JP2007197810A - Wear resistant steel sheet - Google Patents

Wear resistant steel sheet Download PDF

Info

Publication number
JP2007197810A
JP2007197810A JP2006040454A JP2006040454A JP2007197810A JP 2007197810 A JP2007197810 A JP 2007197810A JP 2006040454 A JP2006040454 A JP 2006040454A JP 2006040454 A JP2006040454 A JP 2006040454A JP 2007197810 A JP2007197810 A JP 2007197810A
Authority
JP
Japan
Prior art keywords
carbide
wear
steel sheet
wear resistance
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006040454A
Other languages
Japanese (ja)
Other versions
JP4894288B2 (en
Inventor
Minoru Suwa
稔 諏訪
Yasuhiro Murota
康宏 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006040454A priority Critical patent/JP4894288B2/en
Publication of JP2007197810A publication Critical patent/JP2007197810A/en
Application granted granted Critical
Publication of JP4894288B2 publication Critical patent/JP4894288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wear resistant steel sheet having excellent weldability and wear resistance in a base metal part and a weld heat affected zone. <P>SOLUTION: The wear resistant steel sheet has a composition comprising 0.20 to 0.50% C, 0.1 to 1.0% Si, 0.1 to 2.0% Mn, ≤0.04% P, ≤0.04% S, 0.2 to 1.0% Ti, 0.2 to 2.0% Mo, 0.0003 to 0.01% B and ≤0.01% N, also satisfying Mo/Ti: ≥1.0, and the balance Fe with inevitable impurities, and has a structure where Ti carbide and Ti-Mo compound carbide with the average grain diameter of ≥0.5 μm are comprised in ≥400 pieces/mm<SP>2</SP>in total. Further, one or more kinds selected from Cu, Ni and Cr and/or Al may be incorporated therein. In this way, the wear resistant steel sheet having excellent weldability and excellent wear resistance in a base metal part and a weld heat affected zone can be produced without being accompanied by remarkable increase in hardness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建設、土木、鉱山等で使用される、パワーショベル、ブルドーザー、ホッパー、バケット等の産業機械、運搬機器等で、岩石、砂、鉱石等によるアブレッシブ摩耗、すべり摩耗あるいは衝撃摩耗等を受ける部材用として好適な耐摩耗鋼板に関する。   The present invention is used in construction, civil engineering, mining, etc., for industrial machines such as power shovels, bulldozers, hoppers, buckets, etc., carrying equipment, etc. The present invention relates to a wear-resistant steel plate suitable for a receiving member.

岩石、砂、鉱石等によるアブレッシブ摩耗、すべり摩耗、あるいは衝撃摩耗等を受ける部材には、長寿命化のため、耐摩耗性に優れた鋼材が使用されている。従来から、鋼材の耐摩耗性は、硬さを高くすることにより、向上することが知られている。このため、耐摩耗性が要求される部材には、Cr、Mo等の合金元素を多量に添加した鋼材に焼入等の熱処理を施し、高硬度化した鋼材が使用されてきた。   Steel members having excellent wear resistance are used for members that are subjected to abrasive wear, sliding wear, impact wear, etc. due to rocks, sand, ore or the like in order to extend the life. Conventionally, it is known that the wear resistance of a steel material is improved by increasing the hardness. For this reason, steel members that have been hardened by heat treatment such as quenching have been used for members that require a high level of wear resistance.

例えば、特許文献1には、溶接性の良好な耐摩耗用鋼板の製造方法が提案されている。特許文献1に記載された技術は、C:0.10〜0.19%を含み、Si、Mnを適正量含有し、Ceqを0.35〜0.44に限定した鋼を、熱間圧延後直接焼入れし、あるいは900〜950℃に再加熱したのち焼入れし、300〜500℃で焼戻し、鋼板表面硬さを300HV以上とする耐摩耗用鋼板の製造方法である。   For example, Patent Document 1 proposes a method of manufacturing a wear-resistant steel plate having good weldability. The technique described in Patent Document 1 includes C: 0.10 to 0.19%, containing appropriate amounts of Si and Mn, and Ceq limited to 0.35 to 0.44, directly quenched after hot rolling, or 900 to This is a method for producing a wear-resistant steel sheet that is reheated to 950 ° C. and then tempered and tempered at 300 to 500 ° C. to make the steel sheet surface hardness 300 HV or higher.

また、特許文献2には、C:0.10〜0.20%を含み、Si、Mn、P、S、N、Alを適正量に調整し、あるいはさらにCu、Ni、Cr、Mo、Bのうちの1種以上を含有する鋼に、熱間圧延後直接焼入れし、あるいは圧延後放冷したのち再加熱し焼入れして、340HB以上の硬さを有し、靭性および溶接低温割れ性の優れた耐摩耗厚鋼板とする技術が提案されている。
また、特許文献3には、C:0.07〜0.17%を含み、Si、Mn、V、B、Alを適正量含有し、あるいはさらにCu、Ni、Cr、Moのうちの1種以上を含有した鋼に、熱間圧延後直ちに焼入れ、あるいは一旦空冷した後に、再加熱し焼入れして、表面硬さを321HB以上で、曲げ加工性に優れた鋼板とする耐摩耗用鋼板の製造方法が提案されている。
Patent Document 2 includes C: 0.10 to 0.20%, and Si, Mn, P, S, N, and Al are adjusted to appropriate amounts, or one of Cu, Ni, Cr, Mo, and B. Steel containing more than seeds is hardened directly after hot rolling, or cooled after rolling and then re-heated and quenched, and has a hardness of 340HB or more, and has excellent toughness and weld cold cracking resistance. Techniques for making thick steel plates have been proposed.
Patent Document 3 includes C: 0.07 to 0.17%, contains an appropriate amount of Si, Mn, V, B, and Al, or further contains one or more of Cu, Ni, Cr, and Mo. A method of manufacturing a wear-resistant steel sheet is proposed in which steel is quenched immediately after hot rolling, or once air-cooled and then reheated and quenched to obtain a steel sheet having a surface hardness of 321 HB or more and excellent bending workability. ing.

特許文献1〜3に記載された技術は、合金元素を多量に添加して、固溶硬化、変態硬化、析出硬化等を活用して、硬度を顕著に高め耐摩耗性を向上させている。
しかし、近年、鋼板に要求される耐摩耗性は、より一層厳しさを増しており、単に硬度を高めるという方法では、本質的な耐摩耗性の改善にはなっていないのが現状である。特許文献1〜3に記載された技術におけるように、合金元素を多量に添加して、固溶硬化、変態硬化、析出硬化等を活用して、硬度を顕著に高めた場合には、結果的に溶接性、加工性が低下し、さらに高合金化により製造コストが高騰するという問題があった。このため、顕著な高硬度化を図ることなく、耐摩耗性を向上させることが要望されていた。
The techniques described in Patent Documents 1 to 3 add a large amount of alloy elements and utilize solid solution hardening, transformation hardening, precipitation hardening, and the like to remarkably increase hardness and improve wear resistance.
However, in recent years, the wear resistance required for steel sheets has become even more severe, and the current situation is that the method of simply increasing the hardness has not improved the wear resistance essentially. As in the techniques described in Patent Documents 1 to 3, when alloying elements are added in large quantities and solid solution hardening, transformation hardening, precipitation hardening, etc. are utilized to significantly increase the hardness, the result is In addition, there are problems that weldability and workability are lowered, and that the production cost is increased due to the high alloying. For this reason, it has been desired to improve the wear resistance without significantly increasing the hardness.

このような要望に対し、例えば、特許文献4には、C:0.10〜0.45%を含み、Si、Mn、P、S、Nを適正量に調整し、さらにTi:0.10〜1.0%を含有し、0.5μm以上の大きさのTiC析出物あるいはTiCとTiN、TiSとの複合析出物を400個/mm以上を含み、Ti*が0.05%以上0.4%未満である表面性状に優れた耐摩耗鋼が提案されている。特許文献4に記載された技術によれば、凝固時に粗大なTiCを主体とする析出物を生成させ、顕著な高硬度化を伴うことなく安価に耐摩耗性を向上させることができるとしている。
特開昭62−142726号公報 特開昭63−169359号公報 特開平1−142023号公報 特許3089882号公報
In response to such a request, for example, Patent Document 4 includes C: 0.10 to 0.45%, Si, Mn, P, S, and N are adjusted to appropriate amounts, and further Ti: 0.10 to 1.0% is contained. , 0.5 [mu] m or more the size of the TiC precipitates or TiC and TiN, includes a composite precipitate 400 / mm 2 or more and TiS, wear of Ti * is excellent in surface properties is less than 0.4% 0.05% or more Steel has been proposed. According to the technique described in Patent Document 4, precipitates mainly composed of coarse TiC are generated during solidification, and wear resistance can be improved at low cost without significantly increasing hardness.
JP-A-62-142726 JP 63-169359 A Japanese Patent Laid-Open No. 1-142023 Japanese Patent No. 3089882

最近では、溶接能率の向上や溶接施工の低コスト化のため、予熱温度の低減や後熱の省略が求められ、使用する耐摩耗鋼板にも溶接性や溶接熱影響部特性の向上が要求されるようになってきた。例えば、特許文献4に記載の耐摩耗鋼板では、溶接熱影響部の耐摩耗性が、母材部の耐摩耗性に比べて若干低下する傾向が認められ、所望の耐摩耗性を確保するため、肉盛溶接を行う必要があった。そのため、特許文献4に記載の耐摩耗鋼板を用いた部材においては、溶接施工コストの高騰や、部材生産能率の低下等の問題があった。   Recently, in order to improve welding efficiency and reduce welding costs, it is required to reduce the preheating temperature and omit post-heating, and the wear-resistant steel sheets used are also required to improve weldability and weld heat affected zone characteristics. It has come to be. For example, in the wear-resistant steel sheet described in Patent Document 4, the wear resistance of the weld heat-affected zone tends to be slightly lower than the wear resistance of the base material, in order to ensure the desired wear resistance. It was necessary to perform overlay welding. Therefore, in the member using the abrasion-resistant steel plate described in Patent Document 4, there are problems such as a rise in welding construction cost and a reduction in member production efficiency.

本発明は、かかる従来技術の問題に鑑み、溶接性に優れ、かつ顕著な高硬度化を伴うことなく、母材部および溶接熱影響部の耐摩耗性に優れた、耐摩耗鋼板を提供することを目的とする。   The present invention provides a wear-resistant steel sheet that has excellent weldability and excellent wear resistance of the base metal part and the weld heat-affected zone without significant increase in hardness in view of the problems of the prior art. For the purpose.

本発明者らは、上記した目的を達成するため、顕著な高硬度化を伴うことなく、耐摩耗性を向上させるには、Tiを多量に含有する特定組成とし、粗大なTi炭化物(TiC)を晶出・析出させることが有効であることを見出した。また、本発明者らは、溶接時にTiCが溶解すると、固溶Cが増加し、溶接割れ感受性を増大させるため、それが溶接時の低温割れを助長して、溶接能率の向上を阻害する要因のひとつとなっていたことも見出した。そして、本発明者らは、溶接時に粗大なTi炭化物の溶解を抑制することにより、溶接熱影響部の耐摩耗性を、母材部並みとすることができることに想到し、MoをMo/Ti比が1.0以上となるように含有させ、TiCに一定量以上のMoを固溶させたTiとMoの複合炭化物を晶出・析出させることにより、溶接時における粗大なTi炭化物の溶解を抑制することができ、溶接熱影響部の耐摩耗性が顕著に向上することを見出した。   In order to achieve the above-described object, the inventors of the present invention have a specific composition containing a large amount of Ti and coarse Ti carbide (TiC) in order to improve wear resistance without significantly increasing hardness. It has been found that it is effective to crystallize and precipitate. In addition, when the present inventors melt TiC during welding, the solid solution C increases and the weld cracking sensitivity is increased, which promotes low-temperature cracking during welding and is a factor that hinders improvement in welding efficiency. I also found out that it was one of the following. Then, the present inventors have conceived that by suppressing the dissolution of coarse Ti carbide during welding, the wear resistance of the weld heat-affected zone can be made the same as that of the base material, and Mo can be converted into Mo / Ti. Suppresses dissolution of coarse Ti carbides during welding by crystallizing and precipitating Ti and Mo composite carbides in which a certain amount or more of Mo is solid-dissolved in TiC. It was found that the wear resistance of the weld heat affected zone is significantly improved.

まず、本発明の基礎となった実験結果について説明する。
質量%で、0.31%C−0.40%Tiを基本成分とし、Moを0〜0.77%の範囲で変化させた組成の鋼材を、実験室で溶解した。これら鋼材から、熱サイクル試験片を採取し、通電加熱により溶接を模擬した熱履歴を付加した。これら試験片について、電解抽出法により炭化物を抽出し、炭化物となっているC量を測定し、totalC量から炭化物となっているC量を差し引き、固溶C量を求めた。得られた結果を、固溶C量とMo/Tiとの関係で図1に示す。なお、溶接を模擬した熱履歴は、最高到達温度を1250℃、1350℃の2種とし、最高到達温度までの昇温速度を50℃/s、最高到達温度から200℃までの冷却速度を50℃/sとした。
First, the experimental results on which the present invention is based will be described.
A steel material having a composition in which 0.31% C-0.40% Ti as a basic component and Mo was changed in a range of 0 to 0.77% was melted in a laboratory. Thermal cycle specimens were collected from these steel materials, and a thermal history simulating welding was added by energization heating. About these test pieces, the carbide | carbonized_material was extracted by the electrolytic extraction method, C amount which is a carbide | carbonized_material was measured, C amount | substance which became a carbide | carbonized_material was subtracted from the amount of total C, and solid solution C amount | quantity was calculated | required. The obtained results are shown in FIG. 1 in relation to the amount of solute C and Mo / Ti. In addition, the heat history that simulates welding has two types of maximum temperatures of 1250 ° C and 1350 ° C. It was set to ° C / s.

図1から、Mo/Tiが1.0未満の場合には、最高到達温度が1250℃の場合に比べて、最高到達温度が1350℃の場合の方が固溶C量が増加している。Mo/Tiが1.0以上では、最高到達温度が1250℃の場合と最高到達温度が1350℃の場合とで、ほぼ等しい固溶C量となる傾向を示している。図1から、Mo/Tiを1.0以上とすることにより、1300℃を超える温度に加熱しても、Ti炭化物の溶解が顕著に抑制されていることがわかる。その理由は、当初、一部析出物の分析結果から、Mo/Tiを1.0以上とすることにより、TiCが、TiC中にMoが固溶したTiとMoの複合炭化物となったことに起因するものと考えられた。しかし、後に、Mo/Tiが1.0以上でも1.0未満でも、TiとMoの複合炭化物は観察されることから、Mo/Tiが1300℃以上の温度でのTi炭化物の溶解度に影響しているものと推定するに至った。すなわち、Mo/Tiが1.0以上の場合には、Moが固溶した、TiとMoの複合炭化物の溶解度は、1300℃以上の高温に加熱されても、それより低い温度の場合と同様に低いままであるものと考えられる。   From FIG. 1, when Mo / Ti is less than 1.0, the amount of solute C increases when the maximum temperature reached 1350 ° C. compared to when the maximum temperature reached 1250 ° C. When Mo / Ti is 1.0 or more, there is a tendency that the amount of dissolved C is almost equal between the case where the maximum temperature is 1250 ° C and the case where the maximum temperature is 1350 ° C. From FIG. 1, it can be seen that by setting Mo / Ti to 1.0 or more, dissolution of Ti carbide is remarkably suppressed even when heated to a temperature exceeding 1300 ° C. The reason for this is that TiC became a composite carbide of Ti and Mo in which Mo was dissolved in TiC by initially setting Mo / Ti to 1.0 or more from the analysis results of some precipitates. It was considered a thing. However, later, even if Mo / Ti is 1.0 or more and less than 1.0, a composite carbide of Ti and Mo will be observed, so that Mo / Ti affects the solubility of Ti carbide at a temperature of 1300 ° C or higher. It came to estimate. In other words, when Mo / Ti is 1.0 or more, the solubility of the composite carbide of Ti and Mo in which Mo is dissolved is as low as that at a lower temperature even when heated to a high temperature of 1300 ° C or higher. It seems that there is so far.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、次のとおりである。
(1)質量%で、C:0.20〜0.50%、Si:0.1〜1.0%、Mn:0.1〜2.0%、P:0.04%以下、S:0.04%以下、Ti:0.2〜1.0%、Mo:0.2〜2.0%、B:0.0003〜0.01%、N:0.01%以下を含み、かつMoとTiを次(1)式
Mo/Ti ≧ 1.0 ………(1)
(ここで、Mo、Ti:各元素の含有量(質量%))
を満足するように含有し、残部Feおよび不可避不純物からなる組成と、平均粒径:0.5μm以上のTi炭化物およびTiとMoの複合炭化物を合計で、400個/mm以上含む組織を有することを特徴とする耐摩耗鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.20 to 0.50%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less, S: 0.04% or less, Ti: 0.2 to 1.0%, Mo: 0.2 -2.0%, B: 0.0003-0.01%, N: 0.01% or less, and Mo and Ti are represented by the following formula (1)
Mo / Ti ≧ 1.0 (1)
(Where Mo, Ti: content of each element (mass%))
And a composition comprising the balance Fe and inevitable impurities, and an average particle size: a Ti carbide of 0.5 μm or more and a composite carbide of Ti and Mo in total 400 pieces / mm 2 or more Wear-resistant steel sheet characterized by.

(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.1〜2.0%、Ni:0.1〜10%、Cr:0.1〜3.0%のうちから選ばれた1種または2種以上を含む組成とすることを特徴とする耐摩耗鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Al:0.08%以下を含む組成とすることを特徴とする耐摩耗鋼板。
(2) In (1), in addition to the above composition, in addition to mass, one or two selected from Cu: 0.1 to 2.0%, Ni: 0.1 to 10%, Cr: 0.1 to 3.0% A wear-resistant steel sheet characterized by having a composition including the above.
(3) In (1) or (2), in addition to the said composition, it is set as the composition containing Al: 0.08% or less by the mass% further, The abrasion-resistant steel plate characterized by the above-mentioned.

本発明によれば、溶接性に優れ、かつ顕著な高硬度化を伴うことなく、母材部および溶接熱影響部の耐摩耗性に優れた、耐摩耗鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、溶接熱影響部の耐摩耗性を母材部並に確保しつつ、溶接時の予熱作業の軽減や、後熱処理の省略が図れ、溶接能率の向上と溶接施工の低コスト化が可能になるという効果もある。   According to the present invention, it is possible to easily and inexpensively manufacture a wear-resistant steel plate having excellent weldability and excellent wear resistance of the base metal part and the weld heat-affected zone without significantly increasing hardness. It has a remarkable industrial effect. In addition, according to the present invention, while ensuring the wear resistance of the weld heat-affected zone in the same level as the base metal part, it is possible to reduce the preheating work during welding and to omit the post heat treatment, thereby improving the welding efficiency and improving the welding work. There is also an effect that the cost can be reduced.

まず、本発明の鋼板の組成範囲規定理由について説明する。なお、以下の%表示は、いずれも質量%を示す。
C:0.20〜0.50%
Cは、TiCを主体とする炭化物(析出物)を形成させるために必須の元素である。0.20%未満では、TiCを主体とする炭化物(析出物)を有効に形成することができない。一方、0.50%を超える含有は、過剰な固溶Cが残存するため、硬さの上昇とともに溶接性、加工性等が低下する。このため、Cは0.20〜0.50%の範囲に規定した。
First, the reason for defining the composition range of the steel sheet of the present invention will be described. In addition, the following% display shows mass% altogether.
C: 0.20 ~ 0.50%
C is an essential element for forming a carbide (precipitate) mainly composed of TiC. If it is less than 0.20%, carbides (precipitates) mainly composed of TiC cannot be effectively formed. On the other hand, if the content exceeds 0.50%, excessive solute C remains, so that the weldability, workability, and the like decrease as the hardness increases. For this reason, C was specified in the range of 0.20 to 0.50%.

Si:0.1〜1.0%
Siは、脱酸元素として有効な元素であり、その効果を得るためには、少なくとも0.1%以上の含有を必要とする。また、Siは、鋼に固溶して固溶強化により高硬度化に寄与する有効な元素であるが、1.0%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加する等の問題を生じる。このため、Siは0.1〜1.0%の範囲に規定した。 なお、好ましくは0.1〜0.5%である。
Si: 0.1-1.0%
Si is an effective element as a deoxidizing element, and in order to obtain the effect, it needs to contain at least 0.1% or more. In addition, Si is an effective element that contributes to high hardness by solid solution strengthening by solid solution strengthening. However, inclusion exceeding 1.0% decreases ductility and toughness, and further increases the amount of inclusions. Cause problems. For this reason, Si was specified in the range of 0.1 to 1.0%. In addition, Preferably it is 0.1 to 0.5%.

Mn:0.1〜2.0%
Mnは、焼入性を向上させる有効な元素であり、その効果を得るためには、0.1%以上の含有を必要とする。一方、2.0%を超える含有は、溶接性を低下させる。このため、Mnは0.1〜2.0%の範囲に規定した。なお、好ましくは0.5〜1.6%である。
P:0.04%以下
Pは、鋼の延性・靭性を低下させ、鋼板特性に悪影響を及ぼす元素であり、本発明では不可避的不純物として極力低減するのが望ましいが、過度の低減は精錬コストを高騰させる。このような悪影響を及ぼさず、しかも精錬コストの過度の上昇を抑える観点から、Pは0.04%以下に規定した。なお、好ましくは0.02%以下である。
Mn: 0.1-2.0%
Mn is an effective element for improving the hardenability, and in order to obtain the effect, the content needs to be 0.1% or more. On the other hand, if the content exceeds 2.0%, weldability decreases. For this reason, Mn was specified in the range of 0.1 to 2.0%. In addition, Preferably it is 0.5 to 1.6%.
P: 0.04% or less P is an element that lowers the ductility and toughness of steel and adversely affects the properties of the steel sheet. In the present invention, it is desirable to reduce it as an inevitable impurity, but excessive reduction increases the refining cost. Let From the viewpoint of preventing such an adverse effect and suppressing an excessive increase in the refining cost, P is specified to be 0.04% or less. In addition, Preferably it is 0.02% or less.

S:0.04%以下
Sは、熱間延性の低下、常温での延性・靭性の低下をもたらす不純物元素であり、極力低減するのが望ましいが、過度の低減は精錬コストを高騰させる。このため、このような悪影響を及ぼさず、しかも精錬コストの過度の上昇を抑える観点から、Sは0.04%以下に規定した。なお、好ましくは0.02%以下である。
S: 0.04% or less S is an impurity element that causes a decrease in hot ductility and a decrease in ductility and toughness at room temperature, and it is desirable to reduce it as much as possible. However, excessive reduction increases the refining cost. For this reason, from the viewpoint of preventing such an adverse effect and suppressing an excessive increase in the refining cost, S is specified to be 0.04% or less. In addition, Preferably it is 0.02% or less.

Ti:0.2〜1.0%
Tiは、本発明において、C、Moと共に最も重要な元素であり、安定してTiCおよびTiとMoの複合炭化物を生成させるために必須の元素である。このような炭化物を形成させて、耐摩耗性を向上させる観点から、0.2%以上の含有を必要とする。一方、1.0%を超えて含有すると、加工性が低下するとともに、材料コストの高騰に繋がる。このため、Tiは0.2〜1.0%の範囲に規定した。なお、好ましくは0.3〜0.8%である。
Ti: 0.2-1.0%
Ti is the most important element together with C and Mo in the present invention, and is an essential element for stably producing TiC and a composite carbide of Ti and Mo. From the viewpoint of improving the wear resistance by forming such a carbide, the content of 0.2% or more is required. On the other hand, when it contains exceeding 1.0%, workability will fall and it will lead to the rise of material cost. For this reason, Ti was specified in the range of 0.2 to 1.0%. In addition, Preferably it is 0.3 to 0.8%.

Mo:0.2〜2.0%
Moは、本発明において、C、Tiと共に最も重要な元素であり、Tiと共に複合炭化物を形成し、耐摩耗性を向上させる元素である。このような効果を得るためには、0.2%以上の含有を必要とする。一方、2.0%を超える含有は、Moが複合炭化物中に固溶できなくなるため、溶接性が低下するとともに、材料コストの高騰に繋がる。このため、Moは0.2〜2.0%の範囲に規定した。なお、好ましくは0.3〜1.6%である。
Mo: 0.2-2.0%
In the present invention, Mo is the most important element together with C and Ti, and is an element that forms a composite carbide with Ti and improves wear resistance. In order to obtain such an effect, the content of 0.2% or more is required. On the other hand, if the content exceeds 2.0%, Mo cannot be dissolved in the composite carbide, so that the weldability is lowered and the material cost is increased. For this reason, Mo was specified in the range of 0.2 to 2.0%. In addition, Preferably it is 0.3 to 1.6%.

本発明では、MoとTiは、それぞれ上記した範囲内でかつ、次(1)式
Mo/Ti ≧ 1.0 ………(1)
(ここで、Mo、Ti:各元素の含有量(質量%))
を満足するように含有する。Mo/Tiが1.0未満では、図1からも明らかなように、溶接時に高温に加熱されると、Ti炭化物が溶解し、固溶Cが増加して、溶接熱影響部の耐摩耗性が低下するとともに、耐溶接割れ性が低下する。このため、Mo/Ti を 1.0以上に規定した。なお、好ましくは2.0以下である。
In the present invention, Mo and Ti are within the above-mentioned ranges, respectively, and the following formula (1)
Mo / Ti ≧ 1.0 (1)
(Where Mo, Ti: content of each element (mass%))
Is contained so as to satisfy. When Mo / Ti is less than 1.0, as is clear from FIG. 1, when heated to a high temperature during welding, Ti carbide dissolves, solute C increases, and wear resistance of the weld heat affected zone decreases. At the same time, the weld crack resistance decreases. For this reason, Mo / Ti was specified to be 1.0 or more. In addition, Preferably it is 2.0 or less.

B:0.0003〜0.01%
Bは、微量添加で焼入れ性を高める元素であるが、この効果を発揮するためには、0.0003%以上の含有を必要とする。一方、0.01%を超える含有は、溶接性を低下させるとともに、焼入れ性も低下させる。このため、Bは0.0003〜0.01%の範囲に規定した。なお、好ましくは0.0005〜0.004%である。
B: 0.0003-0.01%
B is an element that enhances the hardenability by adding a small amount, but in order to exert this effect, the content of 0.0003% or more is required. On the other hand, the content exceeding 0.01% reduces weldability and hardenability. For this reason, B was specified in the range of 0.0003 to 0.01%. In addition, Preferably it is 0.0005 to 0.004%.

N:0.01%以下
Nは、鋼の延性・靭性を低下させる不純物元素であり、極力低減するのが望ましいが、過度の低減は精錬コストの高騰を招く。このため、このような悪影響を及ぼさず、しかも精錬コストの過度の上昇を抑える観点から、Nは0.01%以下に規定した。なお、好ましくは0.006%以下である。
N: 0.01% or less N is an impurity element that lowers the ductility and toughness of steel, and it is desirable to reduce it as much as possible. However, excessive reduction leads to an increase in refining cost. For this reason, from the viewpoint of preventing such an adverse effect and suppressing an excessive increase in the refining cost, N is specified to be 0.01% or less. In addition, Preferably it is 0.006% or less.

上記した成分が基本成分であるが、必要に応じて、この基本成分に加えてさらに、Cu:0.1〜2.0%、Ni:0.1〜10%、Cr:0.1〜3.0%のうちから選ばれた1種または2種以上、および/または、Al:0.08%以下を含有できる。
Cu、Ni、Crはいずれも、鋼の焼入れ性を高める元素であり、必要に応じて選択して1種または2種以上含有できる。
The above-mentioned components are basic components. In addition to this basic component, if necessary, Cu: 0.1 to 2.0%, Ni: 0.1 to 10%, Cr: 0.1 to 3.0% 1 It can contain a seed | species or 2 or more types and / or Al: 0.08% or less.
Cu, Ni, and Cr are all elements that enhance the hardenability of the steel, and can be selected as necessary and contained in one or more.

Cuは、焼入性を高める元素であり、目的に応じて硬さを制御するために有効に作用する元素であるが、このような効果を得るためには0.1%以上の含有を必要とする。一方、2.0%を超える含有は、熱間加工性を低下させるとともに、材料コストが高騰する。このため、Cuは含有する場合、0.1〜2.0%の範囲に限定することが好ましい。
Niは、焼入性を高めるとともに、低温靭性を向上させる元素であり、このような効果は0.1%以上の含有で顕著となる。一方、10%を超える高価なNiの含有は、材料コストを著しく上昇させる。このため、含有する場合には、Niは0.1〜10%の範囲に限定することが好ましい。
Cu is an element that enhances hardenability, and is an element that works effectively to control the hardness according to the purpose, but in order to obtain such an effect, it needs to contain 0.1% or more . On the other hand, if the content exceeds 2.0%, the hot workability is lowered and the material cost is increased. For this reason, when it contains Cu, it is preferable to limit to 0.1 to 2.0% of range.
Ni is an element that enhances hardenability and improves low-temperature toughness, and such an effect becomes remarkable when the content is 0.1% or more. On the other hand, the content of expensive Ni exceeding 10% significantly increases the material cost. For this reason, when it contains, it is preferable to limit Ni to 0.1 to 10% of range.

Crは、焼入性を高める元素であり、このような効果を得るためには0.1%以上の含有を必要とする。一方、3.0%を超える含有は、溶接性が低下するとともに、材料コストの高騰を招く。このため、含有する場合には、Crは0.1〜3.0%の範囲に限定することが好ましい。
Al:0.08%以下
Alは、脱酸剤として作用するとともに、Nと結合して結晶粒微細化に寄与する元素であり、必要に応じ含有できる。このような効果は、0.01%以上の含有で認められるが、0.08%を超える多量の含有は、鋼の清浄度を低下させる。このため、Alは含有する場合には、0.08%以下に限定することが好ましい。
Cr is an element that enhances hardenability and needs to be contained in an amount of 0.1% or more in order to obtain such an effect. On the other hand, if the content exceeds 3.0%, weldability deteriorates and material costs increase. For this reason, when it contains, it is preferable to limit Cr to 0.1 to 3.0% of range.
Al: 0.08% or less
Al is an element that acts as a deoxidizing agent and combines with N to contribute to refinement of crystal grains, and can be contained as necessary. Such an effect is recognized at a content of 0.01% or more, but a large content exceeding 0.08% reduces the cleanliness of the steel. For this reason, when it contains Al, it is preferable to limit to 0.08% or less.

つぎに、本発明の鋼板の組織限定理由について説明する。
本発明の鋼板は、平均粒径:0.5μm以上のTi炭化物およびTiとMoの複合炭化物を合計で、400個/mm以上含む組織を有する。
本発明の鋼板では、Ti炭化物(TiC)およびTiとMoの複合炭化物を主体とする粗大な析出物を多量に生成させることにより、所望の耐摩耗性を確保している。平均粒径が0.5μm未満の微細な析出物では、顕著な耐摩耗性向上効果を期待できない。このため、Ti炭化物およびTiとMoの複合炭化物を主体とする析出物の大きさを平均粒径で0.5μm以上とした。なお、析出する複合炭化物の不足による耐摩耗性の低下を考慮して、析出物の平均粒径の上限は50μmとすることが好ましい。
Next, the reason for limiting the structure of the steel sheet of the present invention will be described.
The steel sheet of the present invention has a structure containing a total of 400 carbides / mm 2 or more of Ti carbides having an average particle size of 0.5 μm or more and composite carbides of Ti and Mo.
In the steel sheet of the present invention, desired wear resistance is ensured by generating a large amount of coarse precipitates mainly composed of Ti carbide (TiC) and composite carbide of Ti and Mo. Fine precipitates having an average particle size of less than 0.5 μm cannot be expected to have a remarkable effect of improving wear resistance. For this reason, the size of precipitates mainly composed of Ti carbide and composite carbide of Ti and Mo was set to 0.5 μm or more in average particle size. In consideration of a decrease in wear resistance due to a shortage of precipitated composite carbide, the upper limit of the average particle size of the precipitate is preferably 50 μm.

本発明の鋼板では、平均粒径が0.5μm以上の、Ti炭化物およびTiとMoの複合炭化物を、合計で、400個/mm以上含む。平均粒径が0.5μm以上の粗大なTi炭化物およびTiとMoの複合炭化物を主体とする析出物の密度が400個/mm未満では、耐摩耗性向上効果がほとんど期待できない。このため、平均粒径が0.5μm以上の、Ti炭化物およびTiとMoの複合炭化物を、合計で、400個/mm以上に規定した。なお、上限は特に規定されない。 The steel sheet of the present invention contains a total of 400 carbides / mm 2 or more of Ti carbide and composite carbide of Ti and Mo having an average particle size of 0.5 μm or more. When the density of coarse precipitates mainly composed of coarse Ti carbide having an average particle size of 0.5 μm or more and composite carbide of Ti and Mo is less than 400 pieces / mm 2 , the effect of improving wear resistance can hardly be expected. For this reason, the total number of Ti carbides and composite carbides of Ti and Mo having an average particle size of 0.5 μm or more was defined as 400 pieces / mm 2 or more in total. There is no particular upper limit.

なお、析出物(Ti炭化物およびTiとMoの複合炭化物)の大きさおよび個数の測定は、光学顕微鏡または走査型電子顕微鏡(倍率:400倍以上)を用いて、一定の面積部分の組織を観察し(5視野以上)、そこで観察される各析出物の大きさおよび単位面積当りの個数を画像解析等の手法を用いて測定するものとする。また、析出物のうち、TiCまたはTiとMoの複合炭化物の識別は、分析装置を搭載した走査型電子顕微鏡を用いて行うことが好ましい。   In addition, the size and number of precipitates (Ti carbide and Ti and Mo composite carbide) are measured using an optical microscope or a scanning electron microscope (magnification: 400 times or more). (5 fields of view or more), and the size of each precipitate observed there and the number per unit area are measured using a technique such as image analysis. Moreover, it is preferable to perform identification of the composite carbide | carbonized_material of TiC or Ti and Mo among precipitates using the scanning electron microscope carrying an analyzer.

なお、ここでいう「平均粒径」は、各析出物の面積を画像解析等の方法で測定し、測定された各面積から円相当直径を算出して各析出物の直径とし、得られた各析出物の直径を算術平均して得た平均値をその鋼板の析出物の平均粒径とした。なお、平均粒径の算出には、少なくとも100個以上の析出物について測定するものとする。
なお、上記した炭化物が析出する組織の基地組織は、基本的にマルテンサイト相を主体とする組織とする。基地組織がマルテンサイト相を主体とする組織の場合には、炭化物の密度や硬度を高めることにより、耐摩耗性の向上効果を効率的に引き出すことができる。一方、基地組織がマルテンサイト相を主体とする組織でない場合は、炭化物の硬度や密度を高めていくことにより、ある程度までは耐摩耗性が向上するが、耐摩耗性向上効果が飽和し、炭化物の硬度や密度の増加に見合う効果が期待できなくなる。
The “average particle size” here is obtained by measuring the area of each precipitate by a method such as image analysis, and calculating the equivalent circle diameter from each measured area as the diameter of each precipitate. The average value obtained by arithmetically averaging the diameters of the respective precipitates was defined as the average particle size of the precipitates on the steel sheet. In calculating the average particle size, at least 100 precipitates are measured.
In addition, the base structure of the structure | tissue which the above-mentioned carbide precipitates shall be a structure | tissue which has a martensite phase as a main component. In the case where the base structure is a structure mainly composed of a martensite phase, the effect of improving the wear resistance can be efficiently brought out by increasing the density and hardness of the carbide. On the other hand, when the base structure is not a structure mainly composed of martensite phase, by increasing the hardness and density of the carbide, the wear resistance is improved to some extent, but the effect of improving the wear resistance is saturated, and the carbide The effect commensurate with the increase in the hardness and density of can not be expected.

本発明でいう「マルテンサイト相を主体とする組織」とは、マルテンサイト相の組織分率が70%以上である組織をいうものとする。残部は、マルテンサイト相以外の、ベイナイト相、パーライト相、フェライト相、残留オーステナイト相、あるいはそれらの混合相としてもよい。
基地組織を、マルテンサイト相を主体とする組織とするためには、基地組織の固溶C量を、0.03質量%超とすることが好ましい。固溶C量が0.03質量%以下では、通常用いられているいかなる工業的熱処理を施しても、基地組織はフェライト相を主体とする組織となる。
The “structure mainly composed of martensite phase” in the present invention refers to a structure having a martensite phase structure fraction of 70% or more. The balance may be a bainite phase, a pearlite phase, a ferrite phase, a retained austenite phase, or a mixed phase thereof other than the martensite phase.
In order to make the base structure a structure mainly composed of the martensite phase, it is preferable that the solid solution C amount of the base structure is more than 0.03% by mass. When the amount of solute C is 0.03% by mass or less, the base structure becomes a structure mainly composed of a ferrite phase even if any commonly used industrial heat treatment is performed.

つぎに、本発明の鋼板の好ましい製造方法について説明する。
転炉、電気炉または真空溶解炉等の公知の溶製方法で、上記した成分範囲内の組成に調整した溶鋼を、公知の連続鋳造法または造塊法を用いて所望の寸法形状の鋼素材(スラブまたはインゴット)とすることが好ましい。
なお、連続鋳造法を用いた場合、厚み200〜400mmの鋳片表面の1500〜1200℃温度域における冷却速度を0.2〜10℃/sの範囲となるように冷却を調整することが好ましい。これにより、析出物(Ti炭化物およびTiとMoの複合炭化物)を所望の大きさおよび個数、すなわち平均粒径が0.5μm以上好ましくは50μm以下の、Ti炭化物およびTiとMoの複合炭化物を、合計で、400個/mm以上、に調整することが可能となる。なお、造塊法を用いる場合にも、インゴットの大きさおよび冷却条件を、析出物(Ti炭化物およびTiとMoの複合炭化物)が所望の大きさおよび個数になるように、調整する必要があることはいうまでもない。
Below, the preferable manufacturing method of the steel plate of this invention is demonstrated.
A steel material having a desired size and shape is obtained by using a known continuous casting method or ingot forming method with a molten steel adjusted to a composition within the above-described component range by a known melting method such as a converter, electric furnace or vacuum melting furnace. (Slab or ingot) is preferable.
When the continuous casting method is used, it is preferable to adjust the cooling so that the cooling rate in the temperature range of 1500 to 1200 ° C. on the surface of the slab having a thickness of 200 to 400 mm is in the range of 0.2 to 10 ° C./s. As a result, the precipitates (Ti carbide and composite carbide of Ti and Mo) have a desired size and number, that is, the total of Ti carbide and composite carbide of Ti and Mo having an average particle size of 0.5 μm or more, preferably 50 μm or less. Therefore, it is possible to adjust to 400 pieces / mm 2 or more. Even in the case of using the ingot-making method, it is necessary to adjust the size and cooling conditions of the ingot so that the precipitates (Ti carbide and composite carbide of Ti and Mo) have the desired size and number. Needless to say.

ついで、鋼素材を、冷却することなく直接、または再加熱したのち、熱間圧延し、所望の板厚の鋼板とする。なお、熱間圧延の条件は、所望の寸法形状の鋼板とすることができればよく、とくに限定されない。熱間圧延後、鋼板は室温付近まで冷却される。冷却後、900℃以上の温度まで再加熱されたのち、焼入れされて、製品(耐摩耗鋼板)とすることが好ましい。焼入れの冷却は、水冷とし、Ms点以下まで冷却することが好ましい。なお、必要に応じて、焼入れ後700℃以下の温度域で焼戻す焼戻処理を施してもよい。   Next, the steel material is directly or reheated without cooling, and then hot-rolled to obtain a steel plate having a desired thickness. The hot rolling conditions are not particularly limited as long as the steel sheet can have a desired size and shape. After hot rolling, the steel sheet is cooled to near room temperature. After cooling, it is preferably reheated to a temperature of 900 ° C. or higher and then quenched to obtain a product (abrasion resistant steel plate). The quenching cooling is preferably water cooling and cooling to the Ms point or lower. If necessary, a tempering treatment may be performed after tempering in a temperature range of 700 ° C. or lower.

以下、本発明をさらに実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be further described in detail based on examples.

表1に示す組成の溶湯を、真空溶解炉で溶製し、小型鋼塊(50kgf鋼塊)とした。これら小型鋼塊を、熱間圧延により板厚15mmの鋼板とした。なお、熱間圧延後は空冷とした。ついでこれら鋼板を、900℃に再加熱したのち、200℃以下まで冷却する焼入れを施した。得られた鋼板について、組織観察、耐摩耗性、溶接割れ性、さらに基地組織の固溶C量について調査した。なお、調査方法はつぎのとおりである。   The molten metal having the composition shown in Table 1 was melted in a vacuum melting furnace to obtain a small steel ingot (50 kgf steel ingot). These small steel ingots were made into steel plates having a thickness of 15 mm by hot rolling. In addition, it was set as air cooling after hot rolling. These steel plates were then reheated to 900 ° C. and then quenched to 200 ° C. or lower. About the obtained steel plate, structure | tissue observation, abrasion resistance, weld cracking property, and also the solid solution C amount of the base structure were investigated. The survey method is as follows.

(1)組織観察
得られた鋼板から組織観察用試験片を採取し、圧延方向に直交する断面全体について、研磨し、ナイタール腐食して、分析装置付走査型電子顕微鏡(倍率:1000倍)を用いて、組織を撮像した。拡大された100mm×100mmの視野(25視野)について、画像解析装置を用いて、Ti炭化物(TiC)およびTi、Mo複合炭化物の大きさ、個数を測定した。炭化物の大きさは、各炭化物の面積を測定し、同面積から円相当直径を算出し、得られた円相当直径を算術平均し、得られた平均値をその鋼板の平均粒径とした。また、得られた炭化物(Ti炭化物およびTiとMoの複合炭化物)のうち、平均粒径が0.5μm以上の炭化物について、その個数を測定し、1mm当りの個数に換算した。
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained steel plate, and the entire cross section perpendicular to the rolling direction is polished and subjected to nital corrosion, and a scanning electron microscope with an analyzer (magnification: 1000 times) is used. Used to image the tissue. For the enlarged 100 mm × 100 mm field of view (25 fields of view), the size and number of Ti carbide (TiC) and Ti, Mo composite carbide were measured using an image analyzer. As for the size of the carbide, the area of each carbide was measured, the equivalent circle diameter was calculated from the same area, the obtained equivalent circle diameter was arithmetically averaged, and the obtained average value was taken as the average particle diameter of the steel sheet. Further, among the obtained carbides (Ti carbide and composite carbide of Ti and Mo), the number of carbides having an average particle diameter of 0.5 μm or more was measured and converted to the number per 1 mm 2 .

なお、同時に、基地組織の種類、およびその組織分率を調査した。なお、組織分率は、撮像した範囲において、画像解析装置を用いて評価した。なお、マルテンサイト相の組織分率は、マルテンサイトラス組織の全体に占める割合を、画像解析装置を用いて面積率で評価した。
(2)耐摩耗性
得られた鋼板から試験片(大きさ:t×25×75mm)を採取し、ASTM G−65に準拠し、摩耗砂としてSiO90%以上の砂を使用して、摩耗試験を実施した。なお、軟鋼(SS400)板についても同様に試験した。試験は母材部、および溶接熱影響部について行った。
At the same time, the types of base organizations and their fractions were investigated. Note that the tissue fraction was evaluated using an image analysis device in the imaged range. In addition, the structure fraction of the martensite phase evaluated the ratio which occupies for the whole martensitic structure by the area ratio using the image analyzer.
(2) Abrasion resistance A test piece (size: t × 25 × 75mm) was taken from the obtained steel plate, and in accordance with ASTM G-65, using sand of SiO 2 90% or more as wear sand, A wear test was performed. A mild steel (SS400) plate was also tested in the same manner. The test was conducted on the base metal part and the weld heat affected zone.

各鋼板の母材部の耐摩耗性は、軟鋼(SS400)板の摩耗量を基準(1.0)として耐摩耗比で評価した。耐摩耗比が大きいほど耐摩耗性に優れていることを意味する。
溶接熱影響部の耐摩耗性は、各鋼板から採取した試験片に、溶接材料としてビッカース硬さ600クラスの硬化肉盛溶接を行い、肉盛溶接した部分を研削して、母材部と同様の試験を実施し、評価した。なお、溶接熱影響部の耐摩耗性は、摩耗試験後の試験片の外観を観察し、母材部の試験片と比較することにより評価した。摩耗試験後の試験片外観が溶接熱影響部の優先的な摩耗が見られず母材部と同等の損傷である場合を○、溶接熱影響部の優先的な摩耗が見られ母材部より損傷が激しい場合を×とした。
The wear resistance of the base material portion of each steel plate was evaluated by the wear resistance ratio with the wear amount of the mild steel (SS400) plate as the standard (1.0). A larger wear resistance ratio means better wear resistance.
The wear resistance of the weld heat-affected zone is the same as that of the base metal, by performing hard build-up welding with a Vickers hardness of 600 class as the welding material on the test piece taken from each steel plate and grinding the build-up weld. The tests were conducted and evaluated. The wear resistance of the weld heat affected zone was evaluated by observing the appearance of the test piece after the wear test and comparing it with the test piece of the base metal part. ○ When the appearance of the specimen after the wear test shows no preferential wear in the weld heat affected zone and the damage is equivalent to that of the base metal, ○ When the damage was severe, it was set as x.

(3)溶接割れ性
得られた各鋼板から試験片を採取し、JIS Z 3158の規定に準拠して、y形溶接割れ試験を実施し、割れ停止温度を求め、溶接割れ性を評価した。
(4)基地組織の固溶C量
得られた各鋼板から試験片を採取し、電解抽出法により炭化物を抽出して、炭化物となっているC量を測定し、ついでtotalC量から、炭化物となっているC量を差引き、基地組織中の固溶C量とした。
(3) Weld cracking property Test specimens were collected from each of the obtained steel plates, and a y-type weld cracking test was performed in accordance with the provisions of JIS Z 3158 to determine the crack stop temperature and the weld cracking property was evaluated.
(4) Solid solution C amount of base structure Collect specimens from each steel plate obtained, extract carbides by electrolytic extraction, measure the amount of carbon that has become carbides, and from the total C amount, The amount of C is subtracted to obtain the amount of dissolved C in the base tissue.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 2007197810
Figure 2007197810

Figure 2007197810
Figure 2007197810

本発明例はいずれも、マルテンサイトラス相の占める割合が面積率で70%以上であるマルテンサイト相を主体とする基地組織と、0.03質量%超えの固溶C量を有し、母材部が軟鋼(SS400)に比べて摩耗比で8以上と耐摩耗性に優れ、また溶接熱影響部も母材部と同等に耐摩耗性に優れている。また、本発明例では、割れ停止温度は200℃以下と低く、耐溶接割れ性にも優れている。一方、本発明の範囲を外れる比較例では、母材部の耐摩耗性が低下しているか、溶接熱影響部の耐摩耗性が母材部に比べて低下しているか、あるいは200℃予熱でも割れを阻止できず、耐溶接割れ性が低くなっているかしている。   Each of the inventive examples has a matrix structure mainly composed of a martensite phase in which the ratio of the martensite lath phase is 70% or more in area ratio, a solid solution C amount exceeding 0.03% by mass, and the base material part is Compared to mild steel (SS400), the wear ratio is 8 or more and excellent in wear resistance, and the weld heat affected zone is as excellent in wear resistance as the base metal. In the example of the present invention, the crack stop temperature is as low as 200 ° C. or less, and the weld crack resistance is also excellent. On the other hand, in comparative examples that are outside the scope of the present invention, the wear resistance of the base metal part is reduced, the wear resistance of the weld heat affected zone is lower than that of the base material part, or even at 200 ° C. preheating. The crack cannot be prevented and the weld crack resistance is low.

Mo含有量が本発明範囲を低く外れた比較例(鋼板No.8)は、Mo/Tiが1.0未満であるため、また、Mo含有量は本発明範囲であるが、Mo/Tiが1.0未満である比較例(鋼板No.7)は、溶接熱影響部の耐摩耗性が母材部に比べ低下している。また、比較例(鋼板No.7,8)は、割れ停止温度も200℃と高く、耐溶接割れ性が低下している。また、Mo/Tiが本発明範囲を外れる比較例(鋼板No.9)は、溶接熱影響部の耐摩耗性が母材部に比べ低下し、また、200℃予熱でも割れを阻止できず、耐溶接割れ性が低下している。また、Mo量あるいはC量が本発明の範囲を外れる比較例(鋼板No.10,11)は、200℃予熱でも割れを阻止できず、耐溶接割れ性が低下している。   The comparative example (steel plate No. 8) in which the Mo content deviated from the scope of the present invention was low because Mo / Ti was less than 1.0, and the Mo content was within the scope of the present invention, but Mo / Ti was less than 1.0. In the comparative example (steel plate No. 7), the wear resistance of the weld heat affected zone is lower than that of the base metal. Moreover, the comparative example (steel plates Nos. 7 and 8) also has a high cracking stop temperature of 200 ° C., and the weld crack resistance is low. In addition, in the comparative example (steel plate No. 9) in which Mo / Ti is out of the scope of the present invention, the wear resistance of the weld heat-affected zone is lower than that of the base material, and cracking cannot be prevented even at 200 ° C. preheating. Weld crack resistance is reduced. Further, the comparative examples (steel plates No. 10 and 11) in which the Mo amount or C amount is outside the scope of the present invention cannot prevent cracking even at 200 ° C. preheating, and the weld crack resistance is reduced.

固溶C量とMo/Tiとの関係を示すグラフである。It is a graph which shows the relationship between the amount of solute C and Mo / Ti.

Claims (3)

質量%で、
C:0.20〜0.50%、 Si:0.1〜1.0%、
Mn:0.1〜2.0%、 P:0.04%以下、
S:0.04%以下、 Ti:0.2〜1.0%、
Mo:0.2〜2.0%、 B:0.0003〜0.01%、
N:0.01%以下
を含み、かつMoとTiを下記(1)式を満足するように含有し、残部Feおよび不可避不純物からなる組成と、平均粒径:0.5μm以上のTi炭化物およびTiとMoの複合炭化物を合計で、400個/mm以上含む組織を有することを特徴とする耐摩耗鋼板。

Mo/Ti ≧ 1.0 ………(1)
ここで、Mo、Ti:各元素の含有量(質量%)
% By mass
C: 0.20 to 0.50%, Si: 0.1 to 1.0%,
Mn: 0.1 to 2.0%, P: 0.04% or less,
S: 0.04% or less, Ti: 0.2-1.0%,
Mo: 0.2-2.0%, B: 0.0003-0.01%,
N: containing 0.01% or less and containing Mo and Ti so as to satisfy the following formula (1), the balance consisting of Fe and unavoidable impurities, average particle size: Ti carbide of 0.5 μm or more, and Ti and Mo A wear-resistant steel sheet having a structure containing a total of 400 composite carbides of 400 pieces / mm 2 or more.
Record
Mo / Ti ≧ 1.0 (1)
Here, Mo, Ti: Content of each element (mass%)
前記組成に加えてさらに、質量%で、Cu:0.1〜2.0%、Ni:0.1〜10%、Cr:0.1〜3.0%のうちから選ばれた1種または2種以上を含む組成とすることを特徴とする請求項1に記載の耐摩耗鋼板。   In addition to the above composition, the composition further includes one or more selected from Cu: 0.1 to 2.0%, Ni: 0.1 to 10%, and Cr: 0.1 to 3.0% by mass%. 2. The wear-resistant steel plate according to claim 1, wherein 前記組成に加えてさらに、質量%で、Al:0.08%以下を含む組成とすることを特徴とする請求項1または2に記載の耐摩耗鋼板。   The wear-resistant steel sheet according to claim 1 or 2, wherein in addition to the composition, the composition further includes, by mass%, Al: 0.08% or less.
JP2006040454A 2005-12-28 2006-02-17 Wear-resistant steel plate Active JP4894288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040454A JP4894288B2 (en) 2005-12-28 2006-02-17 Wear-resistant steel plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005379389 2005-12-28
JP2005379389 2005-12-28
JP2006040454A JP4894288B2 (en) 2005-12-28 2006-02-17 Wear-resistant steel plate

Publications (2)

Publication Number Publication Date
JP2007197810A true JP2007197810A (en) 2007-08-09
JP4894288B2 JP4894288B2 (en) 2012-03-14

Family

ID=38452694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040454A Active JP4894288B2 (en) 2005-12-28 2006-02-17 Wear-resistant steel plate

Country Status (1)

Country Link
JP (1) JP4894288B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104081A (en) * 2011-11-11 2013-05-30 Kobe Steel Ltd High strength steel plate of excellent delayed fracture resistance, and method of producing the same
CN106029925A (en) * 2014-02-24 2016-10-12 新日铁住金株式会社 Steel material for induction hardening
JP6119933B1 (en) * 2016-04-19 2017-04-26 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
CN107475619A (en) * 2017-07-14 2017-12-15 中煤张家口煤矿机械有限责任公司 A kind of enhanced sorbite mining ledge abrasion resistant cast steel of ultra-hard particles and its manufacture method
WO2018061779A1 (en) * 2016-09-30 2018-04-05 株式会社神戸製鋼所 Steel parts, production method therefor, and steel sheet for steel parts
EP3406749A4 (en) * 2016-09-15 2019-06-26 Nippon Steel & Sumitomo Metal Corporation Wear resistant steel
CN110157983A (en) * 2019-05-28 2019-08-23 山东钢铁股份有限公司 A kind of uniform endogenous TiC abrasion-resistant stee of particle and preparation method thereof
US11035017B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230042371A (en) 2020-09-10 2023-03-28 제이에프이 스틸 가부시키가이샤 Welded joints and manufacturing methods of welded joints

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239591A (en) * 1992-02-27 1993-09-17 Nkk Corp Steel excellent in wear resistance
JPH06256896A (en) * 1993-03-09 1994-09-13 Nkk Corp Wear-resistant steel excellent in surface property and its production
US5393358A (en) * 1990-12-03 1995-02-28 Nkk Corporation Method for producing abrasion-resistant steel having excellent surface property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393358A (en) * 1990-12-03 1995-02-28 Nkk Corporation Method for producing abrasion-resistant steel having excellent surface property
JPH05239591A (en) * 1992-02-27 1993-09-17 Nkk Corp Steel excellent in wear resistance
JPH06256896A (en) * 1993-03-09 1994-09-13 Nkk Corp Wear-resistant steel excellent in surface property and its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104081A (en) * 2011-11-11 2013-05-30 Kobe Steel Ltd High strength steel plate of excellent delayed fracture resistance, and method of producing the same
US10793937B2 (en) 2014-02-24 2020-10-06 Nippon Steel Corporation Steel for induction hardening
CN106029925A (en) * 2014-02-24 2016-10-12 新日铁住金株式会社 Steel material for induction hardening
JP6119933B1 (en) * 2016-04-19 2017-04-26 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
WO2017183057A1 (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
US11118240B2 (en) 2016-04-19 2021-09-14 Jfe Steel Corporaton Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11035017B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
EP3446808A4 (en) * 2016-04-19 2019-02-27 JFE Steel Corporation Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
EP3406749A4 (en) * 2016-09-15 2019-06-26 Nippon Steel & Sumitomo Metal Corporation Wear resistant steel
JP2018059190A (en) * 2016-09-30 2018-04-12 株式会社神戸製鋼所 Steel component, manufacturing method thereof, and steel sheet for steel component
WO2018061779A1 (en) * 2016-09-30 2018-04-05 株式会社神戸製鋼所 Steel parts, production method therefor, and steel sheet for steel parts
CN107475619A (en) * 2017-07-14 2017-12-15 中煤张家口煤矿机械有限责任公司 A kind of enhanced sorbite mining ledge abrasion resistant cast steel of ultra-hard particles and its manufacture method
CN110157983A (en) * 2019-05-28 2019-08-23 山东钢铁股份有限公司 A kind of uniform endogenous TiC abrasion-resistant stee of particle and preparation method thereof

Also Published As

Publication number Publication date
JP4894288B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP6102072B2 (en) Abrasion resistant steel plate with excellent stress corrosion cracking resistance and method for producing the same
JP5553081B2 (en) Abrasion resistant steel plate with excellent stress corrosion cracking resistance and method for producing the same
JP5648769B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JP4894288B2 (en) Wear-resistant steel plate
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP2019131892A (en) Abrasion resistant steel sheet, and manufacturing method of abrasion resistant steel sheet
JP2009007665A (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
JP2008169443A (en) Wear-resistant steel sheet superior in workability and manufacturing method therefor
JP2011179122A (en) Wear-resistant steel sheet excellent in low temperature toughness
JP6245220B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP6217671B2 (en) Thick steel plate with excellent wear resistance in high temperature environments
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP6350340B2 (en) Abrasion-resistant steel plate and method for producing the same
JP5017937B2 (en) Wear-resistant steel plate with excellent bending workability
JP4894297B2 (en) Wear-resistant steel plate
JP4894296B2 (en) Wear-resistant steel plate
JP2019127633A (en) Clad steel plate and method for producing the same
JP2016079478A (en) Abrasion resistant steel sheet excellent in flexure processability and impact abrasion resistance and manufacturing method therefor
JP2007262429A (en) Wear-resistant steel sheet excellent in bendability
JP5794077B2 (en) Steel for machine structure excellent in strength and toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250