JP2007196837A - Different phase mixture contact detecting relay device for ac feeding circuit - Google Patents

Different phase mixture contact detecting relay device for ac feeding circuit Download PDF

Info

Publication number
JP2007196837A
JP2007196837A JP2006017302A JP2006017302A JP2007196837A JP 2007196837 A JP2007196837 A JP 2007196837A JP 2006017302 A JP2006017302 A JP 2006017302A JP 2006017302 A JP2006017302 A JP 2006017302A JP 2007196837 A JP2007196837 A JP 2007196837A
Authority
JP
Japan
Prior art keywords
current
voltage
power supply
phase
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017302A
Other languages
Japanese (ja)
Inventor
Takashi Kawamoto
孝志 川本
Seiichi Tanada
清一 棚田
Takahiro Watanabe
貴啓 渡辺
Osamu Kamimura
修 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006017302A priority Critical patent/JP2007196837A/en
Publication of JP2007196837A publication Critical patent/JP2007196837A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a different phase power supply mixture contact accident with high speed without unnecessary operation due to voltage drop or voltage loss such as a short circuit/ground fault accident occurring out of the protective section of a high order power supply side or a low order load side of an AC feeding circuit. <P>SOLUTION: The different phase power supply mixture contact detecting relay device takes a sample analog wave form of a plurality of input voltage and input current at a constant period and converts it to a digital value, obtains respective voltage between four sets of different phase power supply from the time series sampling data of a plurality of input voltage, obtains respective bus current value of the different power supply from the time-series sampling data of a plurality of input current, determines the mixture contact accident from the comparison result with a determination value, and carries out a protective shut-off of the AC feeding circuit, when the mixture contact accident is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、三相を二相に変換して直交位相の二組の単相電源を取り出し、交流き電回路に異相の二組の単相電源を供給するき電変圧器における異相混触を検出する交流き電回路用異相混触検出継電装置に関する。   This invention converts three phases into two phases, takes out two sets of quadrature single-phase power supplies, and detects cross-phase contact in a feed transformer that supplies two sets of different-phase single-phase power supplies to an AC feeder circuit The present invention relates to a heterogeneous contact detection relay device for an AC feeding circuit.

交流き電負荷は単相負荷であり、交流き電系統は単相負荷を三相電源側でバランスさせるために、三相−二相変換変圧器を用いて直交位相二組の単相電源で構成される。一方、交流き電回路の異相混触に対する保護は、直交位相二組の単相電源相互間の混触事故を検出し電源系統を開放することで保護するようにしている。従来の異相混触故障検出継電装置を図9〜図11を参照して説明する。   The AC feeding load is a single-phase load, and the AC feeding system uses a three-phase to two-phase conversion transformer to provide two sets of quadrature phase single-phase power supplies to balance the single-phase load on the three-phase power supply side. Composed. On the other hand, the protection against cross-phase contact in the AC feeder circuit is made by detecting a contact accident between two sets of single-phase power supplies in quadrature phase and opening the power supply system. A conventional heterogeneous mixed fault detection relay device will be described with reference to FIGS.

図9は交流き電回路保護系統の系統図である。交流き電回路には異相混触検出保護継電器1が設けられている。需要家の電力は電力会社の電源設備2から供給され三相電源で受電する。受電三相電源は需要家のき電変圧器3で直交する単相二組のM座電源、T座電源に変換され負荷に供給される。二組の単相電源M座、T座の電圧はそれぞれ2台の計器用変圧器4、5で中点分圧された二次電圧(Vm1、Vm2、Vt1、Vt2)が異相混触検出継電装置1に入力される。 FIG. 9 is a system diagram of an AC feeder circuit protection system. The AC feeder circuit is provided with a heterogeneous mixture detection protection relay 1. The customer's power is supplied from the power supply facility 2 of the power company and is received by the three-phase power source. The received three-phase power is converted into two single-phase M-set power sources and T-seat power sources orthogonal to each other by the customer's feeding transformer 3 and supplied to the load. The voltages of the two sets of single-phase power supply M-seat and T-seat are the secondary voltages (V m1 , V m2 , V t1 , V t2 ) divided by the middle point by two instrument transformers 4 and 5, respectively. It is input to the mixed contact detection relay device 1.

図10は受電の三相電圧と二組の単相変換電圧との定常電圧ベクトル図である。き電変圧器一次の受電三相電圧ベクトルa、b、cはそれぞれ120°位相の三相平衡電圧Vである。変圧器二次のM座の単相電圧は三相電源b−c相と同相で電圧値Vである、また、変圧器二次T座の単相電圧は三相電源a相と同相で電圧値Vである。 FIG. 10 is a steady voltage vector diagram of the received three-phase voltage and two sets of single-phase converted voltages. The receiving transformer primary power receiving three-phase voltage vectors a, b, and c are three-phase balanced voltages V each having a phase of 120 °. Single-phase voltage of transformer secondary M-seat is in phase with three-phase power supply b-c phase and voltage value V S , and single-phase voltage of transformer secondary T-seat is in phase with three-phase power supply a phase This is the voltage value V S.

二組の単相電源電圧Vは、図9で示した計器用変圧器4、5で中点分圧された二次電圧(Vm1、Vm2、Vt1、Vt2)で異相混触検出継電装置1に入力している。M座電圧(Vm1、Vm2)とT座電圧(Vt1、Vt2)は互いに値が同等で直交しており、定常時の異相間電圧(V1、V2、V3、V4)は、M座、T座二組の直交する単相電源V)を対角線とする正四辺形の外周斜辺電圧でありその値はそれぞれ、V/√2である。 Two sets of single-phase power supply voltages V S are detected by the secondary voltage (V m1 , V m2 , V t1 , V t2 ) divided by the midpoint of the instrument transformers 4 and 5 shown in FIG. Input to the relay device 1. The M seat voltage (V m1 , V m2 ) and the T seat voltage (V t1 , V t2 ) have the same value and are orthogonal to each other. The steady-state voltages (V 1 , V 2 , V 3 , V 4) ) Is a regular quadrilateral outer peripheral hypotenuse voltage having two diagonal M- and T-seat single-phase power sources V S ), and the values thereof are V S / √2, respectively.

図11は従来の異相混触検出継電装置のブロック構成図である。図11において、入力電圧(Vm1、Vm2、Vt1、Vt2)は図9で示した保護系統図の計器用変圧器4、5から入力される二組の単相電源電圧である。これら入力電圧は入力変換手段61で予め定られた値に変換されアナログフィルタを通過した後、入力サンプリング手段62で系統周波数の任意の電気角速度周期毎にサンプルホールドされる。このサンプルホールド値は毎周期ごとにA/D変換手段63でデジタル値に変換され、デジタル値変換されたそれぞれの入力電圧データはデータ格納手段64で任意サンプリング回数分の時系列データとして記憶され、毎周期毎に記録更新されている。振幅値演算手段65はデータ格納手段に記憶されている入力電圧(Vm1、Vm2、Vt1、Vt2)の同時系列サンプリングデータから異相電源相互間のサンプリング値差(ΔV1、ΔV2、ΔV3、ΔV4)時系列データを求め、それぞれのサンプリング値差(ΔV1、ΔV2、ΔV3、ΔV4)時系列データを用いた振幅値演算を実行して異相間電圧(V1、V2、V3、V4)を求める。異相間電圧(V1、V2、V3、V4)の振幅値演算を行うためのそれぞれのサンプリング値差(ΔV1、ΔV2、ΔV3、ΔV4)時系列データは、それぞれ入力電圧(Vm1、Vm2、Vt1、Vt2)の同一周期サンプリングデータを用いた[数1]で毎周期毎に求め、求めたサンプリング値差(ΔV1、ΔV2、ΔV3、ΔV4)データを任意サンプリング回数分の時系列データとして記録更新する。 FIG. 11 is a block diagram of a conventional heterogeneous mixture detection relay device. In FIG. 11, input voltages (V m1 , V m2 , V t1 , V t2 ) are two sets of single-phase power supply voltages input from the instrument transformers 4, 5 in the protection system diagram shown in FIG. 9. These input voltages are converted into a predetermined value by the input conversion means 61, pass through an analog filter, and then sampled and held by the input sampling means 62 for every electrical angular velocity period of the system frequency. This sample hold value is converted into a digital value by the A / D conversion means 63 every period, and each input voltage data converted into the digital value is stored as time series data for an arbitrary number of sampling times in the data storage means 64, Records are updated every cycle. The amplitude value calculating means 65 calculates the sampling value difference (ΔV 1 , ΔV 2 , ... ) Between the simultaneous phase sampling data of the input voltages (V m1 , V m2 , V t1 , V t2 ) stored in the data storage means. ΔV 3 , ΔV 4 ) Time series data is obtained, and the amplitude value calculation using each sampling value difference (ΔV 1 , ΔV 2 , ΔV 3 , ΔV 4 ) time series data is performed, and the interphase voltage (V 1 , V 2 , V 3 , V 4 ) are obtained. Each sampling value difference (ΔV 1 , ΔV 2 , ΔV 3 , ΔV 4 ) time series data for calculating amplitude value of interphase voltage (V 1 , V 2 , V 3 , V 4 ) is the input voltage ( Equation 1 ) using the same period sampling data of (V m1 , V m2 , V t1 , V t2 ), obtained for each period, and obtained sampling value differences (ΔV 1 , ΔV 2 , ΔV 3 , ΔV 4 ) The data is recorded and updated as time-series data for an arbitrary number of samplings.

[数1]
サンプリング差ΔV1=サンプリング値Vm1−サンプリング値Vt1
サンプリング差ΔV2=サンプリング値Vt1+サンプリング値Vm2
サンプリング差ΔV3=サンプリング値Vt2−サンプリング値Vm2
サンプリング差ΔV4=−(サンプリング値Vm1+サンプリング値Vt2)
比較判定手段66は、振幅値演算手段65で求めたそれぞれの異相間電圧(V1、V2、V3、V4)と、予め定めて記憶されている動作検出値Vとの比較判定を実行し、異相間電圧(V1、V2、V3、V4)の何れか若しくは複数が動作検出値(V)以下の場合に故障検知を出力処理手段67へ通知する。出力処理手段67は、比較判定手段66が故障検知の場合に異相混触検出継電装置の動作信号を装置外部に出力する。
[Equation 1]
Sampling difference ΔV 1 = Sampling value V m1 − Sampling value V t1
Sampling difference ΔV 2 = sampling value V t1 + sampling value V m2
Sampling difference ΔV 3 = Sampling value V t2 − Sampling value V m2
Sampling difference ΔV 4 = − (sampling value V m1 + sampling value V t2 )
The comparison / determination unit 66 performs comparison / determination between the respective out-of-phase voltages (V 1 , V 2 , V 3 , V 4 ) obtained by the amplitude value calculation unit 65 and the operation detection value V K stored in advance. When any or a plurality of inter-phase voltages (V 1 , V 2 , V 3 , V 4 ) is equal to or lower than the operation detection value (V K ), the failure detection is notified to the output processing means 67. The output processing unit 67 outputs an operation signal of the heterogeneous mixture detection relay device to the outside of the device when the comparison determination unit 66 detects a failure.

ここで、単相電源の中点分圧された二次電圧ベクトルの大きさをVA1、VA2、VB1、VB2、隣接の二次電圧VA1、VB1、VA2、VB2がなす角をそれぞれφ1、φ2、φ3、φ4としたとき、き電電圧ベクトルにて形成される四辺形の二つの対角線で区分される四つの面積S1、S2、S3、S4、対辺面積差比率S%1、S%2およびその比率差ΔS%を求め、比率差ΔS%が予め設定された所定値以上であるときは異相混触が発生したと判定するようにしたものがある(特許文献1参照)。   Here, VA1, VA2, VB1, VB2 are the magnitudes of the secondary voltage vectors divided by the middle point of the single-phase power supply, and the angles formed by the adjacent secondary voltages VA1, VB1, VA2, VB2 are φ1, φ2, When φ3 and φ4, the four areas S1, S2, S3, S4 divided by the two diagonals of the quadrilateral formed by the feeding voltage vector, the opposite-side area difference ratios S% 1, S% 2, and their A ratio difference ΔS% is obtained, and when the ratio difference ΔS% is equal to or greater than a predetermined value set in advance, it is determined that a heterogeneous mixture has occurred (see Patent Document 1).

また、一方の単相電源の中点分圧された二次電圧の大きさをVA1、VA2、他方の単相電源の中点分圧された二次電圧の大きさをVB1、VB2としたとき、二組のスカラ積差比率v%1、v%2、およびその比率差Δv%を求め、比率差Δv%が予め設定された所定値以上であるときは異相混触が発生したと判定するようにしたものがある(例えば、特許文献2参照)。
特開2005−110487号公報 特開2005−81975号公報
Also, when the magnitude of the secondary voltage divided at the midpoint of one single-phase power supply is VA1, VA2, and the magnitude of the secondary voltage divided at the midpoint of the other single-phase power supply is VB1, VB2. The two sets of scalar product difference ratios v% 1, v% 2 and the ratio difference Δv% are obtained. When the ratio difference Δv% is equal to or larger than a predetermined value, it is determined that the heterogeneous mixture has occurred. (For example, refer to Patent Document 2).
JP 2005-110487 A JP 2005-81975 A

ところが、四辺形外周電圧が予め定められた電圧値よりも低下することを捉えて動作する異相混触検知継電装置には次の問題がある。   However, the heterogeneous mixture detection relay device that operates by capturing that the quadrilateral outer peripheral voltage is lower than a predetermined voltage value has the following problems.

(1) 電力会社三相電源側の他需要家分岐系統に発生する保護区間外の短絡・地絡事故(き電変圧器一次側の系統故障)に不要動作する。すなわち、電源系統電圧の低下に応じてき電変圧器二次二組の単相電圧も低下する。このため、四辺形の外周電圧が著しく縮小して不要動作に至る。この不要動作を防ぐために、電力会社側の電源保護装置や上位系統保護装置との時限協調が必要になり保護の高速性が阻害されている。 (1) Unnecessary operation due to a short circuit / ground fault outside the protection section occurring in another customer branch system on the power company's three-phase power supply side (system failure on the primary side of the feeder transformer). That is, the single-phase voltage of the secondary second set of the electric transformer is also lowered according to the drop of the power system voltage. For this reason, the outer peripheral voltage of the quadrilateral is remarkably reduced, leading to unnecessary operation. In order to prevent this unnecessary operation, time cooperation with the power source protection device and the host system protection device on the electric power company side is necessary, and the high-speed protection is hindered.

(2) 電源の通常停止操作でもき電変圧器二次の単相電圧ベクトルで構成される四辺形外周電圧が喪失して不要動作に至る。つまり、三相電源側の開閉器や電源電圧検出継電装置など上位の設備・装置との条件回路を構成して不要動作を抑止する事が必要と成るので回路構成が複雑化している。 (2) The quadrilateral outer peripheral voltage composed of the secondary single-phase voltage vector of the feeding transformer is lost during normal operation of the power supply, leading to unnecessary operation. In other words, the circuit configuration is complicated because it is necessary to configure a conditional circuit with higher-level equipment and devices such as a switch on the three-phase power supply side and a power supply voltage detection relay device to suppress unnecessary operations.

(3) 目的とする検出故障種別(異相電源混触故障)以外の故障(同電源短絡・地絡故障)に不要動作する可能性がある。き電系統で発生する短絡・地絡事故で流れる故障電流と系統インピーダンス及び事故点インピーダンスから生じる電圧降下と位相変化やインピーダンス分圧により二組の単相電圧ベクトルで構成される四辺形の外周電圧が動作領域に縮小する場合があり、この不要動作を防ぐために下位系統との時限協調が必要になるため保護の高速性が阻害されている。 (3) There is a possibility of unnecessary operation for failures (same power supply short-circuit / ground fault) other than the target detection failure type (cross-phase power supply mixed contact failure). Quadrilateral outer peripheral voltage consisting of two sets of single-phase voltage vectors due to fault current flowing in short circuit / ground fault caused by feeder system, system impedance, voltage drop resulting from fault point impedance, phase change and impedance voltage division May be reduced to the operation region, and in order to prevent this unnecessary operation, time cooperation with the lower system is required, and thus the high speed of protection is hindered.

本発明の目的は、上位電源側や下位負荷側の保護区間外で発生する短絡・地絡事故や電源開放などの電圧低下や電圧喪失で不要動作することなく、異相電源混触事故を高速で検出でき、現地試験や保守点検の簡素化を実現できる交流き電回路用異相混触検出継電装置を得ることである。   The purpose of the present invention is to detect a mixed-phase power supply accident at high speed without causing unnecessary operation due to a voltage drop or voltage loss such as a short circuit, ground fault, power supply release, etc. occurring outside the protection section on the upper power supply side or lower load side. It is possible to obtain a heterogeneous contact detection relay device for an AC feeder circuit that can simplify on-site testing and maintenance inspection.

本発明の実施の形態に係わる交流き電回路用異相混触検出継電装置は、三相交流を直交位相二組の単相で異相の電源に変換して電力供給する交流き電回路の位相混触を検出する交流き電回路用異相混触検出継電装置において、複数の入力電圧および入力電流をアナログ値に変換する入力変換手段と、前記入力変換手段で変換されたアナログ波形を一定の周期でサンプリングして記憶するサンプルホールド手段と、一定の周期毎にサンプルホールドされたアナログ値をディジタル値に変換するA/D変換手段と、一定の周期毎に前記A/D変換手段のデジタル変換値を過去任意時系列サンプリング情報として記憶・更新するサンプリングデータ格納手段と、前記データ格納手段に記憶された複数入力電圧の時系列サンプリングデータから4組の異相電源相互間のそれぞれ電圧を求める電圧測定手段と、前記データ格納手段に記憶された複数入力電流の時系列サンプリングデータから異相電源それぞれの母線電流値を求める電流測定手段と、前記電圧測定手段で求める電圧値及び電流測定手段が求める電流値と予め任意の値に定めて記憶する判定値との比較結果から混触事故を検出する事故検知手段と、前記事故検知手段で混触事故を検出した場合に交流き電回路の保護遮断を実行するための出力処理手段とを備えたことを特徴とする。   The cross-phase contact detection relay device for an AC feeder circuit according to an embodiment of the present invention is a phase-contact of an AC feeder circuit that supplies power by converting three-phase alternating current into two-phase quadrature single-phase power sources. In the heterogeneous contact detection relay device for an AC feeder circuit for detecting AC, a plurality of input voltages and input currents are converted into analog values, and an analog waveform converted by the input conversion means is sampled at a constant cycle. The sample-and-hold means for storing the data, the A / D conversion means for converting the analog value sampled and held at a constant period into a digital value, and the digital conversion value of the A / D conversion means at a predetermined period in the past. Sampling data storage means for storing / updating as arbitrary time series sampling information, and four sets of time series sampling data of a plurality of input voltages stored in the data storage means A voltage measuring means for obtaining each voltage between the phase power supplies, a current measuring means for obtaining a bus current value of each of the different phase power supplies from time-series sampling data of a plurality of input currents stored in the data storage means, and the voltage measuring means An accident detection means for detecting a mixed accident from a comparison result between a voltage value to be calculated and a current value obtained by the current measuring means and a determination value stored in an arbitrary value in advance, and when the accident detection means detects a mixed accident And an output processing means for performing protection interruption of the AC feeder circuit.

本発明によれば、上位電源側と下位負荷側との保護区間外故障による電圧低下、あるいは電源開放による電圧喪失で不要動作することなく、き電回路の単巻変圧器の接続状態に影響されることなく、き電回路の全運用状態において異相電源混触事故を高速で確実に検出することができる。従って、現地試験や保守点検の簡素化を実現できる。   According to the present invention, there is no unnecessary operation due to a voltage drop due to an out-of-protection fault between the upper power supply side and the lower load side, or a voltage loss due to power supply opening, and it is affected by the connection state of the autotransformer of the feeder circuit. Therefore, it is possible to reliably detect a mixed-phase power supply accident at high speed in all operating states of the feeder circuit. Therefore, simplification of on-site testing and maintenance inspection can be realized.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる交流き電回路用異相混触検出継電装置を交流き電回路に適用した系統図、図2は本発明の異相混触検出継電装置のブロック構成図を示す。   Embodiments of the present invention will be described below. FIG. 1 is a system diagram in which a heterogeneous mixture detection relay device for an AC feeder circuit according to an embodiment of the present invention is applied to an AC feeder circuit, and FIG. 2 is a block diagram of the heterogeneous mixture detection relay device of the present invention. Show.

図1において、交流き電回路の受電電力は電力会社の電源設備2から三相電源で供給さる。受電三相電源はき電変圧器3で直交する単相二組のM座電源、T座電源に変換されき電回路に供給される。M座およびT座の電源はそれぞれ単巻変圧器8、9に接続されてそれぞれの単巻変圧器の中性点がレールに接続されている。二組の単相電源M座とT座の電源それぞれには計器用変圧器4、5が直列接続され、それぞれの計器用変圧器4、5は2台を直列に接続して分圧した二次電圧Vm1、Vm2、Vt1、Vt2をそれぞれ異相混触検出継電装置1に入力している。また、き電母線電流は、計測用変流器6、7の二次電流Im、Itが異相混触検出継電装置1に入力されている。 In FIG. 1, the received power of the AC feeder circuit is supplied from a power supply facility 2 of a power company with a three-phase power source. The received three-phase power supply is converted into two single-phase M-set power supplies and T-seat power supplies orthogonal to each other by the feed transformer 3 and supplied to the feed circuit. The M seat and T seat power supplies are connected to the autotransformers 8 and 9, respectively, and the neutral point of each autotransformer is connected to the rail. Two sets of single-phase power supplies M and T are respectively connected in series with instrument transformers 4 and 5, and each of the instrument transformers 4 and 5 is divided into two by connecting two in series. The secondary voltages V m1 , V m2 , V t1 , and V t2 are respectively input to the heterogeneous mixture detection relay device 1. Also, feeding circuit bus current, the secondary current I m of the measuring current transformer 6, 7, I t is input to the heterophase incompatible detecting relay device 1.

図1は、M座電圧Vm1とT座電圧Vt1との混触事故の例を示している。混触故障電流Ifは、M座とT座との混触故障点及び単巻変圧器8、9の中点とレールとを経由するループ帰還回路に流れる。このループ帰還電流Ifはそれぞれの単巻変圧器8、9の中点と両端との巻き数比(2:1)で1/2に変換された値で共に等しく、逆位相となってそれぞれのき電母線M座電流ImおよびT座電流Itに流れる。 FIG. 1 shows an example of a mixed contact accident between the M seat voltage V m1 and the T seat voltage V t1 . The incompatibility fault current If flows in the loop feedback circuit via the incompatibility fault point between the M seat and the T seat and the midpoint of the autotransformers 8, 9 and the rail. This loop feedback current If is equal in both of the values converted to ½ at the turn ratio (2: 1) between the midpoint and both ends of each autotransformer 8, 9, and each has an opposite phase. flowing through the feeding circuit bus M seat currents I m and T loci current I t.

図2は、本発明の実施の形態に係わる異相混触検出継電装置のブロック構成図である。図2においてVm1、Vm2、Vt1、Vt2は計器用変圧器4、5から入力される二組の単相電源電圧である。Im、Itは、計測用変流器6、7から入力される異相電源相互M座、T座の母線電流である。これらの入力電圧と入力電流はそれぞれ入力変換手段21で予め定められた比に変換されアナログフィルタを通過した後、入力サンプリングホールド手段22で系統周波数の任意の電気角速度周期毎にサンプルホールドされる。このサンプルホールド値は、A/D変換手段23でディジタル値に変換される。ディジタル値変換されたそれぞれの入力電圧と入力電流データは毎周期毎にデータ格納手段24に過去任意周期回数分の時系列データとして記憶・更新される。 FIG. 2 is a block diagram of the heterogeneous mixture detection relay device according to the embodiment of the present invention. In FIG. 2, V m1 , V m2 , V t1 , and V t2 are two sets of single-phase power supply voltages input from the instrument transformers 4 and 5. I m, I t is different phase power mutual M locus is input from the measuring current transformer 6, a bus current of T locus. These input voltage and input current are respectively converted into predetermined ratios by the input conversion means 21, passed through an analog filter, and then sampled and held by the input sampling and holding means 22 for every electrical angular velocity period of the system frequency. This sample hold value is converted into a digital value by the A / D conversion means 23. The input voltage and input current data converted into digital values are stored and updated as time-series data for the past arbitrary number of cycles in the data storage means 24 every cycle.

電圧測定手段25はデータ格納手段24に格納された入力電圧の時系列データを汎用公開されているディジタル演算(振幅値演算)技術を用いて異相電源相互間電圧V1、V2、V3、V4を算出する。同様に、電流測定手段26も格納された電流データIm、Itを振幅値演算して異相電源M座、T座それぞれの電流Im、Itを求める。そして、相互電流の有効分Imt-Pと無効分Imt-Qとを算出する。仮に、サンプリング周期の電気角速度を30°とすれば、それぞれの電気量は、現在のサンプリングデータと90°前のサンプリングデータとの二乗演算から求まる。 The voltage measuring means 25 uses the digital calculation (amplitude value calculation) technique of the input voltage time series data stored in the data storage means 24 for general-purpose public use, and the voltages V 1 , V 2 , V 3 , V 4 is calculated. Similarly, current measuring means 26 is also stored current data I m, heterophase power M seat by calculating the amplitude value I t, T seats respective current I m, obtains the I t. Then, an effective part I mt-P and an ineffective part I mt-Q of the mutual current are calculated. If the electrical angular velocity of the sampling period is 30 °, each amount of electricity can be obtained from the square calculation of the current sampling data and the sampling data 90 ° before.

[数2]
V1=√{(Vm1(n-3)-Vt1(n-3))2+(Vm1(n)-Vt1(n))2
V2=√{(Vt1(n-3)+Vm2(n-3))2+(Vt1(n)+Vm2(n))2
V3=√{(-Vm2(n-3)+Vt2(n-3))2+(-Vm2(n)+Vt2(n))2
V4=√{(-Vt2(n-3)-Vm1(n-3))2+(-Vt2(n)-Vm1(n))2
[数3]
Im=√{(Im(n-3))2+(Im(n))2
It=√{(It(n-3))2+(It(n))2
Imt-P=(Im(n)・It(n))+(Im(n-3)・It(n-3))
Imt-Q=(Im(n-3)・It(n))-(Im(n)・It(n-3))
但し、(n-3)はサンプリング電気角速度30°における90°前のサンプリングデータ、(n)は現在のサンプリングデータ。
さらに、電流測定手段26は、上述したディジタル演算数式例[数3]で求めた異相電源それぞれの電流から異相電源相互いずれか小さい方の電流値(Imt-min)と相互電流の逆位相成分比(cos(π-θ))を算出し、算出した小さい方の電流値(Imt-min)と相互電流の逆位相成分比(cos(π-θ))との積からなる次式を用いて逆位相成分電流Imt-πを算出する。
[Equation 2]
V 1 = √ {(V m1 (n-3) -V t1 (n-3) ) 2 + (V m1 (n) -V t1 (n) ) 2 }
V 2 = √ {(V t1 (n-3) + Vm 2 (n-3) ) 2 + (V t1 (n) + V m2 (n) ) 2 }
V 3 = √ {(-V m2 (n-3) + V t2 (n-3) ) 2 + (-V m2 (n) + V t2 (n) ) 2 }
V 4 = √ {(-V t2 (n-3) -Vm 1 (n-3) ) 2 + (-V t2 (n) -V m1 (n) ) 2 }
[Equation 3]
I m = √ {(I m (n-3) ) 2 + ( Im (n) ) 2 }
I t = √ {(I t (n-3) ) 2 + (I t (n) ) 2 }
I mt -P = (I m (n) · I t (n) ) + (I m (n-3) · I t (n-3) )
I mt-Q = (I m (n-3)・ I t (n) )-(I m (n)・ I t (n-3) )
However, (n-3) is the sampling data before 90 ° at the sampling electrical angular velocity of 30 °, and (n) is the current sampling data.
Further, the current measuring means 26 calculates the current value (Imt- min ) of the different phase power source, whichever is smaller from the currents of the different phase power sources obtained in the above-described digital calculation formula example [Equation 3], and the opposite phase component ratio of the mutual current. (cos (π-θ)) is calculated, and using the following equation consisting of the product of the calculated smaller current value (Imt -min ) and the cross-phase component ratio of the mutual current (cos (π-θ)) An antiphase component current I mt-π is calculated.

[数4]
Imt-π= Imt-min・cos(π-θ)k
但し、kは予め任意に定める定数で、M座とT座の相互電流位相関数を低とする対数であり、位相差に応じた逆位相成分(Imt-π)の算出値を抑制することができる。
[Equation 4]
I mt-π = Imt -min・ cos (π-θ) k
However, k is a constant determined in advance and is a logarithm that makes the mutual current phase function of the M and T positions low, and suppresses the calculated value of the antiphase component (I mt-π ) according to the phase difference. Can do.

次に、事故検知手段27は、上述の電圧測定手段25及び電流測定手段26のそれぞれで測定した異相電源相互間電圧V1、V2、V3、V4と異相電源(M座、T座)相互の逆位相電流Imt-πそれぞれの値が予め定めて図示省略のメモリに記憶したそれぞれの判定定数kv、kIを用い、次に示す比較判定を実行し、それぞれの比較判定結果が予め定める論理条件[数5]を満足した場合に混触故障として検知する。 Next, the accident detection means 27 includes the interphase power supply voltages V 1 , V 2 , V 3 , V 4 measured by the voltage measurement means 25 and the current measurement means 26, respectively, and the different phase power supplies (M seat, T seat). ) Each of the opposite phase currents I mt-π is determined in advance and stored in a memory (not shown) using the respective determination constants k v and k I. Is detected as an incompatibility failure when a predetermined logical condition [Equation 5] is satisfied.

[V1 比較判定]…次式成立で1、V1≦kv
[V2 比較判定]…次式成立で1、V2≦kv
[V3 比較判定]…次式成立で1、V3≦kv
[V4 比較判定]…次式成立で1、V4≦kv
[ΔImt-π 比較判定]…次式成立で1、ΔImt-π≧kI
[数5]
([V1 比較判定]+[V2 比較判定]+[V3 比較判定]+[V4 比較判定])×[ΔImt-π 比較判定]≧1
上述の事故検知手段27の判定論理は、前述したように電源上位で発生する保護区間外の短絡・地絡故障よるき電変圧器二次の単相電源の電圧低下、あるいはき電保護区間で発生する混触故障以外の故障(短絡・地絡故障)電圧降下により異相電源相互間電圧V1、V2、V3、V4 が比較判定値kv以下に低下しても、異相電源相互の逆異相電流比ΔImt-πの比較判定で不要動作を抑制する。何故なら、上位系電源など区間外故障では故障電流がき電変圧器二次に流れないからである。さらに、混触故障以外(短絡・地絡故障)の故障電流は単相二組電源の故障側に流れるので故障側電流と健全側負荷電流とでは、双方の電流値較差と電流位相差が大きいからである。最後に、出力処理手段28は、事故検知手段27の上記[数3]に示す論理条件が成立した場合に、故障検知の外部出力処理を実行する。
[V1 comparison judgment] ... 1 when the following formula is satisfied, V 1 ≤k v
[V2 comparison judgment] ... 1 when the following formula is satisfied, V 2 ≤k v
[V3 comparison judgment] ... 1 when the following equation is satisfied, V 3 ≤k v
[V4 comparison judgment] ... 1 when the following formula is satisfied, V 4 ≤k v
[ΔI mt-π comparison determination] ... 1 when the following equation is established, ΔI mt-π ≧ k I
[Equation 5]
([V 1 comparison determination] + [V 2 comparison determination] + [V 3 comparison determination] + [V 4 comparison determination]) × [ΔI mt-π comparison determination] ≧ 1
As described above, the judgment logic of the accident detection means 27 is based on the voltage drop of the secondary single-phase power supply caused by a short circuit / ground fault outside the protection section occurring in the upper power supply, or in the feeding protection section. Faults other than incompatibility faults (short circuit / ground fault) Even if the voltages V 1 , V 2 , V 3 , V 4 between the different phase power supplies drop below the comparison judgment value k v due to the voltage drop, Unnecessary operation is suppressed by comparing and judging the reverse-phase current ratio ΔI mt-π . This is because the fault current does not flow to the secondary of the feeder transformer in the case of an out-of-section fault such as a host system power supply. Furthermore, since fault currents other than incompatibility faults (short-circuit / ground fault) flow to the fault side of the single-phase dual power supply, both the current value difference and current phase difference between the fault-side current and the healthy load current are large. It is. Finally, the output processing means 28 executes failure detection external output processing when the logical condition shown in [Formula 3] of the accident detection means 27 is satisfied.

次に、電流測定手段26における異相電源相互の逆位相電流検知方法の一例について説明する。電流測定手段26は、ディジタル演算数式[数3]で求める異相電源それぞれの電流と[数4]とを用い、異相電源相互電流のいずれか小さい方の値(Imt-min)と逆位相成分比(cos(π-θ))との積から逆位相成分電流(Imt-π)を算出するが、異相電源相互いずれか小さい方の電流値(Imt-min)の算出具体例を[数6]に示す。 Next, an example of a method for detecting the opposite phase current between the different phase power sources in the current measuring means 26 will be described. The current measuring means 26 uses the current of each of the different phase power sources obtained by the digital arithmetic expression [Equation 3] and [Equation 4], and the smaller value (Imt- min ) of the different phase power source mutual current and the antiphase component ratio. The anti-phase component current (I mt-π ) is calculated from the product of (cos (π-θ)), and a specific example of calculating the smaller current value (Imt -min ) of either one of the different phase power supplies [Expression 6] ].

[数6]
Imt-min=((Im+It)-(Im+It))/2
但し、異相電源相互の電流(Im、It)を求める手段は問わないが、上述のディジタル演算数式例[数3]で求めることもできる。
[Equation 6]
Imt -min = ((I m + I t )-(I m + I t )) / 2
However, the means for obtaining the currents (I m , I t ) between the different-phase power sources is not limited, but it can also be obtained by the above-described digital arithmetic expression example [Equation 3].

次に、相互電流の逆位相成分比(cos(π-θ))の算出の一例を[数7]に示す。   Next, an example of calculating the antiphase component ratio (cos (π−θ)) of the mutual current is shown in [Formula 7].

[数7]
cos(π-θ)=-Imt-P/√(Imt-P 2・Imt-Q 2)
但し、異相電源相互電流の有効成分(Imt-P)と無効成分(Imt-Q)の求める手段は問わないが、上述したディジタル演算数式の一例[数3]で求めることもできる。
[Equation 7]
cos (π-θ) =-I mt-P / √ (I mt-P 2・ I mt-Q 2 )
However, the means for obtaining the effective component (I mt-P ) and the ineffective component (I mt-Q ) of the heterogeneous power supply mutual current is not limited, but it can also be obtained by the above-described digital arithmetic expression [Formula 3].

また、データ格納手段24に格納された電流サンプリングデータIm、Itの振幅値と[数8]とを用いて直接算出することができる。 Further, it is possible to calculate directly with data storage means 24 to the stored current sampling data I m, the amplitude value of I t and the [number 8.

さらに、相互電流の逆位相成分比(cos(π-θ))の算出の他の一例を[数8]に示す。   Further, another example of the calculation of the antiphase component ratio (cos (π−θ)) of the mutual current is shown in [Formula 8].

[数8]
cos(π-θ)=((Im(n)・It(n))+(Im(n-3)・It(n-3)))/((Im(n) 2・It(n) )+(Im(n) ・It(n-3) 2)+(Im(n-3) 2・It(n) 2)+(Im(n-3) 2・It(n-3) 2))
但し、(n)、(n-3)は電気角速度30°のサンプリング周期データの例を示す。原理上は電気角速度差90°のサンプリングデータを用いれば良い。
[Equation 8]
cos (π-θ) = ((I m (n)・ I t (n) ) + (I m (n-3)・ I t (n-3) )) / ((I m (n) 2・I t (n) 2 ) + (I m (n) 2 · I t (n-3) 2 ) + (I m (n-3) 2 · I t (n) 2 ) + (I m (n− 3) 2・ I t (n-3) 2 ))
However, (n) and (n-3) show examples of sampling cycle data at an electrical angular velocity of 30 °. In principle, sampling data with an electrical angular velocity difference of 90 ° may be used.

次に、上述の[数6]、[数7]、[数8]から求めた異相電源相互電流のいずれか小さい方の値(Imt-min)と逆位相成分比(cos(π-θ)とから、前述した[数4]により検出する異相電源相互の逆位相成分電流を図3に示す。図3は異相電源相互の逆位相電流成分検出特性図である。縦軸は電流値[A]、横軸は異相電源相互電流(Im、It)の位相角(θ)である。図3に示すグラフは異相電源相互の電流(Im=6A、It=8A)と相互電流の位相差(θ=0°〜360°)に応じた逆位相成分電流(Imt-π)の検出特性を示している。[数6]で説明したように、検出される逆位相成分電流(Imt-π)は異相電源相互いずれか小さい方の電流値(Imt-min)と相互電流の逆位相成分比(cos(π-θ))の二乗関数(k)との積から算出されるので小さいほうの電流(Im)6Aに位相角関数±1を乗じた領域内の値が検出される。 Next, the smaller value (Imt -min ) of the different phase power supply mutual current obtained from the above [Equation 6], [Equation 7], and [Equation 8] and the antiphase component ratio (cos (π-θ)) 3 shows the anti-phase component current between the different-phase power sources detected by the above-described [Equation 4], and Fig. 3 is a characteristic diagram for detecting the anti-phase current component between the different-phase power sources. The horizontal axis represents the phase angle (θ) of the different-phase power source mutual current (I m , I t ), and the graph shown in Fig. 3 shows the current between the different-phase power source (Im = 6A, It = 8A) and the mutual current level. 6 shows the detection characteristic of the anti-phase component current (I mt-π ) according to the phase difference (θ = 0 ° to 360 °), as described in [Equation 6]. mt-π ) is calculated from the product of the current value (Imt -min ), whichever is smaller, of the different phase power supplies and the square function (k) of the antiphase component ratio (cos (π-θ)) of the mutual current. Multiply the smaller current (I m ) 6A by the phase angle function ± 1 A value in the closed area is detected.

すなわち、相互電流の位相差が±90°以下の場合は0A以下(6〜−6A)、相互電流の位相差が±90°以上の場合は0A以上(0〜6A)である。また、逆位相成分電流(Imt-π)の検出特性は上述した[数6]の相互電流位相関数を低とする対数kの値が抑制無し(k=0)の場合と抑制有(k=2)の場合を示している。つまり、両特性の比較から分かる様に相互電流位相の二乗関数kの値を大きくすれば位相差の拡大に応じた双曲線抑制特性の効果を得ることができる。 That is, 0 A or less (6 to −6 A) when the phase difference of the mutual current is ± 90 ° or less, and 0 A or more (0 to 6 A) when the phase difference of the mutual current is ± 90 ° or more. In addition, the detection characteristic of the antiphase component current (I mt-π ) is the case where the value of the logarithm k that makes the mutual current phase function of [Equation 6] low is not suppressed (k = 0) and suppressed (k = 2). That is, as can be seen from the comparison between the two characteristics, if the value of the square function k of the mutual current phase is increased, the effect of the hyperbolic suppression characteristic corresponding to the increase in the phase difference can be obtained.

次に、図4、図5、図6に示す代表的な故障ベクトル例を用い故障種別に応じた作用を説明する。図4は異電源相互混触故障の一例を示すベクトル図、図5はT座地絡故障の一例を示すベクトル図、図6はT座短絡故障の一例を示すベクトル図である。図4の混触故障は相互に直交する異電源間の短絡であり、図1に示す異電源Vt1、Vm1の混触故障である。混触回路電圧は外側の四辺形斜辺電圧の2倍値である。故障電圧(母線電圧)は故障回路インピーダンスに対する母線から故障点までのインピーダンス比に応じた電圧に降下し、混触故障斜辺電圧V1と対向斜辺電圧V3は、降下した故障電圧が単巻き変圧器中点で1/2分圧された値に低下する。 Next, the operation according to the failure type will be described using typical failure vector examples shown in FIGS. 4, 5, and 6. FIG. 4 is a vector diagram showing an example of a mutual power supply incompatible fault, FIG. 5 is a vector diagram showing an example of a T-ground fault, and FIG. 6 is a vector diagram showing an example of a T-seat short-circuit fault. The incompatibility failure in FIG. 4 is a short circuit between different power sources orthogonal to each other, and is an incompatibility failure of the different power sources V t1 and V m1 shown in FIG. The mixed circuit voltage is twice the outer quadrilateral hypotenuse voltage. Fault voltage (bus voltage) drops to a voltage corresponding to the impedance ratio of from bus to the failed circuit impedance to fault point, incompatible failure hypotenuse voltage V 1 and opposed oblique sides voltage V 3 is lowered the failure voltage autotransformer Decreases to a value divided by half at the midpoint.

混触故障電流は、図1に示すように異電源相互間を逆位相で流れる。図4のベクトル図では、T座に流れる故障電流Itが逆位相でM座故障電流Imとなって流れる。然るに、本発明の混触故障検出継電装置において、上述した判定式[数5]は以下の判定結果となって故障を検知する。 As shown in FIG. 1, the incompatible fault current flows between different power sources in opposite phases. The vector diagram of FIG. 4, through the fault current I t flowing through the T locus becomes the M seat fault current I m in antiphase. However, in the mixed fault detection relay device according to the present invention, the above-described determination formula [Equation 5] detects the failure as the following determination result.

([V1 動作]+[V3 動作])×[ΔImt-m 動作]=2≧1
次に、異電源相互のベクトル関係において、一方側電源(T座)が故障した場合のベクトル代表例を図5、図6、図7を用いて説明する。図5はT座の地絡故障の一例を示すベクトル図であり、図6はT座短絡故障の一例を示すベクトル図である。図7は一般的なき電回路の地絡故障及び短絡故障における故障インピーダンス変化に応じた故障電圧(電源電圧に対する母線電圧の降下率Vfと位相変化角Δφ)を示し、図7(a)の地絡故障電圧ベクトル変化グラフは、き電回路の故障点を一定(電源系とき電線インピーダンスを固定)にして地絡故障点に介在するグラフ横軸の故障点抵抗変化(10Ω〜0Ω)に応じた故障電圧の降下率と位相変化との傾向を示している。一方、図7(b)の短絡故障電圧ベクトル変化グラフは、電源系のインピーダンスを一定にしてグラフ横軸の母線から故障点までのき電回路インピーダンス変化(16Ω〜0Ω)に応じた故障電圧の降下率と位相変化との傾向を示している。図7の傾向から分かる様に、地絡故障と短絡故障何れの場合も故障電圧(母線電圧)は、電源から故障点までのインピーダンスと母線から故障点までのインピーダンスとのインピーダンス比とインピーダンス角に応じた電圧降下と位相変化とが生じている。
([V 1 operation] + [V 3 operation]) × [ΔI mt-m operation] = 2 ≧ 1
Next, in the vector relationship between different power sources, typical vector examples when one side power source (T seat) fails will be described with reference to FIGS. FIG. 5 is a vector diagram showing an example of a ground fault at the T seat, and FIG. 6 is a vector diagram showing an example of a T seat short-circuit fault. FIG. 7 shows a failure voltage (a drop rate Vf of the bus voltage with respect to the power supply voltage and a phase change angle Δφ) according to a change in the fault impedance in a ground fault and a short-circuit fault of a general feeder circuit. The fault fault voltage vector change graph is based on the fault point resistance change (10Ω to 0Ω) on the horizontal axis of the graph with the fault point of the feeder circuit constant (the power line impedance is fixed when the power supply system) is interposed in the ground fault fault point. It shows the trend of failure voltage drop rate and phase change. On the other hand, the short-circuit fault voltage vector change graph of FIG. 7 (b) shows the fault voltage corresponding to the feeder circuit impedance change (16Ω to 0Ω) from the bus on the horizontal axis of the graph to the fault point while keeping the impedance of the power supply system constant. It shows the trend of the descent rate and phase change. As can be seen from the trend of FIG. 7, the fault voltage (bus voltage) is the impedance ratio and impedance angle between the impedance from the power source to the fault point and the impedance from the bus to the fault point in both cases of ground fault and short circuit fault. There is a corresponding voltage drop and phase change.

図5に図7の地絡故障における故障点抵抗2Ωの故障ベクトルを示す。図5の故障電圧Vtは図7の故障座の母線電圧Vfと等価であり故障電圧は47%に降下し、位相は約20°傾斜している。図6に図7の短絡故障における母線から故障点までのインピーダンス3Ωおける故障ベクトルを示す。図6の故障電圧Vtも図7の故障座の母線電圧Vfと等価であり、故障電圧は52%に降下し、位相は約7°傾斜する。つまり、地絡故障と短絡故障との何れの場合もき電母線直近の完全故障(故障インピーダンス≒0Ω、故障電圧=0)では、定格電圧に対する四辺形斜辺電圧V1、V2、V3、V4はそれぞれ、定常時の1/√2から1/2に低下する。従って、従来方法における混触故障の検出は、混触以外の故障で動作させないことを原則とするため、電圧を定格電圧の1/2の値よりさらに5%程度低い値としている。故に、四辺形斜辺電圧V1、V2、V3、V4の低下を検出する従来方式は、混触故障を高感度で検出するに不向きであり、前述した故障回路インピーダンス角に応じた故障電圧の傾斜による四辺形斜辺電圧降下の不平衡率を含めると他の故障(き電回路の地絡、短絡故障)で不要動作する可能性を秘めていることが分かる。 FIG. 5 shows a failure vector of the failure point resistance 2Ω in the ground fault of FIG. The fault voltage Vt in FIG. 5 is equivalent to the bus voltage Vf at the fault location in FIG. 7, the fault voltage drops to 47%, and the phase is inclined by about 20 °. FIG. 6 shows a failure vector at an impedance of 3Ω from the bus to the failure point in the short-circuit failure of FIG. Also fault voltage V t of FIG. 6 is equivalent to a bus voltage V f failure seat of Figure 7, the fault voltage drops to 52%, the phase is inclined approximately 7 °. In other words, in the case of both a ground fault and a short-circuit fault, in the case of a complete fault (fault impedance ≒ 0Ω, fault voltage = 0) in the immediate vicinity of the bus, the quadrilateral hypotenuse voltages V 1 , V 2 , V 3 , Each V 4 decreases from 1 / √2 in the steady state to ½. Therefore, the detection of the incompatibility failure in the conventional method is based on the principle that the operation is not caused by a failure other than the incompatibility, so that the voltage is set to a value that is about 5% lower than the value of 1/2 of the rated voltage. Therefore, the conventional method of detecting the decrease in quadrilateral hypotenuse voltages V 1 , V 2 , V 3 , V 4 is not suitable for detecting incompatibility failure with high sensitivity, and the failure voltage according to the above-mentioned failure circuit impedance angle Including the unbalance rate of the quadrilateral hypotenuse voltage drop due to the slope of the slope, it can be seen that there is a possibility of unnecessary operation due to other faults (electric circuit ground fault, short circuit fault).

一方、本発明による混触故障の検知方法では、上述した混触以外の故障に対する不要動作を異電源相互の逆位相電流検知で抑止することができる。図5のT座電源の地絡故障の一例のベクトル図、図6のT座電源の短絡故障ベクトルの一例のベクトル図で示す様に、故障座(T座)の故障電流It〜It’は故障インピーダンス角(10°〜80°)に応じた故障電圧Vtとの遅れ位相で故障座(T座)に流れるが健全座(M座)には流れないので逆位相電流の検出基本量(少ないほうの電流値)は健全座側の負荷電流値以下であることに加え、健全座(M座)負荷電流(図示省略)の位相は健全座(M座)電圧Vmと概同相である。つまり、異電源相互の一方側電源故障(地絡、短絡故障)における相互電流It〜It’、Im の電流位相は10°〜80°の領域となる。従って図3で説明したように相互電流の位相差抑制関数により電源相互の逆位相電流はさらに大きく抑制され、0A付近の電流値となるので混触故障検知は抑止される。 On the other hand, in the method for detecting an incompatibility failure according to the present invention, it is possible to suppress an unnecessary operation for a failure other than the intimacy described above by detecting an antiphase current between different power sources. As shown in the vector diagram of an example of the ground fault of the T seat power source in FIG. 5 and the vector diagram of the example of the short circuit fault vector of the T seat power source in FIG. 6, the fault currents I t to I t of the fault seat (T seat). 'Is flowing in the fault seat (T seat) with a delay phase from the fault voltage V t according to the fault impedance angle (10 ° -80 °), but does not flow in the healthy seat (M seat). In addition to being less than the load current value on the sound seat side, the phase of the sound seat (M seat) load current (not shown) is approximately in phase with the sound seat (M seat) voltage V m It is. That is, one side loses power different power each other (ground, short-circuit fault) cross current I t ~I t in ', the current phase of I m becomes 10 ° to 80 ° in the region. Therefore, as described with reference to FIG. 3, the anti-phase current between the power sources is further greatly suppressed by the mutual current phase difference suppression function, and the current value is close to 0 A, so that the detection of the incompatibility failure is suppressed.

次に、異相電源相互電流のいずれか小さい方の値(Imt-min)と相互電流比(Imt-PU)と位相成分比(Imt)との積から逆位相成分電流(Imt-π)を算出する方法について説明する。電流測定手段26は格納された電流データIm、Itを振幅値演算して異相電源相互(M座、T座)それぞれの電流Im、Itを算出し、求めた異相電源相互電流から[数9]に示す原理式で逆位相成分電流(Imt-π)を算出する。 Next, the negative phase component current (I mt-π ) is calculated from the product of the smaller value (Imt −min ) of the different phase power supply mutual current, the mutual current ratio (Imt-PU), and the phase component ratio (Imt −θ ). ) Will be described. Current measuring means 26 is the current data I m stored, heterophase power each other by calculating an amplitude value I t (M locus, T seat) respective currents I m, and calculates the I t, the heterophasic supply mutual currents obtained The antiphase component current (I mt-π ) is calculated using the principle equation shown in [Equation 9].

[数9]
(Imt-π)=k・(Imt-min)・(Imt-PU)・e(-Imt-θ)
但し、
(Imt-π):逆位相成分電流
(Imt-min):異相電源相互電流のいずれか小さい方の値
(Imt-PU):異相電源相互のスカラ電流比
(Imt):異相電源相互電流の異相差に応じた相互電流ベクトル比
k:任意に定める抑制係数
e:自然対数(任意の常用対数を用いても良い)
ここで、異相電源相互電流のいずれか小さい方の値(Imt-min)は前述の[数6]を用い、異相電源相互のスカラ電流比(Imt-PU)と異相電源相互電流の異相差に応じた相互電流ベクトル比(Imt)は次に示す[数10][数11]で求める。仮に、サンプリング周期の電気角速度を30°とすれば異相電源相互の電気量は、現在のサンプリングデータ(n)と90°前のサンプリングデータ(n-3)との二乗演算から求まる。
[Equation 9]
(I mt-π ) = k ・ (Imt -min ) ・ (Imt -PU ) ・ e (-Imt-θ)
However,
(I mt-π ): Antiphase component current
(I mt-min ): The smaller value of the cross-phase power supply mutual current
(Imt -PU ): Scalar current ratio between different phase power supplies
(Imt ): Mutual current vector ratio according to the different phase difference of the different phase power supply mutual current
k: Arbitrary suppression factor
e: Natural logarithm (any common logarithm may be used)
Here, the smaller value (Imt -min ) of the different phase power supply mutual current is obtained by using the above-mentioned [Equation 6], and the difference between the scalar current ratio (Imt -PU ) between the different phase power supplies and the different phase difference between the different phase power supply mutual currents. The corresponding mutual current vector ratio (Imt −θ ) is obtained by the following [Equation 10] and [Equation 11]. If the electrical angular velocity of the sampling period is 30 °, the amount of electricity between the different phase power sources can be obtained from the square calculation of the current sampling data (n) and the sampling data (n−3) 90 ° before.

次に、異相電源相互のスカラ電流比(Imt-PU)を[数10]に示す。 Next, the scalar current ratio (Imt −PU ) between the different phase power supplies is shown in [ Equation 10].

[数10]
(Imt-PU)=|Im-It |/|Im+It |
Im=√{(Im(n-3))2+(Im(n))2
It=√{(It(n-3))2+(It(n))2
さらに、異相電源相互電流の異相差に応じた相互電流ベクトル比(Imt)を[数11]に示す。
[Equation 10]
(Imt -PU ) = | I m -I t | / | I m + I t |
I m = √ {(I m (n-3) ) 2 + (I m (n) ) 2 }
It = √ {(I t (n-3) ) 2 + (I t (n) ) 2 }
Further, the mutual current vector ratio (Imt −θ ) corresponding to the different phase difference of the different phase power supply mutual current is shown in [Equation 11].

[数11]
(Imt)=ΣI/ΔI
ΣI=√{(Im(n)+It(n))2+(Im(n-3)+It(n-3))2
ΔI=√{(Im(n)-It(n))2+(Im(n-3)-It(n-3))2
上述の逆位相成分電流(Imt-π)を算出する原理式[数9]に、[数6]、[数10]、[数11]の値を代入すると異相電源相互の電流を関数とする逆位相成分電流(Imt-π)算出式[数12]が成り立つ。
[Equation 11]
(Imt ) = ΣI / ΔI
ΣI = √ {(I m (n) + I t (n) ) 2 + (I m (n-3) + I t (n-3) ) 2 }
ΔI = √ {(I m (n) -I t (n) ) 2 + (I m (n-3) -I t (n-3) ) 2 }
Substituting the values of [Equation 6], [Equation 10], and [Equation 11] into the above-described principle equation [Equation 9] for calculating the antiphase component current (Imt-π), the current between the different phase power sources is a function. The antiphase component current (I mt-π ) calculation formula [Equation 12] is established.

次に、逆位相成分電流(Imt-π)を[数12]に示す。 Next, the antiphase component current (I mt−π ) is shown in [ Equation 12].

[数12]
Imt-π=0.5k・ΔI・(1-(ΔI/ΣI))・e−(ΣI/ΔI)
図8に、[数12]を用いた異相電源相互逆位相電流の検出特性の一例を示す。図8に示すグラフは、M座とT座との5種の相互電流比(0〜10倍)と相互電流の位相差(0°〜360°)に応じて検出される逆位相電流Imt-πを示している。横軸は異相電源相互電流の位相差(電気角)であり、縦軸は検出値される逆位相電流で、相互電流いずれか小さい方の値に対する比率値[PU値]である。
[Equation 12]
I mt-π = 0.5k ・ ΔI ・ (1- (ΔI / ΣI)) ・ e − (ΣI / ΔI)
FIG. 8 shows an example of the detection characteristic of the different phase power supply mutual antiphase current using [Equation 12]. The graph shown in FIG. 8 shows the antiphase current I mt detected according to the five kinds of mutual current ratios (0 to 10 times) of the M and T positions and the phase difference (0 ° to 360 °) of the mutual current. is shown. The horizontal axis is the phase difference (electrical angle) of the different phase power supply mutual current, and the vertical axis is the detected antiphase current, which is the ratio value [PU value] to the smaller value of the mutual current.

特性曲線S1〜S5は異相電源相互の電流比であり、M座電流値に対するT座電流値の比率値(It/Im)であり、特性曲線S0は比率値(It/Im)が0、特性曲線S1は比率値(It/Im)が1、特性曲線S2は比率値(It/Im)が2、特性曲線S5は比率値(It/Im)が5、特性曲線S10は比率値(It/Im)が10の5種の比率における相互電流の位相差に応じた逆位相電流の検出特性である。 Characteristic curves S1 to S5 are current ratios between different-phase power sources, and are ratio values (I t / I m ) of T-seat current values to M-seat current values, and characteristic curve S0 is a ratio value (I t / I m ). Is 0, the characteristic curve S1 has a ratio value (It / Im) of 1, the characteristic curve S2 has a ratio value (I t / I m ) of 2, the characteristic curve S5 has a ratio value (I t / I m ) of 5, A curve S10 is a detection characteristic of the antiphase current corresponding to the phase difference of the mutual current in the five ratios having the ratio value (I t / I m ) of 10.

図8は、異電源相互電流の格差拡大につれ、さらに、異電源相互電流の位相差が同相領域に近づくにつれて逆位相電流検出抑制量が増大することを示している。一方、相互の電流値が等しく、位相差が180°における逆位相電流検出値1PUであり検出抑制量は0値となる。つまり、異電源相互の一方電源側の地絡・短絡故障など、異電源相互電流の格差が拡大する混触以外の故障に対する不要な検出を確実に抑制できる。   FIG. 8 shows that the antiphase current detection suppression amount increases as the phase difference between the different power source mutual currents increases and the phase difference between the different power source mutual currents approaches the in-phase region. On the other hand, the mutual current values are equal, and the phase difference is the antiphase current detection value 1PU when the phase difference is 180 °, and the detection suppression amount is zero. In other words, it is possible to reliably suppress unnecessary detection for faults other than incompatibility in which the disparity between the different power supply mutual currents increases, such as a ground fault or short-circuit fault on one power supply side between the different power supplies.

次に、き電回路の単巻変圧器が開放された場合の異相電源相互(M座とT座)の混触故障において、直交する各座(M座とT座)電源が形成する四辺形斜辺電圧V1、V2、V3、V4から混触故障を検出する方法について説明する。 Next, the quadrilateral hypotenuse formed by each orthogonal power supply (M seat and T seat) in the case of incompatibility between the different phase power supplies (M seat and T seat) when the autotransformer of the feeder circuit is opened A method for detecting a contact failure from the voltages V 1 , V 2 , V 3 , and V 4 will be described.

図9は交流き電回路における単巻変圧器が開放された場合の保護系統図であり、図1から異相電源相互(M座とT座)それぞれの単巻変圧器8、9のみ除外したもので、系統図の構成と作用は図1と同様である。図9はT座Vt1とM座Vm1の混触故障の一例である。M座とT座の単巻変圧器の開放により混触故障インピーダンスが無限大となるので異相電源相互に混触故障電流は流れない。従ってM座とT座ともに母線電圧の降下と位相変化が生じないので混触故障点を同電位として図10に示す電圧ベクトルが形成される。つまり、事故前の定常時にM座電圧とT座電圧との直交対角線で形成されていた四辺形外周の位相電源相互間電圧V1、V2、V3、V4は、混触故障点を頂点(同電位)とする正三角形に変化する。定格電圧を1とすると、故障前の四辺形電圧V1、V2、V3、V4はそれぞれ1/√2であり、故障後の電圧は、それぞれV1=0、V2=V4=1、V3=√2の値に近い変化傾向を示す。また、M座とT座の計器用変圧器中点が対地設置され同電位となることからVt1とVm1とは値が等しく同位相、Vt2とVm2とは値が等しく逆位相となる。上述したき電回路の単巻変圧器開放における異相電源相互(M座とT座)の混触故障の現象に基づき、次の方法を用いれば、位相電源相互間の四辺形斜辺電圧電気量から混触故障を検知することができる。 FIG. 9 is a protection system diagram when the autotransformer in the AC feeder circuit is opened, and only the autotransformers 8 and 9 of the different phase power supply mutual (M seat and T seat) are excluded from FIG. Thus, the configuration and operation of the system diagram are the same as in FIG. FIG. 9 shows an example of an incompatibility failure between the T seat V t1 and the M seat V m1 . Since the incompatibility fault impedance becomes infinite due to the opening of the M and T winding autotransformers, no incompatible fault current flows between the different phase power supplies. Accordingly, since no drop in the bus voltage and no phase change occur in both the M seat and the T seat, the voltage vector shown in FIG. In other words, the phase power supply voltages V 1 , V 2 , V 3 , and V 4 on the outer periphery of the quadrilateral that were formed by the orthogonal diagonal line between the M seat voltage and the T seat voltage at the steady state before the accident are at the top of the contact failure point. It changes to an equilateral triangle with the same potential. When the rated voltage is 1, the quadrilateral voltages V 1 , V 2 , V 3 and V 4 before the failure are 1 / √2, respectively, and the voltages after the failure are V 1 = 0 and V 2 = V 4 , respectively. = 1, V 3 = √2 showing a change tendency close to the value. In addition, since the middle point of the M transformer and the T transformer is installed at the same potential, V t1 and V m1 have the same value and the same phase, and V t2 and V m2 have the same value and the opposite phase. Become. Based on the phenomenon of incompatibility between different-phase power sources (M and T seats) in the open circuit transformer of the feeder circuit described above, if the following method is used, it is determined from the quadrilateral hypotenuse voltage electricity quantity between the phase power sources. A failure can be detected.

事故検知手段27は、電圧測定手段25で測定した異相電源相互間電圧V1、V2、V3、V4のそれぞれの値と、予め定めて図示省略のメモリに記憶した判定定数kUV、kOVとの比較判定を実行し、それぞれの比較判定結果が予め定める論理条件[数13]を満足した場合に混触故障として検知する。 The accident detection means 27 includes the values of the inter-phase power supply voltages V 1 , V 2 , V 3 , V 4 measured by the voltage measurement means 25 and determination constants kUV, kOV stored in a predetermined memory not shown. When the comparison determination result satisfies a predetermined logical condition [Equation 13], it is detected as an incompatibility failure.

[V1 低下比較判定]…次式成立で1、V1≦kUV
[V1[超過比較判定]…次式成立で1、V1≧kOV
[V2 低下比較判定]…次式成立で1、V2≦kUV
[V2 超過比較判定]…次式成立で1、V2≧kOV
[V3 低下比較判定]…次式成立で1、V3≦kUV
[V3 超過比較判定]…次式成立で1、V3≧kOV
[V4 低下比較判定]…次式成立で1、V4≦kUV
[V4 超過比較判定]…次式成立で1、V4≧kOV
[数13]
[V1低下比較判定]×[V3超過比較判定]+[V2低下比較判定]×[V4超過比較判定]+[V3低下比較判定]×[V1超過比較判定]+[V4低下比較判定]×[V2超過比較判定]≧1
同様に、き電回路の単巻変圧器が開放された場合の異相電源相互(M座とT座)の混触故障において、直交する各座(M座とT座)電源が形成する四辺形斜辺電圧V1、V2、V3、V4から混触故障を検出する方法の他の実施例を説明する。き電回路の単巻変圧器開放における異相電源相互(M座とT座)の混触故障の現象は図9、図10の説明と同様であり詳細は省略する。
[V 1 decrease comparison judgment] ... 1 when the following equation is established, V 1 ≤ k UV
[V 1 [excess comparison judgment] ... 1 when the following equation is established, V 1 ≧ k OV
[V 2 drop comparison judgment] ... 1 when the following formula is satisfied, V 2 ≤k UV
[V 2 excess comparison judgment] ... 1 when the following formula is satisfied, V 2 ≧ k OV
[V 3 drop comparison judgment] ... 1 when the following formula is satisfied, V 3 ≤k UV
[V 3 excess comparison judgment] ... 1 when the following formula is satisfied, V 3 ≧ k OV
[V 4 drop comparison judgment] ... 1 when the following formula is satisfied, V 4 ≤k UV
[V 4 excess comparison judgment] ... 1 when the following formula is satisfied, V 4 ≧ k OV
[Equation 13]
[V 1 decreases the comparison determination] × [V 3 exceeds the comparison determination] + [V 2 decreases comparison determination] × [V 4 exceeds the comparison determination] + [V 3 decreases comparison determination] × [V 1 exceeds the comparison determination] + [V 4 lowered comparison determination] × [V 2 exceeds the comparison determination] ≧ 1
Similarly, the quadrilateral hypotenuse formed by each orthogonal seat (M seat and T seat) power supply in the case of incompatibility between the different phase power sources (M seat and T seat) when the autotransformer of the feeder circuit is opened Another embodiment of a method for detecting an incompatibility failure from the voltages V 1 , V 2 , V 3 , and V 4 will be described. The phenomenon of incompatibility failure between the different phase power sources (M seat and T seat) when the autotransformer of the feeder circuit is opened is the same as in the description of FIGS. 9 and 10 and will not be described in detail.

電圧測定手段25は格納された入力電圧の時系列データを汎用公開されているディジタル演算(振幅値演算)技術を用いて異相電源相互間電圧V1、V2、V3、V4を及び対向斜辺の差電圧比率ΔV1-2、ΔV2-4をそれぞれ測定する。仮に、サンプリング周期の電気角速度を30°とすればそれぞれの電気量は、現在のサンプリングデータと90°前のサンプリングデータとの[数14]に示す二乗演算と比率演算から求まる。 The voltage measuring means 25 uses the digital calculation (amplitude value calculation) technology disclosed for general purpose to convert the time series data of the stored input voltage to the voltages V 1 , V 2 , V 3 , V 4 and so on. The difference voltage ratios ΔV 1-2 and ΔV 2-4 on the hypotenuse are measured. If the electrical angular velocity of the sampling period is 30 °, each amount of electricity can be obtained from the square calculation and the ratio calculation shown in [Equation 14] between the current sampling data and the sampling data 90 ° before.

[数14]
V12=(Vm1(n-3)−Vt1(n-3)2+(Vm1(n)−Vt1(n))2
V22=(Vt1(n-3)+Vm2(n-3))2+(Vt1(n)+Vm2(n))2
V32=(-Vm2(n-3)+Vt2(n-3))2+(-Vm2(n)+Vt2(n))2
V42=(-Vt2(n-3)-Vm1(n-3))2+(-Vt2(n)-Vm1(n))2
ΔV1-2=(V1−V3)/(V1+V3)
ΔV2-4=(V2−V4)/(V2+V4)
次に、事故検知手段27は、電圧測定手段25で測定した対向斜辺の差電圧比率ΔV1-2、ΔV2-4のそれぞれの値と、予め定めて図示省略のメモリに記憶した判定定数kΔvとの比較判定を実行し、それぞれの比較判定結果が予め定める論理条件[数15]を満足した場合に混触故障として検知する。
[Formula 14]
V 12 = (V m1 (n-3) −V t1 (n-3 ) 2 + (V m1 (n) −V t1 (n) ) 2
V 22 = (V t1 (n-3) + V m2 (n-3) ) 2 + (V t1 (n) + V m2 (n) ) 2
V 32 = (-V m2 (n-3) + V t2 (n-3) ) 2 + (-V m2 (n) + V t2 (n) ) 2
V42 = (-V t2 (n-3) -V m1 (n-3) ) 2 + (-V t2 (n) -V m1 (n) ) 2
ΔV 1-2 = (V 1 −V 3 ) / (V 1 + V 3 )
ΔV 2-4 = (V 2 −V 4 ) / (V 2 + V 4 )
Next, the accident detection means 27 determines each value of the difference voltage ratios ΔV 1-2 and ΔV 2-4 of the opposite hypotenuse measured by the voltage measurement means 25, and a determination constant kΔ that is stored in a predetermined memory not shown. Comparison comparison with v is executed, and when each comparison determination result satisfies a predetermined logical condition [Equation 15], it is detected as an incompatibility failure.

[ΔV1-3 比較判定]…次式成立で1、ΔV1-3≦kΔv
[ΔV2-4 比較判定]…次式成立で1、ΔV2-4≦kΔv
[数15]
([ΔV1-3 比較判定]+[ΔV2-4 比較判定])≧1
同様に、き電回路の単巻変圧器が開放された場合の異相電源相互(M座とT座)の混触故障において、直交する各座(M座とT座)電源が形成する四辺形斜辺電圧V1、V2、V3、V4から混触故障を検出する方法の他の実施例を説明する。き電回路の単巻変圧器開放における異相電源相互(M座とT座)の混触故障の現象は、図9、図10の説明と同様であり詳細は省略する。
[ΔV 1-3 Comparison Judgment] ... 1 when the following equation is established, ΔV 1-3 ≦ kΔ v
[ΔV 2-4 Comparison Judgment] ... 1 when the following equation is established, ΔV 2-4 ≦ kΔ v
[Equation 15]
([ΔV 1-3 comparison judgment] + [ΔV 2-4 comparison judgment]) ≧ 1
Similarly, the quadrilateral hypotenuse formed by each orthogonal seat (M seat and T seat) power supply in the case of incompatibility between the different phase power sources (M seat and T seat) when the autotransformer of the feeder circuit is opened Another embodiment of a method for detecting an incompatibility failure from the voltages V 1 , V 2 , V 3 , and V 4 will be described. The phenomenon of incompatibility failure between the different-phase power sources (M seat and T seat) when the self-winding transformer of the feeder circuit is opened is the same as the explanation of FIGS. 9 and 10, and the details are omitted.

電圧測定手段25は格納された入力電圧の時系列データを汎用公開されているディジタル演算(振幅値演算)技術を用いて異相電源相互電圧Vt1、Vt2、Vm1、Vm2から異電源相互の差電圧比率ΔVmt%1、ΔVmt%2とを測定する。仮に、サンプリング周期の電気角速度を30°とすれば差電圧比率ΔVmtは、現在のサンプリングデータと90°前のサンプリングデータとを用い、[数16]に示す振幅値二乗演算から求まる。 The voltage measurement means 25 uses the digital calculation (amplitude value calculation) technology for the time series data of the stored input voltage, which is disclosed for general use, from the different phase power supply mutual voltages V t1 , V t2 , V m1 , V m2 to the different power supply mutual. The difference voltage ratios ΔV mt% 1 and ΔV mt% 2 are measured. If the electrical angular velocity of the sampling period is 30 °, the difference voltage ratio ΔV mt can be obtained from the square calculation of the amplitude value shown in [Equation 16] using the current sampling data and the sampling data before 90 °.

[数16]
ΔVmt%1={√((Vt1(n-3)-Vm1(n-3))2+(Vt1(n)-Vm1(n))2-√((Vt2(n-3)-Vm2(n-3))2+(Vt2(n)-Vm2(n))2)}/{√((Vt1(n-3)-Vm1(n-3))2+(Vt1(n)-Vm1(n))2)+√((Vt2(n-3)-Vm2(n-3))2+(Vt2(n)-Vm2(n)))2)}
ΔVmt%2= √((Vt1(n-3)-Vm2(n-3))2+(Vt1(n)-Vm2(n))2)-√((Vt2(n-3)-Vm1(n-3))2+(Vt2(n)-Vm1(n))2)}/{√((Vt1(n-3)-Vm2(n-3))2+(Vt1(n)-Vm2(n))2)+√((Vt2(n-3)-Vm1(n-3))2+(Vt2(n)-Vm1(n)))2}}
次に事故検知手段27は、電圧測定手段25で測定した対向斜辺の差電圧比率ΔVmt%1及びΔVmt%2のそれぞれの測定値と、予め定めて図示省略のメモリに記憶した判定定数kΔv との比較判定を実行し、それぞれの比較判定結果が予め定める論理条件[数17]を満足した場合に混触故障として検知する。
[Equation 16]
ΔV mt% 1 = {√ ((V t1 (n-3) -V m1 (n-3) ) 2 + (V t1 (n) -Vm1 (n)) 2 -√ ((V t2 (n-3 ) -V m2 (n-3) ) 2 + (V t2 (n) -V m2 (n) ) 2 )} / {√ ((V t1 (n-3) -V m1 (n-3) ) 2 + (V t1 (n) -V m1 (n) ) 2 ) + √ ((V t2 (n-3) -V m2 (n-3) ) 2 + (V t2 (n) -V m2 (n) )) 2 )}
ΔV mt% 2 = √ ((V t1 (n-3) -V m2 (n-3) ) 2 + (V t1 (n) -V m2 (n) ) 2 ) -√ ((V t2 (n- 3) -V m1 (n-3) ) 2 + (V t2 (n) -V m1 (n) ) 2 )} / {√ ((V t1 (n-3) -V m2 (n-3) ) 2 + (V t1 (n) -V m2 (n) ) 2 ) + √ ((V t2 (n-3) -V m1 (n-3) ) 2 + (V t2 (n) -V m1 (n ) )) 2 }}
Next, the accident detection means 27 determines the respective measured values of the difference voltage ratios ΔV mt% 1 and ΔV mt% 2 of the opposite hypotenuse measured by the voltage measurement means 25, and a determination constant kΔ stored in a memory which is predetermined and not shown. Comparison comparison with v is executed, and when each comparison determination result satisfies a predetermined logical condition [Equation 17], an incompatibility failure is detected.

[ΔVmt%1 比較判定]…次式成立で1(故障検知)、ΔVmt%≧kΔv
[ΔVmt%2 比較判定]…次式成立で1(故障検知)、ΔVmt%≧kΔv
[数17]
([ΔVmt%1 比較判定]+[ΔVmt%2 比較判定])≧1
本発明の実施の形態によれば、上位電源側と下位負荷側の保護区間外故障による電圧低下、或いは電源開放による電圧喪失で不要動作することなく、き電回路単巻変圧器の接続状態に影響されることなく、き電回路の全運用状態において異相電源混触事故を高速で確実に検出することが可能となり、現地試験や保守点検の簡素化を実現できる。
[ΔV mt% 1 comparison judgment] ... 1 (failure detection) when the following equation is established, ΔV mt% ≧ kΔ v
[ΔV mt% 2 comparison judgment] ... 1 (failure detection) when the following equation is established, ΔV mt% ≧ kΔ v
[Equation 17]
([ΔV mt% 1 comparison judgment] + [ΔV mt% 2 comparison judgment]) ≧ 1
According to the embodiment of the present invention, the connection state of the feeder circuit auto-transformer is reduced without causing unnecessary operation due to a voltage drop due to an out-of-protection fault on the upper power supply side and the lower load side, or a voltage loss due to power supply opening. Without being affected, it is possible to detect a mixed-phase power supply accident at high speed and reliably in all operating states of the feeder circuit, and it is possible to simplify field tests and maintenance inspections.

また、異相電源相互電流の逆位相成分電流判定を故障検知条件とする場合には、電源上位で発生する保護区間外の短絡や地絡故障によるき電変圧器二次の単相電源の電圧低下、或いはき電保護区間で発生する混触故障以外の故障(短絡・地絡故障)で生じる電圧降下による不要動作を確実に抑制し、目的とする混触故障を確実に検出することが可能になる。何故なら、上位の電源系故障やき電系の短絡と地絡故障では異相電源相互の電流格差と動作位相領域に対する位相差に応じた双曲線抑制特性の拡大効果発揮する一方で、混触故障では異相電源相互に流れる混触成分電流(逆位相成分電流)を抽出するからである。   Also, when the fault detection condition is the anti-phase component current judgment of the cross-phase power supply mutual current, the voltage drop of the secondary single-phase power supply of the feeder transformer due to a short circuit outside the protection section or a ground fault occurring in the upper power supply Alternatively, it is possible to reliably suppress an unnecessary operation due to a voltage drop caused by a fault (short circuit / ground fault) other than the incompatibility fault that occurs in the feeder protection section, and to reliably detect the target incompatibility fault. This is because high-order power supply failures and feeder short-circuits and ground faults have the effect of expanding the hyperbola suppression characteristics according to the current disparity between the different-phase power sources and the phase difference with respect to the operating phase range, while the mixed-phase failure causes the different-phase power sources. This is because incompatible component currents (anti-phase component currents) flowing mutually are extracted.

また、異相電源相互間の混触電流は交流き電回路の電源双方の端巻き変圧器単巻変圧器の中点を経由して流れる。交流単巻変圧器き電回路は単巻変圧器運用が基本であり、定常の運用では上述した逆位相成分電流判定の故障検出に問題はないが、き電開始の単巻変圧器接続直前に混触故障が発生するような場合、すなわち単巻変圧器接続抜けの混触故障では異相電源相互に混触成分電流(逆位相成分電流)が流れないので逆位相成分電流判定方法では混触故障を検出できない。そこで、四辺形対向斜辺電圧の比率、あるいは異相電源相互の中点分圧電圧のベクトル電圧差の比率から混色故障を確実に検出できる。   In addition, the mixed current between the different-phase power supplies flows through the middle point of the end-winding transformer single-winding transformer on both power sources of the AC feeder circuit. AC self-winding transformer feed circuit is based on single-turn transformer operation, and in normal operation there is no problem with the above-mentioned failure detection of anti-phase component current judgment, but just before connection of the single-turn transformer at the start of feeding In the case where an incompatibility failure occurs, that is, in the incompatibility failure where the autotransformer is disconnected, the incompatible component current (antiphase component current) does not flow between the different-phase power sources, so the inphase fault current detection method cannot detect the incompatibility failure. Therefore, a color mixing failure can be reliably detected from the ratio of the quadrangle-opposed oblique side voltage or the ratio of the vector voltage difference between the midpoint divided voltages of the different phase power supplies.

本発明の実施の形態に係わる交流き電回路用異相混触検出継電装置を交流き電回路に適用した系統図。The systematic diagram which applied the heterophase mixture detection relay apparatus for alternating current feeders concerning embodiment of this invention to the alternating current feeder circuit. 本発明の実施の形態に係わる交流き電回路用異相混触検出継電装置のブロック構成図。The block block diagram of the heterogeneous mixture detection relay apparatus for alternating current feeding circuits concerning embodiment of this invention. 本発明の実施の形態に係わる交流き電回路用異相混触検出継電装置における異相電源相互の逆位相成分電流の検出特性図。The detection characteristic figure of the anti | reverse | negative phase component electric current between different phase power supplies in the different phase mixing detection relay apparatus for alternating current feeding circuits concerning embodiment of this invention. 電源相互混触故障の一例を示すベクトル図。The vector diagram which shows an example of a power supply mutual incompatibility failure. T座地絡故障の一例を示すベクトル図。The vector diagram which shows an example of T ground fault. T座短絡故障の一例を示すベクトル図。The vector diagram which shows an example of T seat short circuit failure. 故障電圧低下率と位相変化との一例を示す特性図。The characteristic view which shows an example of a failure voltage fall rate and a phase change. 異相電源相互の逆位相電流検出特性図。The opposite phase current detection characteristic diagram of different phase power supplies. 交流き電回路保護系統図。AC feeder circuit protection system diagram. 交流き電回路における受電の三相電圧と二組の単相変換電圧との定常電圧ベクトル図。The steady-state voltage vector figure of the three-phase voltage of an incoming call in an AC feeder circuit, and two sets of single phase conversion voltages. 従来の混触検出継電装置のブロック構成図。The block block diagram of the conventional mixed contact detection relay apparatus.

符号の説明Explanation of symbols

1…異相混触検出保護継電器、2…電源設備、3…き電変圧器、4、5…計器用変圧器、6、7…計測用変流器、8、9…単巻変圧器、21…入力変換手段、22…入力サンプリングホールド手段、23…A/D変換手段、24…データ格納手段、25…電圧測定手段、26…電流測定手段、27…事故検知手段、28…出力処理手段
DESCRIPTION OF SYMBOLS 1 ... Interphase detection detection protection relay, 2 ... Power supply equipment, 3 ... Feeding transformer, 4, 5 ... Instrument transformer, 6, 7 ... Measuring current transformer, 8, 9 ... Single volume transformer, 21 ... Input conversion means, 22 ... input sampling hold means, 23 ... A / D conversion means, 24 ... data storage means, 25 ... voltage measurement means, 26 ... current measurement means, 27 ... accident detection means, 28 ... output processing means

Claims (6)

三相交流を直交位相二組の単相で異相の電源に変換して電力供給する交流き電回路の位相混触を検出する交流き電回路用異相混触検出継電装置において、複数の入力電圧および入力電流をアナログ値に変換する入力変換手段と、前記入力変換手段で変換されたアナログ波形を一定の周期でサンプリングして記憶するサンプルホールド手段と、一定の周期毎にサンプルホールドされたアナログ値をディジタル値に変換するA/D変換手段と、一定の周期毎に前記A/D変換手段のデジタル変換値を過去任意時系列サンプリング情報として記憶・更新するサンプリングデータ格納手段と、前記データ格納手段に記憶された複数入力電圧の時系列サンプリングデータから4組の異相電源相互間のそれぞれ電圧を求める電圧測定手段と、前記データ格納手段に記憶された複数入力電流の時系列サンプリングデータから異相電源それぞれの母線電流値を求める電流測定手段と、前記電圧測定手段で求める電圧値及び電流測定手段が求める電流値と予め任意の値に定めて記憶する判定値との比較結果から混触事故を検出する事故検知手段と、前記事故検知手段で混触事故を検出した場合に交流き電回路の保護遮断を実行するための出力処理手段とを備えたことを特徴とする交流き電回路用異相混触検出継電装置。   In a cross-phase mixing detection relay device for an AC feeding circuit that detects a phase mixture of an AC feeding circuit that converts a three-phase alternating current into two sets of quadrature and converts to a single-phase power supply and supplies power, a plurality of input voltages and Input conversion means for converting an input current into an analog value, sample hold means for sampling and storing the analog waveform converted by the input conversion means at a constant cycle, and an analog value sampled and held at a constant cycle A / D conversion means for converting to a digital value, sampling data storage means for storing / updating digital conversion values of the A / D conversion means as past arbitrary time series sampling information at regular intervals, and the data storage means Voltage measuring means for obtaining voltages between four sets of different phase power supplies from time-series sampling data of a plurality of input voltages stored therein; Current measurement means for obtaining the bus current value of each of the different phase power supplies from the time-series sampling data of the plurality of input currents stored in the means, the voltage value obtained by the voltage measurement means, the current value obtained by the current measurement means, and an arbitrary value in advance Accident detection means for detecting a contact accident from a comparison result with a determination value to be determined and stored, and an output processing means for executing protection interruption of the AC feeder circuit when the accident detection means detects a contact accident What is provided is a heterogeneous contact detection relay device for an AC feeder circuit. 前記電流測定手段は、異相電源相互電流のいづれか小さい方の電流と異相電源相互電流との位相差を用いて逆位相成分電流を算出することを特徴とする請求項1に記載の交流き電回路用異相混触検出継電装置。   2. The AC feeding circuit according to claim 1, wherein the current measuring unit calculates an antiphase component current using a phase difference between a smaller one of the different phase power supply mutual currents and the different phase power supply mutual current. Heterogeneous contact detection relay device. 前記電流測定手段は、異相電源相互電流のいづれか小さい方の電流と異相電源相互電流のスカラ電流比とベクトル電流比とを用いて逆位相成分電流を算出することを特徴とする請求項1記載の交流き電回路用異相混触検出継電装置。   2. The current measuring unit calculates an antiphase component current using a current which is smaller of the different phase power supply mutual current, a scalar current ratio of the different phase power supply mutual current, and a vector current ratio. Heterogeneous contact detection relay device for AC feeder circuits. 前記事故検知手段は、前記電圧測定手段で算出した異相電源相互電圧を対角線に形成される四辺形4斜辺の電圧低下と電圧超過との組み合わせにより混触事故検知することを特徴とする請求項1記載の交流き電回路用異相混触検出継電装置。   2. The accident detection means detects an incompatibility accident based on a combination of a voltage drop and an excess voltage of a quadrilateral of four sides of a quadrilateral formed on a diagonal line with respect to a different-phase power supply mutual voltage calculated by the voltage measurement means. -Phase mixed contact detection relay device for AC feeding circuit. 前記事故検知手段は、異相電源相互電圧を対角線に形成される四辺形4斜辺の対向斜辺電圧の差電圧比率値から混触事故検知することを特徴とする請求項1記載の交流き電回路用異相混触検出継電装置。   2. The heterophase for an AC feeder circuit according to claim 1, wherein the accident detection means detects an incompatibility accident based on a difference voltage ratio value of opposite hypotenuse voltages of a quadrilateral and four hypotenuses formed on a diagonal line. Contact detection relay device. 前記事故検知手段は、異相電源相互のそれぞれ中点分圧された電圧のベクトル差の比率値を算出し、この比率値から混触事故検知することを特徴とする請求項1記載の交流き電回路用異相混触検出継電装置。   2. The AC feeder circuit according to claim 1, wherein the accident detection means calculates a ratio value of vector differences between voltages divided at the respective midpoints of the different-phase power sources, and detects a mixed accident from the ratio value. Heterogeneous contact detection relay device.
JP2006017302A 2006-01-26 2006-01-26 Different phase mixture contact detecting relay device for ac feeding circuit Pending JP2007196837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017302A JP2007196837A (en) 2006-01-26 2006-01-26 Different phase mixture contact detecting relay device for ac feeding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017302A JP2007196837A (en) 2006-01-26 2006-01-26 Different phase mixture contact detecting relay device for ac feeding circuit

Publications (1)

Publication Number Publication Date
JP2007196837A true JP2007196837A (en) 2007-08-09

Family

ID=38451869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017302A Pending JP2007196837A (en) 2006-01-26 2006-01-26 Different phase mixture contact detecting relay device for ac feeding circuit

Country Status (1)

Country Link
JP (1) JP2007196837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325894A (en) * 2014-11-06 2015-02-04 西南交通大学 Multi-feeder combination type power supply and transformation construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325894A (en) * 2014-11-06 2015-02-04 西南交通大学 Multi-feeder combination type power supply and transformation construction

Similar Documents

Publication Publication Date Title
Elmore Protective relaying: theory and applications
US7345488B2 (en) Apparatus and method for determining a faulted phase of a three-phase ungrounded power system
US10333291B2 (en) Multiple generator ground fault detection
US20120062239A1 (en) Directional fault sectionalizing system
US10288688B2 (en) Systems and methods for monitoring and protecting an electric power generator
RU2557017C2 (en) Fault identification and directional detection in three-phase power system
Redfern et al. Protection of micro-grids dominated by distributed generation using solid state converters
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
JP2011153913A (en) Leak current measuring device and measurement method in electric apparatus
JP2019165569A (en) Failure determination device and protective relay device
JP2019124552A (en) Electric path failure detection device
JP2007196837A (en) Different phase mixture contact detecting relay device for ac feeding circuit
US20170074941A1 (en) Detection of generator stator inter-circuit faults
Valdes et al. Finding fault-Locating a ground fault in low-voltage, high-resistance grounded systems via the single-processor concept for circuit protection
JP2011015565A (en) Method and device for detection of single operation in distributed power supply
JP6517667B2 (en) Ground fault detection device
JPH11174105A (en) Fault detecting apparatus for ac filter circuit
Saha et al. A simulation model for evaluation of intersystem fault in a hybrid AC/DC power system and its impact on the protection system
Fischer et al. Analysis of an autotransformer restricted earth fault application
CN112068037B (en) Asymmetric fault analysis method and system for YNd11 wiring transformer
US11728639B2 (en) Transformer short-circuit protection method and transformer short-circuit protection device
Valdes et al. Ground fault location in low-voltage high-resistance grounded systems via the single-processor concept for circuit protection
US20240072697A1 (en) Split-phase protection of generators
JP4154369B2 (en) Relay device for detecting mixed phases of AC feeding circuits
JP2012010479A (en) Individual operation detector of distributed power supply