JP2007189897A - Method for controlling ac motor - Google Patents

Method for controlling ac motor Download PDF

Info

Publication number
JP2007189897A
JP2007189897A JP2007106665A JP2007106665A JP2007189897A JP 2007189897 A JP2007189897 A JP 2007189897A JP 2007106665 A JP2007106665 A JP 2007106665A JP 2007106665 A JP2007106665 A JP 2007106665A JP 2007189897 A JP2007189897 A JP 2007189897A
Authority
JP
Japan
Prior art keywords
motor
voltage
constant
time
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106665A
Other languages
Japanese (ja)
Other versions
JP4501955B2 (en
Inventor
Keijiro Sakai
慶次郎 酒井
Kenichi Onda
謙一 恩田
Hiroyuki Tomita
浩之 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007106665A priority Critical patent/JP4501955B2/en
Publication of JP2007189897A publication Critical patent/JP2007189897A/en
Application granted granted Critical
Publication of JP4501955B2 publication Critical patent/JP4501955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an AC motor control method, which accurately measures the primary resistance in a motor that affects the vector control by a large amount and obtains precision vector control characteristic, even when the motor temperature changes. <P>SOLUTION: This method measures the secondary time constant and the inertial moment of the motor, prior to operation, and calculates the DC excitation time Tset, based on them. To quickly decelerate and stop the AC motor, this method makes a constant DC current flow via an inverter for a Tset time, beginning when a deceleration command reaches the proximity of stoppage frequency. In addition, primary resistance is obtained in the motor, from the ratio of the motor voltage that is to be applied to the motor current. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は交流電動機を可変速制御するインバータ装置を用いて電動機定数を自動測定するオートチューニング機能を含んだ交流電動機の制御方法に関する。   The present invention relates to a control method for an AC motor including an auto-tuning function for automatically measuring a motor constant using an inverter device for variable speed control of the AC motor.

誘導電動機を可変速制御する汎用インバータ等では、低速時の高始動トルクや速度変動率低減が要求されている。この要求に対応するため誘導電動機の励磁分電流を一定に制御し、トルク電流に比例した滑り周波数を与えて速度制御する速度センサを用いない速度センサレスベクトル制御や速度センサを用いたベクトル制御が普及している。このような制御において、電動機定数のインピーダンス電圧降下を補償する必要がある。そこで、インバータを用いて実際の1次抵抗や2次抵抗等電動機定数を測定するオートチューニング処理を行い、測定した値を基にベクトル制御を行っている。又、電動機定数のうち、1次抵抗と2次抵抗は電動機の温度により数十%は変化する。このため運転中常時、測定するのが望ましい。しかし、測定時間がかかることから従来は、例えば特開平5−297079 号記載のように起動前やモータ停止後測定している。又、1次抵抗と2次抵抗の測定方法として例えば特開平6−59000号と特開平6−98595号に記載されている。一般的にはインバータから直流電圧を与えてモータ捲き線に直流電流を流し、直流電圧と直流電流の比から1次抵抗r1を測定している(直流励磁による測定)。又、2次抵抗r2はインバータから単相交流電圧を与えてモータ捲き線に交流電流を流し、有効パワーと交流電流の値から1次+2次の合成抵抗(r1+r2)を測定する(単相交流励磁による測定)。次に、この値
(r1+r2)から直流励磁により測定したr1を減じてr2を求める。なお、これらの測定時間は数秒位かかるのが一般的である。
In general-purpose inverters and the like for variable speed control of induction motors, high starting torque at low speed and reduction in speed fluctuation rate are required. In order to meet this requirement, speed sensorless vector control without using a speed sensor that controls the excitation current of the induction motor to be constant and gives a slip frequency proportional to the torque current to control the speed and vector control using the speed sensor have become widespread. is doing. In such control, it is necessary to compensate for the impedance voltage drop of the motor constant. Therefore, auto-tuning processing is performed to measure the motor constants such as actual primary resistance and secondary resistance using an inverter, and vector control is performed based on the measured values. Of the motor constants, the primary resistance and the secondary resistance vary by several tens of percent depending on the temperature of the motor. For this reason, it is desirable to always measure during operation. However, since it takes a long time to measure, conventionally, measurement is performed before starting or after stopping the motor as described in JP-A-5-297079, for example. Further, methods for measuring the primary resistance and the secondary resistance are described, for example, in JP-A-6-59000 and JP-A-6-98595. In general, a DC voltage is applied from an inverter, a DC current is passed through the motor winding, and the primary resistance r1 is measured from the ratio of the DC voltage and the DC current (measurement by DC excitation). The secondary resistor r2 applies a single-phase AC voltage from the inverter, causes an AC current to flow through the motor winding, and measures the primary + secondary combined resistance (r1 + r2) from the values of effective power and AC current (single-phase AC). Measurement by excitation). Next, r2 is obtained by subtracting r1 measured by DC excitation from this value (r1 + r2). Note that these measurement times generally take several seconds.

速度センサレスや速度センサ付きのベクトル制御運転時において、起動時毎測定する場合、起動直前のモータ温度で測定するので正確なモータ定数を測定できる。このため負荷に対する速度変動が小さい等速度制御特性が良くなると言うメリットがある。しかし、起動指令後短時間で測定しないと加速が遅れるため問題となり用途が限定されると考えられる。一方、速度センサレスベクトル制御運転後オートチューニング処理を行う場合は、次に起動するまである程度時間的に余裕があるので色々な用途に適用できる。しかし、従来例はモータが停止後インバータ電圧を加えて電動機定数測定動作を開始している。汎用インバータの場合、一般的に速度指令が停止周波数に到達したらインバータのゲート電圧を遮断する。しかし負荷の慣性のため電動機はしばらく回転する。慣性モーメントが大きい場合は特に停止するまでに時間がかかる。また、速度センサが付いていない汎用インバータの場合、電動機が停止したかどうかの判断が非常に難しいと言う問題がある。   When measuring at the time of start-up at the time of vector control operation without a speed sensor or with a speed sensor, it is possible to measure an accurate motor constant because it is measured at the motor temperature immediately before the start-up. For this reason, there is an advantage that the constant speed control characteristic with a small speed fluctuation with respect to the load is improved. However, if measurement is not performed in a short time after the start command, acceleration will be delayed, which may cause a problem and limited applications. On the other hand, when performing the auto-tuning process after the speed sensorless vector control operation, there is a certain amount of time until the next start-up, which can be applied to various applications. However, in the conventional example, the motor constant measurement operation is started by applying the inverter voltage after the motor is stopped. In the case of a general-purpose inverter, generally the gate voltage of the inverter is cut off when the speed command reaches the stop frequency. However, the motor rotates for a while due to the inertia of the load. When the moment of inertia is large, it takes time to stop. Further, in the case of a general-purpose inverter without a speed sensor, there is a problem that it is very difficult to determine whether or not the motor has stopped.

そこで、本発明の目的はベクトル制御に大きく影響する電動機の1次抵抗を汎用的に精度良く測定し、電動機温度が変化した場合でも精度良いベクトル制御特性が得られる交流電動機の制御方法を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for controlling an AC motor that can accurately measure a primary resistance of a motor that greatly affects vector control on a general-purpose basis, and that can provide accurate vector control characteristics even when the motor temperature changes. There is.

上記目的を達成するための第1の手段として、交流電動機を減速停止する際、速度指令又はインバータ周波数が停止周波数付近に到達した時点から、インバータにより電動機捲き線に一定の直流電流が所望の時間流れるように電圧を加え、この直流励磁処理を行うことで電動機にブレーキトルクを発生させると共に、電動機に加える電圧と電動機に流れる電流の比から電動機の1次抵抗を測定するようにした。又、測定した電動機定数を基にベクトル制御を行うようにした。   As a first means for achieving the above object, when the AC motor is decelerated and stopped, a constant DC current is applied to the motor winding line by the inverter for a desired time from when the speed command or the inverter frequency reaches near the stop frequency. By applying a voltage so as to flow and performing this direct current excitation process, a brake torque is generated in the motor, and the primary resistance of the motor is measured from the ratio of the voltage applied to the motor and the current flowing in the motor. Also, vector control was performed based on the measured motor constant.

第2の手段として電動機捲き線に一定の直流電流を流す直流励磁時間を、ベクトル制御運転前の電動機定数測定により、負荷の慣性モーメントJや電動機の2次時定数T2を測定しておき、これらの値を基に直流励磁の時間を計算し、JやT2に応じて直流励磁の時間を可変するようにした。   As a second means, a DC excitation time for applying a constant DC current to the motor winding line is measured, and the inertia moment J of the load and the secondary time constant T2 of the motor are measured by measuring the motor constant before the vector control operation. The DC excitation time was calculated based on the value of, and the DC excitation time was varied according to J and T2.

第3の手段として電動機捲き線に一定の直流電流を流して、電動機定数を測定中にベクトル制御起動指令(正転又は逆転のスイッチオン操作)が入力された場合、電動機定数測定動作を中止し、ベクトル制御運転に切り替え加速することにした。   As a third means, when a constant DC current is passed through the motor winding line and a vector control start command (forward or reverse switch-on operation) is input while measuring the motor constant, the motor constant measurement operation is stopped. Then, we decided to accelerate by switching to vector control operation.

本発明によれば、減速停止する毎に、負荷の慣性モーメントと電動機の2次時定数を考慮した時間,停止周波数付近から直流励磁処理を行う。これにより電動機を早めに停止させるのと併用して、電動機に加える電圧指令と電動機電流から1次抵抗r1を精度良く測定できると言う効果がある。この結果、色々な慣性負荷をもつ用途に対応して最適な時間で測定できるため汎用性があると言う効果もある。また、この測定値を用いてベクトル制御するので精度良いベクトル制御が得られると言う効果がある。   According to the present invention, every time the vehicle is decelerated and stopped, the DC excitation process is performed from the vicinity of the stop frequency and the time considering the moment of inertia of the load and the secondary time constant of the motor. Accordingly, there is an effect that the primary resistance r1 can be accurately measured from the voltage command applied to the motor and the motor current in combination with stopping the motor early. As a result, the measurement can be performed in an optimum time corresponding to the application having various inertia loads, so that there is an effect that there is versatility. In addition, since vector control is performed using this measurement value, there is an effect that accurate vector control can be obtained.

以下、本発明の一実施例を図面に基づいて説明する。図1において、交流電源1は整流回路2と平滑コンデンサ3を介して直流電源に変換される。また、通常のベクトル制御運転時はインバータ入力電圧Vdcをインバータ4によりPWM制御することで交流電圧を作り、これにより誘導電動機5は可変速制御される。また、1チップマイコンを用いた制御装置6のソフト構成として速度指令パターン発生及び起動,停止判断手段7と速度センサレスベクトル制御手段8とオートチューニング処理手段9から構成されている。速度指令パターン発生及び起動,停止判断手段7では、目標速度指令fnと停止周波数指令(始動周波数相当)fsと加減速レート設定値を基に速度指令f1* の加減速パターンを発生している。また、正転,逆転の起動指令や運転停止指令を基にベクトル制御やモータ定数を測定するオートチューニング運転の起動,停止指令を出力している。次に、速度センサレスベクトル制御手段8は速度指令f1* に従い加減速する。この場合、1次抵抗r1など各種の電動機定数と電動機電流検出器10の出力を基に速度制御を行う。また、速度センサレスベクトル制御手段8では誘導電動機5の誘起電圧が一定になるように1次側インピーダンスによる電圧降下を補償して電動機の1次電圧指令を出力する。更に、トルクに寄与する電流に比例した滑り周波数を与えて1次周波数を制御するもので1次電圧ベクトルの大きさと1次周波数指令に基づいてPWM信号(ゲート信号)を出力し、ゲート回路11を介してインバータ4を制御している。これにより、速度指令f1* に実速度がほぼ追従して制御される。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, an AC power source 1 is converted into a DC power source through a rectifier circuit 2 and a smoothing capacitor 3. Further, during normal vector control operation, the inverter input voltage Vdc is PWM controlled by the inverter 4 to generate an AC voltage, whereby the induction motor 5 is controlled at a variable speed. The software configuration of the control device 6 using a one-chip microcomputer includes a speed command pattern generation / start / stop determination means 7, a speed sensorless vector control means 8, and an auto tuning processing means 9. The speed command pattern generation and start / stop judgment means 7 generates a speed command f1 * acceleration / deceleration pattern based on the target speed command fn, stop frequency command (equivalent to start frequency) fs, and acceleration / deceleration rate set value. It also outputs start and stop commands for auto tuning operation that measures vector control and motor constants based on forward and reverse start commands and operation stop commands. Next, the speed sensorless vector control means 8 accelerates or decelerates according to the speed command f1 * . In this case, speed control is performed based on various motor constants such as the primary resistance r1 and the output of the motor current detector 10. Further, the speed sensorless vector control means 8 compensates the voltage drop due to the primary impedance so that the induced voltage of the induction motor 5 becomes constant, and outputs the primary voltage command of the motor. Furthermore, the primary frequency is controlled by giving a slip frequency proportional to the current contributing to the torque, and a PWM signal (gate signal) is output based on the magnitude of the primary voltage vector and the primary frequency command, and the gate circuit 11 The inverter 4 is controlled via As a result, the actual speed is controlled so as to substantially follow the speed command f1 * .

次に、オートチューニング処理9では運転前に1回のみ測定する電動機定数測定処理と運転後の減速停止毎に測定する1次抵抗測定処理に分けられ、これらの処理はインバータ4を制御して誘導電動機5に直流電圧や単相交流電圧を与えて電流検出器10の出力値
iu,iwなどから誘導電動機5の電機定数を求めている。
Next, the auto-tuning process 9 is divided into a motor constant measurement process that measures only once before driving and a primary resistance measurement process that measures every deceleration stop after driving. These processes are induced by controlling the inverter 4. A DC voltage or a single-phase AC voltage is applied to the electric motor 5 to determine the electrical constant of the induction motor 5 from the output values iu, iw of the current detector 10.

以下、本発明の主要部を図2から図5を用いて詳細に説明する。図2に運転前のオートチューニング処理のフローチャートを示す。まず、特開平6−98595号記載の単相交流励磁法により電動機の有効パワーと電動機電流の大きさから1次+2次の合成抵抗(r1+
r2)を求める。次に、特許公報第2580101 号記載の直流励磁法を基本として1次抵抗
r1を求める。そこで、(r1+r2)測定値からr1測定値を減じて2次抵抗r2を求める。次に、特開平6−265607 号記載の方法により定常運転を行い、インバータ出力電圧と有効電流と無効電流からモータの自己インダクタンスL2を求める。次に、特開昭61−88780号 記載の方法により加減速運転を行い、電動機+負荷の慣性モーメントJを測定する。
Hereinafter, the main part of the present invention will be described in detail with reference to FIGS. FIG. 2 shows a flowchart of the auto-tuning process before operation. First, the primary + secondary combined resistance (r1 +) is calculated from the effective power of the motor and the magnitude of the motor current by the single-phase AC excitation method described in JP-A-6-98595.
r2) is obtained. Next, the primary resistance r1 is obtained based on the DC excitation method described in Japanese Patent Publication No. 2580101. Therefore, the secondary resistance r2 is obtained by subtracting the r1 measurement value from the (r1 + r2) measurement value. Next, steady operation is performed by the method described in JP-A-6-265607, and the self-inductance L2 of the motor is obtained from the inverter output voltage, effective current, and reactive current. Next, acceleration / deceleration operation is performed by the method described in JP-A-61-88780, and the moment of inertia J of the motor and the load is measured.

以上の測定動作が終了した後、直流励磁時間Tset を計算する。Tset は電動機2次時定数T2=L2/r2と慣性モーメントJから決めている。図4の制御ブロック図で詳細は述べるが直流励磁の電流制御を開始してから電動機2次時定数T2の約4倍位は電動機に印加する電圧が定常状態にならないためT2による直流励磁時間TsetA を数1で近似する。   After the above measurement operation is completed, the DC excitation time Tset is calculated. Tset is determined from the motor secondary time constant T2 = L2 / r2 and the moment of inertia J. As will be described in detail in the control block diagram of FIG. 4, since the voltage applied to the motor does not reach a steady state, the DC excitation time TsetA by T2 is about 4 times the secondary time constant T2 of the motor after the DC excitation current control is started. Is approximated by Equation (1).

(数1)
TsetA ≒4×T2
次に、停止周波数fsにおける速度から電動機が停止時間するまでの推定時間Tstopを数2で近似する。
(Equation 1)
TsetA ≒ 4 x T2
Next, the estimated time Tstop from the speed at the stop frequency fs until the motor stops is approximated by Equation 2.

(数2)
Tstop≒J×(2π×fs/pt)/(Tm0/2)
ここで、Jは慣性モーメント、fsは停止周波数、ptは電動機の極対数、Tm0は電動機の定格トルクである。(2π×fs/pt)は直流励磁開始時点の電動機の回転角速度となる。また、Tm0/2は、直流励磁開始時点のブレーキトルクをTm0と考え、このブレーキトルクが速度の低下と共に減少し、電動機速度零において誘導電動機のすべり周波数が零になるのでブレーキトルクは零となる。そこで直流励磁電流をモータの定格電流相当流すことでTm0は、モータの定格トルク相当と考えられる。また、Tm0から電動機が停止するまで、ほぼ直線的にブレーキトルクが減少すると考え、平均のブレーキトルクをTm0/2とした。なお、直流励磁時のブレーキトルクは、電動機の定格すべり周波数,2次時定数T2,直流励磁電流などで変わるため数2で近似している。次に、
TsetA とTstopの大きい方を直流励磁時間Tset とし、上限,下限のリミッタを介して設定している。なお、上限リミッタはインバータを構成するパワー素子の熱的な過負荷耐量から決められ下限リミッタは約1秒としている。
(Equation 2)
Tstop≈J × (2π × fs / pt) / (Tm0 / 2)
Here, J is the moment of inertia, fs is the stop frequency, pt is the number of pole pairs of the motor, and Tm0 is the rated torque of the motor. (2π × fs / pt) is the rotational angular velocity of the motor at the start of DC excitation. Also, Tm0 / 2 considers the brake torque at the time of starting DC excitation as Tm0, and this brake torque decreases as the speed decreases, and the slip frequency of the induction motor becomes zero at the motor speed zero, so the brake torque becomes zero. . Therefore, it is considered that Tm0 is equivalent to the rated torque of the motor by flowing a DC excitation current corresponding to the rated current of the motor. Further, it is considered that the brake torque decreases almost linearly from Tm0 until the motor stops, and the average brake torque is set to Tm0 / 2. The brake torque at the time of direct current excitation is approximated by Equation 2 because it varies depending on the rated slip frequency of the motor, the secondary time constant T2, the direct current excitation current, and the like. next,
The larger of TsetA and Tstop is the DC excitation time Tset, which is set via the upper and lower limiters. The upper limiter is determined from the thermal overload capability of the power elements constituting the inverter, and the lower limiter is about 1 second.

次に、運転後の動作フローを図3に示す。ベクトル制御運転時に停止指令が入ると、速度指令f1* を徐々に下げ、停止周波数fsに到達するとベクトル制御を終了し直流励磁を開始する。これにより電動機にブレーキをかけると共に1次抵抗r1を測定し続ける。そこで直流励磁時間がTset を越えたらr1測定値をメモリへ記憶しr1測定を終了する。 Next, the operation flow after operation is shown in FIG. When a stop command is input during the vector control operation, the speed command f1 * is gradually lowered, and when the stop frequency fs is reached, the vector control is terminated and DC excitation is started. As a result, the motor is braked and the primary resistance r1 is continuously measured. If the DC excitation time exceeds Tset, the r1 measurement value is stored in the memory and the r1 measurement is terminated.

次に、直流励磁制御とr1測定の制御ブロック図を図4に示す。U相とW相の電動機電流検出値iu,iwを直流励磁位相指令θdを基に、数3によりdq変換(固定座標の電流を回転座標の電流に変換)しId,Iqを求めている。なお、直流励磁位相指令θdはベクトル制御終了時点のベクトル制御における位相指令である。また、iu,iwは直流電流となりIdも直流量となる。   Next, FIG. 4 shows a control block diagram of DC excitation control and r1 measurement. Based on the DC excitation phase command θd, the U-phase and W-phase motor current detection values iu and iw are converted to dq (converting the current in the fixed coordinates into the current in the rotation coordinates) by Equation 3 to obtain Id and Iq. Note that the DC excitation phase command θd is a phase command in vector control at the end of vector control. Further, iu and iw are direct currents, and Id is also a direct current amount.

(数3)
Id=iu・cosθd−((iu+2iw)/√3)sinθd
Iq=−iu・sinθd−((iu+2iw)/√3)cosθd
次に、電流制御系はd軸電流制御手段13とq軸電流制御手段14から構成し、d軸電流制御手段13では直流励磁電流指令Id* にId検出値が一致するように(比例+積分)補償し、d軸電圧Vd* を出力する。一方、q軸電流制御手段14ではIq検出値が零になるように(比例+積分)補償し、q軸電圧Vq* を出力する。dq/uvw変換手段
15は回転座標の電圧を固定座標の電圧に変換するもので数4の演算を行い、三相の電圧指令Vu* ,Vv* ,Vw* を出力し、ゲート信号発生手段16を介してゲート信号を出力している。なお、θdは一定のためインバータ周波数は零となり、Vu* ,Vv*
Vw* も直流の電圧指令となる。
(Equation 3)
Id = iu · cos θd − ((iu + 2 iw) / √3) sin θd
Iq = −iu · sin θd − ((iu + 2iw) / √3) cos θd
Next, the current control system is composed of a d-axis current control means 13 and a q-axis current control means 14, and the d-axis current control means 13 (proportional + integral) so that the Id detection value coincides with the DC excitation current command Id *. ) Compensate and output d-axis voltage Vd * . On the other hand, the q-axis current control means 14 compensates for the Iq detection value to be zero (proportional + integration) and outputs the q-axis voltage Vq * . The dq / uvw conversion means 15 converts the rotational coordinate voltage into the fixed coordinate voltage, performs the calculation of Formula 4, outputs three-phase voltage commands Vu * , Vv * , Vw * , and the gate signal generation means 16. The gate signal is output via Since θd is constant, the inverter frequency becomes zero, and Vu * , Vv * ,
Vw * is also a DC voltage command.

(数4)
Vu*=Vd*・cosθd−Vq*・sinθd
Vw*=−Vu/2−√3(Vd*・sinθd+Vq*・cosθd)/2
Vv*=−(Vu*+Vw*
このような構成においてVq* は、ほぼ零となりモータに与える直流電圧は定常時においてはVd* 相当となる。しかし、Vd* は指令値であり、これにはインバータを構成する正負アームのパワー素子が短絡しないように設けたデッドタイムやパワー素子のオン電圧降下による誤差電圧ΔVdを含むので(Vd* −ΔVd)がモータに加わる真の直流電圧となる。そこで1次抵抗演算手段17により数5の演算を行い、1次抵抗r1を測定している。なお、ΔVdは位相指令θdにより多少変わるがデッドタイムやパワー素子のオン電圧降下を基に前もって設定している。
(Equation 4)
Vu * = Vd * · cos θd−Vq * · sin θd
Vw * = − Vu / 2−√3 (Vd * · sin θd + Vq * · cos θd) / 2
Vv * = − (Vu * + Vw * )
In such a configuration, Vq * is almost zero, and the DC voltage applied to the motor is equivalent to Vd * in a steady state. However, Vd * is a command value, and includes an error voltage ΔVd due to a dead time provided so that the power elements of the positive and negative arms constituting the inverter are not short-circuited and an on-voltage drop of the power element (Vd * −ΔVd). ) Is the true DC voltage applied to the motor. Therefore, the primary resistance calculation means 17 performs calculation of Formula 5 to measure the primary resistance r1. ΔVd varies slightly depending on the phase command θd, but is set in advance based on the dead time and the ON voltage drop of the power element.

(数5)
r1=(Vd*−ΔVd)/Id
次に、数5のVd* は直流励磁を開始した時点から電動機の2次時定数T2の1次遅れで減衰しT2の約4倍で定常値に近づく。これは最初は(r1+r2)による電圧となり、定常状態においてはr1のみによる電圧となる。このため図2のTsetA を計算し、
T2の約4倍以上の時間、直流励磁した後で測定する。これにより測定精度を向上させている。更に、電動機が回転している状態ではすべり周波数が生じているためVd* が定常状態にならない。このためr1の測定誤差が生じる。そこで、図2の電動機停止推定時間Tstopを計算し、Tstop以上の時間直流励磁をし、ブレーキをかけると共に電動機停止後、1次抵抗を測定することで測定精度を向上させている。
(Equation 5)
r1 = (Vd * −ΔVd) / Id
Next, Vd * in Formula 5 is attenuated by the first-order lag of the second-order time constant T2 of the motor from the time when DC excitation is started, and approaches a steady value at about four times T2. This is initially a voltage of (r1 + r2), and in a steady state, a voltage of only r1. For this purpose, TsetA in FIG.
Measured after direct current excitation for about 4 times longer than T2. This improves the measurement accuracy. Furthermore, since the slip frequency is generated when the electric motor is rotating, Vd * does not reach a steady state. For this reason, a measurement error of r1 occurs. Therefore, the measurement accuracy is improved by calculating the estimated motor stop time Tstop shown in FIG. 2, performing DC excitation for a time longer than Tstop, applying the brake, and measuring the primary resistance after the motor stops.

次に、本発明における制御動作のタイムチャートを図5に示す。起動スイッチオンにより速度指令f1*は始動周波数fsから加速レートに従い目標速度fnまで増加し、f1*に実速度が追従するように加速する。また、停止スイッチがオンするとf1* が減少し、停止周波数fsに到達したらゲート信号をオフすると共に図4に示す制御ブロックによりゲート信号を生かして直流励磁運転を行う。これによりブレーキが働き速度は低下する。なお速度が低下するレート(時間的な速度減少の割合)は慣性モーメントJにより変わるが数2により停止時間Tstopを推定し、直流励磁時間Tset を決めている。この結果、モータが停止したと推測されるTset 時間後r1測定値を記憶しゲート信号をオフしている。これにより、ブレーキをかけて短時間で停止させると共に電圧指令Vd* が一定の定常状態で測定するのでr1を精度良く測定できる。また、直流励磁時間も短くできる。 Next, FIG. 5 shows a time chart of the control operation in the present invention. When the start switch is turned on, the speed command f1 * increases from the starting frequency fs to the target speed fn according to the acceleration rate, and is accelerated so that the actual speed follows f1 * . Further, when the stop switch is turned on, f1 * decreases, and when the stop frequency fs is reached, the gate signal is turned off and the gate signal is utilized by the control block shown in FIG. 4 to perform the direct current excitation operation. As a result, the brake works and the speed decreases. Note that the rate at which the speed decreases (the rate of temporal speed reduction) varies depending on the moment of inertia J, but the stop time Tstop is estimated from Equation 2 to determine the DC excitation time Tset. As a result, the measured value r1 is stored after the time Tset when it is estimated that the motor has stopped, and the gate signal is turned off. Thereby, the brake is applied and stopped in a short time, and the voltage command Vd * is measured in a constant steady state, so that r1 can be measured with high accuracy. In addition, the DC excitation time can be shortened.

次に直流励磁中、起動指令が入った場合のタイムチャートを図6に示す。この場合は、起動を優先させるため直流励磁運転を中止し、前に測定したr1測定値を基にベクトル制御を行い加速させている。   Next, FIG. 6 shows a time chart when a start command is input during DC excitation. In this case, the DC excitation operation is stopped in order to give priority to activation, and acceleration is performed by performing vector control based on the previously measured r1 measurement value.

本発明の一実施例を示す制御ブロック図。The control block diagram which shows one Example of this invention. 本発明の運転前のオートチューニング処理を示すフローチャート図。The flowchart figure which shows the auto-tuning process before the driving | operation of this invention. 本発明の運転後の制御を示すフローチャート図。The flowchart figure which shows the control after the driving | operation of this invention. 直流励磁制御と1次抵抗測定の制御ブロック図。The control block diagram of DC excitation control and primary resistance measurement. 本発明の運転動作を示すタイムチャート図。The time chart figure which shows the driving | operation operation | movement of this invention. 本発明の直流励磁中、起動指令が入った場合のタイムチャート図。The time chart figure at the time of starting command entering during the direct current excitation of this invention.

符号の説明Explanation of symbols

1…交流電源、2…整流回路、3…平滑コンデンサ、4…インバータ、5…誘導電動機、6…制御装置、7…速度指令パターン発生及び起動,停止判断手段、8…速度センサレスベクトル制御手段、9…オートチューニング処理手段、10…電流検出器、11…ゲート回路、12…dq変換手段、13…d軸電流制御手段、14…q軸電流制御手段、15…dq/uvw変換手段、16…ゲート信号発生手段、17…1次抵抗演算手段。   DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Rectifier circuit, 3 ... Smoothing capacitor, 4 ... Inverter, 5 ... Induction motor, 6 ... Control device, 7 ... Speed command pattern generation and start / stop judgment means, 8 ... Speed sensorless vector control means, DESCRIPTION OF SYMBOLS 9 ... Auto tuning processing means, 10 ... Current detector, 11 ... Gate circuit, 12 ... dq conversion means, 13 ... d-axis current control means, 14 ... q-axis current control means, 15 ... dq / uvw conversion means, 16 ... Gate signal generating means, 17... Primary resistance calculating means.

Claims (2)

電圧形インバータにより直流電圧を交流又は直流に変換して交流電動機へ供給し、電動機電流検出値から前記交流電動機定数を測定するオートチューニング運転手段と、この測定値を基に前記電圧形インバータを制御して、交流電動機をベクトル制御するベクトル制御運転手段から成る交流電動機の制御装置において、交流電動機を減速停止する際、速度指令又はインバータ出力周波数が停止周波数付近に到達した時点から前記インバータにより電動機に一定の直流電流が所望の時間流れるように電圧を加え、前記電動機に加える電圧と前記電動機に流れる電流の比から電動機の1次抵抗を測定することを特徴とした交流電動機の制御装置。   A voltage source inverter converts the DC voltage into AC or DC and supplies it to the AC motor. The auto-tuning operation means measures the AC motor constant from the motor current detection value, and controls the voltage source inverter based on the measured value. Then, in the control apparatus for the AC motor comprising vector control operation means for vector control of the AC motor, when the AC motor is decelerated to a stop, the inverter is used to drive the motor from the time when the speed command or the inverter output frequency reaches near the stop frequency. A control apparatus for an AC motor, wherein a voltage is applied so that a constant DC current flows for a desired time, and a primary resistance of the motor is measured from a ratio of a voltage applied to the motor and a current flowing through the motor. 電圧形インバータにより直流電圧を交流又は直流に変換して交流電動機へ供給し、電動機電流検出値から前記交流電動機定数を測定するオートチューニング運転手段と、この測定値を基に前記電圧形インバータを制御して、交流電動機をベクトル制御するベクトル制御運転手段から成る交流電動機の制御装置において、
前記電動機に一定の直流電流を流す直流励磁時間を負荷の慣性モーメントや電動機の2次時定数により可変することを特徴とした交流電動機の制御装置。
A voltage source inverter converts the DC voltage into AC or DC and supplies it to the AC motor. The auto-tuning operation means measures the AC motor constant from the motor current detection value, and controls the voltage source inverter based on the measured value. In the control apparatus for the AC motor comprising the vector control operation means for vector controlling the AC motor,
A control apparatus for an AC motor, wherein a DC excitation time for supplying a constant DC current to the motor is varied according to a load moment of inertia and a secondary time constant of the motor.
JP2007106665A 2007-04-16 2007-04-16 AC motor control method Expired - Lifetime JP4501955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106665A JP4501955B2 (en) 2007-04-16 2007-04-16 AC motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106665A JP4501955B2 (en) 2007-04-16 2007-04-16 AC motor control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11594399A Division JP4154798B2 (en) 1999-04-23 1999-04-23 AC motor control method

Publications (2)

Publication Number Publication Date
JP2007189897A true JP2007189897A (en) 2007-07-26
JP4501955B2 JP4501955B2 (en) 2010-07-14

Family

ID=38344666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106665A Expired - Lifetime JP4501955B2 (en) 2007-04-16 2007-04-16 AC motor control method

Country Status (1)

Country Link
JP (1) JP4501955B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178019A (en) * 2007-12-28 2009-08-06 Denso Corp Motor control circuit, fan driver for vehicle, and motor control method
WO2011064846A1 (en) * 2009-11-25 2011-06-03 三菱電機株式会社 Electric vehicle power conversion device
US8159162B2 (en) 2007-12-28 2012-04-17 Denso Corporation Motor control apparatus, vehicle fan drive apparatus, and motor control method
JP2017209407A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Washing machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388114A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Inverter controlling device
JPS59118673A (en) * 1982-12-25 1984-07-09 フジテック株式会社 Controller for alternating current elevator
JPS62262697A (en) * 1986-05-09 1987-11-14 Hitachi Ltd Inverter equipment
JPH05297079A (en) * 1992-04-23 1993-11-12 Toshiba Corp Induction motor controller
JPH08258282A (en) * 1995-03-24 1996-10-08 Matsushita Graphic Commun Syst Inc Ink jet recording apparatus
JPH09327151A (en) * 1996-06-06 1997-12-16 Meidensha Corp Motor provided with brake
JPH10341583A (en) * 1997-06-06 1998-12-22 Toshiba Corp Inverter device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388114A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Inverter controlling device
JPS59118673A (en) * 1982-12-25 1984-07-09 フジテック株式会社 Controller for alternating current elevator
JPS62262697A (en) * 1986-05-09 1987-11-14 Hitachi Ltd Inverter equipment
JPH05297079A (en) * 1992-04-23 1993-11-12 Toshiba Corp Induction motor controller
JPH08258282A (en) * 1995-03-24 1996-10-08 Matsushita Graphic Commun Syst Inc Ink jet recording apparatus
JPH09327151A (en) * 1996-06-06 1997-12-16 Meidensha Corp Motor provided with brake
JPH10341583A (en) * 1997-06-06 1998-12-22 Toshiba Corp Inverter device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178019A (en) * 2007-12-28 2009-08-06 Denso Corp Motor control circuit, fan driver for vehicle, and motor control method
JP4513914B2 (en) * 2007-12-28 2010-07-28 株式会社デンソー MOTOR CONTROL CIRCUIT, VEHICLE FAN DRIVE DEVICE, AND MOTOR CONTROL METHOD
US8159162B2 (en) 2007-12-28 2012-04-17 Denso Corporation Motor control apparatus, vehicle fan drive apparatus, and motor control method
WO2011064846A1 (en) * 2009-11-25 2011-06-03 三菱電機株式会社 Electric vehicle power conversion device
JP4738549B2 (en) * 2009-11-25 2011-08-03 三菱電機株式会社 Electric vehicle power converter
CN102754331A (en) * 2009-11-25 2012-10-24 三菱电机株式会社 Electric vehicle power conversion device
US8593094B2 (en) 2009-11-25 2013-11-26 Mitsubishi Electric Corporation Power conversion apparatus of electric vehicle
CN102754331B (en) * 2009-11-25 2014-12-03 三菱电机株式会社 Electric vehicle power conversion device
JP2017209407A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Washing machine

Also Published As

Publication number Publication date
JP4501955B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4578700B2 (en) Brushless DC motor control device
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
EP2403132B1 (en) Method and apparatus for controlling motor torque
JP5025142B2 (en) Motor control device
US10263559B2 (en) Synchronous machine controller
JP5055836B2 (en) Phase shift detection device and detection method for magnetic pole position sensor for synchronous motor
US9614473B1 (en) Flux weakening AC motor control by voltage vector angle deflection
JP2003134898A (en) Sensorless controller and control method for synchronous generator
US8754603B2 (en) Methods, systems and apparatus for reducing power loss in an electric motor drive system
JP4501955B2 (en) AC motor control method
JP4154798B2 (en) AC motor control method
KR101979999B1 (en) Constant determination device and method of permanent magnet synchronization motor
JP3946689B2 (en) Electric vehicle control device
JP2019134612A (en) Control device of electric motor
JP2010161875A (en) Deceleration control method for induction motor
KR20140095800A (en) Method and system of controlling inverter of electric compressor
JP3745633B2 (en) Electric motor control device
JP2002142499A (en) Speed sensorless vector controller
JP2010200544A (en) Ac motor controller and control method
JP6471352B2 (en) Motor control device for washing machine
JP4455960B2 (en) DC brushless motor control device
US9843283B2 (en) Control device of rotating electric machine and method for controlling the same
JP2011152046A (en) Motor control device
JP2019146399A (en) Induction machine control device and induction machine control method
JP2018160959A (en) Rotary machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

EXPY Cancellation because of completion of term