環管2bbと連結し 又 前記排気管熱交換器6aの熱媒液循環管2d及び熱媒液循環管2ddと前記熱媒液循環管2c及び前記熱媒液循環管2ccと熱媒液循環ポンプ15を連結した前記内燃機関冷却用空冷式熱交換器に熱発電用ゼーベック効果を利用した前記ペルチエ素子モジュール1を組み込んだ事を特徴とする熱交換発電機。   Peltier element module 1 Heat medium liquid radiating pipe 2 Dozens of radiating fins 3 are thermally coupled and connected to each other by covering the front and back of the Peltier element module 1 and the heat medium liquid radiating pipe 2 with a heat insulating material 14. The liquid circulation pipe 2b and the heat medium liquid circulation pipe 2c are provided and the surface is covered with a heat insulating material 14b. The heat medium liquid tank 4a is divided into two parts inside, and the heat medium liquid circulation pipe 2bb and the heat medium liquid circulation pipe 2cc are provided at the bottom. A heat medium liquid tank 5a is provided which is covered with a heat insulating material 14b and the inside is divided into two parts, and an exhaust pipe heat exchanger 6a is provided in the exhaust pipe of the internal combustion engine. The heat medium liquid is provided in the heat medium liquid circulation circuit for cooling the internal combustion engine. Connected to the circulation pipe 2b and the heat medium liquid circulation pipe 2bb, and the heat medium liquid circulation pipe 2d and the heat medium liquid circulation pipe 2dd of the exhaust pipe heat exchanger 6a, the heat medium liquid circulation pipe 2c and the heat medium liquid circulation The Seebeck effect for thermoelectric power generation is used in the air-cooled heat exchanger for cooling the internal combustion engine, in which the 2cc pipe and the heat transfer medium circulation pump 15 are connected. The heat exchange generator characterized by incorporating the Peltier element module 1 used. ペルチエ素子モジュール11 熱媒液放熱管12 吸熱冷水管13をそれぞれ数十本交互に熱結合連結し前記熱媒液放熱管12の上部を熱媒液循環管12aで連結し下部を熱媒液循環管12aaで連結し 又前記吸熱冷水管13の上部を吸熱冷水循環管13aで連結し下部を吸熱冷水循環管13aaで連結し外部全体を断熱材14aで被い 内燃機関の排気管に排気管熱交換器6aを設け 前記熱媒液循環管12a及び前記熱媒液循環管12aaと前記内燃機関冷却用熱媒液循環回路及び前記排気管熱交換器6aの熱媒液循環管2d及び熱媒液循環管2ddを連結し、 又 前記吸熱冷水循環管13a及び前記吸熱冷水循環管13aaを前記内燃機関の冷却用海水循環回路に連結した前記内燃機関冷却用水冷式熱交換器に熱発電用ゼーベック効果を利用した前記ペルチエ素子モジュール11を組み込んだ事を特徴とする熱交換発電機。   Peltier element module 11 Heat transfer fluid radiating pipe 12 Dozens of endothermic cold water pipes 13 are alternately thermally coupled and connected. The upper end of the endothermic cold water pipe 13 is connected by the endothermic cold water circulation pipe 13a, the lower part is connected by the endothermic cold water circulation pipe 13aa, and the entire outside is covered with the heat insulating material 14a. The exhaust pipe heat is applied to the exhaust pipe of the internal combustion engine. An exchanger 6a is provided. The heat medium liquid circulation pipe 12a and the heat medium liquid circulation pipe 12aa, the heat medium liquid circulation circuit for cooling the internal combustion engine, and the heat medium liquid circulation pipe 2d and the heat medium liquid of the exhaust pipe heat exchanger 6a. A circulation pipe 2dd is connected, and the endothermic cold water circulation pipe 13a and the endothermic cold water circulation pipe 13aa are connected to the seawater circulation circuit for cooling the internal combustion engine in the water-cooled heat exchanger for cooling the internal combustion engine. The heat exchange characterized by incorporating the Peltier element module 11 using Generator.
JP2006018545A 2006-01-27 2006-01-27 Heat-exchanger generator Pending JP2007198276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018545A JP2007198276A (en) 2006-01-27 2006-01-27 Heat-exchanger generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018545A JP2007198276A (en) 2006-01-27 2006-01-27 Heat-exchanger generator

Publications (1)

Publication Number Publication Date
JP2007198276A true JP2007198276A (en) 2007-08-09

Family

ID=38453118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018545A Pending JP2007198276A (en) 2006-01-27 2006-01-27 Heat-exchanger generator

Country Status (1)

Country Link
JP (1) JP2007198276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097116A1 (en) * 2007-05-29 2012-04-26 Ab Engine Incorporated High efficiency internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097116A1 (en) * 2007-05-29 2012-04-26 Ab Engine Incorporated High efficiency internal combustion engine
US8396645B2 (en) * 2007-05-29 2013-03-12 Ab Engine Incorporated High efficiency internal combustion engine

Similar Documents

Publication Publication Date Title
JP5484071B2 (en) Vehicle equipped with thermoelectric generator
JP5028171B2 (en) Thermoelectric system
JP5737151B2 (en) Thermoelectric generator
KR100986657B1 (en) An apparatus for thermoelectric generator and cooling
JP2006214350A (en) Thermoelectric generator
JP5637020B2 (en) Heat transfer device
JP2013181417A (en) Fuel supply system for marine vessel
KR20110118615A (en) Exhaust gas cooler for an internal combustion engine
JP2011155790A (en) Apparatus for power generation of vehicle
JP6096562B2 (en) Thermoelectric generator and ship equipped with the same
JP2009194019A (en) Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment
JP2007198276A (en) Heat-exchanger generator
KR101260776B1 (en) Thermoelectric Power Generating Heat Exchanger
KR101749057B1 (en) Apparatus for generating thermoelectric semiconductor using exhaust gas heat of vehicle
JP6350297B2 (en) Thermoelectric generator
CN103179843B (en) A kind of radiator structure of high power density variable-frequency converter
CN110970376A (en) High-performance chip heat dissipation device
JP2014195378A (en) Thermoelectric generator and marine vessel with the same
WO2017162196A1 (en) Thermoelectric conversion module, novel internal combustion engine, novel electric motor and power generation method
JP2004274959A (en) Power converter
JP2008143432A (en) In-vehicle power source device
JP4276610B2 (en) Waste heat recovery device
JP2005051952A (en) Generator
WO2006030888A1 (en) Exhaust heat recovery system
KR101646422B1 (en) A vehicle waste heat recovery system having a thermoelectric element and a heat storage element