JP2007190863A - Injection molding apparatus and material feeding method therefor - Google Patents

Injection molding apparatus and material feeding method therefor Download PDF

Info

Publication number
JP2007190863A
JP2007190863A JP2006012803A JP2006012803A JP2007190863A JP 2007190863 A JP2007190863 A JP 2007190863A JP 2006012803 A JP2006012803 A JP 2006012803A JP 2006012803 A JP2006012803 A JP 2006012803A JP 2007190863 A JP2007190863 A JP 2007190863A
Authority
JP
Japan
Prior art keywords
injection molding
molding apparatus
cylinder
resin
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006012803A
Other languages
Japanese (ja)
Other versions
JP4084388B2 (en
Inventor
Manabu Sasane
学 笹根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006012803A priority Critical patent/JP4084388B2/en
Publication of JP2007190863A publication Critical patent/JP2007190863A/en
Application granted granted Critical
Publication of JP4084388B2 publication Critical patent/JP4084388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding apparatus which can solve various problems caused by insufficient deaeration, by enabling an increase in the deaeration effect of removing gas, air and moisture, generated during melting, from a screw, and a material feeding method for the injection molding apparatus. <P>SOLUTION: When the material is fed into the cylinder of the injection molding apparatus, it is fed toward a lower part or a side surface part of the cylinder, and the direction of the deaeration is set as a direction opposite to a material feeding direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、射出成形装置及びその材料供給方法に関し、特に脱気効果を向上させるようにした射出成形装置及びその材料供給方法に関するものである。   The present invention relates to an injection molding apparatus and a material supply method thereof, and more particularly, to an injection molding apparatus and a material supply method thereof that improve the deaeration effect.

従来この種の装置として、下記特許文献1〜3が知られる。これら文献によれば、加熱シリンダ内で溶融した樹脂に発生するガスや水分をシリンダの外へ排出するために、シリンダ内の減圧度を真空装置でコントロールする方法や樹脂の供給量を調節する方法、またシリンダ内へ不活性ガスを注入する方法や空気の供給量を調節して最適な堆積量を持って射出成形を行う方法やそれらの組合せが既に知られている。   Conventionally, the following Patent Documents 1 to 3 are known as this type of apparatus. According to these documents, in order to discharge gas and moisture generated in the resin melted in the heating cylinder to the outside of the cylinder, a method of controlling the degree of decompression in the cylinder with a vacuum device and a method of adjusting the supply amount of the resin In addition, a method of injecting an inert gas into a cylinder, a method of performing injection molding with an optimum deposition amount by adjusting an air supply amount, and combinations thereof are already known.

以下に、図3を用いて説明する。図3に示す射出成形機のスクリュ1はシリンダ2の内部に挿入されていて材料タンク5から供給される樹脂4は、自重落下により供給されホッパ3に溜められる。溜められる樹脂量は、予め供給センサ6でコントロールされ、ホッパ3下部のシャッタを通って上述のスクリュ1の表面に送られる。送られた樹脂は、射出装置の加熱筒シリンダ内でスクリュの回転により溶融混練される。   This will be described below with reference to FIG. The screw 1 of the injection molding machine shown in FIG. 3 is inserted into the cylinder 2 and the resin 4 supplied from the material tank 5 is supplied by its own weight fall and stored in the hopper 3. The amount of resin to be stored is controlled in advance by the supply sensor 6 and is sent to the surface of the screw 1 through the shutter below the hopper 3. The sent resin is melted and kneaded by the rotation of the screw in the heating cylinder of the injection device.

このとき、ホッパ3から流入したエア、樹脂に含まれている水分または加熱筒シリンダ内で溶けた樹脂中の添加剤が熱により気化して生じたガスなどを除去するために、従来は、(1)ホッパ3上部へ開放する方法、(2)スクリュ1の後方にわずかな隙間を開けて逃がす方法、(3)(1)の改良型としてホッパ3内に連結されている真空ポンプ7または吸引ブロアで吸引される方法などが採られている。
特開2002−347073号公報 特開2001−71363号公報 特開2002−144386号公報
At this time, in order to remove the gas flowing in from the hopper 3, the moisture contained in the resin, or the gas generated by the heat of the additive in the resin melted in the heating cylinder, it has been conventionally ( 1) Method of opening to the upper part of the hopper 3, (2) Method of opening a slight gap behind the screw 1, (3) Vacuum pump 7 connected to the hopper 3 or suction as an improved version of (1) A method of sucking with a blower is employed.
JP 2002-347073 A JP 2001-71363 A JP 2002-144386 A

しかし、これらの技術では、飽くまでも樹脂の供給口と真空装置などの減圧口が同一または近接しているために、脱気しようとするガス・エアの流れが供給樹脂により妨げられやすく、溶融時のガス・エア及び水分8の脱気を充分に行うことができない。そのため、射出されるパージ樹脂の品質を検査しなければならず、また射出成形後の成形品の品質を検査しなければならないなどから、成形品や樹脂別の最適条件、例えばスクリュの回転数による樹脂の送り量のバラツキを抑え、最適減圧度を調整するなどに時間を費やす、いわゆるトライ・アンド・エラーによる樹脂のムダが多く生じていた。   However, in these technologies, the resin supply port and the pressure reducing port such as a vacuum apparatus are the same or close to each other, so the flow of gas / air to be degassed is easily hindered by the supplied resin, Gas / air and moisture 8 cannot be sufficiently deaerated. For this reason, the quality of the injected purge resin must be inspected, and the quality of the molded product after injection molding must be inspected. There was a lot of waste of resin due to so-called try-and-error, which takes time to suppress the variation in the feed amount of the resin and adjust the optimum pressure reduction degree.

一方、材料供給と減圧度の調整のみでは十分な効果が得られ難く、自動成形では溶融の時に蒸発気化したガスや水分が次ぎから次ぎへと送られてくる樹脂に再び付着するなど成形品への不良を誘発していた。   On the other hand, it is difficult to obtain a sufficient effect only by adjusting the material supply and the degree of decompression. In automatic molding, the gas and moisture evaporated during melting are reattached to the resin sent from one to the next. It was inducing a defect.

例えば各設備メーカや射出機メーカでは、除去のベント効果を上げるために、市販のフィーダ装置による樹脂の適量供給や真空ポンプまたは吸引ブロアによる減圧量を調整しているが、この調整においては以下の問題点が生じていた。   For example, in order to increase the removal venting effect, each equipment manufacturer and injection machine manufacturer adjust the amount of resin supplied by a commercially available feeder and the amount of pressure reduced by a vacuum pump or suction blower. There was a problem.

(1)樹脂供給と真空接続口が同一のため、溶融樹脂から発生したガスがスクリュ後方に流入すれば、再び樹脂に付着する現象が発生していた。
(2)また、上述のガスが前方へ流入すれば、金型(不図示)のキャビティ表面に汚れとして表れ、成形品に悪影響を及ぼしていた。
(3)溶融樹脂からのガスが主要因となり、スクリュ外部とシリンダ内部の異常腐食及び摩耗につながっていた。
(4)真空度の調整しだいでは、スクリュ内の酸化による樹脂の焼けや炭化物の黒点を誘発していた。
(1) Since the resin supply and the vacuum connection port are the same, if the gas generated from the molten resin flows into the rear of the screw, the phenomenon of adhering to the resin again occurred.
(2) Further, if the above-mentioned gas flows forward, it appears as dirt on the cavity surface of a mold (not shown), which adversely affects the molded product.
(3) Gas from the molten resin was the main factor, leading to abnormal corrosion and wear outside the screw and inside the cylinder.
(4) Depending on the degree of vacuum adjustment, resin burns due to oxidation in the screw and black spots of carbides were induced.

本発明は上述した従来の問題点を解決するためになされたものであり、溶融時に発生するガス、エア及び水分のスクリュからの脱気効果を向上させることができる射出成形装置及び射出成形方法を得ることを目的としている。   The present invention has been made to solve the above-described conventional problems, and an injection molding apparatus and an injection molding method capable of improving the effect of degassing gas, air and moisture generated during melting from a screw. The purpose is to get.

上述した課題を解決するため、本発明は、材料をシリンダに供給する供給方向をシリンダの下方部または側面部とし、脱気を前記供給方向に対向する方向としてなる。   In order to solve the above-described problems, the present invention sets the supply direction for supplying the material to the cylinder as a lower part or a side part of the cylinder, and deaeration as the direction facing the supply direction.

この射出成形装置において、前記材料の供給を気密に区画した定量フィーダにより行うことを特徴としている。   In this injection molding apparatus, the material is supplied by a quantitative feeder that is airtightly partitioned.

さらに、前記材料の供給口と真空装置接続口を分離させ、シリンダ内部と前記材料の供給部を気密にしていることを特徴としている。   Further, the material supply port and the vacuum device connection port are separated, and the inside of the cylinder and the material supply unit are hermetically sealed.

また、材料供給用フィーダスクリュの回転数をサーボモータ又は可変速モータにて、スクリュの最適可塑化時間に合わせるフィーダ調整手段を備えることを特徴としている。   Further, the present invention is characterized in that a feeder adjusting means for adjusting the rotation speed of the material supply feeder screw to the optimum plasticizing time of the screw by a servo motor or a variable speed motor is provided.

また、本発明は、射出成形装置へ材料を供給する射出成形装置の材料供給方法であって、材料をシリンダに供給する供給方向をシリンダの下方部または側面部とし、脱気を前記供給方向に対向する方向としてなるものである。   The present invention is also a material supply method for an injection molding apparatus that supplies material to an injection molding apparatus, wherein a supply direction for supplying the material to the cylinder is a lower part or a side part of the cylinder, and deaeration is performed in the supply direction. This is the direction in which they face each other.

本発明によれば、溶融時に発生するガス、エア及び水分のスクリュからの脱気効果を向上させることができ、もって、脱気が不十分なために生じる種々の問題を解決することができるという効果を奏する。   According to the present invention, it is possible to improve the degassing effect of the gas, air and moisture generated during melting from the screw, thereby solving various problems caused by insufficient degassing. There is an effect.

以下、本発明の一実施形態を図1を用いて説明する。
本実施の形態は、樹脂の供給を従来のホッパ3部からの自重落下ではなくシリンダの下方部または側面部より供給することと、またその供給量をスクリュ1の後退速度に合わせ定量フィーダスクリュ9をサーボモータ13または可変速モータで最適供給量をコントロールする。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
In this embodiment, the resin is supplied from the lower part or the side part of the cylinder instead of falling from its own weight from the conventional hopper 3 part, and the supply amount is matched with the retreating speed of the screw 1 to determine the feeder feeder 9 The optimum supply amount is controlled by the servo motor 13 or the variable speed motor.

これにより、従来のスクリュ溝部が満杯状態での輸送ではなく、ガス・エア及び水分が抜けやすい状態である所謂飢餓状態での輸送を保つことで、溶融時に発生するガス、エア及び水分をスクリュ1後方より抜けやすくしている。   Thus, the gas, air, and moisture generated at the time of melting can be kept in the screw 1 by maintaining the transportation in the so-called starvation state in which the gas, air, and moisture are easily removed, instead of the transportation in the conventional screw groove portion being full. It is easier to pull out from behind.

更にシリンダの上部に接続している真空ポンプによって高減圧で吸引することで従来不可能とされていた脱気効果を上げることを可能にしている。   Furthermore, it is possible to increase the deaeration effect which has been impossible in the past by suctioning at a high pressure by a vacuum pump connected to the upper part of the cylinder.

本実施の形態では、樹脂の供給をシリンダ2の下部側から行なうために、真空用シールで気密を保っている定量フィーダシリンダ10内に定量フィーダスクリュ9が回転可能に挿入されている。この定量フィーダスクリュ9はサーボモータ13を介して回転することによって樹脂の輸送作用いわゆる樹脂の推進力を利用して樹脂の供給を可能にしている。これによりスクリュ1への樹脂量を最適にコントロールしている。   In the present embodiment, since the resin is supplied from the lower side of the cylinder 2, the metering feeder screw 9 is rotatably inserted into the metering feeder cylinder 10 which is kept airtight with a vacuum seal. The quantitative feeder screw 9 is rotated via a servo motor 13 so that the resin can be supplied by utilizing a resin transporting action, that is, a resin propulsion force. As a result, the amount of resin applied to the screw 1 is optimally controlled.

またスクリュ1内部の樹脂の供給量を可能な限り少なくし、安定な飢餓の状態を保つことでシリンダ2内を最適供給状態としている。この最適供給状態を利用してシリンダ上部よりフィルタ11、真空ポンプ接続部12を介して、真空ポンプ7で高減圧を可能にしている。このシリンダ内の高減圧は、溶融する樹脂から排出されるガス、エア及び水分を従来よりも効率よく脱気することを可能している。   Further, the amount of resin supplied in the screw 1 is reduced as much as possible, and the inside of the cylinder 2 is brought into an optimum supply state by maintaining a stable starvation state. Using this optimum supply state, the vacuum pump 7 enables high pressure reduction from the upper part of the cylinder via the filter 11 and the vacuum pump connection part 12. This high pressure reduction in the cylinder makes it possible to degas the gas, air and moisture discharged from the molten resin more efficiently than before.

次に射出成形方法の一例を、図2に示すフローチャートを用いて説明する。
まず、オペレータ(成形技術者)は、通常の成形条件に基づいて成形工程を繰り返し、成形品の品質と可塑化時間が冷却時間より短いことと可塑化時間が安定していることを確認する。例えば成形開始から20ショットの成形を行なった後(ステップ1)、そのときオペレータは、定量フィーダスクリュ9の回転数を速くし、従来と同様にスクリュ1の溝が樹脂で満杯状態の供給とする。
Next, an example of the injection molding method will be described with reference to the flowchart shown in FIG.
First, the operator (molding engineer) repeats the molding process based on normal molding conditions, and confirms that the quality and plasticization time of the molded product are shorter than the cooling time and that the plasticization time is stable. For example, after 20 shots have been formed from the start of molding (step 1), the operator then increases the rotational speed of the quantitative feeder screw 9 so that the groove of the screw 1 is filled with resin as in the conventional case. .

続いて、オペレータは実際の『冷却時間−可塑化時間≦1sec』との関係を確認する(ステップ2)。そこで例えば、可塑化時間が冷却時間よりかなり短い場合は、冷却時間完了前に可塑化時間が終わるように、定量フィーダスクリュ9の回転数を、射出成形機に備えられている演算処理機能により自動的に遅くする。   Subsequently, the operator confirms the actual relationship of “cooling time−plasticizing time ≦ 1 sec” (step 2). Therefore, for example, when the plasticizing time is considerably shorter than the cooling time, the rotation speed of the quantitative feeder screw 9 is automatically adjusted by the arithmetic processing function provided in the injection molding machine so that the plasticizing time ends before the cooling time is completed. Slow down.

例えば、演算処理機能にオペレータにより任意に設定されている冷却時間が15secで、現状の定量フィーダスクリュ9の回転数100r/min時のスクリュ1の実可塑化時間が10.5secであれば、実可塑化時間が冷却時間に対してほぼ等しくなるように次サイクルのスクリュ回転数を例えば70r/minとする信号が自動的にサーボモータ13に送られ、実可塑化時間が15secに等しくなるように調整が繰り返し行なわれる(ステップ3)。   For example, if the cooling time arbitrarily set by the operator in the arithmetic processing function is 15 seconds and the actual plasticizing time of the screw 1 when the current quantitative feeder screw 9 has a rotation speed of 100 r / min is 10.5 seconds, A signal for setting the screw rotation speed of the next cycle to, for example, 70 r / min so that the plasticizing time becomes substantially equal to the cooling time is automatically sent to the servo motor 13 so that the actual plasticizing time becomes equal to 15 sec. Adjustment is repeated (step 3).

また上述の過程で、シリンダ2上部より常に真空ポンプ7にて高減圧を行なうことで、実成形にマッチさせた最適のエア・水分及び溶融時のガスの除去を可能にしている。   Further, in the above-described process, high pressure reduction is always performed from the upper part of the cylinder 2 by the vacuum pump 7, thereby making it possible to remove the optimum air / moisture matched with actual molding and gas at the time of melting.

以上を踏まえ、『冷却時間−可塑化時間≦1sec』の関係が基本動作となり、随時スクリュ1の可塑化時間(スクリュの後退時間)と定量フィーダスクリュ9の回転数が自動的にコントロールされ連続成形を行なう(ステップ4)。   Based on the above, the basic operation is the relationship of “cooling time−plasticizing time ≦ 1 sec”, and the plasticizing time of the screw 1 (screw retreating time) and the rotational speed of the quantitative feeder screw 9 are automatically controlled as needed for continuous molding. (Step 4).

以上のように本発明によれば、樹脂の供給をシリンダの下方部または側面部から定量フィーダによって行なうことと、またシリンダ上部より真空ポンプまたは吸引ブロアにて高減圧を保つ構成にしているため、従来発生している下記の成形不良の削減を可能にしている。   As described above, according to the present invention, the resin is supplied from the lower part or the side part of the cylinder by the quantitative feeder, and the high pressure reduction is maintained by the vacuum pump or the suction blower from the upper part of the cylinder. This makes it possible to reduce the following molding defects.

(1)樹脂の供給をシリンダの下方部または側面部から気密を保った定量フィーダで行なうとともに、樹脂の供給口と異なる方向から高減圧の真空装置で脱気を行うことにより、供給する樹脂がシリンダ内で溶融して発生する水分やガスに接触しないことで、金型へのガスの流入が防止できるとともに、高い脱気効果を得ることができる。 (1) Resin is supplied by a quantitative feeder that keeps airtight from the lower part or side part of the cylinder, and the resin to be supplied is degassed by a high-pressure reduction vacuum device from a direction different from the resin supply port. By not contacting with moisture or gas generated by melting in the cylinder, inflow of gas to the mold can be prevented and a high deaeration effect can be obtained.

(2)定量フィーダによる樹脂供給から、樹脂のせん断による局部発熱を防止し、ガスの発生を最小限にすることにより、異常腐食及び磨耗を防止することができる。 (2) Abnormal corrosion and wear can be prevented by preventing local heat generation due to resin shearing and minimizing gas generation from resin supply by a quantitative feeder.

(3)(2)と同様の効果より、樹脂の焼けや炭化物の黒点が低減する。 (3) Resin burns and carbide black spots are reduced by the same effects as in (2).

(4)金型へのガスの流入を防止できるため金型メンテナンス回数の低減を図れる。 (4) Since the gas can be prevented from flowing into the mold, the number of mold maintenance can be reduced.

(5)シリンダ内の酸素量が低減することでも成形品の樹脂焼けや炭化物による黒点の生成を防止できる。 (5) Reduction of the amount of oxygen in the cylinder can also prevent formation of black spots due to resin burning of the molded product and carbide.

(6)真空ポンプによる高減圧によって、未乾燥樹脂(事前乾燥が必要な樹脂)の使用を可能とすることができ、乾燥工程や管理の削減を図れる。 (6) It is possible to use undried resin (resin that needs to be pre-dried) by high pressure reduction by a vacuum pump, and it is possible to reduce the drying process and management.

(7)スクリュ1の後退速度に合わせた定量フィーダスクリュ9の樹脂供給をサーボモータ13または可変速モータでコントロールしているため、可塑化時間のバラツキによる成形品重量バラツキや寸法バラツキの低減を図れる。 (7) Since the resin supply of the quantitative feeder screw 9 in accordance with the retraction speed of the screw 1 is controlled by the servo motor 13 or the variable speed motor, it is possible to reduce the variation in the molded product weight and the dimensional variation due to the plasticizing time variation. .

(8)樹脂の飢餓供給によりスクリュ1を回転させるために、樹脂の固体層での抵抗を最小限にすることで、回転トルクが下がり省エネ効果も期待できる。 (8) Since the screw 1 is rotated by the starvation supply of the resin, by minimizing the resistance in the solid layer of the resin, the rotational torque is reduced and an energy saving effect can be expected.

本発明の一実施形態である射出成形装置の概略構成図である。It is a schematic block diagram of the injection molding apparatus which is one Embodiment of this invention. 本発明の射出成形制御方法のフローチャートの一例である。It is an example of the flowchart of the injection molding control method of this invention. 従来の射出成形機の射出成形装置に用いられている真空ポンプと材料供給装置の一例の概略構成図である。It is a schematic block diagram of an example of the vacuum pump and material supply apparatus which are used for the injection molding apparatus of the conventional injection molding machine.

符号の説明Explanation of symbols

1 スクリュ、2 シリンダ、3 ホッパ、4 樹脂(材料)、5 材料タンク、6 供給センサ、7 真空ポンプ、8 ガス・エア及び水分、9 定量フィーダスクリュ、10 定量フィーダシリンダ、11 フィルタ、12 真空ポンプ接続部、13 サーボモータ。 1 screw, 2 cylinder, 3 hopper, 4 resin (material), 5 material tank, 6 supply sensor, 7 vacuum pump, 8 gas / air and moisture, 9 metering feeder screw, 10 metering feeder cylinder, 11 filter, 12 vacuum pump Connection part, 13 Servo motor.

Claims (5)

材料をシリンダに供給する供給方向をシリンダの下方部または側面部とし、脱気を前記供給方向に対向する方向としてなる射出成形装置。   An injection molding apparatus in which a supply direction for supplying material to a cylinder is a lower part or a side part of the cylinder, and deaeration is a direction opposite to the supply direction. 請求項1に記載の射出成形装置において、
前記材料の供給を気密に区画した定量フィーダにより行うことを特徴とする射出成形装置。
The injection molding apparatus according to claim 1,
An injection molding apparatus, wherein the material is supplied by a quantitative feeder that is airtightly partitioned.
請求項1又は請求項2に記載の射出成形装置において、
前記材料の供給口と真空装置接続口を分離させ、シリンダ内部と前記材料の供給部を気密にしていることを特徴とする射出成形装置。
In the injection molding device according to claim 1 or 2,
An injection molding apparatus, wherein the material supply port and the vacuum device connection port are separated, and the inside of the cylinder and the material supply unit are hermetically sealed.
請求項2に記載の射出成形装置において、
材料供給用フィーダスクリュの回転数をサーボモータ又は可変速モータにて、スクリュの最適可塑化時間に合わせるフィーダ調整手段を備えることを特徴とする射出成形装置。
The injection molding apparatus according to claim 2,
An injection molding apparatus comprising feeder adjusting means for adjusting a rotation speed of a material supply feeder screw to an optimum plasticizing time of a screw by a servo motor or a variable speed motor.
射出成形装置へ材料を供給する射出成形装置の材料供給方法であって、
材料をシリンダに供給する供給方向をシリンダの下方部または側面部とし、脱気を前記供給方向に対向する方向としてなる射出成形装置の材料供給方法。
A material supply method for an injection molding apparatus for supplying material to an injection molding apparatus,
A material supply method for an injection molding apparatus in which a supply direction for supplying material to a cylinder is a lower part or a side part of the cylinder, and deaeration is a direction opposite to the supply direction.
JP2006012803A 2006-01-20 2006-01-20 Injection molding apparatus and material supply method thereof Expired - Fee Related JP4084388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012803A JP4084388B2 (en) 2006-01-20 2006-01-20 Injection molding apparatus and material supply method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012803A JP4084388B2 (en) 2006-01-20 2006-01-20 Injection molding apparatus and material supply method thereof

Publications (2)

Publication Number Publication Date
JP2007190863A true JP2007190863A (en) 2007-08-02
JP4084388B2 JP4084388B2 (en) 2008-04-30

Family

ID=38446911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012803A Expired - Fee Related JP4084388B2 (en) 2006-01-20 2006-01-20 Injection molding apparatus and material supply method thereof

Country Status (1)

Country Link
JP (1) JP4084388B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502818A (en) * 2007-11-09 2011-01-27 ライストリッツ アクチェンゲゼルシャフト Screw extruder with plunger feeder
JP2011201295A (en) * 2010-03-04 2011-10-13 Fujifilm Corp Injection molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502818A (en) * 2007-11-09 2011-01-27 ライストリッツ アクチェンゲゼルシャフト Screw extruder with plunger feeder
JP2011201295A (en) * 2010-03-04 2011-10-13 Fujifilm Corp Injection molding method

Also Published As

Publication number Publication date
JP4084388B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP2011116025A (en) Degassing device of extruder and degassing method
JP4084388B2 (en) Injection molding apparatus and material supply method thereof
JP4553825B2 (en) Extrusion molding apparatus discharge amount control method and sheet-like material molded using the same
JP5138183B2 (en) Injection molding method and injection molding machine
JP2007185845A (en) Plasticizing apparatus and its control method
JPH06190891A (en) Plasticization apparatus and plasticization method using the same
JP2006035489A (en) Resin raw material feeder for synthetic resin molding machine
JP5546123B2 (en) Pre-plastic injection device
JP2006035489A5 (en)
JP4757694B2 (en) Molding apparatus and molding method
JP4087860B2 (en) Control method of injection molding machine
KR20140069891A (en) Gas venting system and method for mold
JP2010005840A (en) Method of controlling injection molding machine and injection device for injection molding machine
JP2987183B2 (en) Extrusion molding method and apparatus
JP5131836B2 (en) Plasticizing apparatus and plasticizing method
EP3075516A1 (en) Method for removing undesirable gas in injection molding machine and injection molding machine
JP2003300211A (en) Quantitative feeder mechanism and system device equipped therewith
JP2000238078A (en) Method and apparatus for molding and molding
JP4001596B2 (en) Cylinder hopper
JP2011088332A (en) Hungry molding machine
JP6804674B1 (en) Injection molding machine and injection molding method
JPH10146837A (en) Resin material feed device for molding machine
JP2007313769A (en) Molding machine
JP4297889B2 (en) Hungry injection molding method and hungry injection molding apparatus
JP2014083769A (en) Screen changer and preliminary charging method of screen changer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees