JP2007191057A - Refrigeration system, and air conditioner for vehicle - Google Patents

Refrigeration system, and air conditioner for vehicle Download PDF

Info

Publication number
JP2007191057A
JP2007191057A JP2006011378A JP2006011378A JP2007191057A JP 2007191057 A JP2007191057 A JP 2007191057A JP 2006011378 A JP2006011378 A JP 2006011378A JP 2006011378 A JP2006011378 A JP 2006011378A JP 2007191057 A JP2007191057 A JP 2007191057A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
internal heat
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006011378A
Other languages
Japanese (ja)
Inventor
Shunji Komatsu
俊二 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006011378A priority Critical patent/JP2007191057A/en
Publication of JP2007191057A publication Critical patent/JP2007191057A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration system and an air conditioner for a vehicle using CO<SB>2</SB>refrigerant, which quickly respond to a heating requirement. <P>SOLUTION: The refrigeration system (2) makes the CO<SB>2</SB>refrigerant circulate in a circulation passage. In a heating mode, a compressor (18), an internal heat exchanger (22), an evaporator (26), and an expansion valve (42) are arranged in the circulation passage in the flowing direction of the refrigerant, and further a return passage (36) is provided so as to connect the down-stream side of the internal heat exchanger with the inside of the compressor by bypassing the evaporator and the expansion valve. The refrigerant in the internal heat exchanger flowing from the compressor toward the internal heat exchanger is cooled by the decompression of the refrigerant in the return passage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍システムに関し、より詳しくは、CO冷媒を使用した冷凍システム及びこの冷凍システムを採用した車両用空調装置に関する。 The present invention relates to a refrigeration system, and more particularly to a refrigeration system using a CO 2 refrigerant and a vehicle air conditioner that employs the refrigeration system.

近年、地球環境への配慮から、地球温暖化係数の小さな値を有する冷媒を用いた冷凍システムの開発が進められている。この種の冷媒の一例としては自然系のCO(炭酸)ガスがある。
ここで、CO冷媒を用いた冷凍システムの冷房時には、圧縮機から吐出される冷媒が一方の室内熱交換器を経て四方弁に至り、室外熱交換器、膨張弁及び他方の室内熱交換器を経て再び四方弁に至って圧縮機に戻る。これに対し、暖房時には、圧縮機から吐出される冷媒は、一方の室内熱交換器を経て四方弁に至り、他方の室内熱交換器、膨張弁及び室外熱交換器を経て再び四方弁に至って圧縮機に戻る技術が開示されている(例えば、特許文献1参照)。
特開2004−218858号公報
In recent years, a refrigeration system using a refrigerant having a small global warming potential has been developed in consideration of the global environment. An example of this type of refrigerant is natural CO 2 (carbonic acid) gas.
Here, at the time of cooling of the refrigeration system using the CO 2 refrigerant, the refrigerant discharged from the compressor reaches the four-way valve through one indoor heat exchanger, and the outdoor heat exchanger, the expansion valve, and the other indoor heat exchanger After that, it reaches the four-way valve again and returns to the compressor. On the other hand, at the time of heating, the refrigerant discharged from the compressor reaches the four-way valve through one indoor heat exchanger, and reaches the four-way valve again through the other indoor heat exchanger, the expansion valve, and the outdoor heat exchanger. A technique for returning to the compressor is disclosed (for example, see Patent Document 1).
JP 2004-218858 A

ところで、上記冷凍システムを採用した車両用空調装置では、エンジンの排熱、つまり、ラジエータの冷却水によって熱源を得ている。
しかしながら、近年のエンジン効率の上昇を鑑みると、この冷却水を熱源として利用できるのか否かについての懸念がある。冷却水の温度上昇が緩やかになるように抑えられているからである。このように、上記従来の技術では暖房要求に速やかに対応する点については依然として課題が残されている。
By the way, in the vehicle air conditioner adopting the refrigeration system, the heat source is obtained by exhaust heat of the engine, that is, cooling water of the radiator.
However, in view of the recent increase in engine efficiency, there is a concern as to whether this cooling water can be used as a heat source. This is because the temperature rise of the cooling water is suppressed so as to be moderate. As described above, the above-described conventional technology still has a problem with respect to promptly responding to a heating request.

また、上記従来の技術では、冷房用のサイクルと暖房用のサイクルとの各流れ方向が四方弁を介して逆転されている点にも留意しなければならない。流れ方向を逆転させると、冷凍システムの簡素化が図り難いとの問題がある。
本発明は、このような課題に鑑みてなされたもので、暖房要求に速やかに対応することができるCO冷媒を用いた冷凍システム及び車両用空調装置を提供することを目的とする。
In addition, in the above-described conventional technology, it should be noted that the flow directions of the cooling cycle and the heating cycle are reversed via the four-way valve. If the flow direction is reversed, there is a problem that it is difficult to simplify the refrigeration system.
The present invention has such has been made in view of the problems, and an object thereof is to provide a refrigeration system and a vehicle air-conditioning apparatus using CO 2 refrigerant can be quickly respond to heating demand.

上記の目的を達成すべく、請求項1記載の冷凍システムは、CO冷媒が循環経路内を循環する冷凍システムであって、暖房時の循環経路には、冷媒の流れ方向でみて圧縮機、内部熱交換器、蒸発器及び膨張弁が順次介挿されており、蒸発器及び膨張弁をバイパスして内部熱交換器の下流側と圧縮機内とを接続するリターン経路を備え、リターン経路内の冷媒が減圧されて圧縮機から内部熱交換器に向かう内部熱交換器内の冷媒を冷却していることを特徴としている。 To achieve the above object, a refrigeration system according to claim 1, wherein is the refrigeration system CO 2 refrigerant circulates through the circulation path, the circulation path of the heating, the compressor as viewed in the flow direction of the refrigerant, An internal heat exchanger, an evaporator, and an expansion valve are sequentially inserted, and a return path that bypasses the evaporator and the expansion valve and connects the downstream side of the internal heat exchanger and the inside of the compressor is provided. The refrigerant is depressurized, and the refrigerant in the internal heat exchanger from the compressor to the internal heat exchanger is cooled.

また、請求項2記載の発明では、冷房時の前記循環経路には、冷媒の流れ方向でみて圧縮機、ガスクーラ、膨張弁及び蒸発器が順次介挿されており、暖房時の循環経路のうち、圧縮機と内部熱交換器とを接続する経路は、ガスクーラをバイパスしていることを特徴としている。
更に、請求項3記載の発明では、車両用空調装置が上述の冷凍システムを備えたことを特徴としている。
In the invention according to claim 2, a compressor, a gas cooler, an expansion valve, and an evaporator are sequentially inserted in the circulation path during cooling in view of the refrigerant flow direction. The path connecting the compressor and the internal heat exchanger bypasses the gas cooler.
Furthermore, the invention according to claim 3 is characterized in that a vehicle air conditioner includes the above-described refrigeration system.

本発明は、CO冷媒を用いた冷凍システムでは圧縮機から吐出される冷媒温度が高いことに着目したものである。
そして、請求項1記載の本発明の冷凍システムによれば、蒸発器の上流側には自冷式の内部熱交換器が配置され、この内部熱交換器が加熱能力を調整している。換言すれば、圧縮機、当該内部熱交換器、蒸発器、膨張弁及びリターン経路によって暖房用のサイクルが形成されている。従って、CO冷媒を用いた冷凍システムにおける暖房が従来に比して速やかに実施される。
The present invention focuses on the fact that the refrigerant temperature discharged from the compressor is high in the refrigeration system using the CO 2 refrigerant.
And according to the refrigerating system of this invention of Claim 1, the self-cooling type internal heat exchanger is arrange | positioned in the upstream of an evaporator, and this internal heat exchanger adjusts heating capability. In other words, a heating cycle is formed by the compressor, the internal heat exchanger, the evaporator, the expansion valve, and the return path. Therefore, heating in the refrigeration system using the CO 2 refrigerant is performed more quickly than in the past.

また、リターン経路内の冷媒は内部熱交換器内の冷媒の冷却に用いられ、このリターン経路を介して圧縮機に戻されることから、圧縮機から吐出される冷媒量の変更が可能となり、加熱能力の調整に寄与する。
また、請求項2記載の発明によれば、CO冷媒を用いた冷凍システムにおいて、圧縮機の吐出側がガスクーラ側と内部熱交換器側との2つに分岐され、冷房用のサイクルと暖房用のサイクルとが同じ流れ方向に向けて形成されている。よって、冷凍システムの簡素化が達成可能となる。
In addition, the refrigerant in the return path is used for cooling the refrigerant in the internal heat exchanger, and is returned to the compressor via the return path, so that the amount of refrigerant discharged from the compressor can be changed, and heating is performed. Contributes to capacity adjustment.
According to the invention described in claim 2, in the refrigeration system using the CO 2 refrigerant, the discharge side of the compressor is branched into two, the gas cooler side and the internal heat exchanger side, and the cooling cycle and the heating Are formed in the same flow direction. Therefore, simplification of the refrigeration system can be achieved.

更に、請求項3記載の発明によれば、乗員の暖房要求に速やかに対応でき、空調装置の信頼性向上が図られるし、また、車両用空調装置に自然系冷媒であるCO冷媒を用いれば、環境負荷の低減に大きく貢献する。 Furthermore, according to the third aspect of the present invention, it is possible to promptly respond to a passenger's heating request, improve the reliability of the air conditioner, and use CO 2 refrigerant, which is a natural refrigerant, for the vehicle air conditioner. This will greatly contribute to the reduction of environmental impact.

以下、図面により本発明の実施形態について説明する。
図1は、車両用空調装置を構成する一実施例の冷凍システムの概略を示し、この冷凍システム2は車室4内を所望の設定温度にて冷暖房する。冷凍システム2は、自然系冷媒であるCO冷媒(以下、単に冷媒と称す)を循環させる冷凍回路6を有し、この冷凍回路6はエンジン10を備えたエンジンルーム8から車室4に亘って設置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a refrigeration system according to an embodiment constituting an air conditioner for a vehicle. The refrigeration system 2 cools and heats the interior of a passenger compartment 4 at a desired set temperature. The refrigeration system 2 includes a refrigeration circuit 6 that circulates a CO 2 refrigerant (hereinafter simply referred to as a refrigerant), which is a natural refrigerant, and the refrigeration circuit 6 extends from an engine room 8 including an engine 10 to a vehicle compartment 4. Installed.

冷凍回路6は上記冷媒の循環経路11〜15を有し、これら循環経路11〜15はその大部分が車両のエンジンルーム8内に配置されているが、その一部は車両の車室4内にも延びている。詳しくは、循環経路11〜15には、上流側からコンプレッサ(圧縮機)18、ガスクーラ20、内部熱交換器22、冷房時減圧弁(膨張弁)24、エバポレータ(蒸発器)26及び暖房時の第1減圧弁(膨張弁)42が順次介挿されている。そして、これら圧縮機18、ガスクーラ20、内部熱交換器22、冷房時減圧弁24及び第1減圧弁42はエンジンルーム8内に配置され、蒸発器26は車室4内に配置されている。なお、図中、参照符号11,12,13,14は上記循環経路の往路部分を形成し、参照符号15は上記循環経路の復路部分を形成している。   The refrigeration circuit 6 has circulation paths 11 to 15 for the refrigerant, and most of the circulation paths 11 to 15 are arranged in the engine room 8 of the vehicle, but a part of the circulation paths 11 to 15 is in the vehicle compartment 4 of the vehicle. It also extends. Specifically, in the circulation paths 11 to 15, the compressor (compressor) 18, the gas cooler 20, the internal heat exchanger 22, the cooling pressure reducing valve (expansion valve) 24, the evaporator (evaporator) 26, and the heating path are connected from the upstream side. A first pressure reducing valve (expansion valve) 42 is sequentially inserted. The compressor 18, the gas cooler 20, the internal heat exchanger 22, the cooling pressure reducing valve 24 and the first pressure reducing valve 42 are disposed in the engine room 8, and the evaporator 26 is disposed in the vehicle compartment 4. In the figure, reference numerals 11, 12, 13, and 14 form the forward path portion of the circulation path, and reference numeral 15 forms the return path portion of the circulation path.

ここで、本実施形態の冷凍システム2には、冷房用のサイクルと暖房用のサイクルとがいずれも同じ流れ方向に向けて形成されている。
具体的には、前者の冷房用のサイクルは、圧縮機18、ガスクーラ20、冷房時減圧弁24及び蒸発器26によって構成されており、この冷房時減圧弁24は、冷房時には小さな開度に調整されて冷媒の減圧を実施するのに対し、暖房時には全開に調整される。また、循環経路11のガスクーラ20の入口側には冷房時の第1開閉弁34が配設され、循環経路15の圧縮機18の入口側にも冷房時の第2開閉弁40が配設されている。これら開閉弁34、40は、冷房時には全開に調整されるのに対し、暖房時には全閉に調整される。上述した冷房時減圧弁24や開閉弁34、40の開度は車室4内に配置されたコントローラ(ECU)50からの信号によって調整されている。
Here, in the refrigeration system 2 of the present embodiment, both the cooling cycle and the heating cycle are formed in the same flow direction.
Specifically, the former cooling cycle includes a compressor 18, a gas cooler 20, a cooling pressure reducing valve 24, and an evaporator 26. The cooling pressure reducing valve 24 is adjusted to a small opening during cooling. In contrast, the refrigerant is depressurized, while the heating is adjusted to full open. In addition, a first on-off valve 34 for cooling is provided on the inlet side of the gas cooler 20 in the circulation path 11, and a second on-off valve 40 for cooling is provided on the inlet side of the compressor 18 in the circulation path 15. ing. These on-off valves 34 and 40 are adjusted to be fully open during cooling, while being fully closed during heating. The opening degree of the above-described cooling pressure reducing valve 24 and on-off valves 34 and 40 is adjusted by a signal from a controller (ECU) 50 disposed in the passenger compartment 4.

そして、圧縮機18はエンジン10の駆動力によって作動され、ガス状態の冷媒を吸い込んで圧縮し、高温高圧ガス状態にして循環経路11に吐出する。つまり、圧縮機18は冷媒を圧縮しながら冷媒の流動を生成させる。
また、ガスクーラ20は図示しない送風ファン及び車両前方からの風を受けて、その内部を流れる冷媒を空冷する。更に、ガスクーラ20からの高圧状態の冷媒は、冷房時減圧弁24を通じて蒸発器26に供給され、蒸発器26内にて低温低圧のガス状態となる。この蒸発器26の下流側は、循環経路15を介して圧縮機18に接続されており、低温低圧ガス状態の冷媒が圧縮機18に吸引される。
The compressor 18 is operated by the driving force of the engine 10, sucks and compresses the refrigerant in the gas state, and discharges it to the circulation path 11 in a high-temperature and high-pressure gas state. That is, the compressor 18 generates a refrigerant flow while compressing the refrigerant.
Further, the gas cooler 20 receives a wind fan (not shown) and wind from the front of the vehicle, and air-cools the refrigerant flowing through the gas cooler 20. Further, the high-pressure refrigerant from the gas cooler 20 is supplied to the evaporator 26 through the cooling pressure reducing valve 24, and enters a low-temperature and low-pressure gas state in the evaporator 26. The downstream side of the evaporator 26 is connected to the compressor 18 via the circulation path 15, and the refrigerant in a low-temperature and low-pressure gas state is sucked into the compressor 18.

一方、後者の暖房用のサイクルは、圧縮機18、内部熱交換器22、蒸発器26及び暖房時の第1減圧弁42によって構成されており、この第1減圧弁42は小さな開度に常時固定されている。
より具体的には、循環経路11の圧縮機18の出口側は分岐され、この循環経路11と循環経路12とはバイパス経路(経路)30を介して接続されており、このバイパス経路30がガスクーラ20をバイパスして圧縮機18と内部熱交換器22とを接続している。また、バイパス経路30には暖房時の開閉弁32が配設され、この開閉弁32は、ECU50からの信号によって暖房時には全開に調整されるのに対し、冷房時には全閉に調整される。
On the other hand, the latter heating cycle is composed of the compressor 18, the internal heat exchanger 22, the evaporator 26, and the first pressure reducing valve 42 at the time of heating. It is fixed.
More specifically, the outlet side of the compressor 18 in the circulation path 11 is branched, and the circulation path 11 and the circulation path 12 are connected via a bypass path (path) 30, and the bypass path 30 is connected to the gas cooler. The compressor 18 and the internal heat exchanger 22 are connected by bypassing 20. The bypass path 30 is provided with an opening / closing valve 32 for heating. The opening / closing valve 32 is adjusted to be fully open during heating by a signal from the ECU 50, while being adjusted to fully closed during cooling.

上述した内部熱交換器22は、暖房時のみ機能し、自冷式の内部熱交換器として構成されている。すなわち、この内部熱交換器22は循環経路12と循環経路13との間に配設されており、循環経路13の内部熱交換器22の出口側は分岐され、リターン経路36に接続されている。
より詳しくは、このリターン経路36には、暖房時の第2減圧弁38が配設され、この第2減圧弁38は、ECU50からの信号によって暖房時には小さな開度に調整されて冷媒の減圧を実施するのに対し、冷房時には全閉に調整される。そして、暖房時に減圧された冷媒は内部熱交換器22内に戻り、圧縮機18から内部熱交換器22に向かう冷媒の流れに対向してこの循環経路12からの冷媒を冷却している。また、リターン経路36は、蒸発器26及び暖房時の第1減圧弁42をバイパスして内部熱交換器22と圧縮機18とを接続し、内部熱交換器22にて冷却に用いられたリターン経路36内の冷媒は、圧縮機18の中間圧力室に達する。
The internal heat exchanger 22 described above functions only during heating, and is configured as a self-cooling internal heat exchanger. That is, the internal heat exchanger 22 is disposed between the circulation path 12 and the circulation path 13, and the outlet side of the internal heat exchanger 22 of the circulation path 13 is branched and connected to the return path 36. .
More specifically, the return path 36 is provided with a second pressure reducing valve 38 during heating. The second pressure reducing valve 38 is adjusted to a small opening degree during heating by a signal from the ECU 50 to reduce the pressure of the refrigerant. In contrast, it is fully closed during cooling. The refrigerant decompressed during heating returns into the internal heat exchanger 22 and cools the refrigerant from the circulation path 12 in opposition to the refrigerant flow from the compressor 18 toward the internal heat exchanger 22. The return path 36 bypasses the evaporator 26 and the first pressure reducing valve 42 during heating, connects the internal heat exchanger 22 and the compressor 18, and the return used for cooling in the internal heat exchanger 22. The refrigerant in the path 36 reaches the intermediate pressure chamber of the compressor 18.

また、暖房時の第1減圧弁42は、冷房時の第2開閉弁40をバイパスして蒸発器26の出口側と圧縮機18の入口側とを接続している。これにより、内部熱交換器22からの高圧状態の冷媒は蒸発器26に供給され、蒸発器26内にて比較的高温高圧のガス状態となり、循環経路15の暖房時の第1減圧弁42を通じて圧縮機18に供給され、低温低圧ガス状態の冷媒が圧縮機18に吸引される。   The first pressure reducing valve 42 during heating bypasses the second opening / closing valve 40 during cooling and connects the outlet side of the evaporator 26 and the inlet side of the compressor 18. As a result, the high-pressure refrigerant from the internal heat exchanger 22 is supplied to the evaporator 26, becomes a relatively high-temperature and high-pressure gas state in the evaporator 26, and passes through the first pressure-reducing valve 42 during heating of the circulation path 15. The refrigerant in the low-temperature and low-pressure gas state is supplied to the compressor 18 and sucked into the compressor 18.

上述した冷凍システム2によれば、冷房時には圧縮機18の作動に伴い、蒸発器26からの冷媒を圧縮する。つまり、この圧縮機18の断熱圧縮作用により、比エンタルピ及び圧力がそれぞれ増加して図2の一点鎖線で示される如く点Aから点Dまで変化する。そして、循環経路11を介して高温高圧ガス状態の冷媒をガスクーラ20に供給する。
この冷媒はガスクーラ20内で冷却され、比エンタルピが減少して図2の点Dから点Eまで等圧変化し、循環経路12、13を介して冷房時減圧弁24に供給される。そして、冷房時減圧弁24の絞り作用による膨張を受け、その比エンタルピを一定に維持しながら圧力が減少して図2の点Eから点Fまで変化し、循環経路14を介して蒸発器26内に噴出させる。次いで、冷媒の気化熱により蒸発器26の周囲の空気が冷却される。そして、冷気が車室4内に送り込まれ、車室4内の冷房が行われる。蒸発器26内の冷媒は、循環経路15を介して圧縮機18に戻り、この後、圧縮機18により再度圧縮され、循環経路11〜15を上述した如く循環する。
According to the refrigeration system 2 described above, the refrigerant from the evaporator 26 is compressed along with the operation of the compressor 18 during cooling. That is, due to the adiabatic compression action of the compressor 18, the specific enthalpy and the pressure each increase and change from a point A to a point D as indicated by a one-dot chain line in FIG. 2. Then, a refrigerant in a high-temperature and high-pressure gas state is supplied to the gas cooler 20 through the circulation path 11.
This refrigerant is cooled in the gas cooler 20, the specific enthalpy is reduced, the pressure is changed from point D to point E in FIG. 2, and is supplied to the cooling pressure reducing valve 24 via the circulation paths 12 and 13. Then, the expansion is caused by the throttling action of the pressure reducing valve 24 at the time of cooling, and the pressure decreases while maintaining the specific enthalpy constant, and changes from the point E to the point F in FIG. Erupt inside. Next, the air around the evaporator 26 is cooled by the heat of vaporization of the refrigerant. Then, the cool air is sent into the passenger compartment 4 and the passenger compartment 4 is cooled. The refrigerant in the evaporator 26 returns to the compressor 18 via the circulation path 15 and is then compressed again by the compressor 18 and circulates in the circulation paths 11 to 15 as described above.

一方、暖房時には、リターン経路36からの冷媒と循環経路15からの冷媒とを合わせた流量の冷媒が圧縮機18で圧縮され、この断熱圧縮作用により、比エンタルピ及び圧力がそれぞれより一層増加して図2の実線で示される如く点Aから点Bまで変化する。そして、循環経路11及びバイパス経路30を介して高温高圧ガス状態の冷媒を内部熱交換器22に供給する。   On the other hand, at the time of heating, the refrigerant having a flow rate that combines the refrigerant from the return path 36 and the refrigerant from the circulation path 15 is compressed by the compressor 18, and the specific enthalpy and pressure are further increased by the adiabatic compression action. It changes from point A to point B as shown by the solid line in FIG. Then, the high-temperature and high-pressure gas state refrigerant is supplied to the internal heat exchanger 22 through the circulation path 11 and the bypass path 30.

この冷媒は内部熱交換器22内で冷却される。つまり、リターン経路36との冷媒との間で熱交換され、比エンタルピが減少する。詳しくは、図3に示されるように、内部熱交換器22の稼働割合が増加するに伴って暖房の加熱能力が減少することから、所望の加熱能力を得るべく暖房時の第2減圧弁38の開度を調整して内部熱交換器22を稼働させる。   This refrigerant is cooled in the internal heat exchanger 22. That is, heat is exchanged with the refrigerant in the return path 36, and the specific enthalpy is reduced. Specifically, as shown in FIG. 3, the heating capacity of the heating decreases as the operating ratio of the internal heat exchanger 22 increases, so that the second pressure reducing valve 38 during heating to obtain a desired heating capacity. The internal heat exchanger 22 is operated by adjusting the opening degree.

次いで、内部熱交換器22からの冷媒は蒸発器26に供給され、暖気が車室4内に送り込まれて車室4内の暖房が行われると、比エンタルピが更に減少して図3の点Bから点Cまで等圧変化する。そして、循環経路15を介して第1減圧弁42に供給され、第1減圧弁42の絞り作用による膨張を受け、その比エンタルピを一定に維持しながら圧力が減少して図2の点Cから点Aまで変化し、圧縮機18により再度圧縮され、循環経路11〜15を上述した如く循環する。   Next, when the refrigerant from the internal heat exchanger 22 is supplied to the evaporator 26 and warm air is sent into the passenger compartment 4 to heat the passenger compartment 4, the specific enthalpy is further reduced and the point of FIG. The isobaric change from B to point C. Then, the pressure is supplied to the first pressure reducing valve 42 via the circulation path 15, receives expansion due to the throttling action of the first pressure reducing valve 42, and the pressure decreases while maintaining its specific enthalpy constant, from point C in FIG. 2. It changes to point A, is compressed again by the compressor 18, and circulates in the circulation paths 11-15 as mentioned above.

以上のように、本発明は、CO冷媒を用いた冷凍システム2では圧縮機18から吐出される冷媒温度が高いことに着目したものである。
そして、本実施形態の冷凍システム2によれば、蒸発器26の上流側には自冷式の内部熱交換器22が配置され、この内部熱交換器22が暖房の加熱能力を調整している。換言すれば、圧縮機18、当該内部熱交換器22、蒸発器26、暖房時の第1減圧弁42及び、暖房時の第2減圧弁38を有するリターン経路36によってホットガスサイクルが形成されている。従って、上述した一方や他方の室内熱交換器、室外熱交換器を設けることなく、しかも、ラジエータの冷却水によって熱源を得ることなく、モリエール線図では図2の点ABCの如く小さな三角形状のサイクルが形成され、CO冷媒を用いた冷凍システムにおける暖房が従来に比して速やかに実施される。この結果、乗員の暖房要求に速やかに対応でき、空調装置の信頼性向上が図られる。
As described above, the present invention focuses on the fact that the refrigerant temperature discharged from the compressor 18 is high in the refrigeration system 2 using the CO 2 refrigerant.
And according to the refrigerating system 2 of this embodiment, the self-cooling type internal heat exchanger 22 is arrange | positioned in the upstream of the evaporator 26, and this internal heat exchanger 22 adjusts the heating capability of heating. . In other words, a hot gas cycle is formed by the return path 36 having the compressor 18, the internal heat exchanger 22, the evaporator 26, the first pressure reducing valve 42 during heating, and the second pressure reducing valve 38 during heating. Yes. Therefore, without providing one or the other indoor heat exchanger or outdoor heat exchanger as described above, and without obtaining a heat source by the cooling water of the radiator, the Mollier chart has a small triangular shape as indicated by a point ABC in FIG. A cycle is formed, and heating in the refrigeration system using the CO 2 refrigerant is performed more quickly than in the past. As a result, it is possible to quickly respond to the passenger's heating request and to improve the reliability of the air conditioner.

また、リターン経路36内の冷媒は内部熱交換器22内の冷媒の冷却に用いられ、このリターン経路36を介して圧縮機18に戻されることから、サイクル内に導入された冷媒量は同じであっても、上記モリエール線図では図2の点Aから点Bの如く、圧縮機18から吐出される冷媒量の増量が可能となり、加熱能力の調整に寄与する。なお、本実施形態のように、リターン経路36を圧縮機18の中間圧室に接続すると、サイクルの効率向上に寄与するが、リターン経路36は圧縮機18の入口側、つまり、循環経路15に接続しても良い。   The refrigerant in the return path 36 is used for cooling the refrigerant in the internal heat exchanger 22 and is returned to the compressor 18 through the return path 36, so that the amount of refrigerant introduced into the cycle is the same. Even if it exists, the amount of refrigerant | coolants discharged from the compressor 18 can be increased like the point A to the point B of FIG. 2, and it contributes to adjustment of a heating capability. As in this embodiment, connecting the return path 36 to the intermediate pressure chamber of the compressor 18 contributes to improving the efficiency of the cycle, but the return path 36 is connected to the inlet side of the compressor 18, that is, to the circulation path 15. You may connect.

更に、図3に示されるように、内部熱交換器22の稼動割合と加熱能力との関係に基づき、この内部熱交換器22が上記サイクル内で加熱能力を最適値に調整しているので、過剰加熱が防止される。
更にまた、CO冷媒を用いた冷凍システム2において、圧縮機18の吐出側がガスクーラ20側と内部熱交換器22側との2つに分岐され、流れ方向を逆転させることなく、冷房用と暖房用の各サイクルとが同じ流れ方向に向けて形成されている。よって、四方弁が不要になり、冷凍システムの簡素化が達成可能となる。
Furthermore, as shown in FIG. 3, based on the relationship between the operating ratio of the internal heat exchanger 22 and the heating capacity, the internal heat exchanger 22 adjusts the heating capacity to the optimum value within the cycle. Overheating is prevented.
Furthermore, in the refrigeration system 2 using the CO 2 refrigerant, the discharge side of the compressor 18 is branched into two parts, a gas cooler 20 side and an internal heat exchanger 22 side, so that the cooling direction and the heating are not reversed without reversing the flow direction. Each cycle is formed in the same flow direction. Therefore, a four-way valve is not necessary, and simplification of the refrigeration system can be achieved.

また、車両用空調装置に自然系冷媒であるCO冷媒を用いれば、環境負荷の低減に大きく貢献する。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では車両用空調装置に具体化された例を示しているが、本発明の冷凍システムは、業務用空調装置、家庭用ヒートパイプ、給湯器、暖房器等の如く、CO冷媒を用いた冷凍・空調サイクル全般に適用可能である。
Further, by using the CO 2 refrigerant is a natural refrigerant in an air conditioning system for vehicles, greatly contributes to reducing environmental impact.
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, although the above embodiment shows an example embodied in a vehicle air conditioner, the refrigeration system of the present invention is a CO 2 like a commercial air conditioner, a household heat pipe, a water heater, a heater, etc. Applicable to all refrigeration and air conditioning cycles using refrigerants.

本発明の一実施例に係る冷凍システムの概略構成図である。1 is a schematic configuration diagram of a refrigeration system according to an embodiment of the present invention. 図1の冷凍システムにおけるCO冷媒の概略的なモリエール線図である。FIG. 2 is a schematic Mollier diagram of a CO 2 refrigerant in the refrigeration system of FIG. 1. 図1の内部熱交換器による加熱能力の調整を説明する図である。It is a figure explaining adjustment of the heating capability by the internal heat exchanger of FIG.

符号の説明Explanation of symbols

2 冷凍システム
11,12,13,14,15 循環経路
18 圧縮機
20 ガスクーラ
22 内部熱交換器
24 冷房時減圧弁(膨張弁)
26 蒸発器
30 バイパス経路(経路)
36 リターン経路
38 暖房時の第2減圧弁
42 暖房時の第1減圧弁(膨張弁)
2 Refrigeration system 11, 12, 13, 14, 15 Circulation path 18 Compressor 20 Gas cooler 22 Internal heat exchanger 24 Cooling pressure reducing valve (expansion valve)
26 Evaporator 30 Bypass route (route)
36 Return path 38 Second pressure reducing valve during heating 42 First pressure reducing valve (expansion valve) during heating

Claims (3)

CO冷媒が循環経路内を循環する冷凍システムであって、
暖房時の前記循環経路には、前記冷媒の流れ方向でみて圧縮機、内部熱交換器、蒸発器及び膨張弁が順次介挿されており、
前記蒸発器及び前記膨張弁をバイパスして前記内部熱交換器の下流側と前記圧縮機内とを接続するリターン経路を備え、該リターン経路内の冷媒が減圧されて前記圧縮機から前記内部熱交換器に向かう該内部熱交換器内の冷媒を冷却していることを特徴とする冷凍システム。
CO 2 refrigerant is a refrigeration system that circulates through the circulation path,
In the circulation path during heating, a compressor, an internal heat exchanger, an evaporator and an expansion valve are sequentially inserted in the flow direction of the refrigerant,
A return path that bypasses the evaporator and the expansion valve and connects the downstream side of the internal heat exchanger and the inside of the compressor, and the refrigerant in the return path is depressurized to exchange the internal heat from the compressor A refrigeration system that cools the refrigerant in the internal heat exchanger toward the refrigerator.
冷房時の前記循環経路には、前記冷媒の流れ方向でみて前記圧縮機、ガスクーラ、膨張弁及び前記蒸発器が順次介挿されており、
前記暖房時の前記循環経路のうち、前記圧縮機と前記内部熱交換器とを接続する経路は、前記ガスクーラをバイパスしていることを特徴とする請求項1に記載の冷凍システム。
The compressor, a gas cooler, an expansion valve, and the evaporator are sequentially inserted in the circulation path during cooling in the flow direction of the refrigerant,
2. The refrigeration system according to claim 1, wherein a path connecting the compressor and the internal heat exchanger out of the circulation path during the heating bypasses the gas cooler.
請求項1又は2に記載の冷凍システムを備えたことを特徴とする車両用空調装置。   A vehicle air conditioner comprising the refrigeration system according to claim 1.
JP2006011378A 2006-01-19 2006-01-19 Refrigeration system, and air conditioner for vehicle Pending JP2007191057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011378A JP2007191057A (en) 2006-01-19 2006-01-19 Refrigeration system, and air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011378A JP2007191057A (en) 2006-01-19 2006-01-19 Refrigeration system, and air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2007191057A true JP2007191057A (en) 2007-08-02

Family

ID=38447084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011378A Pending JP2007191057A (en) 2006-01-19 2006-01-19 Refrigeration system, and air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2007191057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188141A (en) * 2017-05-02 2018-11-29 ハンオン システムズ Vehicular air-conditioning system and operation method for the same
CN112654514A (en) * 2018-09-21 2021-04-13 三电控股株式会社 Air conditioning system for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135221A (en) * 1992-10-27 1994-05-17 Nippondenso Co Ltd Air conditioner
JPH11344263A (en) * 1997-11-14 1999-12-14 Tgk Co Ltd Refrigerating cycle with bypass tube
JP2002106978A (en) * 2000-10-03 2002-04-10 Tgk Co Ltd Refrigerating cycle with bypass conduit
JP2003065616A (en) * 2001-06-11 2003-03-05 Daikin Ind Ltd Refrigerant circuit
JP2005214550A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135221A (en) * 1992-10-27 1994-05-17 Nippondenso Co Ltd Air conditioner
JPH11344263A (en) * 1997-11-14 1999-12-14 Tgk Co Ltd Refrigerating cycle with bypass tube
JP2002106978A (en) * 2000-10-03 2002-04-10 Tgk Co Ltd Refrigerating cycle with bypass conduit
JP2003065616A (en) * 2001-06-11 2003-03-05 Daikin Ind Ltd Refrigerant circuit
JP2005214550A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188141A (en) * 2017-05-02 2018-11-29 ハンオン システムズ Vehicular air-conditioning system and operation method for the same
US11214126B2 (en) 2017-05-02 2022-01-04 Hanon Systems Air conditioning system of a motor vehicle and method for operating the air conditioning system
CN112654514A (en) * 2018-09-21 2021-04-13 三电控股株式会社 Air conditioning system for vehicle

Similar Documents

Publication Publication Date Title
EP2900497B1 (en) Heat pump system for vehicle
KR100357988B1 (en) Heat pump type air conditioning apparatus
JP2011178372A (en) Air conditioner for vehicle and operation switching method thereof
CN103597296A (en) Freezing cycle
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
US20070144201A1 (en) Air conditioning systems for vehicles
JP2009190579A (en) Air conditioning system
JP2016097817A5 (en)
JP2007051841A (en) Refrigeration cycle device
CN111251809B (en) Thermal management system of vehicle and vehicle
JP4930214B2 (en) Refrigeration cycle equipment
JP5096956B2 (en) Air conditioning system for vehicles
JP4023320B2 (en) Heater for air conditioner
JP4651452B2 (en) Refrigeration air conditioner
JP2008267653A (en) Refrigerating device
JP2007205596A (en) Air conditioner
JP2011225174A (en) Vehicular air conditioner
CN111251812B (en) Thermal management system of vehicle and vehicle
JP2007191057A (en) Refrigeration system, and air conditioner for vehicle
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
JP6507453B2 (en) Vehicle air conditioner
JP2022117351A (en) temperature control system
JP5729082B2 (en) Refrigeration cycle equipment
JP2020192965A (en) Heat exchange system
JP2014113837A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330