JP2007192475A - Boiler device and its operation method - Google Patents

Boiler device and its operation method Download PDF

Info

Publication number
JP2007192475A
JP2007192475A JP2006011650A JP2006011650A JP2007192475A JP 2007192475 A JP2007192475 A JP 2007192475A JP 2006011650 A JP2006011650 A JP 2006011650A JP 2006011650 A JP2006011650 A JP 2006011650A JP 2007192475 A JP2007192475 A JP 2007192475A
Authority
JP
Japan
Prior art keywords
furnace
port
mixing
gas
mixing promotion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006011650A
Other languages
Japanese (ja)
Inventor
Satohiko Mine
聡彦 嶺
Hidehisa Yoshizako
秀久 吉廻
Shinichiro Nomura
伸一郎 野村
Kenji Kiyama
研滋 木山
Takanori Yano
隆則 矢野
Akira Baba
彰 馬場
Wakako Shimodaira
和佳子 下平
Satoshi Tadakuma
聡 多田隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006011650A priority Critical patent/JP2007192475A/en
Publication of JP2007192475A publication Critical patent/JP2007192475A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler device and its operation method capable of achieving effect of reducing CO concentration and NOx concentration without impairing combustion performance of solid fuel such as coal in a furnace. <P>SOLUTION: This boiler device is composed of a burner 6 of one or more stage for reducing combustion, an after air port 7 of one or more stage jetting the combustion air short in the burner 6, and a mixing promoting port 8 for supplying a part of boiler exhaust gas discharged from the boiler, between the burner 6 and the after air port 7. The burners 6, the after air ports 7 and the mixing promoting ports 8 are respectively disposed on a pair of opposite wall surfaces of the furnace, the mixing promoting ports 8 of each stage are respectively disposed at opposite positions on the same horizontal faces of the opposite furnace wall surfaces, or positions shifted from the opposite positions, and when the mixing promoting ports 8 are disposed in plural stages, the mixing promoting port 8 of each stage is disposed on an intermediate position of the mixing promoting port 8 of the adjacent stage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、石炭焚きボイラなどの燃焼装置とその運転方法に係り、特に排ガス中の窒素酸化物及び一酸化炭素を低減するのに好適な燃焼装置とその運転方法に関する。   The present invention relates to a combustion apparatus such as a coal-fired boiler and an operation method thereof, and more particularly to a combustion apparatus suitable for reducing nitrogen oxides and carbon monoxide in exhaust gas and an operation method thereof.

日本国内における発電は従来火力発電が主力であり、原子力発電が普及しつつある現在においても依然、火力発電が基盤発電を担っている。火力発電の燃料としては、石油が多いが、オイルショック以降、特に1980年代以降は安価な海外石炭焚きボイラの需要が増えている。火力発電所で石炭等の化石固体燃料を燃焼する場合、窒素酸化物等の環境汚染物質低減や、燃焼率向上によるプラント効率増加に関する問題が生じる。これらの問題に対し、1980年代以降さまざまな技術が発明されている。   Conventionally, thermal power generation is the main power generation in Japan, and thermal power generation is still responsible for basic power generation even when nuclear power generation is spreading. Petroleum is the fuel for thermal power generation, but since the oil shock, especially since the 1980s, demand for cheap overseas coal-fired boilers has increased. When fossil solid fuel such as coal is burned at a thermal power plant, there are problems related to reduction of environmental pollutants such as nitrogen oxides and increase in plant efficiency due to improvement of combustion rate. Various techniques have been invented for these problems since the 1980s.

例えば、特許第2954643号では、火炉内を燃焼域、還元域、再燃焼域に分け、還元域での窒素酸化物(NOxということがある。)低減効果を示している。
現在ではこのような燃焼域では量論空気比以下で燃料を燃焼させ、燃料中の窒素分から発生した窒素酸化物を低酸素濃度の還元領域において還元し、炉出口での窒素酸化物量を低減する二段燃焼方式が主流になっている。その他の窒素酸化物低減方法としては、ボイラ下流に脱硝装置を設け、触媒等により物理的に還元する方式がある。
特開平9−126412号公報 特許第2954643号公報 実願昭62−194229号(実開平01−101011号)マイクロフィルム 特開昭58−219308号公報 特開昭59−24106号公報
For example, Japanese Patent No. 2954643 divides the furnace into a combustion region, a reduction region, and a recombustion region, and shows a nitrogen oxide (NOx) reduction effect in the reduction region.
Currently, in such a combustion zone, fuel is burned at a stoichiometric air ratio or less, and nitrogen oxides generated from the nitrogen content in the fuel are reduced in a reduction region with a low oxygen concentration, and the amount of nitrogen oxides at the furnace outlet is reduced. The two-stage combustion method has become mainstream. As another nitrogen oxide reduction method, there is a method in which a denitration device is provided downstream of the boiler and is physically reduced by a catalyst or the like.
Japanese Patent Laid-Open No. 9-126212 Japanese Patent No. 2954643 No. 62-194229 (No. 01-101011) No. Microfilm JP 58-219308 A JP 59-24106 A

前記特許文献1〜3には、比較的低温の火炉出口排ガスをバーナとアフターエアポートの間の火炉壁から炉内に供給してサーマルNOx及びフューエルNOxの発生量を抑えることができることが開示されている。
しかし、これら特許文献記載の方法でも火炉内での異なる燃焼状態のガス同士が十分均一に混合できなく、燃焼ガス中のCO濃度とNOx濃度の低減化効果が不十分であった。
Patent Documents 1 to 3 disclose that relatively low-temperature furnace outlet exhaust gas can be supplied into the furnace from the furnace wall between the burner and the after-air port to suppress the generation amounts of thermal NOx and fuel NOx. Yes.
However, even in the methods described in these patent documents, gases in different combustion states in the furnace cannot be sufficiently uniformly mixed, and the effect of reducing the CO concentration and NOx concentration in the combustion gas is insufficient.

本発明の課題は、火炉内で石炭などの固体燃料の燃焼性を損なうこと無く、燃焼ガス中のCO濃度とNOx濃度の低減化効果が達成できるボイラ装置とその運転方法を提供することである。   The subject of this invention is providing the boiler apparatus which can achieve the reduction effect of CO concentration and NOx concentration in combustion gas, and its operating method, without impairing the combustibility of solid fuels, such as coal, in a furnace. .

本発明の上記課題は次の構成により解決される。
請求項1記載の発明は、石炭を含む固体燃料を火炉で燃焼させるボイラ装置において、理論空気比以下の空気量で固体燃料を燃焼させるバーナを一段毎に複数個、かつ燃焼ガス流れ方向に一段以上設け、前記バーナの下流側であって、該バーナでの固体燃料の燃焼に不足する燃焼用空気を火炉内に噴出するアフターエアポートを一段毎に複数個、かつ燃焼ガス流れ方向に一段以上設け、前記バーナの下流側であって、かつ前記アフターエアポートの上流側にボイラから排出するボイラ排ガスの一部を供給する混合促進ポートを一段毎に複数個、かつ燃焼ガス流れ方向に一段以上設け、バーナとアフターエアポートと混合促進ポートは火炉の対向する一対の壁面にそれぞれ配置し、各段の各混合促進ポートは対向する火炉壁面でそれぞれ同一水平位置であって、相対向する位置又は前記対向位置からずれた位置に配置(バーナ、アフターエアポート又は混合促進ポートのこの配置様式を以後、千鳥配列ということがある。)され、混合促進ポートがガス流れ方向に複数段ある場合は各段の各混合促進ポートは隣接する段の隣接する2つの混合促進ポートの中間位置に配置されるボイラ装置である。
The above-described problems of the present invention are solved by the following configuration.
According to the first aspect of the present invention, in a boiler apparatus for burning a solid fuel containing coal in a furnace, a plurality of burners for burning the solid fuel with an air amount equal to or less than the theoretical air ratio are provided in one stage in the combustion gas flow direction. A plurality of after-air ports are provided downstream of the burner and for injecting combustion air, which is insufficient for solid fuel combustion in the burner, into the furnace, and at least one stage in the combustion gas flow direction. A plurality of mixing promotion ports for supplying a part of boiler exhaust gas discharged from the boiler to the downstream side of the burner and upstream of the after-air port, and one or more stages in the combustion gas flow direction, The burner, after-air port, and mixing promotion port are arranged on a pair of opposing wall surfaces of the furnace, and each mixing promotion port of each stage has the same water content on the opposing furnace wall surface. It is arranged at a position that is opposite to or opposite to the opposite position (this arrangement mode of the burner, after-air port, or mixing promotion port may be hereinafter referred to as a staggered arrangement), and the mixing promotion port is a gas When there are a plurality of stages in the flow direction, each mixing promotion port in each stage is a boiler device arranged at an intermediate position between two adjacent mixing promotion ports in adjacent stages.

請求項1記載の発明によれば、混合促進ポートを複数段設ける場合には、各段の各混合促進ポートは上下方向で隣接する段の隣接する2つの混合促進ポートの中間位置に配置(バーナ、アフターエアポートを含めこれらの配置様式も以後、千鳥配列ということがある。)することにより、火炉内のバーナで形成された燃焼ガス領域とその他の未燃焼ガス領域の混合を促進する効果があり、バーナからの燃焼ガス中の未燃分も完全燃焼し、ボイラの燃焼効率が従来より向上する。   According to the first aspect of the present invention, when a plurality of mixing promotion ports are provided, each mixing promotion port of each stage is disposed at an intermediate position between two adjacent mixing promotion ports of the adjacent stage in the vertical direction (burner These arrangements, including after-airports, may also be referred to hereinafter as a staggered arrangement.), Which has the effect of promoting mixing of the combustion gas region formed by the burner in the furnace with other unburned gas regions. In addition, the unburned portion in the combustion gas from the burner is completely burned, and the combustion efficiency of the boiler is improved as compared with the conventional one.

また、バーナ火炎で形成された燃焼ガス領域とその他未燃焼ガス領域が混在する状態のガス中に混合促進ポートから燃焼ガスを高速で吹き込むことにより、炉内のガスの流動状態を変化させ、燃焼ガスと未燃分の混合を促進する効果がある。   Also, by blowing the combustion gas at a high speed from the mixing promotion port into the gas in a state where the combustion gas region formed by the burner flame and other unburned gas regions coexist, the flow state of the gas in the furnace is changed and combustion is performed. It has the effect of promoting the mixing of gas and unburned matter.

また、混合促進ポートから混合促進ガスを吹き込むことで、燃焼ガス領域に残存する一酸化炭素と未燃焼ガスとの混合が促進されることにより、未燃焼ガス領域に存在する残存酸素濃度による酸化作用により一酸化炭素が最終生成物である二酸化炭素に変換される。   Further, by blowing the mixing promotion gas from the mixing promotion port, the mixing of the carbon monoxide remaining in the combustion gas region and the unburned gas is promoted, so that the oxidation action due to the residual oxygen concentration existing in the unburned gas region is promoted. As a result, carbon monoxide is converted into carbon dioxide as a final product.

請求項2記載の発明は、混合促進ポートを最上段バーナでの燃料の燃焼が緩慢になった領域に混合促進ガスを吹き込むことができる箇所の火炉壁に設ける請求項1記載のボイラ装置である。   The invention according to claim 2 is the boiler apparatus according to claim 1, wherein the mixing promotion port is provided on the furnace wall where the mixing promotion gas can be blown into a region where the combustion of the fuel in the uppermost burner becomes slow. .

請求項2記載の発明によれば、混合促進ポートから、最上段バーナでの燃料の燃焼が緩慢になったあたりで混合促進ガスを吹き込むことで、最上段バーナの火炎を壊すことなくガスを混合することができ、かつ混合促進ポートからアフターエアポートまでの距離を保つことで炉内のガス流れを均一にした後の還元促進効果を充分に得ることが出来る。また、最上段バーナの燃焼が緩慢になった位置で、混合促進ポートから燃焼ガス噴流を吹き込むことにより、炉内の燃焼ガスと未燃焼ガス領域の混合が促進され、混合ガスは均一のNOx濃度となり、アフターエアポートまでの還元領域で充分な還元作用が得られ、炉出口では低NOx濃度となる。火炉内のガス中のCO濃度にも同様の作用がある。すなわち、燃焼ガス領域に残存する一酸化炭素と未燃焼ガスとの混合が促進されることにより、未燃焼ガス領域に存在する残存酸素濃度による酸化作用により一酸化炭素が最終生成物である二酸化炭素に変換される。   According to the second aspect of the present invention, the gas is mixed without destroying the flame of the uppermost burner by injecting the mixing promotion gas from the mixing promotion port when the combustion of the fuel in the uppermost burner becomes slow. In addition, by maintaining the distance from the mixing promotion port to the after-air port, the reduction promotion effect after making the gas flow in the furnace uniform can be sufficiently obtained. In addition, by blowing the combustion gas jet from the mixing promotion port at the position where the combustion of the uppermost burner becomes slow, the mixing of the combustion gas in the furnace and the unburned gas region is promoted, and the mixed gas has a uniform NOx concentration. Thus, a sufficient reduction action is obtained in the reduction region up to the after-airport, and a low NOx concentration is obtained at the furnace outlet. There is a similar effect on the CO concentration in the gas in the furnace. That is, by promoting the mixing of the carbon monoxide remaining in the combustion gas region and the unburned gas, carbon monoxide is the final product due to the oxidation action due to the residual oxygen concentration existing in the unburned gas region. Is converted to

請求項3記載の発明は、混合促進ポートを、バーナとアフターエアポートが配置される火炉の対向する2つの壁面ではなく、前記対向する2つの壁面の両端部同士を接続する対向する2つの側壁面に配置した請求項1又は2に記載のボイラ装置である。   In the invention according to claim 3, the mixing promotion port is not two opposing wall surfaces of the furnace in which the burner and the after-air port are arranged, but two opposing side wall surfaces that connect both ends of the two opposing wall surfaces. It is a boiler apparatus of Claim 1 or 2 arrange | positioned.

請求項3記載の発明によれば、バーナを対向する2つの火炉壁に配置する対向燃焼方式においては、特に前後2つの火炉壁の両端部同士を接続する2つの側壁近傍に不完全燃焼領域が形成されやすいので、混合促進ポートをバーナを配置した火炉壁ではなく、前記側壁に配置することで、火炉内のガスの混合促進を図ることができる。   According to the third aspect of the present invention, in the opposed combustion method in which the burner is disposed on the two furnace walls facing each other, the incomplete combustion region is particularly located in the vicinity of the two side walls connecting the two end portions of the two front and rear furnace walls. Since it is easy to form, mixing promotion of the gas in a furnace can be aimed at by arrange | positioning a mixing promotion port not to the furnace wall which has arrange | positioned the burner but to the said side wall.

請求項4記載の発明は、混合促進ポートが混合促進ガスの旋回流を形成して火炉内へ混合促進ガスを供給する旋回部を備えている請求項1ないし3のいずれかに記載のボイラ装置である。   According to a fourth aspect of the present invention, there is provided the boiler device according to any one of the first to third aspects, wherein the mixing promotion port includes a swirling portion that forms a swirling flow of the mixing promoting gas and supplies the mixing promoting gas into the furnace. It is.

請求項4記載の発明によれば、混合促進ポートから投入する混合促進ガスを旋回流で投入することにより、混合促進ポートからの噴流に火炉前後壁近傍の未燃分が同伴され、燃焼ガスと未燃分の混合促進の効果が得られる。
前記旋回流の旋回力は、旋回速度成分/軸方向速度成分の比が0.2〜0.8の範囲にすることにより、壁面近傍の排ガス同伴量を増やし、かつ火炉中央での上昇流との混合を促進する作用がある。旋回速度成分/軸速度成分比が1.0以上になると、壁面近傍の同伴ガス量は増えるが、火炉中央までの貫通力が低減するため、火炉中央での混合促進が悪くなる。混合促進ガスに旋回力をつけることにより、直進流よりも火炉壁面近傍での排ガス同伴量が増加する。しかし混合促進ガスに旋回力がありすぎると、火炉壁面近傍の同伴量が多すぎ、火炉中央まで排ガスを到達させることができなくなる。
According to the invention of claim 4, by introducing the mixing promotion gas supplied from the mixing promotion port in a swirling flow, the unburned portion near the front and rear walls of the furnace is accompanied by the jet from the mixing promotion port, and the combustion gas and The effect of promoting unmixed content is obtained.
The swirl force of the swirl flow is such that the ratio of swirl speed component / axial speed component is in the range of 0.2 to 0.8, thereby increasing the amount of exhaust gas entrainment in the vicinity of the wall surface and increasing the flow at the center of the furnace. Has the effect of promoting mixing. When the swirl speed component / shaft speed component ratio is 1.0 or more, the amount of entrained gas near the wall surface increases, but the penetration force to the center of the furnace is reduced, so the mixing promotion at the center of the furnace is worsened. By applying a swirl force to the mixing promoting gas, the amount of exhaust gas entrained in the vicinity of the furnace wall surface increases more than the straight flow. However, if the mixing promoting gas has a swirling force, the amount of entrainment in the vicinity of the furnace wall surface is too large, and the exhaust gas cannot reach the center of the furnace.

請求項5記載の発明は、混合促進ポートの出口部には、該混合促進ポートから火炉内に吹き出すガスを水平方向に分割するガス分割部材を設けた請求項1ないし3のいずれかに記載のボイラ装置である。   According to a fifth aspect of the present invention, there is provided the gas dividing member according to any one of the first to third aspects, wherein a gas dividing member that divides the gas blown out from the mixing promoting port into the furnace in the horizontal direction is provided at the outlet of the mixing promoting port. It is a boiler device.

請求項6記載の発明は、ガス分割部材が、混合促進ポートから火炉内に吹き出すガスの方向が互いに同一方向にならないような形状を有する請求項5記載のボイラ装置である。   The invention according to claim 6 is the boiler apparatus according to claim 5, wherein the gas dividing member has a shape such that the directions of the gases blown out from the mixing promotion port into the furnace are not the same direction.

請求項5記載の発明と請求項6記載の発明によれば、火炉内に噴出するガスを水平方向に複数個に分割して噴出方向を変えることで、水平断面に幅広く噴流を形成してバーナからの燃焼ガスの混合を促進することができ、排ガス中のNOx濃度、CO濃度の低減効果がある。   According to the invention described in claim 5 and the invention described in claim 6, the gas jetted into the furnace is divided into a plurality of parts in the horizontal direction and the jetting direction is changed, thereby forming a wide jet in the horizontal cross section and the burner. Can promote the mixing of the combustion gas from the exhaust gas, and has the effect of reducing the NOx concentration and CO concentration in the exhaust gas.

請求項7記載の発明は、最上段の複数のバーナは、対向する一対の火炉壁面でそれぞれ同一水平面上にあって、相対向する位置からずれた位置にそれぞれ配置され、各段の複数のアフターエアポートは、対向する一対の火炉壁面でそれぞれ同一水平面上にそれぞれ配置され、最上段バーナの下流側の同一壁面に設けられる最下段の各アフターエアポートは前記最上段の複数のバーナの中の隣接する2つのバーナの中間位置の上方に配置される請求項1ないし6のいずれかに記載のボイラ装置である。   According to the seventh aspect of the present invention, the plurality of burners at the uppermost stage are arranged on the same horizontal plane with a pair of opposing furnace wall surfaces and are shifted from positions facing each other. The airports are respectively disposed on the same horizontal plane with a pair of opposing furnace wall surfaces, and the lowermost after-airports provided on the same wall surface downstream of the uppermost burner are adjacent to each other in the uppermost burners. It is a boiler apparatus in any one of Claim 1 thru | or 6 arrange | positioned above the intermediate position of two burners.

請求項7記載の発明によれば、バーナ部における未燃分を含んだ燃焼ガスが火炉内で良く混合される。   According to the seventh aspect of the present invention, the combustion gas containing the unburned portion in the burner portion is well mixed in the furnace.

請求項8記載の発明は、少なくとも一段の各アフターエアポートがその上流側の同一壁面に設けられる最上段の複数のバーナの中の隣接する2つのバーナの中間位置の上方に配置されている請求項1ないし6のいずれかに記載のボイラ装置である。   The invention according to claim 8 is characterized in that at least one stage of each after-air port is disposed above an intermediate position between two adjacent burners in a plurality of burners at the uppermost stage provided on the same wall surface on the upstream side. It is a boiler apparatus in any one of 1 thru | or 6.

請求項8記載の発明によれば、バーナ部における未燃分を含んだ燃焼ガスがアフターエアポートの噴出口近くに上昇してくるので未燃分の燃焼を促進できる。   According to the eighth aspect of the present invention, the combustion gas containing the unburned portion in the burner portion rises near the outlet of the after-air port, so that combustion of the unburned portion can be promoted.

請求項9記載の発明は、各段の各アフターエアポートが、それぞれ互いに上下段でそれぞれ隣接する2つのアフターエアポートの中間位置に配置されている請求項7又は8記載のボイラ装置である。   The invention according to claim 9 is the boiler apparatus according to claim 7 or 8, wherein each after-air port of each stage is arranged at an intermediate position between two after-air ports adjacent to each other in the upper and lower stages.

請求項9記載の発明によれば、バーナ部における未燃分を含んだ燃焼ガスが拡散してもアフターエアポートの噴出口近くに上昇してくるので未燃分の燃焼を促進できる。   According to the ninth aspect of the invention, even if the combustion gas containing the unburned portion in the burner portion diffuses, it rises near the outlet of the after-air port, so that the combustion of the unburned portion can be promoted.

請求項10記載の発明は、請求項1ないし9のいずれかに記載のボイラ装置の混合促進ポートから火炉内に吹き出すボイラ燃焼ガス量が全燃焼用空気量の10%以下であり、かつ混合後の空気比が理論空気比以下であるボイラ装置の運転方法である。   In the invention described in claim 10, the amount of boiler combustion gas blown into the furnace from the mixing promotion port of the boiler device according to any one of claims 1 to 9 is 10% or less of the total combustion air amount, and after mixing This is a method of operating a boiler apparatus in which the air ratio is equal to or less than the theoretical air ratio.

請求項10記載の発明によれば、混合促進ポートより投入するガスを、投入後の空気比が理論空気比以下になるように投入してバーナからアフターエアポートまでの還元作用を損なうことなく未燃分の燃焼性を維持できる。もし、混合促進ガスとして空気等の高酸素濃度ガスを投入して投入後の空気比を理論空気比以上にすると、火炉内の未燃分と混合することにより燃焼反応が生じ、バーナからアフターエアポートまでの還元作用を損なうことになる。
また、混合促進ポートから投入するボイラ燃焼ガス量が燃焼用空気量の10%を超えると、燃焼性が悪くなり、排ガス中の未燃分が増加するという問題が生じる。
According to the invention described in claim 10, the gas introduced from the mixing promotion port is introduced so that the air ratio after the injection becomes equal to or lower than the theoretical air ratio, and the unburned gas is not burned without impairing the reduction action from the burner to the after-air port. The flammability of the minute can be maintained. If a high oxygen concentration gas such as air is used as the mixing promotion gas and the air ratio after the injection is higher than the theoretical air ratio, a combustion reaction occurs due to mixing with the unburned components in the furnace, and the after air port from the burner This will impair the reduction action.
Further, when the amount of boiler combustion gas introduced from the mixing promotion port exceeds 10% of the amount of combustion air, there arises a problem that the combustibility deteriorates and the unburned content in the exhaust gas increases.

請求項11記載の発明は、混合促進ポートから火炉内に吹き出すガス流速は、50m/s以上である請求項10記載のボイラ装置の運転方法である。   The invention according to claim 11 is the operation method of the boiler apparatus according to claim 10, wherein the flow rate of gas blown out from the mixing promotion port into the furnace is 50 m / s or more.

請求項11記載の発明によれば、混合促進ポートから高速噴流で混合促進ガスを投入することにより、周囲のガスを巻き込み、少量のガス量で混合促進の効果が得られる。   According to the eleventh aspect of the present invention, by introducing the mixing promoting gas from the mixing promoting port with a high-speed jet, the surrounding gas is entrained, and the effect of promoting the mixing can be obtained with a small amount of gas.

請求項1記載の発明によれば、混合促進ガスにより火炉内のバーナで形成された燃焼ガス流領域とその他の未燃焼ガス領域の混合を促進する効果があり、バーナからの燃焼ガス中の未燃分も完全燃焼し、ボイラの燃焼効率が従来より向上し、火炉出口での排ガス中の一酸化炭素濃度と窒素酸化物濃度を低減するという効果がある。   According to the first aspect of the present invention, there is an effect of promoting the mixing of the combustion gas flow region formed by the burner in the furnace with the mixing promoting gas and the other unburned gas region, and the unburned gas in the combustion gas from the burner is not mixed. The fuel is completely burned, the combustion efficiency of the boiler is improved, and the carbon monoxide concentration and the nitrogen oxide concentration in the exhaust gas at the furnace outlet are reduced.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、炉内のガス流れを均一にした後の還元促進効果を充分に得ることが出来る。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, a reduction promoting effect after making the gas flow in the furnace uniform can be sufficiently obtained.

請求項3記載の発明によれば、請求項1又は2に記載の発明の効果に加えて、より一層の燃焼ガスと未燃分の混合促進の効果が得られる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, an effect of further promoting the mixing of the combustion gas and the unburned content can be obtained.

請求項4記載の発明によれば、請求項1ないし3のいずれかに記載の発明の効果に加えて、燃焼ガスと未燃分の混合促進の効果が得られる。   According to the invention described in claim 4, in addition to the effect of the invention described in any one of claims 1 to 3, the effect of promoting the mixing of the combustion gas and the unburned content can be obtained.

請求項5記載の発明と請求項6記載の発明によれば、請求項1ないし3のいずれかに記載の発明の効果に加えて、火炉水平断面に幅広く噴流を形成してバーナからの燃焼ガスと未燃分の混合を促進することができ、排ガス中のNOx濃度、CO濃度の低減効果がある。   According to the invention described in claim 5 and the invention described in claim 6, in addition to the effect of the invention described in any one of claims 1 to 3, the combustion gas from the burner is formed by forming a wide jet in the horizontal section of the furnace. And the unburned content can be promoted, and the NOx concentration and CO concentration in the exhaust gas are reduced.

請求項7記載の発明によれば、請求項1ないし6のいずれかに記載の発明の効果に加えて、バーナ部における未燃分を含んだ燃焼ガスは火炉内で良く混合され、より一層の燃焼ガスと未燃分の混合促進の効果が得られる。   According to the invention of claim 7, in addition to the effect of the invention of any one of claims 1 to 6, the combustion gas containing unburned components in the burner part is well mixed in the furnace, and further The effect of promoting the mixing of combustion gas and unburned matter is obtained.

請求項8記載の発明によれば、請求項1ないし6のいずれかに記載の発明の効果に加えて、一層の未燃分の燃焼促進効果がある。   According to the eighth aspect of the invention, in addition to the effect of the invention according to any one of the first to sixth aspects, there is a further combustion promotion effect of unburned content.

請求項9記載の発明によれば、請求項7又は8に記載の発明の効果に加えて、アフターエアポートの噴出口近くに上昇してくる未燃分のより一層の燃焼促進効果がある。   According to the ninth aspect of the invention, in addition to the effect of the seventh or eighth aspect of the invention, there is a further combustion promoting effect of the unburned portion rising near the outlet of the after airport.

請求項10記載の発明によれば、バーナからアフターエアポートまでの還元作用を損なうことなく燃焼性を維持できる。   According to the invention described in claim 10, the combustibility can be maintained without impairing the reducing action from the burner to the after airport.

請求項11記載の発明によれば、請求項10記載の発明の効果に加えて、混合促進ポートから高速噴流で混合促進ガスを投入することにより、周囲のガスを巻き込み、少量のガス量で燃焼ガスと未燃分の混合促進の効果が得られる。   According to the eleventh aspect of the invention, in addition to the effect of the tenth aspect, by introducing the mixing promotion gas from the mixing promotion port with a high-speed jet, the surrounding gas is entrained and burned with a small amount of gas. The effect of promoting the mixing of gas and unburned content is obtained.

本発明の実施の形態を図面とともに説明する。
図1には本実施例の石炭焚きボイラの系統図を示す。
バンカ11から供給する石炭はフィーダ12で流量調整され微粉炭製造装置(ミル)2へ一次空気によって搬送される。ミル2で微粉に粉砕された石炭(微粉炭)は送炭管10をPAF3により搬送されて火炉壁面に設けられたバーナ6に供給されて火炉1内で燃焼される。FDF9により導入され微粉炭を燃焼させる燃焼用空気は熱交換器4で300〜400℃くらいの高温空気となり、火炉壁面に設けられた風箱5からバーナ6の外周部及びアフターエアポート7から燃焼用空気が火炉1内へ投入される。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a system diagram of a coal fired boiler according to this embodiment.
The flow rate of coal supplied from the bunker 11 is adjusted by a feeder 12 and conveyed to the pulverized coal production apparatus (mill) 2 by primary air. Coal (pulverized coal) pulverized into fine powder by the mill 2 is conveyed through the coal feeding pipe 10 by the PAF 3, supplied to the burner 6 provided on the furnace wall surface, and burned in the furnace 1. Combustion air that is introduced by the FDF 9 and burns pulverized coal becomes high-temperature air of about 300 to 400 ° C. in the heat exchanger 4, and is burned from the wind box 5 provided on the furnace wall surface to the outer periphery of the burner 6 and the after-air port 7. Air is introduced into the furnace 1.

ボイラ火炉1内での石炭の燃焼により生成した排ガスは脱硝装置13に送られ、脱硝装置13で窒素酸化物を低減された後、熱交換器4でガス温度が下げられて電気集塵機14で除塵される。除塵された後の排ガスは脱硫装置15で硫黄酸化物を低減して煙突16より大気へ放出される。   The exhaust gas generated by the combustion of coal in the boiler furnace 1 is sent to the denitration device 13, after the nitrogen oxides are reduced by the denitration device 13, the gas temperature is lowered by the heat exchanger 4 and the dust is removed by the electric dust collector 14. Is done. The exhaust gas after dedusting is released from the chimney 16 to the atmosphere with sulfur oxides reduced by the desulfurization device 15.

火炉1の前壁と後壁の下部領域に設けられたバーナ6と火炉の前壁と後壁の上部領域に設けられたアフターエアポート7の間の火炉前壁と後壁には、炉内のガス流動の混合を促進するための混合促進ポート8が設けられている。混合促進ポート8にはGRF17で吸引したボイラ排ガスを高速噴流で投入する。   The furnace front and rear walls between the burner 6 provided in the lower area of the front wall and the rear wall of the furnace 1 and the after air port 7 provided in the upper area of the front wall and the rear wall of the furnace 1 A mixing promotion port 8 is provided for promoting the mixing of the gas flow. Boiler exhaust gas sucked by the GRF 17 is fed into the mixing promotion port 8 as a high-speed jet.

なお、図2にはボイラ火炉から排出した排ガスの一部をGRF17で吸引して火炉底部に再循環させる排ガス循環流路に分岐排ガス流路を設け、該分岐排ガス流路の先端を火炉の側壁(火炉前壁と後壁の各両端部を接続した壁面)に設けた複数の混合促進ポート8に接続する構成を示している。   In FIG. 2, a branch exhaust gas passage is provided in the exhaust gas circulation passage for sucking a part of the exhaust gas discharged from the boiler furnace by the GRF 17 and recirculating it to the bottom of the furnace, and the tip of the branch exhaust passage is connected to the side wall of the furnace. The structure connected to the some mixing promotion port 8 provided in (the wall surface which connected each both ends of a furnace front wall and a rear wall) is shown.

図3に混合促進ポート8を火炉壁に設けたときの炉内のガス流れ方向で、それぞれ異なる部位の水平断面内でのNOx濃度(平均値)の変化を示す。混合促進ポート8を設けたことにより、還元領域でのNOx還元速度が促進し、炉出口での窒素酸化物濃度が低減する。   FIG. 3 shows the change in the NOx concentration (average value) in the horizontal cross section of each different part in the gas flow direction in the furnace when the mixing promotion port 8 is provided on the furnace wall. By providing the mixing promotion port 8, the NOx reduction rate in the reduction region is accelerated, and the nitrogen oxide concentration at the furnace outlet is reduced.

図4に混合促進ポート8から噴出する燃焼ガスの旋回流と直進流とで貫通力を同一にした場合における壁面近傍のガスの同伴量(AAP噴流に取り込まれる周囲のガス量)を示す。ここでx/Yは、混合促進ポート8から火炉内方向への距離xを壁面から火炉中央までの距離Yで無次元化した値、Me/M0は、x地点での同伴量Meを火炉中央で直進流によって同伴された周囲のガス量M0で無次元化した値である。   FIG. 4 shows the amount of gas entrained in the vicinity of the wall surface (the amount of ambient gas taken into the AAP jet) when the penetration force is the same for the swirl flow and the straight flow of the combustion gas ejected from the mixing promotion port 8. Here, x / Y is a value obtained by making the distance x from the mixing promotion port 8 in the furnace direction dimensionless by the distance Y from the wall surface to the furnace center, and Me / M0 is the entrained amount Me at the point x in the furnace center. This is a value made dimensionless by the surrounding gas amount M0 entrained by the straight flow.

混合促進ポート8から火炉1内方向へ噴出するガスの貫通力を一定にした場合、旋回流はx/Yが小さいところ、すなわち壁面近傍での旋回流による周囲ガスの同伴量は直進流による周囲ガスの同伴量に比べて多く、直進流はx/Yが大きいところ、すなわち火炉中央部に行くほど直進流による周囲ガスの同伴量が多くなる。図4には混合促進ポート8から投入する旋回流の旋回速度成分/軸速度成分(Sw数)を変化させた場合の前記同伴量変化を併せて示す。   When the penetration force of the gas ejected from the mixing promotion port 8 into the furnace 1 is constant, the swirling flow has a small x / Y, that is, the entrainment amount of the surrounding gas by the swirling flow near the wall surface Compared with the amount of gas entrained, the amount of entrained gas by the straight flow increases as the straight flow increases in x / Y, that is, toward the center of the furnace. FIG. 4 also shows the change in the entrainment amount when the swirl velocity component / axial velocity component (Sw number) of the swirl flow introduced from the mixing promotion port 8 is varied.

Sw数が高くなるにつれて、旋回流の壁面近傍での排ガス同伴量は増加するが、火炉中央での前記同伴量は減少する。Sw数が1.0以上になると、火炉中央での旋回流の前記同伴量が直進流の前記同伴量よりも少なくなる。これは旋回力が強いため、旋回流の貫通力が弱くなるためである。そのため旋回力の強さとしては、Sw数が0.2〜0.8の範囲が望ましい。   As the Sw number increases, the amount of exhaust gas entrained near the wall surface of the swirl flow increases, but the amount of entrainment in the center of the furnace decreases. When the Sw number is 1.0 or more, the entrainment amount of the swirling flow at the center of the furnace becomes smaller than the entrainment amount of the straight flow. This is because the penetrating force of the swirling flow becomes weak because the swirling force is strong. Therefore, as the strength of the turning force, the Sw number is preferably in the range of 0.2 to 0.8.

図5に混合促進ポート8の縦断面図の一例を示す。混合促進ポート8の中心からは混合促進用燃焼ガスの直進流、その外周から燃焼ガスの旋回流を火炉内へ投入する構造になっている。前記中心直進流と外周旋回流の割合は外周流路内に設けたレジスタ構造18により調整することが可能となる。   FIG. 5 shows an example of a longitudinal sectional view of the mixing promotion port 8. From the center of the mixing promotion port 8, a straight flow of the combustion promoting combustion gas and a swirling flow of the combustion gas are introduced into the furnace from the outer periphery. The ratio between the center straight flow and the outer peripheral swirl flow can be adjusted by the register structure 18 provided in the outer peripheral flow path.

バーナ6から火炎で形成された燃焼ガス領域と空気を多く含む未燃焼ガス領域が混在する雰囲気に混合促進ポート8から燃焼ガスを高速で吹き込むことにより、炉内の流動状態を変化させ、燃焼ガスと未燃焼ガスの混合を促進する効果がある。最上段バーナ6の燃焼が緩慢になった付近で混合促進ポート8から燃焼ガスを吹き込むのが望ましい。最上段バーナ6の燃焼が緩慢になった位置で、混合促進ポート8から高速な燃焼ガスの旋回噴流を吹き込むことにより、炉内の燃焼ガス領域と未燃焼ガス領域の混合が促進され、排ガス中のNOx濃度が均一となり、アフターエアポート7までの還元領域で充分な還元作用が得られ、火炉出口では排ガス中のNOx濃度が低濃度となる。   The combustion gas is blown from the mixing promotion port 8 at a high speed into an atmosphere in which the combustion gas region formed by the flame from the burner 6 and the unburned gas region containing a large amount of air are mixed, thereby changing the flow state in the furnace. And promotes mixing of unburned gas. It is desirable to blow combustion gas from the mixing promotion port 8 in the vicinity of the slow combustion of the uppermost burner 6. By blowing a swirling jet of high-speed combustion gas from the mixing promotion port 8 at a position where the combustion of the uppermost burner 6 has become slow, mixing of the combustion gas region in the furnace and the unburned gas region is promoted, and in the exhaust gas The NOx concentration in the exhaust gas becomes uniform, a sufficient reduction action is obtained in the reduction region up to the after-airport 7, and the NOx concentration in the exhaust gas becomes low at the furnace outlet.

混合促進ポート8から投入する燃焼ガスは少量の高速噴流であることが望ましい。混合促進ポート8は炉内の流動状態を均一化するためのものであり、酸化反応等の化学反応を伴わないのが望ましいため、少量で吹き込む必要がある。少量での吹き込みでは火炉1内の流動状態の混合を促進することは難しいが、高速の旋回噴流で吹き込むことにより、周囲の排ガスを巻き込み、火炉1内のガスの混合状態をよくする作用が生じる。
そこで混合促進ポートから投入する燃焼ガスにボイラの前記火炉再循環排ガスを用いることにより、還元領域での化学反応を抑制する作用がある。
The combustion gas introduced from the mixing promotion port 8 is preferably a small amount of high-speed jet. The mixing promotion port 8 is for uniformizing the flow state in the furnace, and it is desirable not to involve a chemical reaction such as an oxidation reaction. Although it is difficult to promote the mixing of the fluid state in the furnace 1 with a small amount of blowing, by blowing with a high-speed swirling jet, the surrounding exhaust gas is involved, and the action of improving the gas mixing state in the furnace 1 occurs. .
Therefore, by using the furnace recirculation exhaust gas of the boiler as the combustion gas introduced from the mixing promotion port, there is an effect of suppressing a chemical reaction in the reduction region.

さらに、混合促進ポート8から高速な燃焼ガスの旋回噴流を吹き込むことで排ガス中のCO濃度が低減する作用もある。その理由は、炉内の燃焼ガス領域に残存する一酸化炭素が、未燃ガス領域との混合促進により、未燃ガス領域内の残存酸素と反応して最終生成物である二酸化炭素となるためである。   In addition, blowing a high-speed swirling jet of combustion gas from the mixing promotion port 8 also has the effect of reducing the CO concentration in the exhaust gas. The reason for this is that carbon monoxide remaining in the combustion gas region in the furnace reacts with residual oxygen in the unburned gas region and becomes carbon dioxide, which is the final product, by promoting mixing with the unburned gas region. It is.

対向燃焼方式の場合、バーナ部上方の側壁(火炉前壁と後壁の両端部同士を接続する一対の火炉側壁)近傍に不完全燃焼しているCO濃度の高い領域が形成される(図17,図18参照)。従って、前記CO濃度の高い領域に混合促進ポート8が設置される。なお、図17には従来の対向燃焼方式のボイラ装置のバーナ6の対向配列による燃焼排ガス中のO2濃度の鉛直方向の分布図(図17(a))と水平断面方向の分布図(図17(b))を示し、図18は図17(b)で示す同じ火炉水平断面内の燃焼排ガス中のCO濃度の分布図である。 In the case of the opposed combustion method, an incompletely combusted region with high CO concentration is formed in the vicinity of the side wall above the burner (a pair of furnace side walls connecting both ends of the front and rear walls of the furnace) (FIG. 17). , See FIG. Therefore, the mixing promotion port 8 is installed in the region where the CO concentration is high. FIG. 17 shows a vertical distribution diagram of the O 2 concentration in the combustion exhaust gas (FIG. 17A) and a horizontal cross-sectional distribution diagram (FIG. 17) by the opposed arrangement of the burners 6 of the conventional opposed combustion type boiler apparatus. 17 (b)) and FIG. 18 is a distribution diagram of the CO concentration in the combustion exhaust gas in the horizontal cross section of the same furnace shown in FIG. 17 (b).

図6は、火炉の前壁1a又は後壁1bに設けられるバーナ6、混合促進ポート8及びアフターエアポート7の配置を示す側面図であり、図7は混合促進ポート8の火炉壁面への設置状態を示す火炉水平断面図である。   FIG. 6 is a side view showing the arrangement of the burner 6, the mixing promotion port 8 and the after-air port 7 provided on the front wall 1a or the rear wall 1b of the furnace, and FIG. 7 shows the installation state of the mixing promotion port 8 on the furnace wall surface. FIG.

バーナ6及びアフターエアポート7は火炉前壁と火炉後壁とで対向位置に配置しているが、図7に示すように混合促進ポート8は火炉前壁1aと後壁1bとで互い違いに千鳥配列する。混合促進ポート8は、それぞれ隣接位置にあるバーナ6とアフターエアポート7の間の中間位置よりもバーナ6側に寄った位置にある。   The burner 6 and the after-air port 7 are arranged at the opposed positions on the front wall of the furnace and the rear wall of the furnace. However, as shown in FIG. 7, the mixing promotion ports 8 are staggered on the front wall 1a and the rear wall 1b. To do. The mixing promotion port 8 is at a position closer to the burner 6 side than an intermediate position between the burner 6 and the after air port 7 which are adjacent to each other.

混合促進ポート8をアフターエアポート7よりバーナ6に近い位置に配置することにより、混合促進ポート8から噴出する燃焼ガスからなる混合促進ガスがアフターエアポート7に至るまでの滞留時間を長くでき、前記混合促進ガスとアフターエアの混合促進によるNOxの還元効果がより大きくなる。   By arranging the mixing promotion port 8 at a position closer to the burner 6 than the after air port 7, the residence time until the mixing promotion gas composed of the combustion gas ejected from the mixing promotion port 8 reaches the after air port 7 can be increased. The reduction effect of NOx due to the promotion of mixing of the promotion gas and after air is further increased.

図19に従来技術の炉内のNOx濃度分布を、図8に混合促進ポート8を火炉前壁1aと後壁1bの対向位置に配置した場合の炉内のNOx濃度分布を、図9に混合促進ポート8を火炉前壁1aと後壁1bの対向位置からずれた位置に互いに千鳥配置した場合の炉内のNOx濃度分布を示す。   FIG. 19 shows the NOx concentration distribution in the furnace of the prior art, FIG. 8 shows the NOx concentration distribution in the furnace when the mixing promotion port 8 is arranged at the opposed position of the furnace front wall 1a and the rear wall 1b, and FIG. The NOx concentration distribution in the furnace when the promotion port 8 is staggered with respect to each other at positions shifted from the opposed positions of the furnace front wall 1a and the rear wall 1b is shown.

最上段バーナ6で形成された高NOx濃度領域と低NOx濃度領域は混ざらずに燃焼排ガスは炉内を上昇し、従来技術ではアフターエアポート7で混合するまで濃度偏差が存在する。しかし、図8に示すバーナ6とアフターエアポート7の間の対向する火炉前壁1aと火炉後壁1bの対向する位置にそれぞれ混合促進ポート8を配置した場合には、従来よりもNOx濃度の濃度偏差は解消されるが、高NOx濃度領域と低NOx濃度領域が混ざらずにアフターエアポート7まで上昇する。   The high NOx concentration region and the low NOx concentration region formed by the uppermost burner 6 are not mixed, and the combustion exhaust gas rises in the furnace, and in the prior art, there is a concentration deviation until it is mixed at the after air port 7. However, in the case where the mixing promotion port 8 is disposed at the opposed position of the furnace front wall 1a and the furnace rear wall 1b between the burner 6 and the after-air port 7 shown in FIG. Although the deviation is eliminated, the high NOx concentration region and the low NOx concentration region are not mixed and rise to the after airport 7.

また、図9に示すように対向する壁面に混合促進ポート8を千鳥状に配列した場合、混合促進ポート8の炉壁取付部の近傍の火炉内領域で高NOx濃度領域と低NOx濃度領域が混ざることにより、炉壁取付部の近傍の火炉内領域でのNOx濃度は均一化する効果がある。   Further, when the mixing promotion ports 8 are arranged in a staggered manner on the opposing wall surfaces as shown in FIG. 9, there are a high NOx concentration region and a low NOx concentration region in the furnace inner region near the furnace wall mounting portion of the mixing promotion port 8. By mixing, the NOx concentration in the furnace inner region in the vicinity of the furnace wall mounting portion has the effect of making it uniform.

図10に混合促進ポート8から混合促進流体として火炉1から排出した燃焼排ガスを投入する場合のNOx濃度と灰中未燃分の変化を示す。
混合促進ポート8より投入するボイラ燃焼ガス投入量を変化させたときのボイラ出口の灰中未燃分濃度は、図10から明らかな通り、燃焼ガス量が燃焼用空気量の20%を超えると急増する。また前記投入燃焼ガス量の増大により、該当燃焼ガス投入位置での燃焼ガス温度が低下する。さらに、投入する燃焼ガス量が燃焼用空気量の10%を超えると、燃焼ガス温度は100℃以上低下し、熱効率の低下を招き、さらにNOx還元反応が遅延するおそれがあるので、それ以上投入しても燃焼ガスを燃焼用空気に混合促進することによる低NOx化の効果は、あまり大きくならない。従って、混合促進ポート8より投入するボイラ燃焼ガス量は燃焼空気量の10%以下にすることが望ましい。
FIG. 10 shows changes in the NOx concentration and unburned ash content when the combustion exhaust gas discharged from the furnace 1 as the mixing promotion fluid is supplied from the mixing promotion port 8.
As is clear from FIG. 10, the unburned ash concentration in the ash at the boiler outlet when the amount of boiler combustion gas input from the mixing promotion port 8 is changed is 20% of the amount of combustion air. Increase rapidly. Further, the combustion gas temperature at the corresponding combustion gas input position is lowered by the increase of the input combustion gas amount. Furthermore, if the amount of combustion gas to be input exceeds 10% of the amount of combustion air, the combustion gas temperature will decrease by 100 ° C or more, leading to a decrease in thermal efficiency, and further NOx reduction reaction may be delayed. Even so, the effect of reducing NOx by promoting the mixing of the combustion gas into the combustion air is not so great. Therefore, it is desirable that the amount of boiler combustion gas introduced from the mixing promotion port 8 is 10% or less of the amount of combustion air.

また、図11に示すように、混合促進ポート8内の混合促進ガス流路を複数個に区分して火炉内に混合促進ガスを供給できる構造にしてもよい。図11(a)には混合促進ポート8の鉛直方向の断面図を示し、図11(b)には水平方向の断面図を示す。   Further, as shown in FIG. 11, the mixing promotion gas flow path in the mixing promotion port 8 may be divided into a plurality of parts so that the mixing promotion gas can be supplied into the furnace. 11A shows a vertical sectional view of the mixing promotion port 8, and FIG. 11B shows a horizontal sectional view.

混合促進ポート8には該ポート8の中心部に火炉内に向けて2つの仕切板20,20を配置して混合促進ガス流路を3個に区分しているので、該ポート8の中心部を火炉内に向けて流れる主流21とその両側の副流22,22が形成される。仕切板20,20と混合促進ポート8の内壁の間にできる副流22用の流路は混合促進ポート8の出口部側に向けて狭い通路となるように仕切り板20,20は出口部側に向けて末広がり状であると共に混合促進ポート8の内周側は出口部側に向けて流路縮流部材29を配置している。また、ポート8の基部には主流流入孔24と副流流入孔25が設けられ、該流入孔24,25の開口面積を各流量調節器26,27のスライドにより調整できる構成である。
このように混合促進ポート8から火炉内に噴出する噴流を水平方向に分割することにより、バーナ6からの燃焼ガスの炉内での均一混合促進効果がある。
Since the mixing promotion port 8 has two partition plates 20 and 20 disposed in the center of the port 8 toward the inside of the furnace to divide the mixing promotion gas flow path into three, the center of the port 8 Is formed into the main flow 21 and the side flows 22 and 22 on both sides thereof. The flow path for the side flow 22 formed between the partition plates 20, 20 and the inner wall of the mixing promotion port 8 becomes a narrow passage toward the outlet side of the mixing promotion port 8. A flow path contracting member 29 is arranged on the inner peripheral side of the mixing promotion port 8 toward the outlet side. Further, a main flow inflow hole 24 and a subflow inflow hole 25 are provided at the base of the port 8, and the opening area of the inflow holes 24, 25 can be adjusted by sliding the flow rate regulators 26, 27.
Thus, by dividing the jet flow ejected from the mixing promotion port 8 into the furnace in the horizontal direction, there is an effect of promoting uniform mixing of the combustion gas from the burner 6 in the furnace.

図12には混合促進ポート8から火炉内に噴出する噴流を水平方向に3分割した場合の炉内ガス中のNOx濃度とCO濃度が、水平方向に3分割していない混合促進ポート8を用いる場合に比較して低下する様子を示す。   In FIG. 12, the mixing promotion port 8 in which the NOx concentration and the CO concentration in the furnace gas when the jet flow ejected from the mixing promotion port 8 into the furnace is divided into three in the horizontal direction is not divided into three in the horizontal direction is used. It shows how it falls compared to the case.

また、複数段あるバーナ部において、火炉前壁1a及び後壁1bの上下方向に同列に、それぞれバーナ6を対向位置に配置(対向配列という場合がある。)するのではなく、図13(a)の側壁1c側から見た火炉の概略構造図と図13(b)の火炉前壁面又は後壁面の側面図に示すように、少なくとも最上段バーナ6においては、対向する前壁1aと後壁1bの最上段バーナ6を互いに千鳥配列とすることで、バーナ部における未燃分を含んだ燃焼ガスは良く混合される。
このとき、混合促進ポート8は炉内の流動状態を均一化するためのものであり、出来るだけ少量で吹き込むことが望ましい。そのためには図13に示すように混合促進ポート8を火炉側壁1cに設置すれば側壁1c近傍の混合を促進することができる。
Further, in the burner portion having a plurality of stages, the burners 6 are not arranged in opposed positions (sometimes referred to as opposed arrangement) in the same row in the vertical direction of the furnace front wall 1a and the rear wall 1b. As shown in the schematic structural view of the furnace viewed from the side wall 1c side and the side view of the front wall surface or the rear wall surface of the furnace in FIG. 13B, at least the uppermost burner 6 faces the front wall 1a and the rear wall facing each other. By arranging the 1b uppermost burners 6 in a staggered arrangement with each other, the combustion gas containing unburned components in the burner portion is well mixed.
At this time, the mixing promotion port 8 is for making the flow state in the furnace uniform, and it is desirable to blow in as little as possible. For that purpose, if the mixing promotion port 8 is installed in the furnace side wall 1c as shown in FIG. 13, the mixing in the vicinity of the side wall 1c can be promoted.

図14にバーナ6の千鳥配列と対向配列の違いによる燃焼排ガス中のNOx低減効果を数値解析により確認した結果を示す。
また、図15(a)には全バーナ6を対向配列させた場合(図15(b)参照)、最上段バーナ6を千鳥配列させた場合(図15(c)参照)及び最上段バーナ6とアフターエアポート7を互いに千鳥配列させた場合の排ガス中の燃焼排ガス中のNOx低減効果とCO低減効果を数値解析により確認した結果を示す。
FIG. 14 shows the result of confirming the NOx reduction effect in the combustion exhaust gas due to the difference between the staggered arrangement and the opposed arrangement of the burners 6 by numerical analysis.
15A shows the case where all the burners 6 are arranged opposite to each other (see FIG. 15B), the case where the uppermost burners 6 are arranged in a staggered manner (see FIG. 15C), and the uppermost burner 6 The results of confirming the NOx reduction effect and the CO reduction effect in the combustion exhaust gas in the exhaust gas when the and the after airports 7 are arranged in a staggered manner by numerical analysis are shown.

ただし、一方の壁面の最上段バーナ6からの微粉炭を含んだ噴流は対向壁からのバーナ噴流と炉内中央で衝突せず中央部から対向壁側に寄った位置で湾曲上昇する。そこで、図16の火炉の斜視図に示すように、対向する前壁1aと後壁1bに設けられるアフターエアポート7を最上段バーナ6とは逆の千鳥配列(同一壁面のバーナ6の直上にはアフターエアポート7を配置しないで、該バーナ6からの微粉炭噴流と対向壁面のアフターエアポート7からのエア噴流が当たるようにする配列)にして、対向壁面からのアフターエア噴流が上記バーナ6からの湾曲上昇噴流を直撃して混合促進する。   However, the jet including pulverized coal from the uppermost burner 6 on one wall does not collide with the burner jet from the opposing wall at the center in the furnace, and rises in a curved manner at a position close to the opposing wall from the center. Therefore, as shown in the perspective view of the furnace of FIG. 16, the after air ports 7 provided on the front wall 1a and the rear wall 1b facing each other are arranged in a staggered arrangement opposite to the uppermost burner 6 (immediately above the burner 6 on the same wall surface). Without arranging the after-air port 7, an arrangement in which the pulverized coal jet from the burner 6 and the air jet from the after-air port 7 on the opposite wall face each other) Mixing is promoted by hitting a curved rising jet directly.

排ガス中のNOx濃度とCO濃度を低下させることができるボイラ装置として産業上の利用可能性が高い。   Industrial applicability is high as a boiler device capable of reducing the NOx concentration and the CO concentration in the exhaust gas.

本発明の実施例になるボイラ装置システムの一実施例を示す系統図であるIt is a systematic diagram which shows one Example of the boiler apparatus system which becomes an Example of this invention. 本発明の実施例になるボイラ装置システムの一実施例を示す系統図である。It is a systematic diagram which shows one Example of the boiler apparatus system which becomes an Example of this invention. 本発明の実施例になるボイラ装置のボイラ高さ方向の平均NOx濃度の推移を示す図である。It is a figure which shows transition of the average NOx density | concentration of the boiler height direction of the boiler apparatus which becomes an Example of this invention. 本発明の実施例になるボイラ装置での混合促進ポートの旋回流と直進流の壁面近傍と火炉中央部におけるの周囲ガス同伴量の違いを示した図であるIt is the figure which showed the difference of the surrounding gas entrainment amount in the wall vicinity of the swirling flow of the mixing promotion port and the straight flow of the mixing promotion port in the boiler apparatus which becomes an Example of this invention, and a furnace center part. 本発明の実施例になるボイラ装置の混合促進ポートの縦断面図である。It is a longitudinal cross-sectional view of the mixing promotion port of the boiler apparatus which becomes an Example of this invention. 本発明の実施例になるボイラ装置の火炉壁に配置したバーナ、アフターエアポート、混合促進ポートの配置を示す側面図である。It is a side view which shows arrangement | positioning of the burner arrange | positioned on the furnace wall of the boiler apparatus which becomes an Example of this invention, an after air port, and a mixing promotion port. 本発明の実施例になるボイラ装置の火炉壁の混合促進ポート設置部の水平断面図である。It is a horizontal sectional view of the mixing promotion port installation part of the furnace wall of the boiler apparatus which becomes an Example of this invention. 本発明の実施例になるボイラ装置で混合促進ポートを対向に配置した場合の炉内のNOx濃度分布を示す図である。It is a figure which shows NOx density | concentration distribution in a furnace at the time of arrange | positioning a mixing promotion port facing with the boiler apparatus which becomes an Example of this invention. 本発明の実施例になるボイラ装置で混合促進ポートを千鳥配列にした場合の炉内のNOx濃度分布を示す図である。It is a figure which shows NOx density | concentration distribution in a furnace at the time of making a mixing promotion port into a staggered arrangement | sequence with the boiler apparatus which becomes an Example of this invention. 本発明の実施例になるボイラ装置の混合促進ポートからの燃焼ガス投入量と、炉出口での燃焼ガス温度と燃焼ガス中のNOx濃度及び灰中未燃分の関係を示す図である。It is a figure which shows the relationship between the combustion gas input from the mixing promotion port of the boiler apparatus which becomes an Example of this invention, the combustion gas temperature in a furnace exit, the NOx density | concentration in combustion gas, and the unburned part in ash. 本発明の実施例になるボイラ装置の混合促進ポートの鉛直方向の断面図(図11(a))と水平方向の断面図(図11(b))である。It is sectional drawing (FIG. 11 (a)) of the vertical direction of the mixing promotion port of the boiler apparatus which becomes an Example of this invention, and sectional drawing (FIG.11 (b)) of a horizontal direction. 図11の混合促進ポートを使用した場合の炉内ガス中のNOx濃度とCO濃度が水平方向に3分割していない混合促進ポートを用いる場合に比較して低下する様子を示す図である。It is a figure which shows a mode that the NOx density | concentration and CO density | concentration in the gas in a furnace at the time of using the mixing promotion port of FIG. 11 fall compared with the case where the mixing promotion port which is not divided into 3 in the horizontal direction is used. 本発明の実施例になるボイラ装置の側壁側から見た火炉の概略構造図(図13(a))と火炉前壁面又は後壁面の側面図(図13(b))である。It is the schematic structure figure (FIG.13 (a)) of the furnace seen from the side wall side of the boiler apparatus which becomes an Example of this invention, and the side view (FIG.13 (b)) of a furnace front wall surface or a rear wall surface. 本発明の実施例になるボイラ装置のバーナの千鳥配列と対向配列の違いによる燃焼排ガス中のNOx低減効果を数値解析により確認した結果を示す図である。It is a figure which shows the result of having confirmed the NOx reduction effect in combustion exhaust gas by the difference in the staggered arrangement | sequence of the burner of a boiler apparatus which becomes an Example of this invention, and opposing arrangement | sequence by numerical analysis. 本発明の実施例になるボイラ装置のバーナの千鳥配列と対向配列による燃焼排ガス中のNOx低減効果とCO低減効果を数値解析により確認した結果を示す図(図15(a))、全バーナを対向配列にした平面図(図15(b))及び最上段バーナをちどり配列にした平面図(図15(c))である。The figure (FIG. 15 (a)) which shows the result which confirmed the NOx reduction effect and CO reduction effect in combustion exhaust gas by the staggered arrangement of the burner of the boiler apparatus which becomes an Example of this invention, and opposing arrangement | sequence by numerical analysis, all burners It is the top view (FIG.15 (b)) made into the opposing arrangement | sequence, and the top view (FIG.15 (c)) which made the uppermost stage burner arranged in the dust. 本発明の実施例になるボイラ装置の火炉斜視図である。It is a furnace perspective view of the boiler apparatus which becomes an Example of this invention. 対向燃焼方式のボイラ装置のバーナの対向配列による燃焼排ガス中のO2濃度の鉛直方向の分布図(図17(a))と水平断面方向の分布図(図17(b))である。FIG. 17 is a vertical distribution diagram (FIG. 17A) and a horizontal sectional distribution diagram (FIG. 17B) of the O 2 concentration in the combustion exhaust gas by the opposed arrangement of the burners of the opposed combustion type boiler apparatus. 図17(b)で示す同じ火炉水平断面内の燃焼排ガス中のCO濃度の分布図である。It is a distribution map of CO density | concentration in the combustion exhaust gas in the same furnace horizontal cross section shown in FIG.17 (b). 従来技術のボイラ装置の火炉内のNOx濃度分布を示した図である。It is the figure which showed NOx concentration distribution in the furnace of the boiler apparatus of a prior art.

符号の説明Explanation of symbols

1 火炉 1a 前壁
1b 後壁 1c 側壁
2 ミル 3 PAF
4 熱交換器 5 風箱
6 バーナ 7 アフターエアポート
8 混合促進ポート 9 FDF
10 送炭管 11 バンカ
12 フィーダ 13 脱硝装置
14 電気集塵機 15 脱硫装置
16 煙突 17 GRF
18 レジスタ 20 仕切板
21 混合促進ガス主流 22 混合促進ガス副流
24 主流流入孔 25 副流流入孔
26,27 混合促進ガス流量調節器
29 流路縮流部材
1 furnace 1a front wall 1b rear wall 1c side wall 2 mill 3 PAF
4 Heat exchanger 5 Air box 6 Burner 7 After air port 8 Mixing promotion port 9 FDF
DESCRIPTION OF SYMBOLS 10 Coal feeding pipe 11 Bunker 12 Feeder 13 Denitration device 14 Electric dust collector 15 Desulfurization device 16 Chimney 17 GRF
18 register 20 partition plate 21 mixing promotion gas main flow 22 mixing promotion gas subflow 24 main flow inflow hole 25 subflow inflow holes 26 and 27 mixing promotion gas flow rate regulator 29 flow path contraction member

Claims (11)

石炭を含む固体燃料を火炉で燃焼させるボイラ装置において、
理論空気比以下の空気量で固体燃料を燃焼させるバーナを一段毎に複数個、かつ燃焼ガス流れ方向に一段以上設け、
前記バーナの下流側であって、該バーナでの固体燃料の燃焼に不足する燃焼用空気を火炉内に噴出するアフターエアポートを一段毎に複数個、かつ燃焼ガス流れ方向に一段以上設け、
前記バーナの下流側であって、かつ前記アフターエアポートの上流側にボイラから排出するボイラ排ガスの一部を供給する混合促進ポートを一段毎に複数個、かつ燃焼ガス流れ方向に一段以上設け、バーナとアフターエアポートと混合促進ポートは火炉の対向する一対の壁面にそれぞれ配置し、
各段の各混合促進ポートは対向する火炉壁面でそれぞれ同一水平位置であって、相対向する位置又は前記対向位置からずれた位置に配置され、混合促進ポートがガス流れ方向に複数段ある場合は各段の各混合促進ポートは隣接する段の隣接する2つの混合促進ポートの中間位置に配置されることを特徴とするボイラ装置。
In a boiler device that burns solid fuel containing coal in a furnace,
A plurality of burners for burning solid fuel with an air amount less than the theoretical air ratio are provided for each stage, and one or more burners are provided in the combustion gas flow direction.
A plurality of after-air ports, each downstream of the burner, for injecting combustion air that is insufficient for solid fuel combustion in the burner into the furnace, and one or more stages in the combustion gas flow direction;
A plurality of mixing promotion ports for supplying a part of boiler exhaust gas discharged from the boiler downstream of the burner and upstream of the after-air port, and one or more mixing promotion ports are provided in the combustion gas flow direction; And the after-air port and the mixing promotion port are arranged on a pair of opposing wall surfaces of the furnace,
When each mixing promotion port of each stage is arranged at the same horizontal position on the opposite furnace wall surface, at a position opposed to each other or at a position deviated from the facing position, and when there are a plurality of mixing promotion ports in the gas flow direction, Each mixing promotion port of each stage is disposed at an intermediate position between two adjacent mixing promotion ports of adjacent stages.
混合促進ポートは、最上段バーナでの燃料の燃焼が緩慢になった領域に混合促進ガスを吹き込むことができる箇所の火炉壁に設けることを特徴とする請求項1記載のボイラ装置。   The boiler device according to claim 1, wherein the mixing promotion port is provided on a furnace wall at a location where the mixing promotion gas can be blown into a region where fuel combustion in the uppermost burner becomes slow. 混合促進ポートはバーナとアフターエアポートが配置される火炉の対向する2つの壁面ではなく、前記対向する2つの壁面の両端部同士を接続する対向する2つの側壁面に配置されることを特徴とする請求項1又は2に記載のボイラ装置。   The mixing promotion port is not disposed on the two opposing wall surfaces of the furnace in which the burner and the after-air port are disposed, but is disposed on two opposing side wall surfaces that connect both ends of the two opposing wall surfaces. The boiler device according to claim 1 or 2. 混合促進ポートは混合促進ガスの旋回流を形成して火炉内へ混合促進ガスを供給する旋回部を備えていることを特徴とする請求項1ないし3のいずれかに記載のボイラ装置。   The boiler device according to any one of claims 1 to 3, wherein the mixing promotion port includes a swirling portion that forms a swirling flow of the mixing promoting gas and supplies the mixing promoting gas into the furnace. 混合促進ポートの出口部には、該混合促進ポートから火炉内に吹き出すガスを水平方向に分割するガス分割部材を設けたことを特徴とする請求項1ないし3のいずれかに記載のボイラ装置。   The boiler device according to any one of claims 1 to 3, wherein a gas dividing member that divides a gas blown into the furnace from the mixing promotion port in a horizontal direction is provided at an outlet portion of the mixing promotion port. ガス分割部材は、混合促進ポートから火炉内に吹き出すガスの方向が互いに同一方向にならないような形状を有することを特徴とする請求項5記載のボイラ装置。   6. The boiler apparatus according to claim 5, wherein the gas dividing member has a shape such that the directions of gases blown from the mixing promotion port into the furnace are not the same direction. 最上段の複数のバーナは、対向する一対の火炉壁面でそれぞれ同一水平面上にあって、相対向する位置からずれた位置にそれぞれ配置され、各段の複数のアフターエアポートは、対向する一対の火炉壁面でそれぞれ同一水平面上にそれぞれ配置され、最上段バーナの下流側の同一壁面に設けられる最下段の各アフターエアポートは前記最上段の複数のバーナの中の隣接する2つのバーナの中間位置の上方に配置されることを特徴とする請求項1ないし6のいずれかに記載のボイラ装置。   The plurality of burners at the uppermost stage are respectively disposed on the same horizontal plane with the pair of opposed furnace wall surfaces and shifted from the opposed positions, and the plurality of after-air ports at each stage are arranged at the pair of opposed furnaces. Each of the lowermost after-airports arranged on the same horizontal plane on the wall and provided on the same wall on the downstream side of the uppermost burner is above the intermediate position of two adjacent burners in the plurality of uppermost burners. The boiler device according to any one of claims 1 to 6, wherein the boiler device is arranged in a vertical direction. 少なくとも一段の各アフターエアポートは、その上流側の同一壁面に設けられる最上段の複数のバーナの中の隣接する2つのバーナの中間位置の上方に配置されていることを特徴とする請求項1から6のいずれかに記載のボイラ装置。   The at least one stage of each after-air port is disposed above an intermediate position between two adjacent burners among a plurality of uppermost burners provided on the same wall surface on the upstream side. The boiler apparatus in any one of 6. 各段の各アフターエアポートは、それぞれ互いに上下段でそれぞれ隣接する2つのアフターエアポートの中間位置に配置されていることを特徴とする請求項7又は8記載のボイラ装置。   The boiler device according to claim 7 or 8, wherein each after-air port of each stage is arranged at an intermediate position between two after-air ports adjacent to each other in the upper and lower stages. 請求項1ないし9のいずれかに記載のボイラ装置の混合促進ポートから火炉内に吹き出すボイラ燃焼ガス量が燃焼用空気量の10%以下であり、かつ混合後の空気比が理論空気比以下であることを特徴とするボイラ装置の運転方法。   The amount of boiler combustion gas blown into the furnace from the mixing promotion port of the boiler device according to any one of claims 1 to 9 is 10% or less of the amount of combustion air, and the air ratio after mixing is equal to or less than the theoretical air ratio. A method for operating a boiler device, comprising: 混合促進ポートから火炉内に吹き出すガス流速は、50m/s以上であることを特徴とする請求項10記載のボイラ装置の運転方法。   The operating method of the boiler apparatus according to claim 10, wherein a gas flow rate blown out from the mixing promotion port into the furnace is 50 m / s or more.
JP2006011650A 2006-01-19 2006-01-19 Boiler device and its operation method Withdrawn JP2007192475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011650A JP2007192475A (en) 2006-01-19 2006-01-19 Boiler device and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011650A JP2007192475A (en) 2006-01-19 2006-01-19 Boiler device and its operation method

Publications (1)

Publication Number Publication Date
JP2007192475A true JP2007192475A (en) 2007-08-02

Family

ID=38448320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011650A Withdrawn JP2007192475A (en) 2006-01-19 2006-01-19 Boiler device and its operation method

Country Status (1)

Country Link
JP (1) JP2007192475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526355A (en) * 2008-06-25 2011-10-06 アルストム テクノロジー リミテッド Furnace equipment with internal flue gas recirculation
JP6025983B2 (en) * 2013-07-09 2016-11-16 三菱日立パワーシステムズ株式会社 Combustion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526355A (en) * 2008-06-25 2011-10-06 アルストム テクノロジー リミテッド Furnace equipment with internal flue gas recirculation
JP6025983B2 (en) * 2013-07-09 2016-11-16 三菱日立パワーシステムズ株式会社 Combustion device
JPWO2015005350A1 (en) * 2013-07-09 2017-03-02 三菱日立パワーシステムズ株式会社 Combustion device

Similar Documents

Publication Publication Date Title
KR101030361B1 (en) Enhancing sncr-aided combustion with oxygen addition
US12117168B2 (en) Reverse-jet swirl pulverized coal burner with multi-stage recirculations
EP1537362B1 (en) Low nox combustion
PL196858B1 (en) Method of combusting coal in concentrated streams with nox reduction
EP1219894B1 (en) Pulverized coal burner
JP2004205161A (en) Solid fuel boiler and boiler combustion method
US9447969B2 (en) Low NOx combustion process and burner therefor
JP5535521B2 (en) Coal fired boiler
JP5386230B2 (en) Fuel burner and swirl combustion boiler
TW200403411A (en) Combustion with reduced carbon in the ash
JP2004190981A (en) Combustion device and wind box
CN102692014A (en) Combustion system using recycled flue gas to boost overfire air
JP2014001908A (en) Solid fuel burner and oxygen burning device with solid fuel burner
CN103968374B (en) Fire oxygen coupling combustion and recirculating system
CN103104911B (en) A kind of three grades of burnout degree arrangements
JP2007192475A (en) Boiler device and its operation method
CA2631898A1 (en) Methods and systems for reduced nox combustion of coal with injection of heated nitrogen-containing gas
JP2014085050A (en) Boiler
JP4877735B2 (en) Boiler equipment
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
JP5271680B2 (en) Swirl combustion boiler
JP2009250532A (en) Pulverized coal boiler
WO2011030501A1 (en) Pulverized coal boiler
CN110226067B (en) Burner, boiler provided with same, and combustion method
CN107940446B (en) Large entrainment jet flow over-fire air system and jet method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407