JP2007191342A - Apparatus and method for purifying silicon - Google Patents

Apparatus and method for purifying silicon Download PDF

Info

Publication number
JP2007191342A
JP2007191342A JP2006010506A JP2006010506A JP2007191342A JP 2007191342 A JP2007191342 A JP 2007191342A JP 2006010506 A JP2006010506 A JP 2006010506A JP 2006010506 A JP2006010506 A JP 2006010506A JP 2007191342 A JP2007191342 A JP 2007191342A
Authority
JP
Japan
Prior art keywords
silicon
chamber
ripple
crucible
support shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006010506A
Other languages
Japanese (ja)
Other versions
JP5069859B2 (en
Inventor
Hitoshi Donomae
等 堂野前
Jiro Kondo
次郎 近藤
Masaki Okajima
正樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd filed Critical Nippon Steel Materials Co Ltd
Priority to JP2006010506A priority Critical patent/JP5069859B2/en
Publication of JP2007191342A publication Critical patent/JP2007191342A/en
Application granted granted Critical
Publication of JP5069859B2 publication Critical patent/JP5069859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for purifying silicon which is composed of a comparatively simple and inexpensive apparatus, has remarkably high removal speed for P, and can separate and remove impurities such as P in a raw material silicon industrially, easily and inexpensively, and by which high-purity silicon useful for a solar cell or the like can be manufactured commercially. <P>SOLUTION: The apparatus is equipped with a chamber having pressure reduced to a prescribed value or less by a pressure-reducing means, a crucible for housing silicon installed in the chamber under reduced pressure, and a heating means for heating silicon in the crucible, where silicon is heated and melted under reduced pressure and impurities in the molten silicon are separated and removed by evaporation. The apparatus is equipped with a ripple induction means for enlarging the liquid surface area of the molten silicon. This apparatus is used for the method for purifying silicon. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、比較的不純物濃度の高い安価なシリコンから太陽電池等の用途に適した比較的高純度のシリコンを製造するためのシリコンの精製装置及びこれを用いたシリコンの精製方法に関する。   The present invention relates to a silicon purification apparatus for producing relatively high-purity silicon suitable for applications such as solar cells from inexpensive silicon having a relatively high impurity concentration, and a silicon purification method using the same.

太陽電池に使用されるシリコン(Si)については、一般に99.9999質量%(6N)以上の純度であって各種の金属不純物が0.1質量ppm以下であり、リン(P)については0.05質量ppm以下であることが必要であるとされている。そして、このような条件を満たすシリコンとしては、半導体用途に用いられる純度99.999999999質量%(11N)以上の超高純度シリコンが知られている。   Silicon (Si) used in solar cells generally has a purity of 99.9999% by mass (6N) or more and various metal impurities are 0.1 ppm by mass or less, and phosphorus (P) has a purity of 0.8. It is said that it is necessary to be not more than 05 mass ppm. And as a silicon | silicone which satisfy | fills such conditions, the ultra high purity silicon of the purity 99.99999999999% (11N) or more used for a semiconductor use is known.

しかしながら、この半導体用途に用いられるシリコンは、珪石を還元して得られた純度98質量%程度の冶金級金属シリコンをシリコン塩化物に変換し、次いでこのシリコン塩化物を蒸留した後に熱分解する、いわゆるシーメンス法で製造されており、非常に複雑な製造工程及び極めて厳格な工程管理を必要とし、必然的に製造コストが高くなる。このため、この半導体用途のシリコンは、需要の伸びに伴って低コスト化が求められている太陽電池用途には、過剰品質であって製造コストが高すぎるために適していない。   However, the silicon used in this semiconductor application converts metallurgical grade metal silicon having a purity of about 98% by mass obtained by reducing silica into silicon chloride, and then pyrolyzes after distilling the silicon chloride. Manufactured by the so-called Siemens method, it requires a very complicated manufacturing process and extremely strict process control, which inevitably increases the manufacturing cost. For this reason, this silicon for semiconductor use is not suitable for a solar cell application for which cost reduction is required as demand increases, because it is excessive quality and manufacturing cost is too high.

そこで、従来においても、安価な冶金級金属シリコンを原料として用い、これを更に冶金学的な方法、例えば特に溶融シリコンとより低密度の溶融スラグとを接触させて溶融シリコン中の不純物を溶融スラグ中に移動させて精製するスラグ精錬法や、シリコンよりも蒸気圧の高い元素、例えばリチウム(Li)、ナトリウム(Na)、アルミニウム(Al)、リン(P)、カルシウム(Ca)、マグネシウム(Mg)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ゲルマニウム(Ge)、砒素(As)、銀(Ag)、インジウム(In)、錫(Sn)、アンチモン(Sb)、鉛(Pb)、タリウム(Tl)等(以下、これらを「P等の不純物」という。)を減圧下に加熱して蒸発させることにより分離除去する真空溶解法等を組み合わせて精製し、安価に純度6N以上の太陽電池用途に適したシリコンを安価に製造しようとする試みが行われている。   Therefore, conventionally, an inexpensive metallurgical grade metal silicon is used as a raw material, and this is further used in a metallurgical method, for example, by bringing molten silicon into contact with a lower density molten slag to remove impurities in the molten silicon. Slag refining method that moves to the inside and elements with higher vapor pressure than silicon, such as lithium (Li), sodium (Na), aluminum (Al), phosphorus (P), calcium (Ca), magnesium (Mg) ), Manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), germanium (Ge), arsenic (As), silver (Ag), indium (In), tin (Sn), antimony (Sb) ), Lead (Pb), thallium (Tl), etc. (hereinafter referred to as “impurities such as P”) are heated under reduced pressure and evaporated to separate and remove by evaporation, etc. Cheaper than purity 6N Attempts have been made to be manufactured at low cost silicon suitable for solar cell applications.

ここで、真空溶解法についてもこれまでに幾つかの提案があり、例えば、特許文献1や、非特許文献1、非特許文献2、非特許文献3、非特許文献4等においては、減圧可能な減圧室と、この減圧室内に配設されたルツボと、このルツボ内に収容されるシリコンを加熱する一般的な加熱装置とを備えた比較的安価な装置構成からなるシリコンの精製装置が提案されており、P等の不純物を除去することが記載されている(前者の方法)。   Here, several proposals have been made regarding the vacuum melting method so far. For example, in Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, and the like, decompression is possible. Proposed a silicon refining device having a relatively low-cost apparatus configuration comprising a simple decompression chamber, a crucible disposed in the decompression chamber, and a general heating device for heating silicon contained in the crucible It is described that impurities such as P are removed (the former method).

また、非特許文献5や、特許文献2〜8等においては、減圧室、ルツボ及び加熱手段を備えたシリコンの精製装置において、加熱手段として電子ビームを用いることにより、効率良くP等の不純物を除去することが記載されている(後者の方法)。   In Non-Patent Document 5, Patent Documents 2-8, and the like, impurities such as P can be efficiently removed by using an electron beam as a heating means in a silicon purification apparatus equipped with a decompression chamber, a crucible, and a heating means. Removal is described (the latter method).

しかしながら、上記前者の方法においては、特にリンの除去速度(P除去速度)が遅くて工業的には実用的でないという問題があり、しかも、シリコン中のP濃度を太陽電池用途で要求されるレベルにまで低減できない場合もあって品質上の問題もある。また、上記後者の方法においては、P除去速度が速くて工業的に実用性を有するものではあるが、電子ビーム溶解を前提としていることから、設備及び設備コストが莫大になり、製造コストの点から実際には工業的には実用的でないという問題があり、中には減圧室内に複数のルツボを収容する必要があって更に設備コストが嵩むという問題もある。   However, the former method has a problem that the removal rate of phosphorus (P removal rate) is particularly slow and is not practical for industrial use, and the P concentration in silicon is a level required for solar cell applications. In some cases, it cannot be reduced to a certain level, and there is a problem in quality. In the latter method, the P removal rate is fast and industrially practical. However, since it is premised on electron beam melting, the equipment and equipment costs become enormous, and the production cost is low. Therefore, in practice, there is a problem that it is not practical in industry, and there is also a problem that it is necessary to accommodate a plurality of crucibles in the decompression chamber, which further increases the equipment cost.

そこで、本発明者らは、先にシリコンの脱リン精製におけるP除去速度にはシリコン溶湯中でのPの拡散速度、シリコン溶湯表面からのPの蒸発速度、及びシリコン溶湯上の気相中でのPの拡散速度がそれぞれ関与することを突き止め、この観点から、上述した種々の問題を解決するための方法として、減圧室、ルツボ、及び加熱手段に加えて、シリコン溶湯の液面から蒸発するP等の不純物を効率良く捕捉する不純物捕捉手段を備え、シリコン溶湯上の気相中でのPの拡散速度を改善したシリコンの精製装置を開発し提案した(特開2005-231956号公報)。
米国特許第4304763号明細書 特開平7-315827号公報 特開平7-309614号公報 特開平9-309716号公報 特開平10-167716号公報 特開平10-182130号公報 特開平11-209195号公報 特開2000-247623号公報 鈴木ら,日本金属学会誌,第54巻,2号,p.161 (1990) Ikeda et al., IISJ International, Vol.32, No.5, p.635 (1992) 湯下ら,日本金属学会誌,第61巻,10号, p.1086 (1997) 森田,金属,第69巻,11号, p.949 (1999) 太陽電池用原料技術組合,平成10年度新エネルギー・産業技術総合開発機構,太陽電池シリコン原料製造技術の実用化解析に関する調査・研究, p.81 (平成11年3月)
Therefore, the present inventors previously determined that the P removal rate in the dephosphorization of silicon includes the diffusion rate of P in the molten silicon, the evaporation rate of P from the surface of the molten silicon, and the gas phase on the molten silicon. From this point of view, as a method for solving the above-mentioned various problems, in addition to the decompression chamber, the crucible, and the heating means, it is evaporated from the liquid surface of the molten silicon. A silicon purifier has been developed and proposed which has an impurity trapping means for efficiently trapping impurities such as P and improves the diffusion rate of P in the gas phase on the molten silicon (Japanese Patent Laid-Open No. 2005-231956).
U.S. Pat. Japanese Unexamined Patent Publication No. 7-315827 Japanese Unexamined Patent Publication No. 7-309614 JP-A-9-309716 JP-A-10-167716 Japanese Patent Laid-Open No. 10-182130 JP-A-11-209195 JP 2000-247623 A Suzuki et al., The Japan Institute of Metals, 54 (2), p.161 (1990) Ikeda et al., IISJ International, Vol.32, No.5, p.635 (1992) Yushita et al., The Japan Institute of Metals, 61 (10), p.1086 (1997) Morita, Metal, Vol.69, No.11, p.949 (1999) Photovoltaic Material Technology Association, 1998 New Energy and Industrial Technology Development Organization, Survey and Research on Practical Use Analysis of Solar Cell Silicon Raw Material Production Technology, p.81 (March 1999)

本発明は、減圧手段により所定の圧力以下に減圧される減圧室と、この減圧室内に配設されてシリコンを収容するルツボと、このルツボ内のシリコンを加熱する加熱手段とを備え、減圧下にシリコンを加熱して溶融し、生成したシリコン溶湯中の不純物を蒸発させて分離除去するシリコンの精製装置において、シリコン溶湯表面からのPの蒸発量をより一層改善し、これによってP除去速度をより一層高め、P等の不純物の濃度、特にP濃度を所定の値、例えば0.05質量ppm以下、好ましくは0.02質量ppm以下にまで低減するのに必要な処理時間を大幅に短縮することができる方法について鋭意検討した結果、ルツボ内のシリコン溶湯の液面に所定の波紋を形成せしめることにより、ルツボ開口部の開口面積を大きくすることなくこのシリコン溶湯の液面表面積を容易に大きくすることができ、これによってルツボ開口部からの放熱量を増加させることなくシリコン溶湯の液面からのP等の不純物の蒸発を大幅に促進することができることを見い出し、本発明を完成した。   The present invention includes a decompression chamber that is decompressed to a predetermined pressure or less by the decompression means, a crucible that is disposed in the decompression chamber and that contains silicon, and a heating means that heats the silicon in the crucible. In a silicon purification apparatus that heats and melts silicon and evaporates and removes impurities in the generated molten silicon, the amount of P evaporation from the molten silicon surface is further improved, thereby increasing the P removal rate. The processing time required to further increase the concentration of impurities such as P, particularly the P concentration to a predetermined value, for example, 0.05 mass ppm or less, preferably 0.02 mass ppm or less, is greatly shortened. As a result of intensive investigations on the possible methods, this can be achieved without increasing the opening area of the crucible opening by forming a predetermined ripple on the surface of the molten silicon in the crucible. The liquid surface area of the molten melt can be easily increased, and this can greatly promote the evaporation of impurities such as P from the molten metal surface without increasing the heat dissipation from the crucible opening. The present invention has been completed.

従って、本発明の目的は、比較的簡便かつ安価な装置構成であって、P除去速度が著しく速く、工業的に容易にかつ安価に原料シリコン中のP等の不純物を分離除去することができ、これによって太陽電池等の用途に適した高純度シリコンを工業的に有利に製造することができるシリコンの精製装置を提供することにある。   Accordingly, an object of the present invention is a relatively simple and inexpensive apparatus configuration, and the P removal rate is remarkably fast, and impurities such as P in the raw material silicon can be separated and removed industrially easily and inexpensively. Thus, an object of the present invention is to provide a silicon purification apparatus capable of industrially advantageously producing high-purity silicon suitable for applications such as solar cells.

また、本発明の他の目的は、比較的簡便かつ安価なシリコンの精製装置を用い、P除去速度が著しく速くて工業的に容易にかつ安価に原料シリコン中のP等の不純物を分離除去することができるシリコンの精製方法を提供することにある。   Another object of the present invention is to use a relatively simple and inexpensive silicon refining apparatus to separate and remove impurities such as P in raw silicon easily and inexpensively because the P removal rate is remarkably fast. An object of the present invention is to provide a method for purifying silicon.

すなわち、本発明は、減圧手段により所定の圧力以下に減圧される減圧室と、この減圧室内に配設されてシリコンを収容するルツボと、このルツボ内のシリコンを加熱する加熱手段とを備え、減圧下にシリコンを加熱して溶融し、生成したシリコン溶湯中の不純物を蒸発させて分離除去するシリコンの精製装置において、シリコン溶湯の液面表面積を大きくする波紋誘起手段を備えていることを特徴とするシリコンの精製装置である。   That is, the present invention includes a decompression chamber that is decompressed to a predetermined pressure or less by the decompression means, a crucible disposed in the decompression chamber and containing silicon, and a heating means for heating the silicon in the crucible, A silicon purifier that heats and melts silicon under reduced pressure to evaporate and remove impurities in the generated molten silicon, and includes ripple-inducing means for increasing the surface area of the molten silicon. This is a silicon purification device.

また、本発明は、上記のシリコンの精製装置において、シリコン溶湯の液面表面積を大きくする波紋誘起手段に加えて、シリコン溶湯の攪拌手段が設けられているシリコンの精製装置である。更に、本発明は、上記のシリコンの精製装置において、シリコン溶湯の液面表面積を大きくする波紋誘起手段に加えて、シリコン溶湯の液面から蒸発する不純物を捕捉する不純物捕捉手段が設けられているシリコンの精製装置である。   In addition, the present invention is the silicon purification apparatus provided with the silicon melt stirring means in addition to the ripple inducing means for increasing the liquid surface area of the silicon melt in the silicon purification apparatus. Furthermore, in the present invention, in the above-described silicon purification apparatus, in addition to the ripple inducing means for increasing the liquid surface area of the molten silicon, an impurity capturing means for capturing impurities evaporating from the liquid surface of the molten silicon is provided. This is a silicon purification device.

そして、本発明は、上記のいずれかのシリコンの精製装置を用いてシリコン中のリン主体の不純物を除去するシリコンの精製方法であって、減圧室内を500Pa以下に減圧すると共にルツボ内のシリコンをその融点以上に加熱して溶融し、同時に波紋誘起手段によりルツボ内のシリコン溶湯の液面に波紋を形成しつつリン主体の不純物を除去することを特徴とするシリコンの精製方法である。   Then, the present invention is a silicon purification method for removing phosphorus-based impurities in silicon using any of the above-described silicon purification apparatuses, wherein the pressure in the vacuum chamber is reduced to 500 Pa or less and the silicon in the crucible is reduced. It is a silicon purification method characterized in that it is heated to the melting point or higher and melted, and at the same time, a ripple-inducing means removes impurities mainly composed of phosphorus while forming ripples on the surface of the molten silicon in the crucible.

本発明において、減圧手段により所定の圧力以下に減圧される減圧室は、適当な減圧手段により500Pa以下0.01Pa程度まで減圧できればよく、0.01Pa未満の真空度はコストが高くなるためである。この目的で使用される減圧手段としては典型的には真空ポンプがあり、例えば真空度に応じて油回転ポンプのみでもよいが、減圧室の容積に応じて、あるいは、真空掃引時間の短縮やP除去時間の更なる短縮を目的にして、メカニカルブースターポンプ、油拡散ポンプ、ターボ分子ポンプ等を装備してもよい。   In the present invention, the decompression chamber that is decompressed to a predetermined pressure or less by the decompression means is only required to be decompressed to 500 Pa or less and about 0.01 Pa by an appropriate decompression means, and the degree of vacuum of less than 0.01 Pa increases the cost. . A vacuum pump typically used for this purpose is a vacuum pump. For example, only an oil rotary pump may be used depending on the degree of vacuum. However, depending on the volume of the decompression chamber, or shortening of the vacuum sweep time or P For the purpose of further shortening the removal time, a mechanical booster pump, an oil diffusion pump, a turbo molecular pump, or the like may be provided.

また、この減圧室内に配設されるルツボについては、シリコンと反応して気体が発生するようなことがなく、減圧下でルツボ自身がほとんど溶損されることのない材質であればよく、SiC、Si34等の材質のものが使用可能であるが、高純度(灰分10ppm以下)及び高密度(嵩密度1.8g/cm3以上)の黒鉛製ルツボが最適である。これに対して、シリコン溶湯を保持するルツボとして一般的な石英製ルツボは、高真空度下でシリコンと反応してSiO気体が発生し、高真空度を維持できなくなり、また、シリコン溶湯中から湧き上がる気体により突沸等の問題が生じることもあり、真空溶解法によるシリコン精製には適していない。 The crucible disposed in the decompression chamber may be any material as long as it does not react with silicon to generate gas, and the crucible itself is hardly melted under reduced pressure. A material such as Si 3 N 4 can be used, but a graphite crucible having high purity (ash content of 10 ppm or less) and high density (bulk density of 1.8 g / cm 3 or more) is optimal. On the other hand, a quartz crucible generally used as a crucible for holding a molten silicon reacts with silicon under a high vacuum to generate SiO gas, and the high vacuum cannot be maintained. The gas that rises may cause problems such as bumping, and is not suitable for silicon purification by the vacuum melting method.

更に、上記ルツボ内のシリコンを加熱する加熱手段についても、ルツボ内のシリコンをその融点以上に加熱してシリコン溶湯にすることができればよく、例えば、黒鉛製等の発熱体に電圧を印加し、発生するジュール熱でルツボ内のシリコン溶湯を加熱するヒーター加熱方式であってもよく、また、黒鉛製ルツボの外側に誘導コイルを配置し、誘導電流によって黒鉛製ルツボを加熱し、これによってシリコン溶湯を加熱する誘導加熱方式であってもよい。これらの加熱方式はいずれも広く一般に利用されている金属溶解のための低コストで簡便な加熱方式である。   Furthermore, as for the heating means for heating the silicon in the crucible, it is sufficient that the silicon in the crucible can be heated to a melting point or higher to form a molten silicon, for example, applying a voltage to a heating element such as graphite, A heater heating method may be used in which the molten silicon in the crucible is heated by the generated Joule heat. In addition, an induction coil is arranged outside the graphite crucible, and the graphite crucible is heated by an induced current, thereby the molten silicon It may be an induction heating system that heats. Any of these heating methods is a low-cost and simple heating method for metal dissolution that is widely used in general.

本発明のシリコンの精製装置は、以上のような減圧室、ルツボ、及び加熱手段に加えて、ルツボ内のシリコン溶湯の液面表面積を大きくするための波紋誘起手段を備えている。   The silicon purification apparatus of the present invention includes ripple induction means for increasing the liquid surface area of the molten silicon in the crucible in addition to the above-described decompression chamber, crucible, and heating means.

この波紋誘起手段については、ルツボ内のシリコン溶湯の液面に波紋を形成できるものであれば、シリコン溶湯やその液面に直接的に振動等の力を作用させて波紋を形成する手段や、シリコン溶湯を収容するルツボに振動等の力を作用させて波紋を形成する手段等どのような手段であってもよく、特に制限されるものではないが、例えば、好適には、減圧室を区画する壁体を貫通して上下動可能に配設された支持軸と、この支持軸の一端側で壁体内側のシリコン溶湯の液面付近に取り付けられ、シリコン溶湯の液面に波紋を形成せしめる波紋形成子と、上記支持軸の他端側で壁体外側に取り付けられ、支持軸を介して上記波紋形成子に上下振動を付与する駆動手段とを有する波紋形成装置等を挙げることができ、より好ましくは、上記波紋形成子がシリコン溶湯の液面付近液中に位置する円盤であって、上記駆動手段が支持軸に上下振動を付与する振動装置であるのがよい。   As for the ripple inducing means, as long as ripples can be formed on the liquid surface of the silicon melt in the crucible, means for forming ripples by directly applying a force such as vibration to the silicon melt or the liquid surface, Any means such as a means for forming ripples by applying a force such as vibration to a crucible containing molten silicon is not particularly limited. For example, preferably, the decompression chamber is partitioned. A support shaft that is disposed so as to be able to move up and down through the wall to be moved, and is attached to the vicinity of the liquid surface of the silicon melt inside the wall at one end of the support shaft, thereby causing ripples on the liquid surface of the silicon melt And a ripple forming device having a ripple forming element and a driving means attached to the outside of the wall body on the other end side of the support shaft and applying vertical vibrations to the ripple forming element through the support shaft. More preferably, the ripple shape Child has a disc located at the liquid surface near the liquid silicon melt, it may be between a vibration device the drive means for imparting a vertical vibration to the support shaft.

そして、上記波紋形成装置には、好ましくは、その支持軸を上下方向移動可能に保持する支持軸昇降装置を設け、この支持軸昇降装置により支持軸を上下方向に移動させて減圧室内で波紋形成子を上下方向に移動させるようにするのがよく、これによってシリコン溶湯の液面に対して波紋形成子を上下方向に正確に位置決めすることができ、駆動手段により波紋形成子に上下振動を与えた際にシリコン溶湯の液面に効率良く波紋を形成することができる。   Preferably, the ripple forming device is provided with a support shaft lifting device that holds the support shaft so as to be movable in the vertical direction, and the support shaft is moved up and down by the support shaft lifting device to form ripples in the decompression chamber. It is preferable to move the child in the vertical direction, so that the ripple former can be accurately positioned in the vertical direction with respect to the liquid surface of the molten silicon, and the ripple means is given vertical vibration by the driving means. In this case, ripples can be efficiently formed on the surface of the molten silicon.

本発明においては、好ましくは、シリコン溶湯の液面表面積を大きくする波紋誘起手段に加えて、シリコン溶湯の攪拌手段が付設される。
この攪拌手段については、ルツボ内に収容されたシリコン溶湯を攪拌してこのシリコン溶湯中でのPの拡散速度を向上させることができるものであればよく、好ましくは、例えば、減圧室を区画する壁体を貫通して回転可能に配設された回転軸と、この回転軸の壁体内側先端部に取り付けられてシリコン溶湯中に位置する攪拌羽根等からなる攪拌子と、上記回転軸の壁体外側に取り付けられ、回転軸を介して上記攪拌子に正方向及び/又は逆方向の回転運動を付与する回転駆動装置とを備えた攪拌装置や、減圧室を区画する壁体を貫通して好ましくは上下動可能に配設され、シリコン溶湯中に差し込まれる先端部にはその先端及び/又は周壁に1つ又は複数のガス噴出孔を有し、このガス噴出孔より不活性ガスをシリコン溶湯中に噴出させてシリコン溶湯を攪拌する不活性ガス導入管を備えた攪拌装置等を挙げることができる。
In the present invention, preferably, in addition to the ripple inducing means for increasing the liquid surface area of the molten silicon, a stirring means for the molten silicon is additionally provided.
Any stirring means may be used as long as the molten silicon contained in the crucible can be stirred to improve the diffusion rate of P in the molten silicon. For example, the decompression chamber is preferably defined. A rotating shaft that is rotatably disposed through the wall body, a stirrer that is attached to the inner end of the wall body of the rotating shaft and is formed in a silicon melt, and the like, and a wall of the rotating shaft A stirrer that is attached to the outside of the body and includes a rotational drive device that imparts forward and / or reverse rotational motion to the stirrer via a rotating shaft, and a wall that partitions the decompression chamber. Preferably, the tip end portion which is arranged to be movable up and down and is inserted into the silicon melt has one or a plurality of gas jet holes at the tip and / or the peripheral wall, and the inert gas is supplied from the gas jet holes to the silicon melt. Erupt inside It can be given a stirring device or the like provided with an inert gas inlet tube for agitating the silicon melt.

このシリコン溶湯の攪拌手段について、回転軸、攪拌子及び回転駆動装置を備えた攪拌装置で構成する場合には、好ましくは、攪拌装置の回転軸として波紋形成装置の支持軸を共用し、攪拌装置の攪拌子をこの支持軸に設けられた波紋形成子よりもより先端側に取り付け、波紋形成装置の波紋形成子をシリコン溶湯の液面付近液中に位置させ、また、攪拌装置の攪拌子をシリコン溶湯の液中深くに位置させるのがよく、また、不活性ガス導入管を備えた攪拌装置で構成する場合には、波紋形成装置の支持軸を中空パイプ材で形成すると共にその先端及び/又は周壁に1つ又は複数のガス噴出孔を設け、波紋形成装置の支持軸を攪拌装置の不活性ガス導入管として併用できるようにするのがよい。   When this silicon melt stirring means is constituted by a stirring device provided with a rotating shaft, a stirrer and a rotation driving device, preferably, the stirring shaft is shared with the support shaft of the ripple forming device as the rotating shaft of the stirring device. The stirrer is attached to the tip of the rippler provided on the support shaft, the rippler of the rippler is positioned in the liquid near the surface of the molten silicon, and the stirrer of the stirrer is It is preferable that the silicon melt is positioned deep in the liquid of the silicon melt, and in the case of a stirrer equipped with an inert gas introduction pipe, the support shaft of the ripple forming device is formed of a hollow pipe material and its tip and / or Alternatively, it is preferable to provide one or a plurality of gas ejection holes on the peripheral wall so that the support shaft of the ripple forming device can be used as an inert gas introduction pipe of the stirring device.

また、本発明において、好ましくは、シリコン溶湯の液面表面積を大きくする波紋誘起手段に加えて、シリコン溶湯の液面から蒸発する不純物を捕捉する不純物捕捉手段が付設される。この不純物捕捉手段は、上記攪拌手段とは別に付設してもよく、また、この攪拌手段と共に付設してもよい。   In the present invention, preferably, in addition to the ripple inducing means for increasing the liquid surface area of the molten silicon, an impurity trapping means for capturing impurities evaporated from the liquid surface of the molten silicon is provided. This impurity trapping means may be provided separately from the stirring means, or may be provided together with the stirring means.

この不純物捕捉手段については、基本的にはシリコン溶湯の液面から蒸発する不純物蒸気を冷却して凝縮させる蒸気冷却面を備えた不純物凝縮部を有する不純物捕捉装置であればよく、また、この蒸気冷却面を備えた不純物凝縮部については、それが平板形状でも、円筒形状でも、コイル形状でも、更には広い蒸気冷却面を確保するために同一又は異なる素材で互いに間隔をおいて積層された2層以上の積層体構造であってもよく、更に、この不純物凝縮部については、好ましくはその内部及び/又は外部に水等の冷媒を流通させて蒸気冷却面を冷却する冷却構造を備えたものであるのがよい。   The impurity trapping means may be basically an impurity trapping device having an impurity condensing part having a steam cooling surface for cooling and condensing impurity vapor evaporating from the liquid surface of the molten silicon. The impurity condensing part provided with a cooling surface may be a flat plate shape, a cylindrical shape, a coil shape, or the same or different materials and stacked with a space between them to ensure a wide steam cooling surface. The impurity condensing part may have a cooling structure that cools the steam cooling surface by preferably circulating a coolant such as water inside and / or outside of the impurity condensing part. It is good to be.

上記不純物捕捉手段を搭載する場合において、シリコン精製処理を連続的に又は間欠的に操業するためには、好ましくは、減圧室を開閉可能なゲートバルブにより室内にルツボを収容する処理室と開閉扉を備えた準備室とに分割し、不純物捕捉装置には、不純物凝縮部に加えて、この不純物凝縮部を減圧室の処理室と準備室との間で移動可能に保持する凝縮部昇降装置を設け、シリコン精製処理の操作時には、不純物凝縮部を処理室内に位置させてシリコン溶湯の液面から蒸発する不純物を捕捉し、また、シリコン精製処理の操作の前及び/又は後には、不純物凝縮部を準備室内に位置させてシリコン精製処理の前準備及び/又は後処理を行うのがよい。そして、この不純物凝縮部の昇降操作は、上記の波紋形成装置や攪拌装置又は不活性ガス導入管の昇降操作と同時に、あるいは、個別に行うことができる。このように構成することにより、連続操業時や間欠操業時に処理室内の真空を破ることなく不純物凝縮部の清掃等を行うことができ、連続操業や間欠操業を効率良く行うことができる。   In order to operate the silicon refining process continuously or intermittently when the impurity trapping means is mounted, it is preferable that the processing chamber and the opening / closing door accommodate the crucible in the chamber by a gate valve capable of opening / closing the decompression chamber. In addition to the impurity condensing unit, the impurity trapping device includes a condensing unit lifting device that holds the impurity condensing unit movably between the processing chamber of the decompression chamber and the preparatory chamber. And during the operation of the silicon refining process, the impurity condensing part is located in the processing chamber to capture impurities evaporating from the surface of the molten silicon, and before and / or after the silicon refining process operation, the impurity condensing part May be placed in the preparation chamber to perform pre-preparation and / or post-treatment of the silicon purification process. And the raising / lowering operation of this impurity condensing part can be performed simultaneously with the raising / lowering operation of said ripple formation apparatus, a stirring apparatus, or an inert gas introduction pipe | tube, or separately. By configuring in this way, the impurity condensing part can be cleaned without breaking the vacuum in the processing chamber during continuous operation or intermittent operation, and continuous operation or intermittent operation can be performed efficiently.

本発明において、上記波紋形成装置の支持軸及び波紋形成子や上記攪拌装置の回転軸(波紋形成装置の支持軸と共用する場合にはその支持軸)や攪拌子については、シリコン精製処理を連続的に又は間欠的に操業する場合であっても、減圧室を処理室と準備室とに分割してシリコン精製処理の操作の前及び/又は後にこの準備室まで上昇させる必要は必ずしもないが、上記不純物捕捉手段を搭載してシリコン精製処理の連続的又は間欠的操業のために減圧室を処理室と準備室とに分割した場合には、好ましくは、波紋形成装置の支持軸を攪拌装置の回転軸と共用し、この支持軸に波紋形成装置の波紋形成子と攪拌装置の攪拌子を設け、上記波紋形成装置の支持軸昇降装置によりこれら支持軸、波紋形成子及び攪拌子を上記処理室と準備室との間で移動可能にし、シリコン精製処理の操作時には、これら支持軸、波紋形成子及び攪拌子を処理室内に位置させ、また、シリコン精製処理の操作の前及び/又は後には、これら支持軸、波紋形成子及び攪拌子を準備室内に退避させてもよく、これによって連続操業時や間欠操業時において処理室と準備室との間を仕切るゲートバルブについて、その設定位置が設計上容易になり、かつ、操作も容易になる。なお、波紋形成装置の支持軸及び/又は攪拌装置の回転軸の設定位置については、不純物捕捉装置の設定位置と特段同じにする必要は無く、別の位置に穴を設けてこれら波紋形成装置の支持軸及び/又は攪拌装置の回転軸を設定することも可能である。別の位置に波紋形成装置の支持軸及び/又は攪拌装置の回転軸を設定した場合には、それらのために特段にゲートバルブで仕切られた準備室を設ける必要は無い。   In the present invention, the silicon refining process is continuously performed on the support shaft and the ripple forming element of the ripple forming device, the rotation shaft of the stirring device (the support shaft in the case of sharing with the support shaft of the ripple forming device) and the stirring piece. Even if the operation is performed intermittently or intermittently, it is not always necessary to divide the decompression chamber into the processing chamber and the preparation chamber and raise the preparation chamber before and / or after the operation of the silicon purification treatment. When the decompression chamber is divided into a processing chamber and a preparation chamber for the continuous or intermittent operation of the silicon purification process by mounting the impurity trapping means, preferably, the support shaft of the ripple forming device is connected to the stirring device. The rotation shaft is shared, and the ripple forming device of the ripple forming device and the stirring device of the stirring device are provided on the support shaft, and the support shaft, the ripple forming device and the stirring device are connected to the processing chamber by the support shaft lifting device of the ripple forming device. And the preparation room The support shaft, the ripple former and the stirrer are positioned in the processing chamber during the silicon purification process, and before and / or after the silicon purification process, the support shaft and ripple formation are performed. The child and stirrer may be retracted into the preparation chamber, which makes it easy to design the setting position of the gate valve that partitions between the processing chamber and the preparation chamber during continuous operation or intermittent operation, and Operation is also easy. The setting position of the support shaft of the ripple forming device and / or the rotation shaft of the stirring device need not be the same as the setting position of the impurity trapping device. It is also possible to set the support shaft and / or the rotation shaft of the stirring device. When the support shaft of the ripple forming device and / or the rotation shaft of the stirring device are set at different positions, it is not necessary to provide a special chamber partitioned by a gate valve for them.

本発明において、以上のようなシリコンの精製装置を用いてシリコン中のリン主体の不純物を除去する場合には、用いるシリコン精製装置の装置構成によって異なるが、減圧室内を500Pa以下0.01Pa程度まで、好ましくは100Pa以下、より好ましくは10Pa以下から0.1Paまで減圧すると共にルツボ内のシリコンをその融点以上、好ましくは1600℃以上1800℃以下に加熱して溶融し、同時に波紋誘起手段によりルツボ内のシリコン溶湯の液面に所定の大きさの波紋を形成させつつP等の不純物を除去する。この減圧室の圧力が500Pa超の場合には十分なP除去速度が得られず、反対に、0.01Pa未満の圧力を実現するには減圧設備が高コストになるという問題が生じる。また、加熱温度については、その融点未満では真空溶融法によるシリコン精製を行うことができず、反対に、1800℃より高くなるとシリコンの蒸発量が多くなり、得られる精製シリコンの歩留りが低下し、また、ルツボの寿命が低下するという問題が生じる。   In the present invention, when removing impurities mainly composed of phosphorus in silicon using the silicon purification apparatus as described above, the pressure in the vacuum chamber is about 500 Pa or less and about 0.01 Pa depending on the apparatus configuration of the silicon purification apparatus used. Preferably, the pressure in the crucible is reduced to 100 Pa or less, more preferably 10 Pa or less to 0.1 Pa, and the silicon in the crucible is heated to its melting point, preferably 1600 ° C. to 1800 ° C. and melted. Impurities such as P are removed while forming ripples of a predetermined size on the surface of the molten silicon. When the pressure in the decompression chamber exceeds 500 Pa, a sufficient P removal rate cannot be obtained. On the other hand, in order to realize a pressure of less than 0.01 Pa, there arises a problem that the decompression equipment becomes expensive. Also, with respect to the heating temperature, silicon purification cannot be performed by a vacuum melting method below the melting point, and conversely, when the temperature is higher than 1800 ° C., the amount of silicon evaporation increases, and the yield of purified silicon obtained decreases. Moreover, the problem that the lifetime of a crucible falls arises.

本発明のシリコンの精製装置及び精製方法によれば、ルツボ内のシリコン溶湯の液面に所定の波紋を形成せしめることにより、ルツボ開口部の開口面積を大きくすることなくこのシリコン溶湯の液面表面積を容易に大きくすることができ、これによってルツボ開口部からの放熱量を増加させることなくシリコン溶湯の液面からのP等の不純物の蒸発を大幅に促進することができるので、同じ形状及び大きさのルツボであれば、ルツボ内のシリコン溶湯の液面に形成される液面表面積の大きさに応じてP等の不純物の除去速度を向上させることができる。   According to the silicon purification apparatus and the purification method of the present invention, by forming a predetermined ripple on the liquid surface of the molten silicon in the crucible, the liquid surface area of the molten silicon without increasing the opening area of the crucible opening. Since the evaporation of impurities such as P from the surface of the molten silicon can be greatly promoted without increasing the amount of heat released from the crucible opening, the same shape and size can be achieved. If it is the crucible, the removal rate of impurities such as P can be improved according to the size of the liquid surface area formed on the liquid surface of the molten silicon in the crucible.

以下、添付図面に示す実施形態及び実施例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described based on the embodiments and examples shown in the accompanying drawings.

[第1の実施形態]
図1において、本発明の第1の実施形態に係るシリコン精製装置の概念図が示されている。このシリコン精製装置は、基本的には、真空ポンプ(減圧手段)5が付設されて所定の真空度まで減圧可能な減圧室1と、この減圧室1内に配設されてシリコン溶湯6が収容される高純度(灰分10ppm以下)及び高密度(嵩密度1.8g/cm3以上)の黒鉛製のルツボ2と、このルツボ2内のシリコン溶湯6を加熱するための高純度高密度の黒鉛製のヒーター(加熱手段)3と、上記減圧室1を区画する壁体1aを真空シール7を介して上下動可能に貫通する高純度高密度の黒鉛製の支持軸4a、この支持軸4aの一端側で壁体1a内側のシリコン溶湯6の液面付近液中に取り付けられた高純度高密度の製の円盤(波紋形成子)4b、及び上記支持軸4aの他端側で壁体1a外側に取り付けられ、支持軸4aを介して上記円盤4bに上下振動を付与する振動装置(駆動手段)4cを有する波紋形成装置(波紋誘起手段)4とで構成されている。
[First Embodiment]
In FIG. 1, the conceptual diagram of the silicon refinement | purification apparatus which concerns on the 1st Embodiment of this invention is shown. This silicon purification apparatus basically includes a decompression chamber 1 which is provided with a vacuum pump (decompression means) 5 and can be decompressed to a predetermined degree of vacuum, and a silicon melt 6 which is disposed in the decompression chamber 1 and accommodates therein. Made of high purity (ash content 10 ppm or less) and high density (bulk density 1.8 g / cm 3 or more) graphite crucible 2 and high purity high density graphite for heating silicon melt 6 in the crucible 2 A high-purity and high-density graphite support shaft 4a penetrating through a wall 1a defining the decompression chamber 1 through a vacuum seal 7 so as to move up and down, and one end of the support shaft 4a A high-purity, high-density disc (ripple former) 4b attached in the liquid near the liquid surface of the silicon melt 6 inside the wall 1a on the side, and outside the wall 1a on the other end of the support shaft 4a It has a vibration device (drive means) 4c that is attached and applies vertical vibration to the disk 4b via the support shaft 4a. And a ripple forming device (ripple inducing means) 4.

この第1の実施形態において、上記ルツボ2はその大きさが外径1000mm×内径900mm×内寸深さ700mmであり、その外側がカーボン製断熱材からなる保温装置8で覆われており、このルツボ2の外側と保温装置8の内側の間でルツボ2の側路面を覆うようにヒーター3が配設されている。また、波紋形成装置4の円盤4bは、その直径が100mmであって、振動装置4cで所定の振幅Amの上下振動が付与された際に、図2に示すように、シリコン溶湯6の表面に所定の振幅Waの波紋が形成されるようになっている。   In the first embodiment, the crucible 2 has a size of an outer diameter of 1000 mm × an inner diameter of 900 mm × an inner dimension depth of 700 mm, and the outside is covered with a heat retaining device 8 made of a carbon heat insulating material. A heater 3 is disposed between the outside of the crucible 2 and the inside of the heat retaining device 8 so as to cover the side road surface of the crucible 2. Further, the disk 4b of the ripple forming device 4 has a diameter of 100 mm, and when a vertical vibration having a predetermined amplitude Am is applied by the vibration device 4c, as shown in FIG. A ripple having a predetermined amplitude Wa is formed.

この第1の実施形態において、減圧室1の真空度1Pa、シリコン溶湯6の加熱温度1700℃及び振動装置4cにより円盤4bに加えられる周波数100Hzの条件で、波紋形成装置4の円盤4bに2.5mm、5.0mm又は7.5mmの振幅Amの上下振動を付与し、各振幅Amの大きさの時におけるシリコン溶湯6からのP除去速度をICP発光分析法により求め、振幅Amが5.0mmの時をP除去速度1として振幅Amが2.5mm及び7.5mmのときの相対値を求め、振幅Amに対するP除去速度の相対関係を調べた。結果を図3に示す。   In the first embodiment, the disk 4b of the ripple forming apparatus 4 is subjected to 2. under the conditions of a degree of vacuum of the decompression chamber 1 of 1 Pa, a heating temperature of the molten silicon 6 of 1700 ° C. and a frequency of 100 Hz applied to the disk 4b by the vibration device 4c. A vertical vibration with an amplitude Am of 5 mm, 5.0 mm, or 7.5 mm is applied, and the P removal rate from the molten silicon 6 at each amplitude Am is obtained by ICP emission analysis. The amplitude Am is 5.0 mm. The relative value when the amplitude Am was 2.5 mm and 7.5 mm was obtained with the P removal rate of 1 as the time, and the relative relationship of the P removal rate with respect to the amplitude Am was examined. The results are shown in FIG.

図3の結果から明らかなように、シリコン溶湯6からのP除去速度は、振動装置4cによって円盤4bに加えられる上下振動の振幅Amと概ね比例関係にあることが分かる。この円盤4bにより安定的に波紋を形成するためには、上下振動の振幅Amは生成する波長λの2倍程度までであり、また、0.2倍を下回ると液面表面積の増加が1.1倍を下回り、効果が期待できなくなる。   As is apparent from the results of FIG. 3, it can be seen that the P removal rate from the molten silicon 6 is substantially proportional to the amplitude Am of the vertical vibration applied to the disk 4b by the vibration device 4c. In order to stably form ripples with the disk 4b, the amplitude Am of the vertical vibration is up to about twice the wavelength λ to be generated. Less than 1 times, the effect can not be expected.

[第2の実施形態]
図4において、本発明の第2の実施形態に係るシリコン精製装置の概念図が示されている。このシリコン精製装置は、図1に示す第1の実施形態の場合と同様に、真空ポンプ5が付設された減圧室1と、シリコン溶湯6が収容されるルツボ2と、このルツボ2内のシリコン溶湯6を加熱するヒーター3と、上記減圧室1を区画する壁体1aを真空シール7を介して上下動可能に貫通する支持軸4a、この支持軸4aの一端側で壁体1a内側のシリコン溶湯6の液面付近液中に取り付けられた円盤4b、及び上記支持軸4aの他端側で壁体1a外側に取り付けられ、支持軸4aを介して上記円盤4bに上下振動を付与する振動装置4cを有する波紋形成装置4とを備えており、また、図1に示す第1の実施形態の場合とは異なり、上記支持軸4aが中空パイプ材で形成されてその下端にガス噴出孔9bを有し、この支持軸4aを介して減圧室1の外部からシリコン溶湯6内に不活性ガス9を導入し、このシリコン溶湯6内に導入された不活性ガス9cによりシリコン溶湯6を攪拌する不活性ガス導入管9aを備えた攪拌装置(攪拌手段)9が設けられていると共に、攪拌装置9を兼ねた波紋形成装置4には、波紋形成装置4及び攪拌装置9の支持軸4a及び波紋形成装置4の円盤4bを上下方向に移動させ、シリコン溶湯6内での円盤4b及びガス噴出孔9bの上下方向位置を調節するための位置調節装置10が設けられている。
[Second Embodiment]
In FIG. 4, the conceptual diagram of the silicon refinement | purification apparatus which concerns on the 2nd Embodiment of this invention is shown. As in the case of the first embodiment shown in FIG. 1, the silicon purification apparatus includes a decompression chamber 1 provided with a vacuum pump 5, a crucible 2 in which a silicon melt 6 is accommodated, and silicon in the crucible 2. A heater 3 for heating the molten metal 6, a support shaft 4a penetrating through the wall 1a defining the decompression chamber 1 through a vacuum seal 7 so as to be movable up and down, and silicon inside the wall 1a at one end of the support shaft 4a A disk 4b attached in the liquid near the liquid surface of the molten metal 6, and a vibration device attached to the outside of the wall 1a at the other end of the support shaft 4a and applying vertical vibration to the disk 4b via the support shaft 4a. Unlike the case of the first embodiment shown in FIG. 1, the support shaft 4a is formed of a hollow pipe material, and a gas ejection hole 9b is formed at the lower end thereof. And inside the molten silicon 6 from the outside of the decompression chamber 1 through the support shaft 4a. A stirring device (stirring means) 9 including an inert gas introduction pipe 9a for introducing the inert gas 9 and stirring the molten silicon 6 with the inert gas 9c introduced into the molten silicon 6 is provided. The ripple forming device 4 also serving as the stirring device 9 moves the ripple forming device 4, the support shaft 4 a of the stirring device 9, and the disk 4 b of the ripple forming device 4 in the vertical direction, and the disc 4 b in the silicon melt 6 and A position adjusting device 10 for adjusting the vertical position of the gas ejection hole 9b is provided.

この第2の実施形態のシリコン精製装置によれば、第1の実施形態の場合と同様に波紋形成装置4によってルツボ2内のシリコン溶湯6の液面に波紋を形成することができ、これによってシリコン溶湯6の液面表面積を大きくしてシリコン溶湯6の液面からのP等の不純物の蒸発を促進できると共に、攪拌装置9によって支持軸4a下端のガス噴出孔9bより不活性ガス9cを噴出させることによりシリコン溶湯6内部を攪拌し、シリコン溶湯6中でのP等の不純物の拡散速度を向上させることができ、P等の不純物の除去速度をより一層改善することができる。   According to the silicon refining device of the second embodiment, ripples can be formed on the liquid surface of the molten silicon 6 in the crucible 2 by the ripple forming device 4 as in the case of the first embodiment. The liquid surface area of the molten silicon 6 can be increased to promote the evaporation of impurities such as P from the molten metal 6 and the inert gas 9c is ejected from the gas ejection hole 9b at the lower end of the support shaft 4a by the stirring device 9. By doing so, the inside of the silicon melt 6 can be stirred, the diffusion rate of impurities such as P in the silicon melt 6 can be improved, and the removal rate of impurities such as P can be further improved.

[第3の実施形態]
図5〜7において、本発明の第3の実施形態に係るシリコン精製装置の概念図が示されている。このシリコン精製装置は、図1に示す第1の実施形態の場合と同様に、真空ポンプ5が付設された減圧室1と、シリコン溶湯6が収容されるルツボ2と、このルツボ2内のシリコン溶湯6を加熱するヒーター3と、波紋形成装置4とを備えている。
[Third Embodiment]
In FIGS. 5-7, the conceptual diagram of the silicon | silicone refinement | purification apparatus which concerns on the 3rd Embodiment of this invention is shown. As in the case of the first embodiment shown in FIG. 1, the silicon purification apparatus includes a decompression chamber 1 provided with a vacuum pump 5, a crucible 2 in which a silicon melt 6 is accommodated, and silicon in the crucible 2. A heater 3 for heating the molten metal 6 and a ripple forming device 4 are provided.

この第3の実施形態において、波紋形成装置4は、上記第1の実施形態の場合と同様に、減圧室1の壁体1aを上下動可能に貫通する支持軸4aと、この支持軸4aの一端側で壁体1a内側のシリコン溶湯6の液面付近液中に取り付けられた円盤4bと、上記支持軸4aの他端側で壁体1a外側に取り付けられ、支持軸4aを介して上記円盤4bに上下振動を付与する振動手段とを有するが、上記第1の実施形態の場合とは異なり、回転軸9aとして併用される上記支持軸4aと、この支持軸4a(9a)の円盤4bよりも先端側に取り付けられてシリコン溶湯6の液中に位置する攪拌羽根(攪拌子)9dと、上記支持軸4aの他端側で壁体1a外側に取り付けられて支持軸4aに回転運動を付与する回転駆動手段とを有するシリコン溶湯6の攪拌装置9が付設されており、また、波紋形成装置4の振動手段及び攪拌装置9の回転駆動手段として両機能を備えた駆動装置4c(9e)が設けられている。また、この第3の実施形態のシリコン精製装置においては、その保温装置8にルツボ2内のシリコン溶湯6の液面周縁部上方を覆ってシリコン溶湯6を保温する着脱可能な液面保温部8aが取り付けられている。   In the third embodiment, as in the case of the first embodiment, the ripple forming device 4 includes a support shaft 4a penetrating the wall body 1a of the decompression chamber 1 in a vertically movable manner, and the support shaft 4a. A disc 4b attached in the liquid near the liquid surface of the silicon melt 6 inside the wall 1a on one end side, and attached to the outside of the wall 1a on the other end side of the support shaft 4a, and the disc via the support shaft 4a Unlike the case of the first embodiment, the support shaft 4a used as the rotation shaft 9a and the disk 4b of the support shaft 4a (9a) are provided. Is also attached to the tip side and is placed on the outside of the wall 1a on the other end side of the support shaft 4a and imparts rotational motion to the support shaft 4a. A stirring device 9 for the molten silicon 6 having a rotation driving means is attached, and the ripple forming device 4 Drive device 4c having both functions (9e) is provided as a rotation driving means of the vibrating means and a stirrer 9. Further, in the silicon refining device of the third embodiment, the detachable liquid surface heat retaining portion 8a that heats the silicon molten metal 6 so as to cover the upper portion of the liquid surface peripheral portion of the silicon molten metal 6 in the crucible 2 with the heat retaining device 8. Is attached.

また、この第3の実施形態においては、減圧室1が開閉可能なゲートバルブ11によって室内にルツボ2を収容する処理室1bと開閉扉12を備えた準備室1cとに分割されていると共に、これら処理室1b及び準備室1cにはそれぞれ真空ポンプ5a,5bが付設されており、また、上記波紋形成装置4及び攪拌装置9の支持軸4a(9a)、波紋形成装置4の円盤4b及び攪拌装置9の攪拌羽根9dを上記処理室1bと準備室1cとの間で移動可能に保持する支持軸昇降装置13が設けられており、これによって、シリコン精製処理の操作時には、上記支持軸4a、円盤4b及び攪拌羽根9dを処理室1b内の所定の位置に位置させてシリコン溶湯6に波紋を形成すると共にシリコン溶湯6を攪拌し、また、シリコン精製処理の操作の前及び/又は後には、上記支持軸4a、円盤4b及び攪拌羽根9dを準備室1c内に位置させてシリコン精製処理の前準備及び/又は後処理を行うことができるように構成されている。   In the third embodiment, the decompression chamber 1 is divided into a processing chamber 1b for accommodating the crucible 2 and a preparation chamber 1c having an opening / closing door 12 by a gate valve 11 that can be opened and closed. The processing chamber 1b and the preparation chamber 1c are provided with vacuum pumps 5a and 5b, respectively, the support shaft 4a (9a) of the ripple forming device 4 and the stirring device 9, the disk 4b of the ripple forming device 4 and the stirring. A support shaft lifting / lowering device 13 is provided to hold the stirring blade 9d of the apparatus 9 so as to be movable between the processing chamber 1b and the preparation chamber 1c, whereby the support shaft 4a, The disk 4b and the stirring blade 9d are positioned at predetermined positions in the processing chamber 1b to form ripples on the molten silicon 6 and stir the molten silicon 6, and before and / or after the operation of the silicon refining treatment, Prepare the support shaft 4a, disk 4b and stirring blade 9d. And is configured so that it can by positioned in the chamber 1c performs preparatory and / or post-treatment of the silicon purification process.

更に、減圧室1内には、ルツボ2の開口部2aの上方に位置し、この開口部2aから上昇してくるP等の不純物の不純物蒸気を冷却し凝縮させて捕捉する不純物捕捉装置(不純物捕捉手段)14が配設されている。そして、この不純物捕捉装置14は、中空壁材によりルツボ2の開口部2aより若干大きな内径を有する円筒状に形成された不純物凝縮部15と、この不純物凝縮部15を減圧室1の処理室1bと準備室1cとの間で移動可能に保持する凝縮部昇降装置16とを備えており、また、上記不純物凝縮部15は、その内壁内面に蒸気冷却面17が形成されていると共に、上部には中空壁材の中空部内に水等の冷媒19を導入して蒸気冷却面17を冷却する冷媒配管18が設けられており、これによって、シリコン精製処理の操作時には、不純物凝縮部15を処理室1b内の所定の位置に位置させてシリコン溶湯6の液面から蒸発するP等の不純物を捕捉し、また、シリコン精製処理の操作の前及び/又は後には、不純物凝縮部15を準備室1c内に位置させてシリコン精製処理の前準備及び/又は後処理を行うことができるように構成されている。   Further, in the decompression chamber 1, an impurity trapping device (impurity) is located above the opening 2a of the crucible 2 and cools, condenses and traps the impurity vapor of impurities such as P rising from the opening 2a. (Capturing means) 14 is provided. The impurity trapping device 14 includes an impurity condensing unit 15 formed in a cylindrical shape having a slightly larger inner diameter than the opening 2a of the crucible 2 by a hollow wall material, and the impurity condensing unit 15 as a processing chamber 1b of the decompression chamber 1 And a condensing unit lifting / lowering device 16 that is movably held between the first and second preparation chambers 1c, and the impurity condensing unit 15 has a vapor cooling surface 17 formed on the inner surface of the inner wall thereof and an upper portion thereof. Is provided with a refrigerant pipe 18 for introducing a refrigerant 19 such as water into the hollow portion of the hollow wall material to cool the steam cooling surface 17, thereby allowing the impurity condensing part 15 to be connected to the treatment chamber during the silicon purification process. Impurities such as P evaporating from the liquid surface of the molten silicon 6 are captured at a predetermined position in 1b, and the impurity condensing unit 15 is provided in the preparation chamber 1c before and / or after the operation of the silicon purification process. Pre-preparation and / or silicon purification process And it is configured so as to perform post-processing.

従って、この第3の実施形態のシリコン精製装置によれば、シリコン精製処理の操作時には、真空ポンプ5によって処理室1b内及び準備室1c内を所定の真空度まで減圧し、また、ヒーター3によりシリコン溶湯6を所定の温度に加熱し、シリコンが溶融した後にゲートバルブ11を開いて処理室1bと準備室1cとの間を連通させ、図5及び図6に示すように、支持軸昇降装置13を操作して波紋形成装置4及び攪拌装置9の支持軸4a(9a)、波紋形成装置4の円盤4b及び攪拌装置9の攪拌羽根9dを降下させ、処理室1b内において円盤4bがシリコン溶湯6の液面付近液中に位置し、また、攪拌羽根9dがこの円盤4bの下方においてシリコン溶湯6の液中に位置するようにし、また、凝縮部昇降装置16を操作して不純物捕捉装置14の不純物凝縮部15を降下させ、処理室1b内においてこの不純物凝縮部15がルツボ2の開口部2aの上方に位置し、開口部2aから上昇してくるP等の不純物の不純物蒸気を蒸気冷却面17で冷却し凝縮させて補足できるようにし、シリコン精製処理の操作を行う。   Therefore, according to the silicon purification apparatus of the third embodiment, during the operation of the silicon purification process, the inside of the processing chamber 1b and the preparation chamber 1c are depressurized to a predetermined degree of vacuum by the vacuum pump 5, and the heater 3 is used. The molten silicon 6 is heated to a predetermined temperature, and after the silicon is melted, the gate valve 11 is opened to allow communication between the processing chamber 1b and the preparation chamber 1c. As shown in FIGS. 13 is operated to lower the support shaft 4a (9a) of the ripple forming device 4 and the stirring device 9, the disk 4b of the ripple forming device 4 and the stirring blade 9d of the stirring device 9, and the disk 4b is molten silicon in the processing chamber 1b. 6 is positioned in the liquid near the liquid surface, and the stirring blade 9d is positioned in the liquid of the silicon melt 6 below the disk 4b. The impurity condensing part 15 is lowered and the processing chamber 1b The impurity condensing part 15 is located above the opening 2a of the crucible 2 so that the impurity vapor of impurities such as P rising from the opening 2a can be cooled and condensed by the vapor cooling surface 17, and supplemented. The silicon purification process is performed.

この第3の実施形態によれば、駆動装置4c(9e)を駆動して波紋形成装置4及び攪拌装置9の支持軸4a(9a)に所定の上下振動と回転運動を与えることにより、波紋形成装置4の円盤4bがシリコン溶湯6の液面付近液中で上下振動し、このシリコン溶湯6の液面に波紋を形成して液面表面積を大きくしてP等の不純物の蒸発速度を向上させ、また、攪拌装置9の攪拌羽根9dがシリコン溶湯6の液中で回転してシリコン溶湯6中でのP等の不純物の拡散速度を向上させるので、シリコンの真空溶解法によるシリコン中のP等の不純物の除去速度、特にP除去速度が大幅に改善される。   According to the third embodiment, ripples are formed by driving the drive device 4c (9e) and applying predetermined vertical vibration and rotational motion to the support shaft 4a (9a) of the ripple forming device 4 and the stirring device 9. The disk 4b of the apparatus 4 vibrates up and down in the liquid near the liquid surface of the molten silicon 6 to form ripples on the liquid surface of the molten silicon 6 to increase the surface area of the liquid and improve the evaporation rate of impurities such as P. Further, since the stirring blade 9d of the stirring device 9 rotates in the silicon melt 6 to improve the diffusion rate of impurities such as P in the silicon melt 6, P in silicon by the vacuum melting method of silicon, etc. The impurity removal rate, particularly the P removal rate, is greatly improved.

シリコン精製処理の操作が終了した後には、図7に示すように、支持軸昇降装置13を操作して波紋形成装置4及び攪拌装置9の支持軸4a(9a)、波紋形成装置4の円盤4b及び攪拌装置9の攪拌羽根9dを上昇させて準備室1c内に収容し、また、凝縮部昇降装置16を操作して不純物捕捉装置14の不純物凝縮部15を上昇させて準備室1c内に収容し、次に再びゲートバルブ11を閉じて処理室1bと準備室1cとの間を遮断した後に準備室1c内を大気圧に戻し、この状態で開閉扉12を開いてこの準備室1c内に収容された波紋形成装置4及び攪拌装置9の支持軸4a(9a)、円盤4b及び攪拌羽根9dや不純物捕捉装置14の不純物凝縮部15等の清掃、補修等のシリコン精製処理の後処理を行って、次のシリコン精製処理の操作に備える。   After the operation of the silicon refining process is completed, as shown in FIG. 7, the support shaft lifting device 13 is operated to support the ripple forming device 4 and the support shaft 4a (9a) of the stirring device 9, and the disc 4b of the ripple forming device 4. The stirring blade 9d of the stirring device 9 is raised and accommodated in the preparation chamber 1c, and the impurity condensing unit 15 of the impurity trapping device 14 is raised by operating the condensing unit lifting / lowering device 16 and accommodated in the preparation chamber 1c. Next, after closing the gate valve 11 again to shut off the space between the processing chamber 1b and the preparation chamber 1c, the inside of the preparation chamber 1c is returned to atmospheric pressure, and in this state, the open / close door 12 is opened to enter the preparation chamber 1c. Post-treatment of silicon purification treatment such as cleaning and repairing of the support shaft 4a (9a), the disk 4b and the stirring blade 9d, the impurity condensing unit 15 of the impurity trapping device 14, etc. of the contained ripple forming device 4 and stirring device 9 To prepare for the next silicon purification process.

このように減圧室1に準備室1cを用意してこの準備室1c内でシリコン精製処理の前処理及び/又は後処理を行うことにより、特に減圧室1の処理室1bでの連続操業が可能になり、工業的に極めて有用なシリコン精製装置となる。   Thus, by preparing the preparatory chamber 1c in the decompression chamber 1 and performing the pre-treatment and / or post-treatment of the silicon purification treatment in the preparatory chamber 1c, continuous operation can be performed particularly in the treatment chamber 1b of the decompression chamber 1. Therefore, it becomes an industrially extremely useful silicon purifier.

[実施例1]
第3の実施形態の装置構成において、黒鉛製ルツボ2としては外径1000mm×内径900mm×内寸深さ700mmの大きさのものを使用し、ヒーター3については最大で300kWの電力を投入可能なものを使用し、波紋形成装置4としては支持軸4aの長さが1500mm及び円盤4bの直径が100mmのものを使用し、また、攪拌装置としては攪拌羽根9dが2枚羽根形状で回転直径300mmのものを使用し、そして、円盤4bと攪拌羽根9dとの間の間隔を500mmとし、更に、シリコン溶湯6中における攪拌羽根9dの深さが500mmとなるように設定し、更にまた、シリコン溶湯6の液面(波紋の無い平面状態として)について保温装置8の液面保温部8aによりルツボ開口部を被覆する面積割合を80%に設定した。
[Example 1]
In the apparatus configuration of the third embodiment, a graphite crucible 2 having an outer diameter of 1000 mm, an inner diameter of 900 mm, and an inner depth of 700 mm is used, and the heater 3 can be supplied with a maximum of 300 kW. As the ripple forming device 4, a support shaft 4a having a length of 1500 mm and a disk 4b having a diameter of 100 mm is used, and as the stirring device, a stirring blade 9d has two blades and a rotating diameter of 300 mm. And the distance between the disk 4b and the stirring blade 9d is set to 500 mm, and the depth of the stirring blade 9d in the silicon melt 6 is set to 500 mm. For the liquid level 6 (as a flat state without ripples), the area ratio of covering the crucible opening by the liquid level thermal insulation 8a of the thermal insulation device 8 was set to 80%.

ルツボ2内に初期P濃度30ppmの原料シリコン900kgを仕込み、減圧室1(処理室1b)内の圧力を真空度5.0Pa以下まで減圧し、次いでヒーター3に通電して原料シリコンを溶融してシリコン溶湯6とし、円盤4bの上下動振動の振幅を2.5mm及び攪拌羽根9dの回転数を30rpmに調節して真空度1Pa及び1700℃の条件で12時間保持し、シリコン精製処理を行った。
このシリコン精製処理について、円盤4bによる振動、攪拌羽根9dによる回転及び液面保温部8aによる保温を3つのパラメーターとし、このパラメーターの有無による精製処理後のシリコン中の処理後P濃度をICP発光分析法により測定し、P除去速度の評価を行った。結果を表1に示す。
The crucible 2 was charged with 900 kg of raw silicon having an initial P concentration of 30 ppm, the pressure in the decompression chamber 1 (processing chamber 1b) was reduced to a vacuum of 5.0 Pa or less, and then the heater 3 was energized to melt the raw silicon. The silicon refining treatment was performed by adjusting the amplitude of vertical vibration of the disk 4b to 2.5 mm and the rotation speed of the stirring blade 9d to 30 rpm and maintaining the vacuum at 1 Pa and 1700 ° C. for 12 hours under the conditions of the molten silicon 6 .
For this silicon purification treatment, the vibration by the disk 4b, the rotation by the stirring blade 9d, and the heat insulation by the liquid surface heat retaining part 8a are set as three parameters. And the P removal rate was evaluated. The results are shown in Table 1.

Figure 2007191342
Figure 2007191342

表1に示す結果から明らかなように、振動も回転も与えなかった比較例1に対して、振動だけを与えた本発明例1においてはその処理速度が1.4倍になり、また、回転及び振動を与えた本発明例2においてはその処理速度が5.5倍になり、更に、回転及び保温を与えた本発明例3においてはその処理速度が4.0倍になり、更にまた、回転及び振動に保温を組み合わせた本発明例4では処理速度が比較例1の15倍になった。   As is apparent from the results shown in Table 1, in Comparative Example 1 in which neither vibration nor rotation was given, the processing speed was 1.4 times in the present invention example 1 in which only vibration was given, and the rotation In the present invention example 2 to which vibration was applied, the treatment speed was 5.5 times, and in the present invention example 3 to which rotation and heat retention were given, the treatment speed was 4.0 times, and furthermore, In Example 4 of the present invention in which heat retention was combined with rotation and vibration, the processing speed was 15 times that of Comparative Example 1.

[実施例2]
第3の実施形態の装置構成において、900kgの原料シリコンを用い、上記実施例1の本発明例2の場合と同様の条件(1 Pa, 1700℃, 12時間)で精製処理を行い、この際に、不純物捕捉装置14による不純物凝縮をした場合としなかった場合(不純物凝縮の有無)及び不純物凝縮をした場合で不純物凝縮部15の清掃をした場合としなかった場合(凝縮部清掃の有無)の3つのケースでのシリコン精製処理を行い、P除去速度の評価を行った。本発明例6において、不純物凝縮部15の清掃は2時間ごとに行った。結果を表2に示す。
[Example 2]
In the apparatus configuration of the third embodiment, 900 kg of raw silicon is used, and purification is performed under the same conditions (1 Pa, 1700 ° C., 12 hours) as in Example 1 of the present invention. In addition, when the impurity is condensed by the impurity trapping device 14 (with or without impurity condensation) and when the impurity condensing unit 15 is cleaned with or without impurity condensing (with or without condensing unit cleaning) Silicon purification treatment was performed in three cases, and the P removal rate was evaluated. In Invention Example 6, the impurity condensing part 15 was cleaned every 2 hours. The results are shown in Table 2.

Figure 2007191342
Figure 2007191342

表2に示す結果から明らかなように、不純物凝縮を行わなかった本発明例2の場合と比較して、不純物凝縮のみを行った本発明例5の場合にはP除去速度が約2.4倍になり、また、不純物凝縮に加えて凝縮部清掃を行った本発明例6の場合にはP除去速度が約5.1倍になった。   As is apparent from the results shown in Table 2, the P removal rate is about 2.4 in the case of the present invention example 5 in which only the impurity condensation is performed, compared with the case of the present invention example 2 in which the impurity condensation is not performed. In addition, in the case of the present invention example 6 in which the condensation part cleaning was performed in addition to the impurity condensation, the P removal rate was increased by about 5.1 times.

本発明のシリコンの精製装置及び精製方法によれば、コストの係る設備や電子ビーム等の特別な加熱手段を用いることなく、工業的に実用的な設備や加熱手段を用いて顕著にP除去速度を向上させることができ、工業的に容易にかつ安価に原料シリコン中のP等の不純物を分離除去することができるので、太陽電池等の用途に適した高純度シリコンを工業的に有利に製造することができる。   According to the silicon purification apparatus and the purification method of the present invention, the P removal rate is remarkably increased using industrially practical equipment and heating means without using costly equipment or special heating means such as an electron beam. Impurities can be improved and impurities such as P in the raw material silicon can be separated and removed industrially easily and inexpensively, so that high-purity silicon suitable for applications such as solar cells is produced industrially advantageously. can do.

図1は、本発明の第1の実施形態に係るシリコン精製装置を概念的に示す説明図である。FIG. 1 is an explanatory view conceptually showing a silicon purification apparatus according to the first embodiment of the present invention. 図2は、図1のルツボ内のシリコン溶湯の液面状態を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a liquid surface state of the silicon melt in the crucible of FIG. 1.

図3は、第1の実施形態において、波紋形成装置の円盤の振幅AmとP除去速度との相対関係を示すグラフ図である。FIG. 3 is a graph showing the relative relationship between the disk amplitude Am and the P removal speed of the ripple forming apparatus in the first embodiment. 図4は、本発明の第2の実施形態に係るシリコン精製装置を概念的に示す説明図である。FIG. 4 is an explanatory view conceptually showing the silicon purification apparatus according to the second embodiment of the present invention.

図5は、本発明の第3の実施形態に係るシリコン精製装置を概念的に示す説明図である。FIG. 5 is an explanatory diagram conceptually showing a silicon purification apparatus according to the third embodiment of the present invention. 図6は、図4のルツボ内のシリコン溶湯の液面状態を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a liquid surface state of the silicon melt in the crucible of FIG. 4.

図7は、図4のシリコン精製装置におけるシリコン精製処理の前処理及び/又は後処理のときの状態を概念的に示す説明図である。FIG. 7 is an explanatory diagram conceptually showing a state during pre-processing and / or post-processing of the silicon purification process in the silicon purification apparatus of FIG.

符号の説明Explanation of symbols

1…減圧室、1a…壁体、1b…処理室、1c…準備室、2…ルツボ、2a…開口部、3…ヒーター(加熱手段)、4…波紋形成装置(波紋誘起手段)、4a,9a…支持軸、4b…円盤(波紋形成子)、4c…振動装置(駆動手段)、5,5a,5b…真空ポンプ(減圧手段)、6…シリコン溶湯、7…真空シール、8…保温装置、8a…液面保温部、Wa…波紋、9…攪拌装置(攪拌手段)、9a…不活性ガス導入管、9b…ガス噴出孔、9c…不活性ガス、4c(9e)…駆動装置、9d…攪拌羽根、10…位置調節装置、11…ゲートバルブ、12…開閉扉、13…支持軸昇降装置、14…不純物捕捉装置(不純物捕捉手段)、15…不純物凝縮部、16…凝縮部昇降装置、17…蒸気冷却面、18…冷媒配管、19…冷媒。   DESCRIPTION OF SYMBOLS 1 ... Decompression chamber, 1a ... Wall body, 1b ... Processing chamber, 1c ... Preparation chamber, 2 ... Crucible, 2a ... Opening, 3 ... Heater (heating means), 4 ... Ripple formation device (ripple induction means), 4a, 9a ... support shaft, 4b ... disc (ripple former), 4c ... vibration device (drive means), 5,5a, 5b ... vacuum pump (pressure reduction means), 6 ... silicon melt, 7 ... vacuum seal, 8 ... heat retention device , 8a ... Liquid temperature retaining part, Wa ... Ripples, 9 ... Stirring device (stirring means), 9a ... Inert gas introduction pipe, 9b ... Gas ejection hole, 9c ... Inert gas, 4c (9e) ... Drive device, 9d DESCRIPTION OF SYMBOLS ... Stirring blade, 10 ... Position adjusting device, 11 ... Gate valve, 12 ... Opening / closing door, 13 ... Support shaft raising / lowering device, 14 ... Impurity trapping device (impurity trapping means), 15 ... Impurity condensing part, 16 ... Condensing part lifting / lowering device , 17 ... Steam cooling surface, 18 ... Refrigerant piping, 19 ... Refrigerant.

Claims (9)

減圧手段により所定の圧力以下に減圧される減圧室と、この減圧室内に配設されてシリコンを収容するルツボと、このルツボ内のシリコンを加熱する加熱手段とを備え、減圧下にシリコンを加熱して溶融し、生成したシリコン溶湯中の不純物を蒸発させて分離除去するためのシリコン精製装置において、シリコン溶湯の液面表面積を大きくする波紋誘起手段を備えていることを特徴とするシリコンの精製装置。   A decompression chamber decompressed to a predetermined pressure or less by a decompression means, a crucible disposed in the decompression chamber and containing silicon, and a heating means for heating the silicon in the crucible, and heating the silicon under reduced pressure In the silicon refining apparatus for evaporating and separating and removing impurities in the generated molten silicon, the silicon purifying is characterized by comprising ripple inducing means for increasing the liquid surface area of the molten silicon apparatus. 波紋誘起手段が、減圧室を区画する壁体を貫通して上下動可能及び/又は回転可能に配設された支持軸と、この支持軸の一端側で壁体内側のシリコン溶湯の液面付近に取り付けられ、シリコン溶湯の液面に波紋を形成せしめる波紋形成子と、上記支持軸の他端側で壁体外側に取り付けられ、支持軸を介して上記波紋形成子に上下振動及び/又は回転運動を付与する駆動手段とを有する波紋形成装置である請求項1に記載のシリコンの精製装置。   The support shaft in which the ripple inducing means is arranged to move up and down and / or rotate through the wall defining the decompression chamber, and near the liquid surface of the silicon melt inside the wall at one end of the support shaft And a ripple former that forms ripples on the surface of the molten silicon, and is attached to the outside of the wall body at the other end of the support shaft, and is vertically oscillated and / or rotated to the ripple former via the support shaft. 2. The apparatus for purifying silicon according to claim 1, wherein the apparatus is a ripple forming apparatus having a driving means for imparting motion. 駆動手段が支持軸に上下振動を付与する振動装置であって、波紋形成子がシリコン溶湯の液面付近液中に位置する円盤である請求項2に記載のシリコンの精製装置。   3. The silicon purification apparatus according to claim 2, wherein the driving means applies a vertical vibration to the support shaft, and the ripple former is a disk located in the liquid near the liquid surface of the molten silicon. シリコン溶湯の液面表面積を大きくする波紋誘起手段に加えて、シリコン溶湯の攪拌手段が設けられている請求項1〜3のいずれかに記載のシリコンの精製装置。   The silicon purifier according to any one of claims 1 to 3, wherein a stirring means for the molten silicon is provided in addition to the ripple inducing means for increasing the liquid surface area of the molten silicon. 攪拌手段が、波紋形成装置の支持軸に波紋形成子よりも先端側に取り付けられてシリコン溶湯中に位置する攪拌子と、この支持軸に正方向及び/又は逆方向の回転運動を付与する回転駆動装置とを有する攪拌装置である請求項4に記載のシリコンの精製装置。   The stirring means is attached to the support shaft of the ripple forming device on the tip side of the ripple forming element and is located in the silicon melt, and the rotation that imparts forward and / or reverse rotational motion to the support shaft. The silicon purifier according to claim 4, which is a stirring device having a driving device. シリコン溶湯の液面表面積を大きくする波紋誘起手段に加えて、シリコン溶湯の液面から蒸発する不純物を捕捉する不純物捕捉手段が設けられている請求項1〜5のいずれかに記載のシリコンの精製装置。   The silicon purification according to any one of claims 1 to 5, wherein an impurity trapping means for trapping impurities evaporating from the liquid surface of the molten silicon is provided in addition to the ripple inducing means for increasing the liquid surface area of the molten silicon. apparatus. 不純物捕捉手段が、シリコン溶湯の液面から蒸発する不純物蒸気を冷却して凝縮させる蒸気冷却面を有する不純物凝縮部を備えた不純物捕捉装置である請求項6に記載のシリコンの精製装置。   The silicon purifier according to claim 6, wherein the impurity trapping means is an impurity trapping device including an impurity condensing unit having a vapor cooling surface for cooling and condensing the impurity vapor evaporated from the liquid surface of the molten silicon. 減圧室が開閉可能なゲートバルブによって室内にルツボを収容する処理室と開閉扉を備えた準備室とに分割されており、不純物捕捉装置が不純物凝縮部とこの不純物凝縮部を減圧室の処理室と準備室との間で移動可能に保持する凝縮部昇降装置とを備えており、シリコン精製処理の操作時には、不純物凝縮部を処理室内に位置させてシリコン溶湯の液面から蒸発する不純物を捕捉し、また、シリコン精製処理の操作の前及び/又は後には、不純物凝縮部を準備室内に位置させてシリコン精製処理の前準備及び/又は後処理を行う請求項7に記載のシリコンの精製装置。   The decompression chamber is divided into a processing chamber that accommodates the crucible in the chamber by a gate valve that can be opened and closed, and a preparation chamber that includes an opening / closing door, and the impurity trapping device divides the impurity condensing portion and the impurity condensing portion into the processing chamber of the decompression chamber. And a condensing unit lifting / lowering device that is movably held between the chamber and the preparation chamber. During the operation of silicon purification, the impurity condensing unit is located in the processing chamber to capture impurities that evaporate from the surface of the molten silicon Further, before and / or after the operation of the silicon purification treatment, the silicon purification apparatus according to claim 7, wherein the impurity condensing part is located in the preparation chamber to perform the preparation and / or post-treatment of the silicon purification treatment. . 請求項1〜8のいずれかに記載のシリコン精製装置を用いてシリコン中のリン主体の不純物を除去するシリコンの精製方法であり、減圧室内を500Pa以下に減圧すると共にルツボ内のシリコンをその融点以上に加熱して溶融し、同時に波紋誘起手段によりルツボ内のシリコン溶湯の液面に波紋を形成しつつリン主体の不純物を除去することを特徴とするシリコンの精製方法。   A silicon purification method for removing impurities mainly composed of phosphorus in silicon using the silicon purification apparatus according to any one of claims 1 to 8, wherein the pressure in the vacuum chamber is reduced to 500 Pa or less and the melting point of silicon in the crucible is reduced. A method for purifying silicon characterized in that it is heated and melted as described above, and at the same time, ripples are formed on the liquid surface of the molten silicon in the crucible by means of ripple inducing means while removing phosphorus-based impurities.
JP2006010506A 2006-01-18 2006-01-18 Silicon purification apparatus and purification method Expired - Fee Related JP5069859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010506A JP5069859B2 (en) 2006-01-18 2006-01-18 Silicon purification apparatus and purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010506A JP5069859B2 (en) 2006-01-18 2006-01-18 Silicon purification apparatus and purification method

Publications (2)

Publication Number Publication Date
JP2007191342A true JP2007191342A (en) 2007-08-02
JP5069859B2 JP5069859B2 (en) 2012-11-07

Family

ID=38447333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010506A Expired - Fee Related JP5069859B2 (en) 2006-01-18 2006-01-18 Silicon purification apparatus and purification method

Country Status (1)

Country Link
JP (1) JP5069859B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004862A1 (en) * 2009-07-09 2011-01-13 シャープ株式会社 Silicon refining device and method
JP2013209280A (en) * 2012-02-28 2013-10-10 Mitsubishi Materials Corp Casting apparatus and casting method
KR102171230B1 (en) * 2020-03-24 2020-10-28 주식회사 테라테크노스 Metal-silicon oxide manufacturing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102137707B1 (en) * 2019-11-22 2020-07-27 주식회사 테라테크노스 Silicon oxide nano particle manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848514A (en) * 1994-08-04 1996-02-20 Sharp Corp Removal of phosphorus from silicon
JP2002201017A (en) * 2000-12-28 2002-07-16 Sharp Corp Method for purifying silicon melt
JP2003002629A (en) * 2001-06-21 2003-01-08 Sharp Corp Method and apparatus for purifying fused silicon
JP2005231956A (en) * 2004-02-20 2005-09-02 Nippon Steel Corp Apparatus and method of purifying silicon
JP2005239470A (en) * 2004-02-25 2005-09-08 Nippon Steel Corp Refining apparatus for silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848514A (en) * 1994-08-04 1996-02-20 Sharp Corp Removal of phosphorus from silicon
JP2002201017A (en) * 2000-12-28 2002-07-16 Sharp Corp Method for purifying silicon melt
JP2003002629A (en) * 2001-06-21 2003-01-08 Sharp Corp Method and apparatus for purifying fused silicon
JP2005231956A (en) * 2004-02-20 2005-09-02 Nippon Steel Corp Apparatus and method of purifying silicon
JP2005239470A (en) * 2004-02-25 2005-09-08 Nippon Steel Corp Refining apparatus for silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004862A1 (en) * 2009-07-09 2011-01-13 シャープ株式会社 Silicon refining device and method
JP2011016691A (en) * 2009-07-09 2011-01-27 Sharp Corp Silicon refining apparatus and silicon refining method
CN102471072A (en) * 2009-07-09 2012-05-23 夏普株式会社 Silicon refining device and method
JP2013209280A (en) * 2012-02-28 2013-10-10 Mitsubishi Materials Corp Casting apparatus and casting method
KR102171230B1 (en) * 2020-03-24 2020-10-28 주식회사 테라테크노스 Metal-silicon oxide manufacturing apparatus

Also Published As

Publication number Publication date
JP5069859B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5100978B2 (en) Apparatus and method for dephosphorizing and purifying silicon
JP5069859B2 (en) Silicon purification apparatus and purification method
AU2009310941A1 (en) Laser refining apparatus and laser refining method
JP2007051047A (en) Silicon refining method and device using electron beam
JP4115432B2 (en) Metal purification method
JP5859577B2 (en) Silicon purification apparatus and silicon purification method
JP2007326749A (en) Silicon purification apparatus and silicon purification method
JP3537798B2 (en) Electron beam melting method for metallic materials
JP4672559B2 (en) Silicon purification apparatus and silicon purification method
JP2010116310A (en) Refining method and refiner of silicon
JP4722403B2 (en) Silicon purification apparatus and silicon purification method
JP2013249235A (en) Method for producing fluoride salts, and fluoride salts, and method for producing silicon using the fluoride salts
WO2012086544A1 (en) Silicon preparation method and preparation apparatus, silicon wafer, and solar cell panel
JP2009520664A (en) Silicon production method suitable for solar heat utilization purposes
JP2007314403A (en) Silicon purification method and apparatus
JP5099774B2 (en) Method and apparatus for purifying silicon
JP2960652B2 (en) Method and apparatus for purifying high purity metal
JP2008163417A (en) Method for refining aluminum, refining device therefor, and aluminum lump
JP5879369B2 (en) Silicon purification apparatus and silicon purification method
JP2012025646A (en) Silicon refining unit and method for refining silicon
JP5275213B2 (en) Separation and recovery apparatus and separation and recovery method
JP2010208862A (en) Method for refining silicon
JP2012076944A (en) Silicon refining apparatus and silicon refining method
JP2019052350A (en) Metal titanium manufacturing device and method
KR101367844B1 (en) Method for refining metal silicon

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees