JP2007196110A - Coating method - Google Patents

Coating method Download PDF

Info

Publication number
JP2007196110A
JP2007196110A JP2006016267A JP2006016267A JP2007196110A JP 2007196110 A JP2007196110 A JP 2007196110A JP 2006016267 A JP2006016267 A JP 2006016267A JP 2006016267 A JP2006016267 A JP 2006016267A JP 2007196110 A JP2007196110 A JP 2007196110A
Authority
JP
Japan
Prior art keywords
paint
coating
average particle
coating method
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006016267A
Other languages
Japanese (ja)
Other versions
JP4765637B2 (en
Inventor
Shigenori Kazama
重徳 風間
Hiroyuki Mitomo
裕之 三友
Akikazu Ito
晃数 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006016267A priority Critical patent/JP4765637B2/en
Publication of JP2007196110A publication Critical patent/JP2007196110A/en
Application granted granted Critical
Publication of JP4765637B2 publication Critical patent/JP4765637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating method which enables formation of a coating film having a good metallic feel without large amounts of shaping air. <P>SOLUTION: The coating method is used to atomize and coat a coating containing a flaky brightening pigment 1 and comprises atomizing and coating a coating 3 in such a manner that the average particle size of the coating on being spread on a to-be-coated material will be equal to or smaller than that of the flaky brightening pigment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車ボディや自動車部品などの被塗物に鱗片状光輝性顔料を含む塗料を吹き付ける塗装方法に関する。   The present invention relates to a coating method for spraying a paint containing a scaly glitter pigment on an object to be coated such as an automobile body or an automobile part.

アルミフレークやマイカ箔などの鱗片状光輝性顔料を含む塗料の外観仕上がり性、特にメタリック感と称されるフリップフロップ性を高めるために、塗料粒子の飛行速度を高くする塗装方法が提案されている(特許文献1,2)。   In order to improve the appearance finish of paints containing scaly glittering pigments such as aluminum flakes and mica foil, especially the flip-flop property called metallic feeling, a coating method that increases the flying speed of paint particles has been proposed. (Patent Documents 1 and 2).

塗料粒子の飛行速度を高めるには、エアー霧化式塗装ガンにあっては霧化エアーまたはパターンエアーの流量を大きくし、回転霧化式塗装ガンにあってはシェーピングエアーの流量を大きくすることで、被塗物に向かう多量の空気流れを形成して塗料粒子に速度を付与する方法が一般的に用いられている。   To increase the flying speed of paint particles, increase the flow rate of atomizing air or pattern air for air atomizing paint guns, and increase the flow rate of shaping air for rotary atomizing paint guns. Thus, a method is generally used in which a large amount of air flow toward the object to be coated is formed to impart speed to the paint particles.

これは塗料粒子の衝突速度が大きいほど鱗片状光輝性顔料が基材に対して平行に配向し易くなり、これによりフリップフロップ性に優れた塗膜を得やすいという知見に基づいた塗装方法である。   This is a coating method based on the knowledge that the larger the collision speed of paint particles, the easier the scaly glittering pigment is oriented in parallel to the substrate, thereby making it easier to obtain a coating film with excellent flip-flop properties. .

しかしながら、多量のエアーを使用する従来の塗装方法では、被塗物表面に余剰の空気流れが形成され、比較的微細で軽量の塗料粒子が運び去られることにより、塗着効率が低下するといった問題があった。   However, in the conventional coating method using a large amount of air, an excessive air flow is formed on the surface of the object to be coated, and a relatively fine and lightweight paint particle is carried away. was there.

たとえば、エアー霧化式塗装ガンの塗着効率は約30〜45%であり、塗着効率が高いといわれている回転霧化式塗装ガンにあってもメタリックベース塗料を塗装する場合は約60%であり、鱗片状光輝性顔料を含まないクリヤ塗料やソリッド塗料を塗装する場合の約80%の塗着効率に比べると、未だ改善の余地がある。   For example, the application efficiency of an air atomizing paint gun is about 30 to 45%, and even when a metallic base paint is applied even with a rotary atomizing paint gun which is said to have high application efficiency. There is still room for improvement compared to the coating efficiency of about 80% in the case of applying a clear paint or solid paint containing no scaly glittering pigment.

このため、メタリックベース塗料を塗装する工程では、1ステージ目で塗着効率を重視した塗装条件で比較的厚膜に塗装したのち、2ステージ目で比較的薄い塗膜を上述した多量のエアーとともに塗装することで仕上がり性を確保するといった2ステージ塗装方法が採用されている。   For this reason, in the process of applying the metallic base paint, after applying a relatively thick film in the first stage under a coating condition that emphasizes the coating efficiency, a relatively thin film is applied in the second stage together with the above-mentioned large amount of air. A two-stage coating method is used in which finish is ensured by painting.

この場合の1ステージ目には塗着効率に優れた回転霧化式塗装ガンが用いられるが、その塗装条件は塗着効率が高くなるようにシェーピングエアー流量を少なくし、これにより塗着効率を70〜80%にまで高める。2ステージ目にはエアー霧化式塗装ガンや多量のシェーピングエアー流量に設定した回転霧化式塗装ガンが用いられるが、多量のエアー流れが生じる結果、その塗着効率は約60%に留まることとなる。   In this case, a rotary atomizing paint gun with excellent coating efficiency is used for the first stage, but the coating conditions are such that the shaping air flow rate is reduced so that the coating efficiency is high, thereby reducing the coating efficiency. Increase to 70-80%. In the second stage, an air atomizing paint gun or a rotary atomizing paint gun set to a large amount of shaping air flow is used, but as a result of the large amount of air flow, the coating efficiency is limited to about 60%. It becomes.

また、2ステージ塗装法を採用すると、塗装装置(塗装ガン)の台数が必然的に増加するので設備費用増加の問題があるが、これ以外にも、塗装装置(塗装ガン)が増加すればするほど、色替え時に廃棄する塗料量や洗浄液も増加するといった問題がある。   In addition, if the two-stage coating method is used, the number of coating equipment (painting guns) will inevitably increase, which causes a problem of increased equipment costs. As a result, there is a problem that the amount of paint to be discarded at the time of color change and the cleaning liquid also increase.

さらに、多量のエアーを用いる塗装方法では、必然的に有効パターン幅が狭くなるので、塗り重ね回数を増やさざるを得ず、限られた塗装時間内に所定面積を塗装するには塗装ガンの移動速度をアップせざるを得なかった。これにより、塗装ガンが装着されたロボットの故障率が高くなるといった問題もあった。
特開2003−93965号公報 特許第2560421号公報
Furthermore, since the effective pattern width is inevitably narrow in the painting method using a large amount of air, the number of times of painting must be increased, and the painting gun must be moved to paint a predetermined area within a limited painting time. I had to increase the speed. As a result, there is a problem that the failure rate of the robot equipped with the paint gun is increased.
JP 2003-93965 A Japanese Patent No. 2560421

本発明は、多量のシェーピングエアーを用いなくても良好なメタリック感を呈する塗膜を得ることができる塗装方法を提供することを目的とする。   An object of this invention is to provide the coating method which can obtain the coating film which exhibits a favorable metallic feeling, without using a lot of shaping air.

上記目的を達成するために、本発明の塗装方法は、鱗片状光輝性顔料を含有する塗料を被塗物に霧化塗装する塗装方法であって、前記被塗物に塗着するときの前記塗料の平均粒径が前記鱗片状光輝性顔料の平均粒径以下となるように、前記塗料を霧化して塗装することを特徴とする。   In order to achieve the above object, the coating method of the present invention is a coating method in which a paint containing a scaly glittering pigment is atomized and applied to an object to be coated. The coating material is atomized and applied so that the average particle size of the coating material is equal to or less than the average particle size of the scaly glittering pigment.

本発明では、鱗片状光輝性顔料を含有する塗料を霧化塗装するにあたり、塗着時の平均粒径を、鱗片状光輝性顔料の平均粒径以下にしたので、シェーピングエアー流量に関係なく、被塗物表面において鱗片状光輝性顔料がほぼ平行に配向することになる。これにより、多量のシェーピングエアーを用いなくても良好なメタリック感を呈する塗膜を得ることができる。   In the present invention, when the paint containing the scaly glitter pigment is atomized, the average particle size at the time of application is not more than the average particle diameter of the scaly glitter pigment, so regardless of the shaping air flow rate, The scaly glittering pigment is oriented almost in parallel on the surface of the object to be coated. Thereby, the coating film which exhibits a favorable metallic feeling can be obtained, without using a lot of shaping air.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態を図面に基づいて説明する。
最初に自動車ボディの塗装ラインの概要を説明すると、車体ラインで組み立てられたホワイトボディは、まず下塗り塗装工程に搬入される。この下塗り塗装工程では、ホワイトボディに付着した油分や鉄粉などを洗浄したのち表面調整およびリン酸亜鉛などの化成皮膜処理が施され(以上が洗浄・前処理工程)、さらに下塗り塗膜を構成する電着塗装が行われる。ポリアミン樹脂などのエポキシ系樹脂を基体樹脂とする電着塗料が塗布されたボディは、電着乾燥炉に搬入されて、たとえば160〜180℃で15分〜30分焼き付けられ、これによりボディの内外板および袋構造部に、膜厚10μm〜35μmの電着塗膜が形成される(電着工程)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the outline of the car body painting line will be explained. The white body assembled in the car body line is first carried into the undercoating process. In this undercoating process, the oil and iron powder adhering to the white body are washed, and then surface adjustment and chemical conversion film treatment such as zinc phosphate are applied (the above is the cleaning and pretreatment process), and the undercoating film is further formed Electrodeposition coating is performed. A body coated with an electrodeposition coating material having an epoxy resin such as polyamine resin as a base resin is carried into an electrodeposition drying furnace and baked at, for example, 160 to 180 ° C. for 15 to 30 minutes. An electrodeposition coating film having a thickness of 10 μm to 35 μm is formed on the plate and the bag structure (electrodeposition process).

電着塗膜が形成されたボディは、シーリング工程(アンダーコート工程、ストーンガードコート工程を含む。)に送られて、鋼板合わせ目や鋼板エッジ部に防錆または目止めを目的とした塩化ビニル系樹脂製シーリング材が塗布される。また、アンダーコート工程では、タイヤハウスや床裏に塩化ビニル樹脂系の耐チッピング材が塗布され、ストーンガードコート工程では、シルやフェンダなどのボディ外板下部にポリエステル系又はポリウレタン系樹脂製耐チッピング材が塗布される。なお、これらシーリング材や耐チッピング材は専用の乾燥炉または次に述べる中塗り乾燥炉にて硬化することになる。   The body on which the electrodeposition coating has been formed is sent to the sealing process (including the undercoat process and the stone guard coat process), and vinyl chloride is used for the purpose of rust prevention or sealing at the steel plate joints and steel plate edges. A resin-based sealing material is applied. In the undercoat process, a vinyl chloride resin-based chipping-resistant material is applied to the tire house and the back of the floor, and in the stone guard coat process, a polyester-based or polyurethane-based resin-resistant chipping is applied to the lower part of the body outer plate such as a sill or fender. The material is applied. In addition, these sealing materials and chipping-resistant materials are cured in a dedicated drying furnace or an intermediate coating drying furnace described below.

シーリング材や耐チッピング材が塗布され、内外板に電着塗膜が形成されたボディは、次に中塗り工程に搬入される。中塗り工程は中塗りブースと中塗り乾燥炉とを有し、中塗りブースでは、ボディの内板部に、その車両の外板色に対応した内板塗装用塗料が塗布されたのち、ウェットオンウェットで外板部に中塗り塗料が塗布される。このボディは中塗り乾燥炉に搬送され、中塗り乾燥炉をたとえば130〜150℃で15分〜30分通過することにより外板部に、膜厚15μm〜35μmの中塗り塗膜が形成され、内板部に膜厚15μm〜30μmの内板塗装用塗膜が形成される。なお、内板塗装用塗料および中塗り塗料は、アクリル樹脂、アルキド樹脂、ポリエステル樹脂などを基体樹脂とする塗料である。   The body on which the sealing material and the chipping-resistant material are applied and the electrodeposition coating film is formed on the inner and outer plates is then carried into the intermediate coating process. The intermediate coating process has an intermediate coating booth and an intermediate coating drying furnace. In the intermediate coating booth, an inner panel coating paint corresponding to the outer panel color of the vehicle is applied to the inner panel of the body, and then wet. An intermediate coating is applied to the outer plate part on wet. This body is conveyed to an intermediate coating drying furnace, and an intermediate coating film having a film thickness of 15 μm to 35 μm is formed on the outer plate by passing through the intermediate coating drying furnace at 130 to 150 ° C. for 15 to 30 minutes, for example. A coating film for inner plate coating having a film thickness of 15 μm to 30 μm is formed on the inner plate portion. The inner coating paint and the intermediate coating paint are paints using an acrylic resin, alkyd resin, polyester resin, or the like as a base resin.

中塗り塗装を終えたボディは、必要に応じてサンディングを行ったのち上塗り工程に搬送され、上塗りブースにてメタリック系外板色の場合は、上塗りベース塗料とクリヤ塗料とがウェットオンウェットで塗布される。また、ソリッド系外板色の場合は、クリヤ塗装の工程にて上塗りソリッド塗料が塗布される。上塗りベース塗料、クリヤ塗料、上塗りソリッド塗料は、アクリル樹脂、アルキド樹脂、ポリエステル樹脂などを基体樹脂とする塗料である。   After finishing the intermediate coating, the body is sanded as necessary and then transported to the top coating process. When the outer color is metallic, the top coating base paint and clear paint are applied wet-on-wet. Is done. In the case of a solid-type outer plate color, a top-coated solid paint is applied in the clear coating process. The topcoat base paint, clear paint, and topcoat solid paint are paints that use acrylic resin, alkyd resin, polyester resin, or the like as a base resin.

そして、上塗り塗料が塗布されたボディは上塗り乾燥炉へ搬送され、ここでたとえば130〜150℃で15分〜30分焼き付けられ、これにより上塗り塗膜が形成される。なお、上塗りベース塗膜の膜厚は、たとえば10μm〜20μm、クリヤ塗膜の膜厚は、たとえば15μm〜30μm、上塗りソリッド塗膜の膜厚は、たとえば15μm〜35μmである。最後にこの塗完ボディは、検査および手直し工程を経たのち、自動車部品が組み付けられる組立ラインへ搬送される。   Then, the body to which the top coat is applied is conveyed to a top coat drying furnace, where it is baked at, for example, 130 to 150 ° C. for 15 to 30 minutes, thereby forming a top coat film. The film thickness of the top coat base coating film is, for example, 10 μm to 20 μm, the film thickness of the clear coating film is, for example, 15 μm to 30 μm, and the film thickness of the top coating solid coating film is, for example, 15 μm to 35 μm. Finally, the coated body is subjected to an inspection and rework process, and then conveyed to an assembly line on which automobile parts are assembled.

以上が自動車ボディの塗装ラインの概要であるが、このうちの上塗り工程の上塗りベース塗装工程に本発明の塗装方法が好適に用いられる。   The above is the outline of the painting line of the automobile body, and the coating method of the present invention is suitably used in the top coating base coating process of the top coating process.

本例の塗装方法は、鱗片状光輝性顔料を含有する塗料としてアルミフレークを含有したメタリックベース塗料やマイカ箔を含有したパールベース塗料を中塗り塗膜の表面に塗装する方法であって、中塗り塗膜表面に塗着するときの塗料の平均粒径が鱗片状光輝性顔料の平均粒径以下となるように、塗料を霧化して塗装するものである。   The coating method of this example is a method in which a metallic base paint containing aluminum flakes or a pearl base paint containing mica foil as a paint containing scaly glitter pigment is applied to the surface of the intermediate coating film. The paint is atomized and applied so that the average particle diameter of the paint when applied to the surface of the coating film is equal to or less than the average particle diameter of the scaly glitter pigment.

この場合、塗料を霧化するための塗装ガンとして回転霧化式塗装ガンやエアー霧化式塗装ガンの何れも用いることができるが、塗着効率の観点からは回転霧化式塗装ガンを用いることが好ましい。   In this case, either a rotary atomizing paint gun or an air atomizing paint gun can be used as a paint gun for atomizing the paint, but a rotary atomizing paint gun is used from the viewpoint of coating efficiency. It is preferable.

また、中塗り塗膜表面に塗着するときのベース塗料の粒径が鱗片状光輝性顔料の平均粒径とほぼ等しいかそれ以下であれば塗料の飛行速度は特に限定されないが、塗着効率の観点からは塗料の塗着時の飛行速度を5m/秒未満とすることが好ましい。   In addition, the coating flight speed is not particularly limited as long as the particle size of the base coating when applied to the surface of the intermediate coating film is approximately equal to or less than the average particle size of the scaly glitter pigment, but the coating efficiency is not particularly limited. From this point of view, it is preferable that the flight speed at the time of applying the paint is less than 5 m / sec.

また、中塗り塗膜表面に上述した所定膜厚10μm〜20μmを形成する場合、2ステージ以上の塗り重ね法で塗装しても良いが、塗着効率の観点からはベース塗料を1ステージで塗装することが好ましい。   In addition, when the above-mentioned predetermined film thickness of 10 μm to 20 μm is formed on the surface of the intermediate coating film, it may be applied by two or more stages of coating, but from the viewpoint of coating efficiency, the base paint is applied in one stage. It is preferable to do.

なお、メタリック塗料およびパールベース塗料は、有機溶剤系塗料であっても良いが、水系塗料であるときは特に本発明の効果が大きい。有機溶剤系塗料は飛行中に溶剤分が蒸発して塗着直前の粒径がやや小さくなるが、水系塗料はあまり変化しないからである。   The metallic paint and the pearl base paint may be organic solvent-based paints, but the effect of the present invention is particularly great when they are water-based paints. This is because the organic solvent-based paint evaporates during the flight and the particle size just before coating is slightly reduced, but the water-based paint does not change much.

ところで、本例に係るベース塗料中に含まれる光輝性顔料1は、図1に示すように鱗片状をなすものであり、平面視における実質面積を円2に換算したときの半径Rを本発明にいう平均粒径と定義する。すなわち、本発明にいう鱗片状光輝性顔料の平均粒径とは、同図に示す厚さtではなく、主面の平均直径Rを意味するものとする。本例に係るベース塗料中に含まれる光輝性顔料の平均粒径Rは一般的には10〜30μm程度であり、厚みは0.2〜1μm程度である。したがって、含有する鱗片状光輝性顔料の主面の平均直径が20μmであるときは、塗料の塗着時の粒径を20μm以下に微粒化して塗装する。   By the way, the luster pigment 1 contained in the base paint according to this example has a scaly shape as shown in FIG. 1, and the radius R when the real area in a plan view is converted into a circle 2 is defined as the present invention. Is defined as the average particle size. That is, the average particle diameter of the scaly glittering pigment referred to in the present invention means not the thickness t shown in the figure but the average diameter R of the main surface. The average particle diameter R of the glitter pigment contained in the base paint according to this example is generally about 10 to 30 μm, and the thickness is about 0.2 to 1 μm. Therefore, when the average diameter of the principal surface of the scale-like glitter pigment contained is 20 μm, the particle diameter at the time of application of the paint is reduced to 20 μm or less for coating.

ここで、塗料粒子の平均粒径は、塗料の吐出量と回転霧化塗装ガン(霧化頭)の回転数および霧化頭の直径によって制御することができる。   Here, the average particle diameter of the paint particles can be controlled by the discharge amount of the paint, the rotational speed of the rotary atomizing coating gun (atomizing head), and the diameter of the atomizing head.

なお、塗着時の粒径は、レーザー光散乱方式の粒子径測定装置を用いて測定することができる。またこの測定と校正をとった画像処理計測システムを用いることもできる。後者の方法では、ガラス板にフッ素系界面活性剤を薄膜に塗布し、その板を1秒くらいの時間、被塗物表面に暴露する。このようにして捕集した塗料粒子を顕微鏡で拡大してその粒子径を測定することによって容易に測定することができる。本発明においては、このようにして測定した塗料粒子径の重量平均粒径D43を塗料粒子の平均粒径として用いている。 The particle size at the time of coating can be measured using a laser light scattering type particle size measuring device. An image processing measurement system that takes this measurement and calibration can also be used. In the latter method, a fluorosurfactant is applied to a thin film on a glass plate, and the plate is exposed to the surface of the object to be coated for about 1 second. The coating particles collected in this manner can be easily measured by enlarging them with a microscope and measuring the particle diameter. In the present invention uses a weight average particle diameter D 43 of the paint particle size measured in this way as an average particle size of the paint particles.

本例によれば、アルミフレークやマイカ箔のような鱗片状光輝性顔料を含むベース塗料を塗装するにあたり、塗着時(もしくは塗着直前)の塗料粒子の平均粒径が光輝性顔料の平均粒径よりも小さくすることにより、多量もしくは高速のエアー流れを形成することなく、光輝性顔料の配向を良好にでき、もって塗膜仕上がり外観を良好にできるとともに、塗着効率を高めることができる。   According to this example, when applying a base paint containing scaly bright pigments such as aluminum flakes and mica foil, the average particle diameter of the paint particles at the time of application (or immediately before application) is the average of the bright pigments. By making it smaller than the particle size, it is possible to improve the orientation of the glitter pigment without forming a large amount or high-speed air flow, thereby improving the finished appearance of the coating film and improving the coating efficiency. .

このように、高速のエアー流れがない場合の、塗料の粒子径と光輝性顔料の配向との関係はこれまで知られていなかったが、塗料粒子径が小さく、特に光輝性顔料の平均粒径と同等もしくはそれ以下の粒子径になった場合に、顕著な効果を発揮することから、本発明者らは、塗料粒子径が小さい場合の光輝性顔料の配向には特別な作用があるとの結論に至った。   Thus, in the absence of high-speed air flow, the relationship between the particle size of the paint and the orientation of the glitter pigment has not been known so far, but the paint particle diameter is small, especially the average particle diameter of the glitter pigment. When the particle diameter is equal to or less than the above, a remarkable effect is exhibited, so that the present inventors have a special effect on the orientation of the glitter pigment when the paint particle diameter is small. I came to a conclusion.

すなわち、塗料粒子が塗着したときの表面張力が、光輝性顔料の配向を支配する要因であるとの結論である。つまり、微粒化されて飛行途中にある塗料粒子の内部では、光輝性顔料の方向性は定まらず被塗物に対してランダムになっていると予想される。ところが、塗料粒子が塗着した場合には、既に塗着して被塗物表面を覆っている塗料と融合する際に、表面張力によって表面を平滑にする効果があるが、本例の塗装方法によれば、降着した塗料粒子にほぼ同程度の大きさの鱗片状光輝性顔料が含まれているため、光輝性顔料は表面張力によって塗料表面と平行に引っ張られると推察される。この表面張力による配向では、塗料粒子の衝突速度を高めることで塗料粒子を被塗物表面で押し潰すのと同程度の力が作用していると考えられる。   That is, it is concluded that the surface tension when the coating particles are applied is a factor governing the orientation of the glitter pigment. In other words, the direction of the glitter pigment is not fixed inside the paint particles that are atomized and in the middle of flight, and are expected to be random with respect to the object to be coated. However, when paint particles are applied, there is an effect of smoothing the surface by surface tension when fusing with the paint already applied and covering the surface of the object to be coated. According to the above, it is inferred that the glitter pigment is pulled in parallel with the paint surface by the surface tension because the scaled glitter pigment having almost the same size is contained in the deposited paint particles. In this orientation by surface tension, it is considered that the same force is applied as when the paint particles are crushed on the surface of the object by increasing the collision speed of the paint particles.

これに対し、光輝性顔料の平均粒径よりも大きな平均粒径の塗料粒子で塗装した場合には、塗料粒子が表面張力で平滑になるように流動しても、その塗料粒子の内部で光輝性顔料が配向の自由度をある程度有しているため、被塗物の表面と完全には平行にならないと考えられ、これにより光輝性顔料の配向が不十分になると推察される。   In contrast, when the paint particles are coated with paint particles having an average particle size larger than the average particle size of the glitter pigment, even if the paint particles flow so as to be smooth due to the surface tension, the glitter within the paint particles. Since the luminescent pigment has a certain degree of freedom in orientation, it is considered that it is not completely parallel to the surface of the object to be coated, and it is assumed that the orientation of the glitter pigment is insufficient.

また、塗料粒子の平均粒径が光輝性顔料の平均粒径よりもはるかに小さくなった場合には、光輝材が単独で塗着するのと同視できることから、やはり配向が良好になると考えられる。すなわち光輝性顔料が単独で被塗物に塗着する場合には、光輝性顔料は最も広い面、すなわち鱗片状光輝性顔料の主面(平面部)で被塗物に塗着することが最も安定であると考えられ、これにより鱗片の主面が被塗物と平行に配向することになり、良好なメタリック感を呈する塗膜仕上がり外観を得ることができる。   In addition, when the average particle diameter of the paint particles is much smaller than the average particle diameter of the glitter pigment, it can be regarded as the glitter material being applied alone, so that the orientation is considered to be good. That is, when the glitter pigment is applied alone to the object to be coated, the glitter pigment is most preferably applied to the object to be coated on the widest surface, that is, the main surface (planar portion) of the scaly glitter pigment. This is considered to be stable, whereby the main surface of the scale is oriented in parallel with the object to be coated, and a finished appearance of the coating film exhibiting a good metallic feeling can be obtained.

この様子を図2(A)〜(C)に示す。同図において、符号1が鱗片状光輝性顔料、符号3が塗料粒子、符号4が被塗物であり、同図(A)はそれぞれ鱗片状光輝性顔料1を含有する2つの塗料粒子3が被塗物4に向かって飛行している状態を示す。同図(A)の下側の塗料粒子3が被塗物4の表面に到着すると、同図(B)に示すように塗料粒子3が被塗物4の表面に沿ってその表面張力により平滑になろうと流動して放射状に広がる。このとき、塗料粒子3に含まれた光輝性顔料1は、塗料粒子3の粒径が自分の粒径より小さいので塗料粒子3の内部で自由度をもつことができず、光輝性顔料1の主面が被塗物4の表面に沿って動くことになる。そして、同図(C)に示すように、塗料粒子3が被塗物4の表面に広がると光輝性顔料1も被塗物4の表面に平行に配向した状態で塗料粒子3の内部に包含されることになる。このような塗着メカニズムによって、各塗料粒子3が被塗物4の表面に堆積し塗膜を形成するので、光輝性顔料1が被塗物4の表面に平行に配向した塗膜を得ることができる。   This state is shown in FIGS. In the figure, reference numeral 1 is a scaly glitter pigment, reference numeral 3 is a paint particle, reference numeral 4 is an object to be coated, and FIG. 4A shows two paint particles 3 each containing a scaly glitter pigment 1. The state which is flying toward the to-be-coated object 4 is shown. When the lower coating particles 3 arrive at the surface of the article 4 to be coated (A), the coating particles 3 are smoothed by the surface tension along the surface of the article 4 as shown in FIG. It will flow and spread radially. At this time, the glitter pigment 1 contained in the paint particle 3 cannot have a degree of freedom inside the paint particle 3 because the particle diameter of the paint particle 3 is smaller than its own particle diameter. The main surface moves along the surface of the article 4 to be coated. As shown in FIG. 3C, when the paint particles 3 spread on the surface of the object 4 to be coated, the glitter pigment 1 is also included in the paint particles 3 in a state of being oriented parallel to the surface of the object 4 to be coated. Will be. By such a coating mechanism, each coating particle 3 is deposited on the surface of the object 4 to form a coating film, so that a coating film in which the glitter pigment 1 is oriented parallel to the surface of the object 4 is obtained. Can do.

図3は、回転霧化式塗装ガンを用いて平均粒径が22μmの鱗片状光輝性顔料を含むベース塗料を塗装したときの塗料粒子の平均粒径とメタリック感(IV値)との関係を検証したグラフであり、回転霧化式塗装ガンのシェーピングエアー流量を100〜500NL/分としたものである。これによれば、シェーピングエアー流量が200NL/分であっても塗料粒子の平均粒径を22μm以下にすれば、メタリック感IV値を200以上に高められることが理解される。   FIG. 3 shows the relationship between the average particle diameter of paint particles and metallic feeling (IV value) when a base paint containing scaly bright pigment having an average particle diameter of 22 μm is applied using a rotary atomizing paint gun. It is the verified graph, and the shaping air flow rate of the rotary atomizing paint gun is 100 to 500 NL / min. According to this, it is understood that even if the shaping air flow rate is 200 NL / min, the metallic sensation IV value can be increased to 200 or more if the average particle size of the paint particles is 22 μm or less.

勿論、シェーピングエアー流量を400NL/分以上にすれば、塗料粒子の平均粒径が30μmと大きくても200以上のメタリック感IV値を得ることができるが、シェーピングエアー流量を大きくすると塗着効率が低下するという問題がある。   Of course, if the shaping air flow rate is 400 NL / min or more, a metallic IV value of 200 or more can be obtained even if the average particle size of the paint particles is as large as 30 μm. However, if the shaping air flow rate is increased, the coating efficiency is improved. There is a problem of lowering.

図4は、回転霧化式塗装ガンを用いて平均粒径が22μmの鱗片状光輝性顔料を含むベース塗料を塗装したときのシェーピングエアー流量と塗着効率との関係を検証したグラフであり、塗料の吐出量を50〜200cc/分としたものである。これによれば、シェーピングエアー流量を200NL/分に抑えれば吐出量100〜200cc/分において塗着効率を80%以上に高めることができる。これに対して、上述したシェーピングエアー流量が400NL/分であると吐出量が200cc/分であっても80%未満となる。   FIG. 4 is a graph that verifies the relationship between the shaping air flow rate and the coating efficiency when a base paint containing scaly glittering pigment having an average particle size of 22 μm is applied using a rotary atomizing paint gun. The amount of paint discharged is 50 to 200 cc / min. According to this, if the shaping air flow rate is suppressed to 200 NL / min, the coating efficiency can be increased to 80% or more at a discharge rate of 100 to 200 cc / min. On the other hand, when the above-described shaping air flow rate is 400 NL / min, it is less than 80% even when the discharge rate is 200 cc / min.

このように本例によれば、シェーピングエアー流量に依存しなくても、メクリック感を容易に現出させることができるため、シェーピングエアー流量を抑制することで高い塗着効率を得ることが容易になり、クリヤ塗装や中塗り塗装とほぼ同等の塗着効率を実現することができる。   As described above, according to this example, since the click feeling can be easily revealed without depending on the shaping air flow rate, it is easy to obtain high coating efficiency by suppressing the shaping air flow rate. Therefore, it is possible to achieve a coating efficiency almost equal to that of clear coating or intermediate coating.

さらに、回転霧化静電塗装機で塗装する場合には、光輝性顔料を含む塗料の塗装でありながら任意のシェーピングエアー流量を選択することができ、塗装パターン幅を自由に設定できるという付随効果がある。   In addition, when painting with a rotary atomizing electrostatic coating machine, it is possible to select an arbitrary shaping air flow rate while painting a paint containing a glittering pigment, and the accompanying effect that the coating pattern width can be set freely. There is.

さらに、本例の付随的な効果として、回転霧化式塗装ガンのシェーピングエアー流量を少なくすることにより、パターン分布を比較的フラットにすることができる。ここでいうパターン分布とは、塗装ガンを被塗物表面に沿って動かした場合の、塗装ガンの進行方向と直交する方向の膜厚分布のことであるが、通常の回転霧化式塗装ガンでは、図5に点線で示すように膜厚のピークが2つ現れる、いわゆる2コブラクダ型の膜厚分布になることが一般的であり、多量のシェーピングエアー流量を使用するメクリックベース塗装ではその傾向が顕著に現れる。   Furthermore, as an incidental effect of this example, the pattern distribution can be made relatively flat by reducing the shaping air flow rate of the rotary atomizing paint gun. The pattern distribution here refers to the film thickness distribution in the direction perpendicular to the traveling direction of the coating gun when the coating gun is moved along the surface of the workpiece. Then, as shown by the dotted line in FIG. 5, the film thickness distribution generally has a so-called two-cobra-clad type film thickness distribution in which two film thickness peaks appear. The trend appears prominently.

しかし、本例によれば、同図に実線で示すように、シェーピングエアー流量を抑制することでパターン分布がほぼ平坦な台形型にすることができるため、部位による膜厚の差異(ムラと称する)に起因するいわゆるメクリックムラの発生がほぼなくなるという効果が得られる。   However, according to the present example, as shown by the solid line in the figure, the trapezoidal pattern with a substantially flat pattern distribution can be obtained by suppressing the shaping air flow rate. ), The so-called meclick unevenness is substantially eliminated.

さらに、本例の別の効果として、メタリックベース塗料を用いた場合には下地隠蔽膜厚が薄くできる。これはアルミフレークのような不透明な光輝性顔料の場合には、微粒化が進んで平均粒径が小さくなるにつれて光輝性顔料の配向性が良くなるだけでなく、被塗物表面に均一に塗着する傾向があるからである。   Furthermore, as another effect of this example, when the metallic base paint is used, the base concealment film thickness can be reduced. This is because, in the case of opaque glittering pigments such as aluminum flakes, the orientation of the glittering pigment not only improves as the atomization progresses and the average particle diameter decreases, but it is also applied uniformly to the surface of the object to be coated. This is because they tend to wear.

このことは、塗料粒子の平均粒径が小さくなるほど粒子の個数が増え、塗着回数が増える結果、被塗物表面の部位による塗着量の不均一性がなくなること、すなわち膜厚の均一性が図れることを意味している。この効果を利用すればメタリックベース塗料の吐出量そのものを少なくすることができ、塗装コストを引き下げることができるという効果がある。   This means that as the average particle size of the paint particles decreases, the number of particles increases and the number of coatings increases, resulting in the elimination of uneven coating amount due to the surface area of the object to be coated. Means that you can plan. If this effect is used, the discharge amount of the metallic base paint itself can be reduced, and the coating cost can be reduced.

これらの効果を複合的に使用することにより、従来2ステージにわけて塗装していたメクリックベース塗料を1ステージで塗装することができ、色替え回数を少なくすることができる。   By using these effects in a composite manner, it is possible to apply the mekki-base paint, which has been conventionally applied in two stages, in one stage and reduce the number of color changes.

図6は、回転霧化式塗装ガンを用いて平均粒径が22μmの鱗片状光輝性顔料を含むベース塗料を塗装したときの塗料粒子の平均粒径と白黒隠蔽膜厚との関係を検証したグラフおよび顕微鏡写真であり、塗料粒子の平均粒径を20μmまで小さくすると、塗料粒子の平均粒径が56μmである場合に比べて、白黒隠蔽膜厚が半分近くまで低減される。   FIG. 6 verified the relationship between the average particle diameter of paint particles and the black and white concealment film thickness when a base paint containing scaly bright pigment having an average particle diameter of 22 μm was applied using a rotary atomizing paint gun. In the graphs and micrographs, when the average particle size of the paint particles is reduced to 20 μm, the black-and-white concealment film thickness is reduced to almost half compared to the case where the average particle size of the paint particles is 56 μm.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described in order to facilitate understanding of the present invention, and is not described in order to limit the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

本発明の塗装方法に係る鱗片状光輝性顔料の一例を示す正面図および側面図である。It is the front view and side view which show an example of the scaly glittering pigment which concerns on the coating method of this invention. 本発明の塗装方法に係る塗着メカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the coating mechanism which concerns on the coating method of this invention. 回転霧化式塗装ガンを用いて鱗片状光輝性顔料を含むベース塗料を塗装したときの塗料粒子の平均粒径とメタリック感(IV値)との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of paint particle | grains and metallic feeling (IV value) when the base coating material containing a scaly glittering pigment is applied using the rotary atomization type painting gun. 回転霧化式塗装ガンを用いて鱗片状光輝性顔料を含むベース塗料を塗装したときのシェーピングエアー流量と塗着効率との関係を示すグラフである。It is a graph which shows the relationship between the shaping air flow rate and coating efficiency when the base coating material containing a scaly glittering pigment is applied using a rotary atomizing paint gun. 回転霧化式塗装ガンを用いて塗装したときの膜厚分布を示す図である。It is a figure which shows film thickness distribution when it paints using a rotary atomization type painting gun. 回転霧化式塗装ガンを用いて鱗片状光輝性顔料を含むベース塗料を塗装したときの塗料粒子の平均粒径と白黒隠蔽膜厚との関係を示すグラフおよび顕微鏡写真である。It is the graph and micrograph which show the relationship between the average particle diameter of a coating particle when a base coating material containing a scaly glittering pigment is applied using a rotary atomizing coating gun, and the black-and-white concealment film thickness.

符号の説明Explanation of symbols

1…鱗片状光輝性顔料
3…塗料粒子
4…被塗物
DESCRIPTION OF SYMBOLS 1 ... Scale-like luster pigment 3 ... Paint particle 4 ... Coated object

Claims (6)

鱗片状光輝性顔料を含有する塗料を被塗物に霧化塗装する塗装方法であって、前記被塗物に塗着するときの前記塗料の平均粒径が前記鱗片状光輝性顔料の平均粒径以下となるように、前記塗料を霧化して塗装することを特徴とする塗装方法。 A coating method for atomizing and painting a paint containing a scaly glittering pigment on an object to be coated, wherein the average particle diameter of the paint when applied to the object is an average particle of the scaly glittering pigment A coating method, wherein the paint is atomized so as to be equal to or smaller than the diameter. 前記塗料の塗着時の飛行速度が5m/秒未満であることを特徴とする請求項1記載の塗装方法。 2. The coating method according to claim 1, wherein a flight speed at the time of applying the paint is less than 5 m / sec. 前記塗料がメタリックベース塗料またはパールベース塗料であり、当該塗料を塗装したのち、クリヤ塗料を塗装することを特徴とする請求項1または2記載の塗装方法。 The coating method according to claim 1 or 2, wherein the paint is a metallic base paint or a pearl base paint, and after the paint is applied, a clear paint is applied. 前記メタリック塗料または前記パールベース塗料が水系塗料であることを特徴とする請求項3記載の塗装方法。 4. The coating method according to claim 3, wherein the metallic paint or the pearl base paint is a water-based paint. 前記塗料を1ステージで塗装することを特徴とする請求項1〜4の何れかに記載の塗装方法。 The coating method according to claim 1, wherein the coating is applied in one stage. 回転霧化式塗装ガンを用いて前記塗料を霧化塗装することを特徴とする請求項1〜5の何れかに記載の塗装方法。

The coating method according to claim 1, wherein the paint is atomized by using a rotary atomizing paint gun.

JP2006016267A 2006-01-25 2006-01-25 Painting method Expired - Fee Related JP4765637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016267A JP4765637B2 (en) 2006-01-25 2006-01-25 Painting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016267A JP4765637B2 (en) 2006-01-25 2006-01-25 Painting method

Publications (2)

Publication Number Publication Date
JP2007196110A true JP2007196110A (en) 2007-08-09
JP4765637B2 JP4765637B2 (en) 2011-09-07

Family

ID=38451236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016267A Expired - Fee Related JP4765637B2 (en) 2006-01-25 2006-01-25 Painting method

Country Status (1)

Country Link
JP (1) JP4765637B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126624A (en) * 2000-10-20 2002-05-08 Nissan Motor Co Ltd Method for applying water based top coating material for automobile
JP2002179988A (en) * 2000-12-13 2002-06-26 Nippon Paint Co Ltd Water-based coating material composition and method for forming coating film
JP2002273322A (en) * 2001-03-21 2002-09-24 Nippon Paint Co Ltd Method for forming coating film
JP2003009965A (en) * 2001-07-02 2003-01-14 Inoue Kinko Seisakusho:Kk Storage for roll

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126624A (en) * 2000-10-20 2002-05-08 Nissan Motor Co Ltd Method for applying water based top coating material for automobile
JP2002179988A (en) * 2000-12-13 2002-06-26 Nippon Paint Co Ltd Water-based coating material composition and method for forming coating film
JP2002273322A (en) * 2001-03-21 2002-09-24 Nippon Paint Co Ltd Method for forming coating film
JP2003009965A (en) * 2001-07-02 2003-01-14 Inoue Kinko Seisakusho:Kk Storage for roll

Also Published As

Publication number Publication date
JP4765637B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2017094680A1 (en) Multilayered coating film and coated article
JP5545182B2 (en) Metallic coating method and laminated coating film
JP4848810B2 (en) Coating method and coating apparatus
JP2011147916A (en) Method for forming multilayer coating film having high chroma, and coated object
JP4910443B2 (en) Painting method
JP5316926B2 (en) How to paint vehicle wheels
JP4765637B2 (en) Painting method
JP4779720B2 (en) Method for coating structure having recess
JP2006181505A (en) Metallic coating method and laminated coating film
JP4935086B2 (en) Coating method using rotary atomizing coating equipment
JP6222226B2 (en) Clear coating method, coating method and coating film structure
JP4830561B2 (en) Coating method and coating system
JP3259073B2 (en) Method of manufacturing automobile body having patterned coating film
JP3844906B2 (en) Multi-colored paint film formation method
JP4661215B2 (en) Metallic coating method and laminated coating film
JP4174027B2 (en) Manufacturing method of coated metal plate with excellent design
JP3162940B2 (en) Method for manufacturing hammerton-patterned coated metal sheet
JP4121364B2 (en) Coating method of metallic paint in metallic coating of automobile
JPH0716535A (en) Painting method
JP2005007219A (en) Method for forming luster color coating film
JPH09310038A (en) Colored coating liquid excellent in light resistance and patterned coating film using the same liquid
JP2002248424A (en) Method for repairing metallic composite coating film
JP2841832B2 (en) Patterned top coating method
JP2008093616A (en) Method for forming coating film on metallic light alloy wheel
JP3868023B2 (en) Method for painting automobile body of paint having glitter pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees