JP2007193195A - Photographic lens and imaging apparatus having the same - Google Patents

Photographic lens and imaging apparatus having the same Download PDF

Info

Publication number
JP2007193195A
JP2007193195A JP2006012518A JP2006012518A JP2007193195A JP 2007193195 A JP2007193195 A JP 2007193195A JP 2006012518 A JP2006012518 A JP 2006012518A JP 2006012518 A JP2006012518 A JP 2006012518A JP 2007193195 A JP2007193195 A JP 2007193195A
Authority
JP
Japan
Prior art keywords
lens
image
refractive power
object side
photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006012518A
Other languages
Japanese (ja)
Other versions
JP2007193195A5 (en
JP4890870B2 (en
Inventor
Keisuke Ozawa
圭介 小澤
Satoru Kitabayashi
哲 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2006012518A priority Critical patent/JP4890870B2/en
Publication of JP2007193195A publication Critical patent/JP2007193195A/en
Publication of JP2007193195A5 publication Critical patent/JP2007193195A5/ja
Application granted granted Critical
Publication of JP4890870B2 publication Critical patent/JP4890870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a compact photographic lens constituted of a comparatively small number of lenses, and having high optical performance. <P>SOLUTION: The photographic lens has: an aperture diaphragm; a first lens having positive refractive power, whose surfaces on an object side and an image side are convex; a second lens having negative refractive power, whose surface on the image side has convex and meniscus shape; a third lens having positive refractive power, whose surfaces on the object side and the image side are convex; and a fourth lens having negative refractive power in order from the object side to the image side. At least one surface of each lens is aspherical, and the material of each lens is resin. The photographic lens satisfies conditions N1<1.54 and ν1>ν2 when the refractive index and the Abbe number of the material of the first lens are defined as N1 and ν1 respectively, and the Abbe number of the material of the second lens is defined as ν2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、デジタルスチルカメラ(以下、DSCという)をはじめとする携帯電話や監視カメラ、車載カメラのようなCCD等の固体撮像素子を使用した小型の撮像装置に適した、高性能且つコンパクトな撮影レンズに関するものである。   The present invention is a high-performance and compact device suitable for a small-sized image pickup apparatus using a solid-state image pickup device such as a CCD such as a mobile phone such as a digital still camera (hereinafter referred to as DSC), a surveillance camera, and an in-vehicle camera. The present invention relates to a taking lens.

近年、DSCは急速に高機能化及び高画質化がなされている。   In recent years, DSC has been rapidly improved in functionality and image quality.

つい最近までDSCは、銀塩フィルム用のカメラに較べて撮影画像の解像度が低い為、CCD等の固体撮像素子に対し、解像度、ダイナミックレンジ等の向上が指摘されていた。   Until recently, DSC has been pointed out to improve resolution, dynamic range, and the like with respect to a solid-state imaging device such as a CCD because the resolution of a photographed image is lower than that of a camera for a silver salt film.

しかしながら最近、周波数特性の高い駆動回路、信号増幅回路の開発によりDSCは、例えば解像力の点で、銀塩フィルム用のカメラの解像力と略同程度になっている。又DSCは、フォーカス(ピント)、光量(絞り、シャッタ)、ホワイトバランス(色温度)の自動化が容易であり、更に手ぶれ補正、逆光補正などの技術が加わり、高画質の画像が容易に撮れるようになってきた。   However, recently, with the development of a drive circuit and a signal amplifier circuit with high frequency characteristics, DSC has become approximately the same as that of a camera for silver salt film, for example, in terms of resolution. DSC is easy to automate focus (focus), light intensity (aperture, shutter), white balance (color temperature), and with techniques such as camera shake correction and backlight correction, high-quality images can be taken easily. It has become.

最近、DSCにおいては、CCDの受光面直前に、カラー画像を得るためのカラーフィルターや高感度化のためのマイクロレンズなどが置かれている。   Recently, in a DSC, a color filter for obtaining a color image, a microlens for increasing sensitivity, and the like are placed immediately before a light receiving surface of a CCD.

一般に撮影レンズから受光面の周辺部には、光束が斜めに入射するため、画面中心と画面周辺では、カラーフィルターやマイクロレンズの光学作用の違いによって画像が偽色したり、又、光量不足などが起こることがある。   In general, the light beam is obliquely incident on the periphery of the light-receiving surface from the photographic lens. Therefore, the image is falsely colored due to the optical action of the color filter and microlens at the center of the screen and the periphery of the screen. May happen.

このCCDの画面周辺部分へ斜めに入射する光束の角度に対応する撮影レンズに対する条件が射出瞳条件(テレセントリック条件)である。この条件は射出瞳位置のCCDからの光軸方向の距離または主光線のCCD面への入射角度で表現される。   The exit pupil condition (telecentric condition) is a condition for the photographing lens corresponding to the angle of the light beam obliquely incident on the peripheral portion of the CCD screen. This condition is expressed by the distance in the optical axis direction from the CCD at the exit pupil position or the incident angle of the principal ray on the CCD surface.

入射光の条件がCCDに設けたマイクロレンズなどのレイアウトと一致することが必要で、各CCDに推奨される射出瞳距離または主光線の入射角度が存在する。   It is necessary that the conditions of the incident light match the layout of a microlens or the like provided in the CCD, and there is an exit pupil distance or chief ray incident angle recommended for each CCD.

従来はこの入射角度の制限が厳しく画面全体において8〜10度以内となっていたため撮影レンズの小型化が非常に困難であった。   Conventionally, since the limit of the incident angle is strict and it is within 8 to 10 degrees in the entire screen, it is very difficult to reduce the size of the photographing lens.

しかし、最近ではCCDの改良が進みDSCでも入射角度が20°程度、携帯電話では25〜30度程度まで許容されるようになり、撮影レンズの小型化が容易になっている。   However, recent improvements in CCDs have allowed the incident angle to be about 20 ° in DSC and about 25 to 30 ° in mobile phones, making it easy to reduce the size of the taking lens.

小型の撮影レンズとして、従来DSCに好適でテレセントリック性が良く、しかもレンズ枚数が4枚程の撮影レンズが提案されている。   As a small photographic lens, there has conventionally been proposed a photographic lens that is suitable for DSC, has good telecentricity, and has about four lenses.

このうち物体側から像側へ順に、開口絞り、正レンズ、負レンズ、正レンズ、負レンズの4群4枚で構成した撮影レンズが知られている(特許文献1)。   Among these, a photographing lens composed of four groups of four elements of an aperture stop, a positive lens, a negative lens, a positive lens, and a negative lens in order from the object side to the image side is known (Patent Document 1).

又撮影レンズとして製作性の容易性から、樹脂より成るレンズを用いた4群4枚で構成した小型の撮影レンズが知られている(特許文献2)。
特開2002−365530号公報 特開2005−208236号公報
As a photographic lens, a small photographic lens composed of four groups and four lenses using a lens made of resin is known from the viewpoint of ease of manufacturability (Patent Document 2).
JP 2002-365530 A JP-A-2005-208236

固体撮像素子を用いた撮像装置では、像面から射出瞳までの距離が極端に短いと軸外光線の受光面(像面)への入射角度が大きくなる。   In an imaging apparatus using a solid-state imaging device, if the distance from the image plane to the exit pupil is extremely short, the incident angle of off-axis rays on the light receiving surface (image plane) increases.

光線が像面に対して斜めに入射した場合、シェーディングによる開口効率の減少が生じる。このため、DSCに用いる撮影レンズには像側でのテレセントリック性(射出瞳位置が像面から十分に離れていること)を良好にすることが望まれる。   When light rays are incident on the image plane at an angle, the aperture efficiency is reduced due to shading. For this reason, it is desired that the photographing lens used for DSC has good telecentricity on the image side (the exit pupil position is sufficiently away from the image plane).

特に固体撮像素子を用いた撮像装置では、軸上主光線と軸外主光線のなす角度がある値以上の角度を持つとシェーディングが多く発生してくる。   In particular, in an imaging apparatus using a solid-state imaging device, a large amount of shading occurs when the angle formed by the on-axis principal ray and the off-axis principal ray exceeds a certain value.

この為、固体撮像素子を用いた撮像装置に用いるレンズ系には、最終レンズから最大像高へ向かう軸外主光線と軸上主光線との角度がある範囲にあることが必要条件となっている。   For this reason, a lens system used in an imaging apparatus using a solid-state imaging device needs to have an angle between an off-axis principal ray and an axial principal ray from the final lens to the maximum image height. Yes.

テレセントリックな光学系にするために、射出瞳を像面から極端に離すレンズ構成になると多くの場合、レンズ全長が長くなり、又レンズの屈折力が極端に強くなり、コンパクトで高性能な光学系を構成するのが難しくなってくる。   In order to make a telecentric optical system, a lens configuration in which the exit pupil is extremely far away from the image plane often has a long overall lens length and an extremely strong refractive power of the lens, which is a compact and high-performance optical system. It becomes difficult to compose.

一方、携帯性を重視して小型で薄型のカメラとする為には、撮影レンズのレンズ全長を短縮化する必要がある。レンズ全長を短縮化するには出来るだけ構成レンズ枚数を少なくすることが必要である。   On the other hand, in order to make the camera small and thin with emphasis on portability, it is necessary to shorten the total lens length of the photographing lens. In order to shorten the total lens length, it is necessary to reduce the number of constituent lenses as much as possible.

しかしながらレンズ枚数を単に少なくすると高い光学性能を得るのが難しくなってくる。又、撮影レンズの製造の容易性からすると、レンズの材料に硝材を用いるよりも樹脂材料を用いるのが効果的である。   However, simply reducing the number of lenses makes it difficult to obtain high optical performance. In view of the ease of manufacturing the photographic lens, it is more effective to use a resin material than a glass material for the lens material.

しかしながら、一般に樹脂材料の屈折率は低いため、レンズ形状を適切に設定しないと、収差補正を良好に行うのが難しくなる。   However, since the refractive index of the resin material is generally low, it is difficult to correct aberrations properly unless the lens shape is set appropriately.

本発明は、十分なテレセントリック特性を確保しつつ、レンズ系全体が小型で光学性能の良好で、製作が容易な撮影レンズ及びそれを有する撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a photographic lens and an image pickup apparatus having the photographic lens that are easy to manufacture while ensuring a sufficient telecentric characteristic, the entire lens system being small in size and good in optical performance.

本発明の撮影レンズは、物体側より像側へ順に、開口絞り、両凸形状の正の屈折力の第1レンズ、像側が凸面でメニスカス形状の負の屈折力の第2レンズ、両凸形状の正の屈折力の第3レンズ、負の屈折力の第4レンズを有し、各レンズの少なくとも1面は非球面形状であり、各レンズの材料は、樹脂であり、該第1レンズの材料の屈折率とアッベ数を各々N1,ν1、該第2レンズの材料のアッベ数をν2とするとき、
N1 < 1.54
ν1 > ν2
なる条件を満足することを特徴としている。
The photographic lens of the present invention includes, in order from the object side to the image side, an aperture stop, a biconvex first lens having a positive refractive power, a second lens having a convex meniscus shape on the image side and a biconvex shape. A third lens having a positive refractive power and a fourth lens having a negative refractive power. At least one surface of each lens is aspherical, and the material of each lens is a resin. When the refractive index and Abbe number of the material are N1 and ν1, respectively, and the Abbe number of the material of the second lens is ν2,
N1 <1.54
ν1> ν2
It is characterized by satisfying the following conditions.

本発明によれば、十分なテレセントリック特性を確保しつつ、小型で光学性能の良好で、製作が容易な撮影レンズ及びそれを有する撮像装置を達成することができる。   According to the present invention, it is possible to achieve an imaging lens having a small size, good optical performance, and easy manufacture while securing sufficient telecentric characteristics, and an imaging apparatus having the same.

以下、本発明の撮影レンズ及びそれを有する撮像装置の実施例について説明する。   Hereinafter, embodiments of the photographing lens of the present invention and an image pickup apparatus having the same will be described.

図1,図2は本発明の実施例1の撮影レンズのレンズ断面図と収差図である。   1 and 2 are a lens cross-sectional view and aberration diagrams of the photographing lens of Example 1 of the present invention.

図3,図4は本発明の実施例2の撮影レンズのレンズ断面図と収差図である。   3 and 4 are a lens cross-sectional view and aberration diagrams of the photographing lens of Example 2 of the present invention.

図5,図6は本発明の実施例2の撮影レンズのレンズ断面図と収差図である。   5 and 6 are a lens cross-sectional view and aberration diagrams of the photographing lens of Example 2 of the present invention.

図7は本発明の撮影レンズを有するデジタルスチルカメラ(撮像装置)の要部概略図である。各実施例の撮影レンズは撮像装置に用いられるレンズ系であり、レンズ断面図において左方が物体側(前方)で、右方が像側(後方)である。   FIG. 7 is a schematic diagram of a main part of a digital still camera (imaging device) having the photographing lens of the present invention. The photographic lens of each embodiment is a lens system used in an imaging apparatus. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear).

レンズ断面図において、OBは撮影レンズである。   In the lens cross-sectional view, OB is a photographing lens.

G1は物体側と像側の面が凸形状の正の屈折力(光学的パワー=焦点距離の逆数)の第1レンズである。   G1 is a first lens having positive refractive power (optical power = reciprocal of focal length) having convex surfaces on the object side and the image side.

G2は像側の面が凸でメニスカス形状の負の屈折力の第2レンズである。   G2 is a second lens having a negative refractive power having a meniscus shape with a convex surface on the image side.

G3は物体側と像側の面が凸形状の正の屈折力の第3レンズである。   G3 is a third lens having positive refractive power and convex surfaces on the object side and the image side.

G4は物体側の面が凸でメニスカス形状の負の屈折力の第4レンズである。   G4 is a fourth lens having a negative refractive power having a convex meniscus surface on the object side.

尚、各レンズの形状は近軸曲率半径を基に表した形状である。STOは開口絞りであり、第1レンズL1の物体側に位置している。   Each lens has a shape based on the paraxial radius of curvature. STO is an aperture stop and is located on the object side of the first lens L1.

i(i=0〜10)は物体側からの面(開口絞りSTOを含む)の順番を示す。Ri(i=1〜8)は各レンズのレンズ面であり、後述する数値実施例では曲率半径の値を示している。Diは第i面と第i+1面との間の間隔である。Gは光学フィルター(水晶ローパスフィルター、赤外カットフィルター等)、フェースプレート等に相当する光学ブロックである。   i (i = 0 to 10) indicates the order of surfaces (including the aperture stop STO) from the object side. Ri (i = 1 to 8) is the lens surface of each lens, and in the numerical examples described later, the value of the radius of curvature is shown. Di is a distance between the i-th surface and the i + 1-th surface. G is an optical block corresponding to an optical filter (a crystal low-pass filter, an infrared cut filter, etc.), a face plate, and the like.

IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影レンズ系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当している。   IP is an image plane, and corresponds to an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor when used as a photographing lens system of a video camera or a digital still camera.

各実施例において、各レンズは全て樹脂材料より成っている。各レンズの物体側と像側の面は非球面形状より成っている。これによって収差補正を容易にしている。尚、各レンズは、少なくとも一面が非球面形状であれば良く、これによれば収差補正が容易になる。   In each embodiment, each lens is made of a resin material. The object-side and image-side surfaces of each lens are aspherical. This facilitates aberration correction. Each lens only needs to have at least one aspherical surface, which facilitates aberration correction.

収差図において、d,g,C,Fは各々d線,g線,C線,F線を表している。又、ΔM,ΔSはメリディオナル像面,サジタル像面、ωは半画角を表わしている。   In the aberration diagrams, d, g, C, and F represent d-line, g-line, C-line, and F-line, respectively. ΔM and ΔS represent a meridional image surface and a sagittal image surface, and ω represents a half angle of view.

無限遠物体から近距離物体へのフォーカスは、開口絞りSTO及びレンズ系全体を物体側へ繰り出すことによって行っている。   Focusing from an infinitely distant object to a close object is performed by extending the aperture stop STO and the entire lens system to the object side.

次に各実施例の特徴について順次説明する。   Next, the features of each embodiment will be described sequentially.

第1レンズG1の材料の屈折率とアッベ数を各々N1,ν1、第2レンズG2の材料のアッベ数をν2とするとき
N1 < 1.54 ‥‥‥(1)
ν1 > ν2 ‥‥‥(2)
なる条件を満足している。
When the refractive index and Abbe number of the material of the first lens G1 are N1 and ν1, respectively, and the Abbe number of the material of the second lens G2 is ν2, N1 <1.54 (1)
ν1> ν2 (2)
Is satisfied.

条件式(1)は第1レンズG1の材料の屈折率に関し、条件式(1)を満足する樹脂材料を用いることによって物体側と像側の面が凸形状より成る第1レンズG1の製作を容易にしている。   Conditional expression (1) relates to the refractive index of the material of the first lens G1, and by using a resin material that satisfies the conditional expression (1), the first lens G1 having convex surfaces on the object side and the image side is manufactured. Making it easy.

条件式(2)は第1,第2レンズG1,G2の材料のアッベ数に関し、第1レンズG1に第2レンズG2の材料のアッベ数より大きいアッベ数の材料を用いることにより、色収差の補正を良好に行っている。   Conditional expression (2) relates to the Abbe number of the material of the first and second lenses G1 and G2, and corrects chromatic aberration by using a material having an Abbe number larger than that of the material of the second lens G2 for the first lens G1. Have done well.

第4レンズG4の像側の面から像面までの空気換算距離(バックフォーカス)をbf、開口絞りSTOから像面までの空気換算距離をTL、開口絞りSTOから第4レンズG4の像側の面までの距離をML、レンズ系全体の焦点距離をfとするとき、
bf/TL > 0.2 ‥‥‥(3)
0.8<ML/f<1.2 ‥‥‥(4)
なる条件を満足している。
The air conversion distance (back focus) from the image side surface of the fourth lens G4 to the image surface is bf, the air conversion distance from the aperture stop STO to the image surface is TL, and the image side of the fourth lens G4 from the aperture stop STO is When the distance to the surface is ML and the focal length of the entire lens system is f,
bf / TL> 0.2 (3)
0.8 <ML / f <1.2 (4)
Is satisfied.

条件式(3)の下限値を越えてバックフォーカスbfが小さくなりすぎると、カバーガラスやオプティカルローパスフィルター(OLPF)の挿入スペースが確保できなくなる。更に、射出瞳距離が短くなり像面に入射する光線角度が大きくなりシェーディングの影響を受けやすくなってくるので良くない。   If the back focus bf becomes too small beyond the lower limit of conditional expression (3), it is not possible to secure a space for inserting a cover glass or an optical low pass filter (OLPF). Furthermore, the exit pupil distance is shortened, the angle of light incident on the image plane is increased, and it is easy to be affected by shading.

条件式(4)はモジュール長に関する条件式である。条件式(4)の上限を超えると球面収差、色収差の補正は容易となるが、レンズ系全体の小型化が困難になる。逆に、下限を超えると色収差の補正が難しくなり、コマ収差が悪化するので良くない。   Conditional expression (4) is a conditional expression regarding the module length. When the upper limit of conditional expression (4) is exceeded, correction of spherical aberration and chromatic aberration becomes easy, but it becomes difficult to reduce the size of the entire lens system. On the contrary, if the lower limit is exceeded, correction of chromatic aberration becomes difficult and coma becomes worse, which is not good.

第1,第2レンズG1,G2の焦点距離を各々f1,f2とするとき
0.80 < f1/f < 1.00 ‥‥‥(5)
0.60 < |f2|/f < 0.80 ‥‥‥(6)
なる条件を満足している。
When the focal lengths of the first and second lenses G1 and G2 are f1 and f2, respectively 0.80 <f1 / f <1.00 (5)
0.60 <| f2 | / f <0.80 (6)
Is satisfied.

条件式(5)は第1レンズG1の屈折力(パワー)の形状に関する。   Conditional expression (5) relates to the shape of the refractive power of the first lens G1.

条件式(5)の上限を越えると、第1レンズG1の屈折力が過大となり、球面収差、色収差が大きく発生してくる。   If the upper limit of conditional expression (5) is exceeded, the refractive power of the first lens G1 will become excessive, and large spherical aberration and chromatic aberration will occur.

反対に下限を越えると、単色収差の補正には有利であるが、レンズ系全長が大きくなってしまい、コンパクト化が難しくなる。   On the other hand, if the lower limit is exceeded, it is advantageous for correcting monochromatic aberrations, but the overall length of the lens system becomes large and it is difficult to make it compact.

条件式(6)は第2レンズG2の屈折力に関する。第2レンズG2の負の屈折力の値は正の屈折力である第1レンズG1及び第3レンズG3で発生する色収差、球面収差を補正するために適切に設定する必要がある。   Conditional expression (6) relates to the refractive power of the second lens G2. The value of the negative refractive power of the second lens G2 needs to be set appropriately in order to correct chromatic aberration and spherical aberration that occur in the first lens G1 and the third lens G3, which have positive refractive power.

条件式(6)の上限を越えると色収差の補正が過剰となり、かつレンズ系全体の小型化が難しくなる。   If the upper limit of conditional expression (6) is exceeded, correction of chromatic aberration will be excessive, and it will be difficult to reduce the size of the entire lens system.

反対に下限を越えると、色収差の補正が不足となり、球面収差、コマ収差の補正も難しくなる。   On the contrary, if the lower limit is exceeded, correction of chromatic aberration becomes insufficient, and correction of spherical aberration and coma aberration becomes difficult.

又、条件式(5),(6)を満足することによってテレセントリック性の良いレンズ系としている。   Further, by satisfying conditional expressions (5) and (6), a lens system with good telecentricity is obtained.

第2レンズG2の物体側のレンズ面の曲率半径をr3、第3レンズG3の物体側のレンズ面の曲率半径をr5とするとき
0.30 < |r3|/f < 0.50 ‥‥‥(7)
0.80 < r5 /f < 1.20 ‥‥‥(8)
なる条件を満足している。
When the radius of curvature of the object-side lens surface of the second lens G2 is r3 and the radius of curvature of the object-side lens surface of the third lens G3 is r5, 0.30 <| r3 | / f <0.50. (7)
0.80 <r5 / f <1.20 (8)
Is satisfied.

条件式(7)は第2レンズG2のレンズ形状に関する。条件式(7)の上限を超えると球面収差が劣化し、色収差においてコマ収差の影響が顕著になる。また、下限を超えるとコマ収差が多く発生し光学性能が劣化してくる。   Conditional expression (7) relates to the lens shape of the second lens G2. When the upper limit of conditional expression (7) is exceeded, spherical aberration deteriorates and the influence of coma aberration becomes significant in chromatic aberration. If the lower limit is exceeded, many coma aberrations occur and the optical performance deteriorates.

条件式(8)は第3レンズG3のレンズ形状に関する。上限を超えると像面湾曲がマイナス方向に大きく劣化し、色収差においてはハロの影響が顕著になる。また、下限を超えると上限と逆方向に収差が劣化するので良くない。   Conditional expression (8) relates to the lens shape of the third lens G3. If the upper limit is exceeded, the curvature of field greatly deteriorates in the minus direction, and the influence of halo becomes significant in chromatic aberration. Further, if the lower limit is exceeded, the aberration deteriorates in the direction opposite to the upper limit, which is not good.

開口絞りSTOから第1レンズG1の物体側の面までの距離をD0とするとき
D0/f>0.10 ‥‥‥(9)
なる条件を満足している。
When the distance from the aperture stop STO to the object side surface of the first lens G1 is D0, D0 / f> 0.10 (9)
Is satisfied.

条件式(9)は第1レンズG1の物体側にメカニカルシャッタを挿入するため及び良好なるテレセントリック性を得るために必要な間隔に関する。メカニカルシャッタを設けることで物理的に光を遮り、必要以上の光量が撮像素子にあたることはないようにして撮像素子の劣化を防いでいる。又、それと同時にノイズを低減することが出来る。   Conditional expression (9) relates to the distance necessary to insert a mechanical shutter on the object side of the first lens G1 and to obtain good telecentricity. By providing a mechanical shutter, light is physically blocked, and the image sensor is prevented from being deteriorated by preventing an excessive amount of light from hitting the image sensor. At the same time, noise can be reduced.

条件式(9)を満足するように開口絞りSTOから第1レンズG1の物体側の間隔を十分に確保することでメカニカルシャッタの挿入を容易にしつつ、テレセントリック性の良いレンズ系としている。   A sufficient telecentric lens system is achieved while facilitating insertion of the mechanical shutter by ensuring a sufficient distance from the aperture stop STO to the object side of the first lens G1 so as to satisfy the conditional expression (9).

各実施例の撮像レンズでは、絞り径が小さくなると回折現象による光学性能の劣化が顕著になる。このため、被写体が明るいときにはNDフィルターを光路中より挿脱可能に装着して撮影レンズのFナンバーがあまり大きくならないようにするのが良い。   In the imaging lens of each embodiment, when the aperture diameter is reduced, the optical performance is significantly deteriorated due to the diffraction phenomenon. For this reason, when the subject is bright, it is preferable to attach an ND filter so that it can be inserted and removed from the optical path so that the F number of the photographing lens does not become too large.

尚、各実施例において、更に好ましくは条件式(1)〜(9)の数値範囲を次の如く設定するのが良い。   In each embodiment, the numerical ranges of conditional expressions (1) to (9) are more preferably set as follows.

N1 < 1.535 ‥‥‥(1a)
ν1 > 1.5・ν2 ‥‥‥(2a)
bf/TL > 0.25 ‥‥‥(3a)
0.9 < ML/f < 1.1 ‥‥‥(4a)
0.85< f1/f < 0.97 ‥‥‥(5a)
0.65< |f2|/f < 0.75 ‥‥‥(6a)
0.35 < |r3|/f < 0.45 ‥‥‥(7a)
0.90 < r5/f < 1.16 ‥‥‥(8a)
D0/f>0.12 ‥‥‥(9a)
尚、以上の各実施例において、第1レンズG1の物体側又は/及び第4レンズG4の像側に屈折力の小さなレンズを付加しても良い。
N1 <1.535 (1a)
ν1> 1.5 · ν2 (2a)
bf / TL> 0.25 (3a)
0.9 <ML / f <1.1 (4a)
0.85 <f1 / f <0.97 (5a)
0.65 <| f2 | / f <0.75 (6a)
0.35 <| r3 | / f <0.45 (7a)
0.90 <r5 / f <1.16 (8a)
D0 / f> 0.12 (9a)
In each of the above embodiments, a lens having a small refractive power may be added to the object side of the first lens G1 and / or the image side of the fourth lens G4.

各実施例によれば構成レンズ枚数が少なく、レンズ系全体がコンパクトであるにもかかわらず、高性能で且つ、製造容易な撮影レンズが得られる。また、最も物体側に開口絞りを配置することで、物体側からみたときレンズ系が目立つことがない構造的特徴があり、例えば携帯電話や監視カメラにも容易に使用することができる。   According to each embodiment, although the number of constituent lenses is small and the entire lens system is compact, a high-performance and easy-to-manufacture photographing lens can be obtained. Further, by disposing the aperture stop closest to the object side, there is a structural feature that makes the lens system inconspicuous when viewed from the object side.

更に、高性能且つレンズ系全体がコンパクトであるため、小型の撮影装置に用いるのに適している。   Furthermore, since it has high performance and the entire lens system is compact, it is suitable for use in a small photographing apparatus.

又、前述の如く第1〜第4レンズG1〜G4のレンズ形状及び条件式(3),(9)を特定することによってテレセントリック性の良い撮影レンズを得ている。   Further, as described above, by taking the lens shapes of the first to fourth lenses G1 to G4 and the conditional expressions (3) and (9), an imaging lens with good telecentricity is obtained.

以下に、本発明の実施例1〜3に各々対応する数値実施例1〜3を示す。各数値実施例において、iは物体側からの面の順番を示し、Riは各面の曲率半径、Diは第i面と第(i+1)面との間の部材肉厚又は空気間隔、Ni,νiはそれぞれd線に対する屈折率,アッベ数を示す。   The numerical examples 1 to 3 corresponding to the first to third embodiments of the present invention will be shown below. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of each surface, Di is the member thickness or air space between the i-th surface and the (i + 1) -th surface, Ni, ν i represents the refractive index and Abbe number for the d-line, respectively.

又、最も像側の2つの面はガラスブロックGである。非球面形状は光軸からの高さh
の位置での光軸方向の変位を面頂点に基準にしてXとするとき、
The two surfaces closest to the image are glass blocks G. The aspherical shape is the height h from the optical axis
Where X is the displacement in the direction of the optical axis at the position of

で表される。但しRは近軸曲率半径、kは円錐定数、A,B,C,D,Eは非球面係数である。 It is represented by Where R is a paraxial radius of curvature, k is a conic constant, and A, B, C, D, and E are aspherical coefficients.

又、「E−0X」は「×10−X」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角、bfはバックフォーカスを示す。又、前述の各条件式と数値実施例における諸数値との関係を表−1に示す。 “E-0X” means “× 10 −X ”. f is a focal length, Fno is an F number, ω is a half angle of view, and bf is a back focus. Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.

数値実施例1
実施例1
f 5.712
Fno 3.5
2ω 61.5
bf 2.68


面No. R D N ν
STO(絞り) ∞ 0.720
1 3.36599 1.300 1.5300 55.9
2 -17.40477 0.500
3 -2.38903 0.724 1.5855 30.0
4 43477 0.100
5 6.56010 1.574 1.5300 55.9
6 -2.05744 0.100
7 3.53596 1.051 1.5300 55.9
8 1.41508 1.210
9 ∞ 0.690 1.5168 64.2
10 ∞ 1.012

非球面係数
第1面 K=-0.790073 A=-3.27139E-03 B= 3.72297E-03
C=-4.61151E-03 D= 2.31462E-03 E=-5.36359E-04
第2面 K=64.485389 A=-2.02480E-02 B=-1.69249E-03
C=-4.82393E-03 D= 1.56128E-03 E=-2.11052E-04
第3面 K=0.129172 A= 8.12431E-04 B=-3.55268E-03
C=-3.36970E-03 D= 9.91749E-04 E= 1.03755E-05
第4面 K=-0.242976E14 A=-2.10068E-03 B=-3.14650E-04
C=-3.03485E-04 D=-1.37330E-05 E= 2.36487E-06
第5面 K=3.739393 A=-4.39385E-03 B=-4.44742E-04
C=-7.95994E-05 D= 1.28469E-05 E=-3.48245E-06
第6面 K=-2.686347 A=-1.07631E-04 B= 6.50231E-04
C= 9.35934E-05 D= 4.78264E-06 E= 8.53142E-06
第7面 K=-12.774900 A=-1.65944E-02 B=-6.62897E-04
C= 1.90354E-04 D= 6.04888E-05 E=-7.01547E-06
第8面 K=-3.388239 A=-1.75570E-02 B= 1.74511E-03
C=-5.83296E-05 D=-3.00199E-07 E=-4.11635E-08

数値実施例2
実施例2
f 5.711
Fno 3.5
2ω 61.5
bf 2.67


面No. R D N ν
STO(絞り) ∞ 0.720
1 3.42488 1.300 1.5300 55.9
2 -13.39253 0.513
3 -2.30610 0.724 1.5855 30.0
4 870131 0.100
5 6.46139 1.608 1.5300 55.9
6 -1.97266 0.100
7 3.45765 1.010 1.5300 55.9
8 1.34494 1.217
9 ∞ 0.690 1.5168 64.2
10 ∞ 1.000


非球面係数
第1面 K=-0.807425 A=-3.14154E-03 B= 2.56293E-03
C=-4.04431E-03 D= 2.04099E-03 E=-4.62191E-04
第2面 K=50.961982 A=-1.96355E-02 B=-1.38202E-03
C=-4.82704E-03 D= 1.53782E-03 E=-1.36313E-04
第3面 K= 0.060327 A= 1.05900E-03 B=-2.97126E-03
C=-3.28167E-03 D= 1.02882E-03 E= 3.96662E-05
第4面 K=-0.980764E19 A=-1.16039E-03 B=-3.48792E-04
C=-2.87951E-04 D=-7.75874E-06 E= 2.79060E-06
第5面 K= 4.190301 A=-4.29705E-03 B=-3.01845E-04
C=-5.71921E-05 D= 1.97528E-05 E=-1.78677E-06
第6面 K=-2.791550 A=-7.71678E-04 B= 7.06330E-04
C= 1.34399E-04 D= 1.29449E-05 E= 9.55996E-06
第7面 K=-13.980042 A=-1.67681E-02 B=-6.74702E-04
C= 1.95564E-04 D= 6.20491E-05 E=-6.88396E-06
第8面 K=-3.497806 A=-1.73250E-02 B= 1.72395E-03
C=-6.18347E-05 D=-3.80972E-07 E= 5.06294E-08

数値実施例3
実施例3
f 5.710
Fno 3.5
2ω 61.5
bf 2.77


面No. R D N ν
STO(絞り) ∞ 0.720
1 3.41591 1.300 1.5300 55.9
2 -15.09078 0.500
3 -2.30572 0.724 1.5855 30.0
4 -236529 0.100
5 6.50758 1.549 1.5300 55.9
6 -2.24712 0.100
7 2.85616 1.000 1.5300 55.9
8 1.39445 1.317
9 ∞ 0.690 1.5168 64.2
10 ∞ 1.000

非球面係数
第1面 K=-0.861977 A=-2.96673E-03 B= 3.30303E-03
C=-4.18785E-03 D= 2.34862E-03 E=-5.59514E-04
第2面 K=38.578174 A=-1.74403E-02 B= 6.34287E-04
C=-4.21635E-03 D= 1.69737E-03 E=-1.85545E-04
第3面 K=-0.323243 A= 9.43014E-03 B=-1.18937E-03
C=-2.75970E-03 D= 1.04230E-03 E= 1.26720E-05
第4面 K=-0.741781E-16 A= 2.41592E-03 B= 6.93275E-05
C=-2.74475E-04 D=-4.59681E-06 E= 5.18916E-06
第5面 K= 3.738054 A=-4.63153E-03 B=-7.09457E-04
C=-7.41587E-05 D= 2.49171E-05 E= 5.78896E-07
第6面 K=-3.388744 A=-2.00306E-04 B= 1.34418E-04
C=-1.61083E-06 D= 6.53255E-06 E= 1.21241E-05
第7面 K=-5.242881 A=-1.47356E-02 B=-8.83803E-04
C= 1.42003E-04 D= 5.76310E-05 E=-5.73199E-06
第8面 K=-2.890194 A=-1.75329E-02 B= 1.76527E-03
C=-7.37248E-05 D=-4.91887E-07 E= 2.45820E-07
Numerical example 1
Example 1
f 5.712
Fno 3.5
2ω 61.5
bf 2.68


Surface No. RDN ν
STO (Aperture) ∞ 0.720
1 3.36599 1.300 1.5300 55.9
2 -17.40477 0.500
3 -2.38903 0.724 1.5855 30.0
4 43477 0.100
5 6.56010 1.574 1.5300 55.9
6 -2.05744 0.100
7 3.53596 1.051 1.5300 55.9
8 1.41508 1.210
9 ∞ 0.690 1.5168 64.2
10 ∞ 1.012

Aspherical coefficient 1st surface K = -0.790073 A = -3.27139E-03 B = 3.72297E-03
C = -4.61151E-03 D = 2.31462E-03 E = -5.36359E-04
2nd side K = 64.485389 A = -2.02480E-02 B = -1.69249E-03
C = -4.82393E-03 D = 1.56128E-03 E = -2.11052E-04
3rd surface K = 0.129172 A = 8.12431E-04 B = -3.55268E-03
C = -3.36970E-03 D = 9.91749E-04 E = 1.03755E-05
4th surface K = -0.242976E14 A = -2.10068E-03 B = -3.14650E-04
C = -3.03485E-04 D = -1.37330E-05 E = 2.36487E-06
5th surface K = 3.739393 A = -4.39385E-03 B = -4.44742E-04
C = -7.95994E-05 D = 1.28469E-05 E = -3.48245E-06
6th surface K = -2.686347 A = -1.07631E-04 B = 6.50231E-04
C = 9.35934E-05 D = 4.78264E-06 E = 8.53142E-06
7th surface K = -12.774900 A = -1.65944E-02 B = -6.62897E-04
C = 1.90354E-04 D = 6.04888E-05 E = -7.01547E-06
8th surface K = -3.388239 A = -1.75570E-02 B = 1.74511E-03
C = -5.83296E-05 D = -3.00199E-07 E = -4.11635E-08

Numerical example 2
Example 2
f 5.711
Fno 3.5
2ω 61.5
bf 2.67


Surface No. RDN ν
STO (Aperture) ∞ 0.720
1 3.42488 1.300 1.5300 55.9
2 -13.39253 0.513
3 -2.30610 0.724 1.5855 30.0
4 870131 0.100
5 6.46139 1.608 1.5300 55.9
6 -1.97266 0.100
7 3.45765 1.010 1.5300 55.9
8 1.34494 1.217
9 ∞ 0.690 1.5168 64.2
10 ∞ 1.000


Aspheric surface 1st surface K = -0.807425 A = -3.14154E-03 B = 2.56293E-03
C = -4.04431E-03 D = 2.04099E-03 E = -4.62191E-04
Second side K = 50.961982 A = -1.96355E-02 B = -1.38202E-03
C = -4.82704E-03 D = 1.53782E-03 E = -1.36313E-04
3rd surface K = 0.060327 A = 1.05900E-03 B = -2.97126E-03
C = -3.28167E-03 D = 1.02882E-03 E = 3.96662E-05
4th surface K = -0.980764E19 A = -1.16039E-03 B = -3.48792E-04
C = -2.87951E-04 D = -7.75874E-06 E = 2.79060E-06
5th surface K = 4.190301 A = -4.29705E-03 B = -3.01845E-04
C = -5.71921E-05 D = 1.97528E-05 E = -1.78677E-06
6th surface K = -2.791550 A = -7.71678E-04 B = 7.06330E-04
C = 1.34399E-04 D = 1.29449E-05 E = 9.55996E-06
7th surface K = -13.980042 A = -1.67681E-02 B = -6.74702E-04
C = 1.95564E-04 D = 6.20491E-05 E = -6.88396E-06
8th surface K = -3.497806 A = -1.73250E-02 B = 1.72395E-03
C = -6.18347E-05 D = -3.80972E-07 E = 5.06294E-08

Numerical Example 3
Example 3
f 5.710
Fno 3.5
2ω 61.5
bf 2.77


Surface No. RDN ν
STO (Aperture) ∞ 0.720
1 3.41591 1.300 1.5300 55.9
2 -15.09078 0.500
3 -2.30572 0.724 1.5855 30.0
4 -236529 0.100
5 6.50758 1.549 1.5300 55.9
6 -2.24712 0.100
7 2.85616 1.000 1.5300 55.9
8 1.39445 1.317
9 ∞ 0.690 1.5168 64.2
10 ∞ 1.000

Aspheric surface 1st surface K = -0.861977 A = -2.96673E-03 B = 3.30303E-03
C = -4.18785E-03 D = 2.34862E-03 E = -5.59514E-04
2nd surface K = 38.578174 A = -1.74403E-02 B = 6.34287E-04
C = -4.21635E-03 D = 1.69737E-03 E = -1.85545E-04
3rd surface K = -0.323243 A = 9.43014E-03 B = -1.18937E-03
C = -2.75970E-03 D = 1.04230E-03 E = 1.26720E-05
4th surface K = -0.741781E-16 A = 2.41592E-03 B = 6.93275E-05
C = -2.74475E-04 D = -4.59681E-06 E = 5.18916E-06
5th surface K = 3.738054 A = -4.63153E-03 B = -7.09457E-04
C = -7.41587E-05 D = 2.49171E-05 E = 5.78896E-07
6th surface K = -3.388744 A = -2.00306E-04 B = 1.34418E-04
C = -1.61083E-06 D = 6.53255E-06 E = 1.21241E-05
7th surface K = -5.242881 A = -1.47356E-02 B = -8.83803E-04
C = 1.42003E-04 D = 5.76310E-05 E = -5.73199E-06
8th surface K = -2.890194 A = -1.75329E-02 B = 1.76527E-03
C = -7.37248E-05 D = -4.91887E-07 E = 2.45820E-07

次に実施例1〜3に示したような撮影レンズを撮影光学系として用いたデジタルスチルカメラの実施例を図7を用いて説明する。   Next, an embodiment of a digital still camera using a photographing lens as shown in the first to third embodiments as a photographing optical system will be described with reference to FIG.

図7において、20はカメラ本体、21は実施例1〜3で説明したいずれかの撮影レンズによって構成された撮影光学系である。   In FIG. 7, reference numeral 20 denotes a camera body, and 21 denotes a photographic optical system constituted by any of the photographic lenses described in the first to third embodiments.

22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。23は固体撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリである。24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。   Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body. A memory 23 records information corresponding to a subject image photoelectrically converted by the solid-state imaging device 22. Reference numeral 24 denotes a finder for observing a subject image formed on the solid-state image sensor 22, which includes a liquid crystal display panel or the like.

このように本発明の撮影レンズをデジタルスチルカメラ等の撮像素子に適用することにより、小型で高い光学性能を有する撮像装置が実現できる。   Thus, by applying the photographic lens of the present invention to an image pickup device such as a digital still camera, a small-sized image pickup apparatus having high optical performance can be realized.

実施例1のレンズ構成図Lens configuration diagram of Example 1 実施例1の諸収差図Various aberration diagrams of Example 1 実施例2のレンズ構成図Lens configuration diagram of Example 2 実施例2の諸収差図Various aberration diagrams of Example 2 実施例3のレンズ構成図Lens configuration diagram of Example 3 実施例3の諸収差図Various aberration diagrams of Example 3 本発明の撮像装置の実施例の要部概略図Schematic diagram of main parts of an embodiment of an imaging apparatus of the present invention

符号の説明Explanation of symbols

G1 第1レンズ
G2 第2レンズ
G3 第3レンズ
G4 第4レンズ
STO 絞り
IP 像面
d d線
g g線
C C線
F F線
ΔS サジタル像面
ΔM メリディオナル像面
G ガラスブロック
G1 1st lens G2 2nd lens G3 3rd lens G4 4th lens STO Aperture IP image surface d d line g g line C C line F F line ΔS sagittal image surface ΔM meridional image surface G glass block

Claims (7)

物体側より像側へ順に、開口絞り、両凸形状の正の屈折力の第1レンズ、像側が凸面でメニスカス形状の負の屈折力の第2レンズ、両凸形状の正の屈折力の第3レンズ、負の屈折力の第4レンズを有し、各レンズの少なくとも1面は非球面形状であり、各レンズの材料は、樹脂であり、該第1レンズの材料の屈折率とアッベ数を各々N1,ν1、該第2レンズの材料のアッベ数をν2とするとき、
N1 < 1.54
ν1 > ν2
なる条件を満足することを特徴とする撮影レンズ。
In order from the object side to the image side, an aperture stop, a biconvex first lens having a positive refractive power, a second lens having a convex meniscus negative refractive power on the image side, and a first birefringent positive refractive power. 3 lenses, a fourth lens having negative refractive power, at least one surface of each lens is aspherical, the material of each lens is resin, the refractive index and Abbe number of the material of the first lens N1 and ν1, respectively, and the Abbe number of the material of the second lens is ν2,
N1 <1.54
ν1> ν2
A photographic lens characterized by satisfying the following conditions.
前記第4レンズの像側の面から像面までの空気換算距離をbf、前記開口絞りから像面までの空気換算距離をTL、該開口絞りから該第4レンズの像側の面までの距離をML、レンズ系全体の焦点距離をfとするとき、
bf/TL > 0.2
0.8 < ML/f < 1.2
なる条件を満足することを特徴とする請求項1の撮影レンズ。
Bf represents an air conversion distance from the image side surface of the fourth lens to the image plane, TL represents an air conversion distance from the aperture stop to the image plane, and a distance from the aperture stop to the image side surface of the fourth lens. Is ML and the focal length of the entire lens system is f,
bf / TL> 0.2
0.8 <ML / f <1.2
The photographing lens according to claim 1, wherein the following condition is satisfied.
前記第1,第2レンズの焦点距離を各々f1,f2、レンズ系全体の焦点距離をfとするとき、
0.80 < f1/f < 1.00
0.60 < |f2|/f < 0.80
なる条件を満足することを特徴とする請求項1又は2の撮影レンズ。
When the focal lengths of the first and second lenses are f1 and f2, respectively, and the focal length of the entire lens system is f,
0.80 <f1 / f <1.00
0.60 <| f2 | / f <0.80
The photographing lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズの物体側のレンズ面の曲率半径をr3、前記第3レンズの物体側のレンズ面の曲率半径をr5、レンズ系全体の焦点距離をfとするとき、
0.30 < |r3|/f < 0.50
0.80 < r5/f < 1.20
なる条件を満足することを特徴とする請求項1,2又は3の撮影レンズ。
When the radius of curvature of the lens surface on the object side of the second lens is r3, the radius of curvature of the lens surface on the object side of the third lens is r5, and the focal length of the entire lens system is f,
0.30 <| r3 | / f <0.50
0.80 <r5 / f <1.20
The photographic lens according to claim 1, 2 or 3, wherein the following condition is satisfied.
前記開口絞りから前記第1レンズの物体側の面までの距離をD0、レンズ系全体の焦点距離をfとするとき、
D0/f>0.10
なる条件を満足することを特徴とする請求項1から4のいずれか1項の撮影レンズ。
When the distance from the aperture stop to the object side surface of the first lens is D0 and the focal length of the entire lens system is f,
D0 / f> 0.10
The photographic lens according to claim 1, wherein the following condition is satisfied.
固体撮像素子に像を形成するための光学系であることを特徴とする請求項1〜5のいずれか1項の撮影レンズ。   6. The photographing lens according to claim 1, wherein the photographing lens is an optical system for forming an image on a solid-state image sensor. 請求項1から6のいずれか1項の撮影レンズと、該撮影レンズによって形成された像を光電変換する為の固体撮像素子を有することを特徴とする撮像装置。   An imaging apparatus comprising: the imaging lens according to claim 1; and a solid-state imaging device for photoelectrically converting an image formed by the imaging lens.
JP2006012518A 2006-01-20 2006-01-20 Imaging lens and imaging apparatus having the same Active JP4890870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012518A JP4890870B2 (en) 2006-01-20 2006-01-20 Imaging lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012518A JP4890870B2 (en) 2006-01-20 2006-01-20 Imaging lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2007193195A true JP2007193195A (en) 2007-08-02
JP2007193195A5 JP2007193195A5 (en) 2009-03-12
JP4890870B2 JP4890870B2 (en) 2012-03-07

Family

ID=38448926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012518A Active JP4890870B2 (en) 2006-01-20 2006-01-20 Imaging lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4890870B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004443A1 (en) * 2009-07-08 2011-01-13 ナルックス株式会社 Imaging optical system
JP2011018031A (en) * 2009-07-08 2011-01-27 Nalux Co Ltd Imaging optical system
US8189272B1 (en) 2010-12-03 2012-05-29 Largan Precision Co. Optical lens assembly for image taking
WO2013150706A1 (en) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 Imaging optical system, imaging apparatus, and digital device
CN104374695A (en) * 2013-08-14 2015-02-25 中国科学院沈阳自动化研究所 Telescoping focusing collection system and method for LIBS remote detection
CN104730686A (en) * 2014-12-19 2015-06-24 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device using the same
KR20160069088A (en) * 2014-12-05 2016-06-16 에이에이씨 어쿠스틱 테크놀로지스 (심천) 컴퍼니 리미티드 Compact Imaging Lens System
CN114252983A (en) * 2021-12-27 2022-03-29 季华实验室 Common-caliber medium-long wave infrared imaging optical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325713A (en) * 2003-04-24 2004-11-18 Canon Inc Objective lens
JP2004341501A (en) * 2003-04-22 2004-12-02 Olympus Corp Image forming optical system and electronic equipment using the same
WO2005047951A1 (en) * 2003-11-13 2005-05-26 Konica Minolta Opto, Inc. Imaging lens and imaging device
JP2005208236A (en) * 2004-01-21 2005-08-04 Sony Corp Single focal lens
JP2005292559A (en) * 2004-04-01 2005-10-20 Sony Corp Imaging lens, imaging unit and imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341501A (en) * 2003-04-22 2004-12-02 Olympus Corp Image forming optical system and electronic equipment using the same
JP2004325713A (en) * 2003-04-24 2004-11-18 Canon Inc Objective lens
WO2005047951A1 (en) * 2003-11-13 2005-05-26 Konica Minolta Opto, Inc. Imaging lens and imaging device
JP2005208236A (en) * 2004-01-21 2005-08-04 Sony Corp Single focal lens
JP2005292559A (en) * 2004-04-01 2005-10-20 Sony Corp Imaging lens, imaging unit and imaging apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018031A (en) * 2009-07-08 2011-01-27 Nalux Co Ltd Imaging optical system
WO2011004443A1 (en) * 2009-07-08 2011-01-13 ナルックス株式会社 Imaging optical system
US8189272B1 (en) 2010-12-03 2012-05-29 Largan Precision Co. Optical lens assembly for image taking
TWI512328B (en) * 2012-04-06 2015-12-11 Konica Minolta Optics Inc Camera optics, camera and digital machines
WO2013150706A1 (en) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 Imaging optical system, imaging apparatus, and digital device
JP5370619B1 (en) * 2012-04-06 2013-12-18 コニカミノルタ株式会社 Imaging optical system, imaging apparatus, and digital device
US8704937B2 (en) 2012-04-06 2014-04-22 Konica Minolta Optics, Inc. Imaging optical system, imaging device, and digital apparatus
CN104374695A (en) * 2013-08-14 2015-02-25 中国科学院沈阳自动化研究所 Telescoping focusing collection system and method for LIBS remote detection
KR20160069088A (en) * 2014-12-05 2016-06-16 에이에이씨 어쿠스틱 테크놀로지스 (심천) 컴퍼니 리미티드 Compact Imaging Lens System
KR101717208B1 (en) 2014-12-05 2017-03-17 에이에이씨 어쿠스틱 테크놀로지스(심천)컴퍼니 리미티드 Compact Imaging Lens System
CN104730686A (en) * 2014-12-19 2015-06-24 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device using the same
CN114252983A (en) * 2021-12-27 2022-03-29 季华实验室 Common-caliber medium-long wave infrared imaging optical system
CN114252983B (en) * 2021-12-27 2023-06-02 季华实验室 Common-caliber medium-long wave infrared imaging optical system

Also Published As

Publication number Publication date
JP4890870B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US8681436B2 (en) Imaging lens, imaging device and information device
JP5592708B2 (en) Imaging optical system and imaging apparatus using the same
JP5370109B2 (en) Imaging lens and imaging apparatus
JP2008158413A (en) Imaging lens and imaging apparatus having same
JP4658511B2 (en) Imaging optical system, imaging apparatus and electronic apparatus equipped with the same
WO2013099214A1 (en) Imaging lens and imaging device
JP2010197665A (en) Image pickup optical system and image pickup apparatus using the same
WO2013099211A1 (en) Imaging lens and imaging device
JP4510402B2 (en) Objective lens and optical instrument
JP4890870B2 (en) Imaging lens and imaging apparatus having the same
JP2004326097A (en) Image forming optical system and electronic apparatus using image forming optical system
KR102109934B1 (en) Photographing lens and photographing device
JP2014109764A (en) Image capturing lens
JP4824981B2 (en) Imaging optical system and interchangeable lens apparatus having the same
JP5716547B2 (en) Imaging lens, camera device, and portable information terminal device
JP2006201674A (en) Wide angle imaging lens
US7440197B2 (en) Image forming lens and portable information terminal
JP2010128100A (en) Wide-angle lens and imaging module
JP2008020513A (en) Single focus imaging lens and imaging apparatus equipped therewith
JP2011090122A (en) Imaging optical system and image pickup device having the same
JP2010243737A (en) Variable imaging optical system
JP2007086296A (en) Two-group zoom lens, interchangeable lens with the same, and electronic imaging apparatus with the same
JP2001100091A (en) Photographic lens
JP2004295112A (en) Image forming optical system
JP5006627B2 (en) Optical system and optical apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4890870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250