JP2007189811A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2007189811A
JP2007189811A JP2006005100A JP2006005100A JP2007189811A JP 2007189811 A JP2007189811 A JP 2007189811A JP 2006005100 A JP2006005100 A JP 2006005100A JP 2006005100 A JP2006005100 A JP 2006005100A JP 2007189811 A JP2007189811 A JP 2007189811A
Authority
JP
Japan
Prior art keywords
female screw
bearing member
armature assembly
armature
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005100A
Other languages
Japanese (ja)
Inventor
Kenji Mori
賢二 森
Mitsuharu Morishita
光晴 森下
Yoji Higuchi
陽二 樋口
Toshio Fujiwara
利雄 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Toyota Motor Corp
Original Assignee
Asmo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd, Toyota Motor Corp filed Critical Asmo Co Ltd
Priority to JP2006005100A priority Critical patent/JP2007189811A/en
Publication of JP2007189811A publication Critical patent/JP2007189811A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To switch an area in where a permanent magnet faces an armature coil in a motor with proper responsiveness. <P>SOLUTION: When an armature assembly 40 rotates in the left-hand direction (counterclockwise direction), a threadable mount between a female thread 64a of a female thread bearing member 64 and a male thread 50c is loosened, and friction between the threads is reduced, since the male thread 50c screwed to the female thread bearing member 64 rotates in the left-hand direction. The female thread bearing member 64 is held statically in an annular recess 62a in a bearing metal 62. Rotational movement is converted into linear movement, by screwing the female thread 64a and the male thread 50c. As a result, the armature assembly 40 moves in the right direction (Xb-direction) in parallel and the relative position between the armature coil 54 and the permanent magnet 30 is shifted, and the area in which the permanent magnet 30 faces the armature coil 54 is reduced and the region of effective magnetic field flux from the permanent magnet 30 is reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はモータに係り、特に回転軸の回転速度または回転トルクを切り換えるよう構成されたモータに関する。   The present invention relates to a motor, and more particularly to a motor configured to switch the rotational speed or rotational torque of a rotating shaft.

例えば、自動車のフロントウインドウに付着した水滴を除去するワイパを往復駆動する駆動手段としてブラシを有する永久磁石界磁型の直流モータが採用されている。この種のモータは、ハウジングの内壁に永久磁石を固定し、その内側にコイルが巻装された電機子組立体(電機子アッセンブリとも呼ばれている)が回転可能に支持されている。そして、電機子組立体のコイルへ通電するため、電機子組立体の整流子片に接触する第1、第2ブラシ(低速回転用ブラシ)と第3ブラシ(高速回転用ブラシ)とが設けられている。   For example, a permanent magnet field type DC motor having a brush is employed as a driving means for reciprocating a wiper that removes water droplets adhering to a front window of an automobile. In this type of motor, a permanent magnet is fixed to the inner wall of a housing, and an armature assembly (also referred to as an armature assembly) having a coil wound therein is rotatably supported. And in order to supply with electricity to the coil of an armature assembly, the 1st, 2nd brush (brush for low speed rotation) and the 3rd brush (brush for high speed rotation) which contact the commutator piece of an armature assembly are provided. ing.

第3ブラシは、電機子組立体で使用される磁束を減少させることによって電機子組立体の回転速度を高速化するものであり、第1、第2ブラシと異なる周方向位置(角度)に配置されている。そして、第3ブラシへの通電に切り換えることで、電機子コイルの通電範囲を変えることで、電機子組立体の回転速度の高速化を可能にしている。   The third brush increases the rotational speed of the armature assembly by reducing the magnetic flux used in the armature assembly, and is arranged at a circumferential position (angle) different from the first and second brushes. Has been. By switching the energization to the third brush, the energization range of the armature coil is changed, thereby enabling the rotation speed of the armature assembly to be increased.

しかしながら、従来の第1〜第3ブラシを有する直流モータでは、通常運転(低速モード)で高速用の第3ブラシが周方向に配設された整流子片間を跨ぐ度に、第3ブラシにより短絡される電機子コイル中に発生している誘起起電力により通電方向と逆向きの大きな短絡電流が瞬間的に流れ、ブラシ火花放電が発生していた。このブラシ火花放電は、電機雑音(ノイズ)やブラシ磨耗の原因となり、第3ブラシにより整流障害を引き起こしていた。   However, in the conventional DC motor having the first to third brushes, every time the third brush for high speed straddles between the commutator pieces arranged in the circumferential direction in normal operation (low speed mode), the third brush Due to the induced electromotive force generated in the armature coil to be short-circuited, a large short-circuit current in the direction opposite to the energizing direction flowed instantaneously, and brush spark discharge was generated. The brush spark discharge causes electric noise (noise) and brush wear, and causes a rectification failure by the third brush.

また、このような問題を解消するため、モータの駆動回路に雑音防止用のコイル(インダクター)やコンデンサ等を組み合わせて対応した場合には、部品点数やコストが増加する。   In addition, in order to solve such a problem, when the motor drive circuit is combined with a noise prevention coil (inductor), a capacitor, or the like, the number of parts and cost increase.

また、磁石材の小型化が進み、4極6ブラシ構成のモータを開発する場合には、第3ブラシの設置スペースを確保することが物理的に困難になりつつある。   In addition, when the magnet material is further miniaturized and a motor having a 4-pole 6-brush configuration is developed, it is physically difficult to secure an installation space for the third brush.

このような、問題を解決する方法として、第3ブラシを無くしてブラシ数を削減すると共に、電機子組立体を軸方向に平行移動させて電機子コイルとハウジング内壁に固定された永久磁石との相対位置(対向面積)を変えることで永久磁石からの有効磁束量が変化して電機子コイルの回転数を変更する方法が提案されている(例えば、特許文献1参照)。
特開平8−214522号公報
As a method for solving such a problem, the number of brushes is reduced by eliminating the third brush, and the armature assembly is translated between the armature coil and the permanent magnet fixed to the housing inner wall in the axial direction. A method has been proposed in which the effective magnetic flux amount from the permanent magnet is changed by changing the relative position (opposed area) to change the rotation speed of the armature coil (for example, see Patent Document 1).
JP-A-8-214522

しかしながら、上記特許文献1に記載されたものでは、電機子組立体を軸方向に平行移動させるための電機子駆動手段を設ける構成になっているため、電機子駆動手段の伝達ロスにより回転数を切り換える際の応答性が低下するという問題がある。   However, since the structure disclosed in Patent Document 1 is provided with armature driving means for translating the armature assembly in the axial direction, the rotational speed is reduced by transmission loss of the armature driving means. There is a problem that the responsiveness when switching is lowered.

さらに、電機子駆動手段をハウジング内に収納させる構成とすると、モータが大型化してしまい、省スペース化に対応させることが難しいという問題があった。   Furthermore, when the armature driving means is housed in the housing, there is a problem that the motor becomes large and it is difficult to cope with space saving.

そこで、本発明は上記事情に鑑み、回転軸の回転力を利用して電機子組立体を軸方向に平行移動させて永久磁石からの有効磁束量を変更することで上記課題を解決したモータを提供することを目的とする。   Therefore, in view of the above circumstances, the present invention provides a motor that solves the above problems by changing the effective magnetic flux from the permanent magnet by translating the armature assembly in the axial direction using the rotational force of the rotating shaft. The purpose is to provide.

上記課題を解決するため、本発明は以下のような手段を有する。   In order to solve the above problems, the present invention has the following means.

本発明は、ハウジングと、該ハウジングの径方向内側に固定され、界磁束を発生する永久磁石と、雄ねじを有する回転軸、該回転軸の外周に固定される電機子コア、該電機子コアの外周に巻装される電機子コイルを有し、前記永久磁石の径方向内側で回転し、且つ軸方向に移動可能な電機子組立体と、軸方向に貫通する貫通孔の内周面に前記回転軸の雄ねじに螺合する雌ねじを有し、前記回転軸の回転方向に応じた軸方向に前記電機子組立体を平行移動させる雌ねじ軸受部材と、前記ハウジングに外周面が固定され、内周面が前記雌ねじ軸受部材を回転可能に支持する軸受と、前記雌ねじ軸受部材と前記軸受との相対回転を可能もしくは規制する回転制御手段と、を備えたことを特徴とする。   The present invention relates to a housing, a permanent magnet that is fixed on the radially inner side of the housing and generates a field magnetic flux, a rotary shaft having a male screw, an armature core that is fixed to the outer periphery of the rotary shaft, An armature coil wound around the outer periphery, rotating in the radial direction of the permanent magnet and movable in the axial direction, and the inner peripheral surface of the through hole penetrating in the axial direction A female screw bearing member that has a female screw threadedly engaged with a male screw of the rotary shaft, and that translates the armature assembly in an axial direction corresponding to the rotational direction of the rotary shaft; and an outer peripheral surface fixed to the housing; The bearing includes a bearing that rotatably supports the female screw bearing member, and a rotation control means that enables or restricts relative rotation between the female screw bearing member and the bearing.

また、回転制御手段は、前記電機子組立体の回転方向を反転させることにより前記雌ねじ軸受部材に螺合された前記回転軸の雄ねじが軸方向に駆動され、前記永久磁石に対向する電機子コイルの対向面積を変更して前記電機子組立体の回転数を切り換えることを特徴とする。   Further, the rotation control means reverses the rotation direction of the armature assembly so that the male screw of the rotating shaft screwed to the female screw bearing member is driven in the axial direction and faces the permanent magnet. The number of rotations of the armature assembly is switched by changing the facing area.

また、前記軸受は、前記雌ねじ軸受部材との間の摩擦により前記雌ねじ軸受部材の回転を規制し、前記電機子組立体がストッパにより軸方向への移動を制限されて軸方向の移動を停止されると、前記雌ねじ軸受部材との相対回転を許容することを特徴とする。   Further, the bearing restricts the rotation of the female screw bearing member due to friction with the female screw bearing member, and the movement of the armature assembly is restricted in the axial direction by the stopper, and the axial movement is stopped. Then, relative rotation with the female screw bearing member is allowed.

本発明によれば、電機子組立体の回転軸に形成された雄ねじが軸受により回転可能に支持された雌ねじ軸受部材に螺合しており、回転制御手段により雌ねじ軸受部材と軸受との相対回転が可能もしくは規制されるため、従来のように第3ブラシを設ける必要がないので、第3ブラシによる整流障害が解消されると共に、回転軸の回転力を利用して直接電機子組立体を軸方向に駆動することが可能になり、電機子組立体を軸方向に平行移動させるための駆動手段を特別に設ける必要もないので、回転数を切り換える際の応答性を高められると共に、小型化を図ることが可能になる。   According to the present invention, the male screw formed on the rotating shaft of the armature assembly is screwed to the female screw bearing member rotatably supported by the bearing, and the relative rotation between the female screw bearing member and the bearing is controlled by the rotation control means. Since it is possible or restricted, there is no need to provide a third brush as in the prior art, so that the rectification obstacle due to the third brush is eliminated and the armature assembly is directly pivoted using the rotational force of the rotating shaft. It is possible to drive in the direction, and there is no need to provide a driving means for translating the armature assembly in the axial direction. It becomes possible to plan.

以下、図面を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明によるモータの実施例1を示しており、電機子組立体が左方に移動した低速回転モードを示す縦断面図である。図1に示されるように、モータ10は、ハウジング20と、ハウジング20の径方向内側に固定された界磁用の永久磁石30と、電機子組立体40とを有する。   FIG. 1 shows a first embodiment of a motor according to the present invention, and is a longitudinal sectional view showing a low-speed rotation mode in which an armature assembly is moved leftward. As shown in FIG. 1, the motor 10 includes a housing 20, a field permanent magnet 30 fixed inside the housing 20 in the radial direction, and an armature assembly 40.

ハウジング20は、電機子組立体40を収納する収納ケース22と、収納ケース22の収納室24を右方から閉塞する蓋部材26とを組み合わせた構成である。収納ケース22は、円筒状に形成されており、その軸方向中央の内壁には、全周に亘り永久磁石30が固定されている。   The housing 20 is configured by combining a storage case 22 that stores the armature assembly 40 and a lid member 26 that closes the storage chamber 24 of the storage case 22 from the right side. The storage case 22 is formed in a cylindrical shape, and a permanent magnet 30 is fixed to the inner wall at the center in the axial direction over the entire circumference.

そして、永久磁石30の内周には、電機子組立体40が周方向に回転可能及び軸方向(図1中、Xa,Xb方向)に移動可能に挿入されている。収納ケース22の収納室24は、電機子組立体40を軸方向に移動可能に収納するため、電機子組立体40の軸方向ストロークに応じた大きさの空間が形成されている。   An armature assembly 40 is inserted into the inner circumference of the permanent magnet 30 so as to be rotatable in the circumferential direction and movable in the axial direction (Xa and Xb directions in FIG. 1). Since the storage chamber 24 of the storage case 22 stores the armature assembly 40 so as to be movable in the axial direction, a space having a size corresponding to the axial stroke of the armature assembly 40 is formed.

次に、電機子組立体40の構成について説明する。電機子組立体40は、回転軸50と、回転軸50に固定される電機子コア52と、電機子コア52に巻装される電機子コイル54と、整流子56とを有する。   Next, the configuration of the armature assembly 40 will be described. The armature assembly 40 includes a rotating shaft 50, an armature core 52 fixed to the rotating shaft 50, an armature coil 54 wound around the armature core 52, and a commutator 56.

また、電機子コア52及び電機子コイル54は、収納室24の内壁に固定された永久磁石30の内周面に近接対向するように取り付けられており、永久磁石30の径方向内側で回転し、且つ軸方向に移動可能に支持されている。尚、本実施例においては、電機子コア52及び電機子コイル54は、軸方向の幅寸法が永久磁石30の幅寸法Lと同一寸法になるように形成されている。   The armature core 52 and the armature coil 54 are attached so as to be close to and opposed to the inner peripheral surface of the permanent magnet 30 fixed to the inner wall of the storage chamber 24, and rotate on the radially inner side of the permanent magnet 30. And supported so as to be movable in the axial direction. In this embodiment, the armature core 52 and the armature coil 54 are formed so that the width dimension in the axial direction is the same as the width dimension L of the permanent magnet 30.

さらに、整流子56の外周には、第1ブラシ71と第2ブラシ72とが周方向上180°間隔で摺接するようにブラシ支持部材74,76により支持されている。そして、整流子56は、回転軸50の左端50a側に延在形成されており、軸方向の長さが電機子組立体40の軸方向移動量(ストローク)よりも長く形成されている。   Further, on the outer periphery of the commutator 56, the first brush 71 and the second brush 72 are supported by brush support members 74 and 76 so as to be in sliding contact with each other at an interval of 180 ° in the circumferential direction. The commutator 56 is formed to extend toward the left end 50 a of the rotary shaft 50, and has an axial length longer than an axial movement amount (stroke) of the armature assembly 40.

また、第1ブラシ71及び第2ブラシ72は、電機子組立体40の移動位置に拘わらず整流子56に接触した状態を維持するように取り付けられている。従って、駆動回路(図示せず)から第1ブラシ71または第2ブラシ72に通電された電流が電機子コイル54を流れることにより電機子コア52の周囲に磁束が発生し、永久磁石30からの界磁束に対して電機子組立体40を回転させる回転力が発生する。   Further, the first brush 71 and the second brush 72 are attached so as to maintain a state where they are in contact with the commutator 56 regardless of the movement position of the armature assembly 40. Accordingly, a current supplied to the first brush 71 or the second brush 72 from a drive circuit (not shown) flows through the armature coil 54, thereby generating a magnetic flux around the armature core 52. A rotational force that rotates the armature assembly 40 with respect to the field flux is generated.

尚、本実施例では、第1ブラシ71及び第2ブラシ72を整流子56に接触させる構成であり、従来のように第3ブラシが設けられていないので、第3ブラシによる整流障害が解消されると共に、4極化する場合の第3ブラシを配置する際のスペース的な問題も解消することができる。   In the present embodiment, the first brush 71 and the second brush 72 are in contact with the commutator 56, and since the third brush is not provided as in the prior art, the commutation failure due to the third brush is eliminated. In addition, it is possible to eliminate a space problem when arranging the third brush in the case of quadrupolarization.

回転軸50は、電機子コア52の中心を貫通してXa方向に延在形成された左端(一端)50aと、Xb方向に延在形成された右端(他端)50bとを有する。回転軸50の左端50aの外周には、雄ねじ50cが形成されている。この雄ねじ50cは、雌ねじ軸受部材64の内周に形成された雌ねじ64aに螺合しているため、回転軸50の回転方向に応じて軸方向(Xa方向またはXb方向)に平行移動することが可能になる。   The rotating shaft 50 has a left end (one end) 50a that extends through the center of the armature core 52 and extends in the Xa direction, and a right end (other end) 50b that extends in the Xb direction. A male screw 50 c is formed on the outer periphery of the left end 50 a of the rotating shaft 50. Since the male screw 50c is screwed into a female screw 64a formed on the inner periphery of the female screw bearing member 64, the male screw 50c can be translated in the axial direction (Xa direction or Xb direction) according to the rotation direction of the rotary shaft 50. It becomes possible.

また、回転軸50の右端50bには、軸方向に延在する出力軸50dが一体的に設けられている。出力軸50dは、挿通孔26cに挿通されて蓋部材26の外部に突出しており、電機子組立体40が左方(Xb方向)に移動した場合でも、所定長さを突出させる長さに形成されている。尚、本実施例のモータ10は、自動車のワイパ駆動用モータとして用いられているため、回転軸50の出力軸50dはワイパ駆動機構(図示せず)の駆動軸等に連結されている。   An output shaft 50d extending in the axial direction is integrally provided at the right end 50b of the rotating shaft 50. The output shaft 50d is inserted into the insertion hole 26c and protrudes to the outside of the lid member 26. The output shaft 50d is formed to have a length that protrudes a predetermined length even when the armature assembly 40 moves leftward (Xb direction). Has been. Since the motor 10 of this embodiment is used as a motor for driving a wiper of an automobile, the output shaft 50d of the rotary shaft 50 is connected to a drive shaft of a wiper drive mechanism (not shown).

さらに、収納ケース22の左側端部には、収納室24に連通した軸受支持部28が設けられている。この軸受支持部28は、回転軸50の左端50aの端面に当接するボール軸受60と、回転軸50の左端50aの外周を回転可能に支持する軸受メタル62とを支持している。ボール軸受60は、回転軸50の軸線と一致するように軸受支持部28の内壁に形成されたあり溝からなる凹部28a内に保持されており、回転軸50の左端50aの端面に点接触で回転自在に支持すると共に、回転軸50のXa方向への移動位置を規制するストッパとしても機能するように設けられている。   Further, a bearing support portion 28 communicating with the storage chamber 24 is provided at the left end portion of the storage case 22. The bearing support portion 28 supports a ball bearing 60 that contacts the end surface of the left end 50a of the rotating shaft 50 and a bearing metal 62 that rotatably supports the outer periphery of the left end 50a of the rotating shaft 50. The ball bearing 60 is held in a recess 28a formed by a dovetail groove formed on the inner wall of the bearing support 28 so as to coincide with the axis of the rotary shaft 50, and is in point contact with the end surface of the left end 50a of the rotary shaft 50. The rotary shaft 50 is provided so as to be rotatable and function as a stopper for restricting the movement position of the rotary shaft 50 in the Xa direction.

軸受メタル62は、環状に形成されており、外周面が軸受支持部28の段部28bに固定され、内周面に雌ねじ軸受部材64が回転可能に摺接する環状凹部62aが設けられている。雌ねじ軸受部材64は、外周面が環状凹部62aに嵌合しているため、軸方向(Xa,Xb方向)への移動が規制されると共に、周方向への回転が許容されるように支持されている。この軸受メタル62と雌ねじ軸受部材64とは、回転軸50の左端50aを回転可能に支持すると共に、回転軸50を軸方向に平行移動させる回転軸支持機構を構成している。   The bearing metal 62 is formed in an annular shape, an outer peripheral surface is fixed to the stepped portion 28b of the bearing support portion 28, and an annular concave portion 62a in which the female screw bearing member 64 is slidably contacted is provided on the inner peripheral surface. The female screw bearing member 64 is supported so that its movement in the axial direction (Xa, Xb direction) is restricted and its rotation in the circumferential direction is allowed because the outer peripheral surface is fitted in the annular recess 62a. ing. The bearing metal 62 and the female screw bearing member 64 constitute a rotating shaft support mechanism that rotatably supports the left end 50a of the rotating shaft 50 and translates the rotating shaft 50 in the axial direction.

雌ねじ軸受部材64は、回転軸50の左端50aの外周に形成された雄ねじ50cに螺合する雌ねじ64aが内周面に形成され、且つ外周面が上記軸受メタル62の内周に形成された環状凹部62aに嵌合保持されている。従って、回転軸50が回転した際には、雌ねじ軸受部材64の内周側において、雌ねじ64aと雄ねじ50cとの間で内周側摩擦Faが発生し、雌ねじ軸受部材64の外周側において、軸受メタル62の環状凹部62aとの間で外周側摩擦Fbが発生する。   The female screw bearing member 64 is an annular shape in which a female screw 64 a that engages with a male screw 50 c formed on the outer periphery of the left end 50 a of the rotating shaft 50 is formed on the inner peripheral surface, and an outer peripheral surface is formed on the inner periphery of the bearing metal 62. The recess 62a is fitted and held. Therefore, when the rotary shaft 50 rotates, an inner peripheral friction Fa is generated between the female screw 64a and the male screw 50c on the inner peripheral side of the female screw bearing member 64, and a bearing is provided on the outer peripheral side of the female screw bearing member 64. An outer peripheral friction Fb is generated between the metal 62 and the annular recess 62a.

この雌ねじ軸受部材64の内周と外周に発生する摩擦差は、雌ねじ軸受部材64と軸受メタル62との相対回転を可能もしくは規制する回転制御手段として作用する。例えば、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa<Fbである場合には、雌ねじ軸受部材64が軸受メタル62の環状凹部62aに対して静止状態に保持され、Fa>Fbである場合には、雌ねじ軸受部材64が軸受メタル62の環状凹部62aに対して回転状態に保持される。   The frictional difference generated between the inner periphery and the outer periphery of the female screw bearing member 64 acts as a rotation control means that enables or restricts the relative rotation between the female screw bearing member 64 and the bearing metal 62. For example, when the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa <Fb, the female screw bearing member 64 is held stationary with respect to the annular recess 62 a of the bearing metal 62. When Fa> Fb, the female screw bearing member 64 is held in a rotating state with respect to the annular recess 62 a of the bearing metal 62.

従って、外周側摩擦Fbが内周側摩擦Faより大きい(Fa<Fb)場合は、雌ねじ軸受部材64の回転が規制されるため、回転軸50に回転力が付与されると、雄ねじ50cに螺合する雌ねじ軸受部材64が回転を規制されて電機子組立体40をXa方向またはXb方向に移動させることができる。また、内周側摩擦Faが外周側摩擦Fbより大きい(Fa>Fb)場合は、雌ねじ軸受部材64が回転軸50と一体的に回転することができる。   Therefore, when the outer peripheral friction Fb is larger than the inner peripheral friction Fa (Fa <Fb), the rotation of the female screw bearing member 64 is restricted. Therefore, when a rotational force is applied to the rotary shaft 50, the male screw 50c is screwed. The mating female screw bearing member 64 is restricted in rotation and can move the armature assembly 40 in the Xa direction or the Xb direction. Further, when the inner peripheral friction Fa is larger than the outer peripheral friction Fb (Fa> Fb), the female screw bearing member 64 can rotate integrally with the rotary shaft 50.

また、蓋部材26には、回転軸50の右端50bを回転可能に支持する軸受メタル66が支持されている。この軸受メタル66は、円筒状に形成されており、内周面が回転軸50の右端50bの外周に回転可能に摺接し、外周面が蓋部材26の筒状に突出形成された軸受支持部26aの段部26bに嵌合固定されている。軸受支持部26aの端部には、回転軸50の右端50bの端部を挿通する挿通孔26cが軸方向に貫通している。   The lid member 26 also supports a bearing metal 66 that rotatably supports the right end 50b of the rotary shaft 50. The bearing metal 66 is formed in a cylindrical shape, and an inner peripheral surface thereof is slidably contacted with an outer periphery of the right end 50 b of the rotary shaft 50, and an outer peripheral surface is formed so as to project into a cylindrical shape of the lid member 26. The step 26b of 26a is fitted and fixed. An insertion hole 26c that passes through the end of the right end 50b of the rotating shaft 50 passes through the end of the bearing support portion 26a in the axial direction.

さらに、軸受支持部26aの内部に形成された中空部26dには、回転軸50の右端50bの外周に係止されたC字形状の止め輪(右方ストッパ)68が挿入されており、且つ中空部26dの段部には止め輪68が右方(Xb方向)に移動したときに当接するスラストワッシャ70が挿入されている。   Furthermore, a C-shaped retaining ring (right stopper) 68 that is locked to the outer periphery of the right end 50b of the rotating shaft 50 is inserted into the hollow portion 26d formed inside the bearing support portion 26a, and A thrust washer 70 that abuts when the retaining ring 68 moves to the right (Xb direction) is inserted into the step portion of the hollow portion 26d.

電機子組立体40の軸方向移動量(ストローク)は、回転軸50の左端50aの端面がボール軸受60の当接する左方向移動限位置と、回転軸50の右端50bに係止された止め輪68がスラストワッシャ70に当接する右方向移動限位置とによって決まる。   The amount of movement (stroke) of the armature assembly 40 in the axial direction is such that the end face of the left end 50a of the rotating shaft 50 is in the leftward moving limit position where the ball bearing 60 abuts and the retaining ring locked to the right end 50b of the rotating shaft 50. 68 is determined by the rightward movement limit position where the thrust washer 70 abuts.

ここで、上記のように構成されたモータ10の回転駆動及び回転速度の切り換え動作について説明する。図1では、回転軸50の左端50aがボール軸受60に当接しており、電機子組立体40がXa方向に移動した低速回転モードを示している。この低速回転モードでは、電機子組立体40を右回り(時計方向)に回転させており、回転軸50は、回転軸50の左端50aが軸受メタル62に支持され、右端50bが軸受メタル66に支持されている。   Here, the rotation drive and rotation speed switching operation of the motor 10 configured as described above will be described. FIG. 1 shows a low-speed rotation mode in which the left end 50a of the rotating shaft 50 is in contact with the ball bearing 60 and the armature assembly 40 moves in the Xa direction. In this low-speed rotation mode, the armature assembly 40 is rotated clockwise (clockwise). The rotation shaft 50 is supported by the bearing metal 62 at the left end 50a of the rotation shaft 50 and the bearing metal 66 at the right end 50b. It is supported.

そして、回転軸50の左端50aがボール軸受60に当接しているため、電機子組立体40を右回り(時計方向)に回転させると、雌ねじ軸受部材64の雌ねじ64aと雄ねじ50cとの螺合関係が締まり、ねじ間の摩擦が増大する。すなわち、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa>Fbとなる。そのため、雌ねじ軸受部材64の外周面は、軸受メタル62の環状凹部62aに対して回転が許容される。   Since the left end 50a of the rotating shaft 50 is in contact with the ball bearing 60, when the armature assembly 40 is rotated clockwise (clockwise), the female screw 64a of the female screw bearing member 64 and the male screw 50c are screwed together. The relationship is tightened and the friction between the screws increases. That is, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa> Fb. Therefore, the outer peripheral surface of the female screw bearing member 64 is allowed to rotate with respect to the annular recess 62 a of the bearing metal 62.

従って、回転軸50の左端50aがボール軸受60に当接した状態で、駆動回路からの電流が電機子コイル54に通電されて永久磁石30の界磁束に対する右回り(時計方向)の回転力が付与されると、雌ねじ軸受部材64が回転軸50と一体に回転する。この状態では、電機子コイル54が永久磁石30の軸方向の全幅(寸法Lの全範囲)で永久磁石30に近接対向しており、永久磁石30の全幅が有効磁束領域となるため、高トルクが得られるが回転数は低速となる。   Therefore, in a state where the left end 50a of the rotating shaft 50 is in contact with the ball bearing 60, a current from the drive circuit is supplied to the armature coil 54, and a clockwise (clockwise) rotational force with respect to the field flux of the permanent magnet 30 is generated. When applied, the female screw bearing member 64 rotates integrally with the rotary shaft 50. In this state, the armature coil 54 is close to and opposed to the permanent magnet 30 with the full axial width of the permanent magnet 30 (the entire range of the dimension L), and the full width of the permanent magnet 30 becomes an effective magnetic flux region, so that high torque Is obtained, but the rotational speed is low.

よって、モータ10では、電機子組立体40を右回り(時計方向)に回転駆動することにより、低速回転モードとなり、例えば、自動車用ワイパ(図示せず)を低速駆動することが可能になる。   Therefore, in the motor 10, the armature assembly 40 is rotationally driven clockwise (clockwise) to enter a low-speed rotation mode, and for example, an automobile wiper (not shown) can be driven at a low speed.

次に、低速回転モードから高速回転モードに切り換える場合の動作について説明する。駆動回路から電機子コイル54に供給される電流の流れ方向を反転させることにより、電機子組立体40に左回り(反時計方向)の回転力が発生する。図1に示す低速回転モードにおいて、電機子組立体40に左回り(反時計方向)の回転力が付与されると、雌ねじ軸受部材64に螺合する雄ねじ50cが左回りに逆回転するため、雌ねじ軸受部材64の雌ねじ64aと雄ねじ50cとの螺合関係が緩み、ねじ間の摩擦が減少する。   Next, the operation for switching from the low speed rotation mode to the high speed rotation mode will be described. By reversing the flow direction of the current supplied from the drive circuit to the armature coil 54, a counterclockwise (counterclockwise) rotational force is generated in the armature assembly 40. In the low-speed rotation mode shown in FIG. 1, when a counterclockwise (counterclockwise) rotational force is applied to the armature assembly 40, the male screw 50c that engages with the female screw bearing member 64 rotates counterclockwise. The screwing relationship between the female screw 64a of the female screw bearing member 64 and the male screw 50c is loosened, and friction between the screws is reduced.

そのため、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa<Fbとなり、雌ねじ軸受部材64は軸受メタル62の環状凹部62aに静止状態に保持される。よって、雌ねじ64aと雄ねじ50cとの螺合により、回転運動が直線運動に変換されるため、電機子組立体40は、右方(Xb方向)へ平行移動する。   Therefore, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa <Fb, and the female screw bearing member 64 is held in a stationary state in the annular recess 62 a of the bearing metal 62. Therefore, since the rotational motion is converted into a linear motion by the screwing of the female screw 64a and the male screw 50c, the armature assembly 40 is translated in the right direction (Xb direction).

図2は電機子組立体40が右方に移動した高速回転モードを示す。図2に示されるように、電機子組立体40は、左回り(反時計方向)に回転しながら右方(Xb方向)へ平行移動することで、電機子コイル54と永久磁石30との相対位置がずれることになり、電機子コイル54と永久磁石30との対向面積が減少する。これにより、永久磁石30からの有効界磁束の領域が減少する。   FIG. 2 shows a high-speed rotation mode in which the armature assembly 40 has moved to the right. As shown in FIG. 2, the armature assembly 40 translates to the right (Xb direction) while rotating counterclockwise (counterclockwise), so that the armature coil 54 and the permanent magnet 30 are relative to each other. A position will shift | deviate and the opposing area of the armature coil 54 and the permanent magnet 30 will reduce. Thereby, the area | region of the effective field magnetic flux from the permanent magnet 30 reduces.

さらに、電機子組立体40が右方(Xb方向)へ平行移動すると、回転軸50の右端50bに係止されたC字状の止め輪68が軸受支持部26aのスラストワッシャ70に当接する。そして、電機子組立体40の右方(Xb方向)への移動がスラストワッシャ70によって制限されると、雌ねじ軸受部材64の雌ねじ64aと雄ねじ50cとの螺合関係が締まり、ねじ間の摩擦が増大する。そのため、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa>Fbとなり、雌ねじ軸受部材64は軸受メタル62の環状凹部62aを摺接しながら回転する。   Furthermore, when the armature assembly 40 is translated in the right direction (Xb direction), the C-shaped retaining ring 68 locked to the right end 50b of the rotating shaft 50 comes into contact with the thrust washer 70 of the bearing support portion 26a. When the movement of the armature assembly 40 to the right (Xb direction) is restricted by the thrust washer 70, the screwed relationship between the female screw 64a of the female screw bearing member 64 and the male screw 50c is tightened, and the friction between the screws is reduced. Increase. Therefore, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa> Fb, and the female screw bearing member 64 rotates while slidingly contacting the annular recess 62a of the bearing metal 62.

従って、電機子組立体40は、止め輪68がスラストワッシャ70に当接して右方(Xb方向)への移動を制限されると、雌ねじ軸受部材64が回転軸50と一体的に回転する。このように、永久磁石30に対する電機子コイル54の対向面積を減少させた状態では、電機子コイル54が永久磁石30からの磁束を切る際の抵抗が減少して電機子組立体40が高速回転する。   Therefore, in the armature assembly 40, when the retaining ring 68 contacts the thrust washer 70 and the movement to the right (Xb direction) is restricted, the female screw bearing member 64 rotates integrally with the rotary shaft 50. Thus, in a state where the facing area of the armature coil 54 with respect to the permanent magnet 30 is reduced, the resistance when the armature coil 54 cuts the magnetic flux from the permanent magnet 30 is reduced, and the armature assembly 40 rotates at high speed. To do.

よって、モータ10では、電機子組立体40を左回り(反時計方向)に回転駆動することにより、高速回転モードとなり、例えば、自動車用ワイパ(図示せず)を高速駆動することが可能になる。   Therefore, in the motor 10, by rotating the armature assembly 40 counterclockwise (counterclockwise), the motor 10 enters a high-speed rotation mode, and for example, an automobile wiper (not shown) can be driven at high speed. .

さらに、図2に示す高速回転モードから低速回転モードに切り換える場合は、電機子組立体40を右回り(時計方向)に回転させる。電機子組立体40に右回り(時計方向)の回転力が付与されると、雌ねじ軸受部材64に螺合する雄ねじ50cが右回りに逆回転するため、回転軸50を左方(Xa方向)へ平行移動させようとする駆動力が発生する。   Furthermore, when switching from the high-speed rotation mode shown in FIG. 2 to the low-speed rotation mode, the armature assembly 40 is rotated clockwise (clockwise). When a clockwise (clockwise) rotational force is applied to the armature assembly 40, the male screw 50c that engages with the female screw bearing member 64 reversely rotates clockwise, so that the rotary shaft 50 is moved to the left (Xa direction). A driving force is generated in order to make a parallel movement.

これにより、雌ねじ軸受部材64と雄ねじ50cとの螺合関係が緩み、ねじ間の摩擦が減少する。そのため、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa<Fbとなり、雌ねじ軸受部材64は軸受メタル62の環状凹部62aに静止状態に保持される。よって、雌ねじ64aと雄ねじ50cとの螺合により、回転運動が直線運動に変換されるため、電機子組立体40は、図1に示すように、左方(Xa方向)へ平行移動する。   Thereby, the screwing relationship between the female screw bearing member 64 and the male screw 50c is loosened, and the friction between the screws is reduced. Therefore, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa <Fb, and the female screw bearing member 64 is held in a stationary state in the annular recess 62 a of the bearing metal 62. Accordingly, since the rotational motion is converted into a linear motion by the screwing of the female screw 64a and the male screw 50c, the armature assembly 40 translates leftward (Xa direction) as shown in FIG.

そして、回転軸50の左端50aがボール軸受60に当接する位置まで左方(Xa方向)へ移動すると、前述したように雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa>Fbとなる。そのため、右回り(時計方向)の回転力が付与されると、雌ねじ軸受部材64が回転軸50と一体に回転する。この状態では、電機子コイル54が永久磁石30の軸方向の全幅(寸法Lの全範囲)で永久磁石30に近接対向しているため、回転数は低速となる。   When the left end 50a of the rotating shaft 50 moves to the left (Xa direction) to a position where it abuts on the ball bearing 60, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 as described above. Becomes Fa> Fb. Therefore, when a clockwise (clockwise) rotational force is applied, the female screw bearing member 64 rotates integrally with the rotary shaft 50. In this state, since the armature coil 54 is close to and opposed to the permanent magnet 30 with the full axial width of the permanent magnet 30 (the entire range of the dimension L), the rotational speed is low.

従って、本実施例のモータ10では、電機子組立体40の回転方向を切り換えることで低速回転モードから高速回転モード、あるいは高速回転モードから低速回転モードに切り換えることが可能なため、切り換え時の伝達ロスがなく、切り換え動作の応答性が高められている。しかも、モータ10は、回転軸50の回転を利用して電機子組立体40を軸方向に移動させる構成であるので、電機子組立体40を軸方向に移動させるための駆動手段を特別に設ける必要がなく、コンパクトな構成になり、小型化及び省スペース化への要望にも対応することが可能である。   Therefore, in the motor 10 of this embodiment, it is possible to switch from the low-speed rotation mode to the high-speed rotation mode or from the high-speed rotation mode to the low-speed rotation mode by switching the rotation direction of the armature assembly 40. There is no loss and the responsiveness of the switching operation is improved. In addition, since the motor 10 is configured to move the armature assembly 40 in the axial direction by utilizing the rotation of the rotary shaft 50, a driving means for moving the armature assembly 40 in the axial direction is specially provided. There is no need, it becomes a compact configuration, and it is possible to meet demands for miniaturization and space saving.

また、本実施例では、モータ10をワイパー駆動用モータとして用いる場合について説明したが、モータ10の用途はこれに限るものではなく、回転数を切り換える装置、あるいはトルクを切り換える装置であれば、自動車以外の分野にも適用することができるのは、勿論である。例えば、モータ10をパワーウインド用モータとして用いた場合には、ウインドを開く動作を高速回転で行ない、ウインドを閉じる動作を低速回転で行なうことが可能になり、変速機構を介さずにウインドの動作速度及び動作方向を切り換えることが可能になる。   In the present embodiment, the case where the motor 10 is used as a wiper driving motor has been described. However, the use of the motor 10 is not limited to this, and any motor can be used as long as it is a device for switching the number of revolutions or a device for switching torque. Of course, it can be applied to other fields. For example, when the motor 10 is used as a power window motor, it is possible to perform an operation for opening the window at a high speed rotation and an operation for closing the window at a low speed rotation. It becomes possible to switch speed and direction of operation.

図3は実施例2の電機子組立体40が左方に移動した低速回転モードを示す縦断面図である。尚、図3において、上記実施例1と同一部分には、同一符号を付してその説明を省略する。   FIG. 3 is a longitudinal sectional view showing a low-speed rotation mode in which the armature assembly 40 according to the second embodiment moves leftward. In FIG. 3, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

モータ80は、回転軸50の両端に出力軸50d,50eが設けられている。出力軸50d,50eは、夫々軸受支持部26a,28の挿通孔26c,28cに挿通されている。また、回転軸50の左端50a及び右端50bには止め輪68a,68bが係止されており、中空部26d,28dの段部にはスラストワッシャ70a,70bが設けられている。   The motor 80 is provided with output shafts 50 d and 50 e at both ends of the rotating shaft 50. The output shafts 50d and 50e are inserted through the insertion holes 26c and 28c of the bearing support portions 26a and 28, respectively. Retaining rings 68a and 68b are engaged with the left end 50a and the right end 50b of the rotary shaft 50, and thrust washers 70a and 70b are provided at the step portions of the hollow portions 26d and 28d.

従って、電機子組立体40の軸方向移動量(ストローク)は、回転軸50の左端50aに係止された止め輪68aがスラストワッシャ70aに当接する左方向移動限位置と、回転軸50の右端50bに係止された止め輪68bがスラストワッシャ70bに当接する右方向移動限位置とによって決まる。   Therefore, the amount of movement (stroke) in the axial direction of the armature assembly 40 is such that the stop ring 68a locked to the left end 50a of the rotating shaft 50 is in the leftward moving limit position where the thrust ring 70a abuts against the thrust washer 70a. The retaining ring 68b latched by 50b is determined by the rightward movement limit position where it abuts against the thrust washer 70b.

ここで、上記のように構成されたモータ80の回転駆動及び回転速度の切り換え動作について説明する。図3では、回転軸50の左端50aに係止された止め輪68aがスラストワッシャ70aに当接しており、電機子組立体40がXa方向に移動した低速回転モードを示している。この低速回転モードでは、電機子組立体40を右回り(時計方向)に回転させる。   Here, the rotation drive and rotation speed switching operation of the motor 80 configured as described above will be described. FIG. 3 shows a low-speed rotation mode in which the retaining ring 68a locked to the left end 50a of the rotating shaft 50 is in contact with the thrust washer 70a and the armature assembly 40 moves in the Xa direction. In this low speed rotation mode, the armature assembly 40 is rotated clockwise (clockwise).

そして、左端50aの止め輪68aがスラストワッシャ70aに当接しているため、電機子組立体40を右回り(時計方向)に回転させると、雌ねじ軸受部材64の雌ねじ64aと雄ねじ50cとの螺合関係が締まり、ねじ間の摩擦が増大する。すなわち、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa>Fbとなるため、雌ねじ軸受部材64の外周面は、軸受メタル62の環状凹部62aに対して回転する。   Since the retaining ring 68a at the left end 50a is in contact with the thrust washer 70a, when the armature assembly 40 is rotated clockwise (clockwise), the female screw 64a of the female screw bearing member 64 and the male screw 50c are screwed together. The relationship is tightened and the friction between the screws increases. That is, since the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa> Fb, the outer peripheral surface of the female screw bearing member 64 rotates with respect to the annular recess 62 a of the bearing metal 62. .

従って、左端50aの止め輪68aがスラストワッシャ70aに当接した状態で、駆動回路からの電流が電機子コイル54に通電されて永久磁石30の界磁束に対する右回り(時計方向)の回転力が付与されると、雌ねじ軸受部材64が回転軸50と一体に回転する。   Therefore, in a state where the retaining ring 68a at the left end 50a is in contact with the thrust washer 70a, the current from the drive circuit is supplied to the armature coil 54, and the clockwise (clockwise) rotational force with respect to the field flux of the permanent magnet 30 is generated. When applied, the female screw bearing member 64 rotates integrally with the rotary shaft 50.

この状態では、電機子コイル54が永久磁石30の軸方向の全幅(寸法Lの全範囲)で永久磁石30に近接対向しており、永久磁石30の全幅が有効磁束領域となるため、高トルクが得られるが回転数は低速となる。よって、モータ80では、電機子組立体40を右回り(時計方向)に回転駆動することにより、低速回転モードとなる。   In this state, the armature coil 54 is close to and opposed to the permanent magnet 30 with the full axial width of the permanent magnet 30 (the entire range of the dimension L), and the full width of the permanent magnet 30 becomes an effective magnetic flux region, so that high torque Is obtained, but the rotational speed is low. Therefore, the motor 80 is in the low-speed rotation mode by rotating the armature assembly 40 clockwise (clockwise).

次に、低速回転モードから高速回転モードに切り換える場合の動作について説明する。駆動回路から電機子コイル54に供給される電流の流れ方向を反転させることにより、電機子組立体40に左回り(反時計方向)の回転力が発生する。図1に示す低速回転モードにおいて、電機子組立体40に左回り(反時計方向)の回転力が付与されると、雌ねじ軸受部材64に螺合する雄ねじ50cが左回りに逆回転するため、雌ねじ軸受部材64の雌ねじ64aと雄ねじ50cとの螺合関係が緩み、ねじ間の摩擦が減少する。   Next, the operation for switching from the low speed rotation mode to the high speed rotation mode will be described. By reversing the flow direction of the current supplied from the drive circuit to the armature coil 54, a counterclockwise (counterclockwise) rotational force is generated in the armature assembly 40. In the low-speed rotation mode shown in FIG. 1, when a counterclockwise (counterclockwise) rotational force is applied to the armature assembly 40, the male screw 50c that engages with the female screw bearing member 64 rotates counterclockwise. The screwing relationship between the female screw 64a of the female screw bearing member 64 and the male screw 50c is loosened, and friction between the screws is reduced.

そのため、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa<Fbとなり、雌ねじ軸受部材64は軸受メタル62の環状凹部62aに静止状態に保持される。よって、雌ねじ64aと雄ねじ50cとの螺合により、回転運動が直線運動に変換されるため、電機子組立体40は、右方(Xb方向)へ平行移動する。   Therefore, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa <Fb, and the female screw bearing member 64 is held in a stationary state in the annular recess 62 a of the bearing metal 62. Therefore, since the rotational motion is converted into a linear motion by the screwing of the female screw 64a and the male screw 50c, the armature assembly 40 is translated in the right direction (Xb direction).

図4は実施例2の電機子組立体40が右方に移動した高速回転モードを示す。図2に示されるように、電機子組立体40は、左回り(反時計方向)に回転しながら右方(Xb方向)へ平行移動することで、電機子コイル54と永久磁石30との相対位置がずれることになり、電機子コイル54と永久磁石30との対向面積が減少する。これにより、永久磁石30からの有効界磁束の領域が減少する。   FIG. 4 shows a high-speed rotation mode in which the armature assembly 40 of the second embodiment is moved to the right. As shown in FIG. 2, the armature assembly 40 translates to the right (Xb direction) while rotating counterclockwise (counterclockwise), so that the armature coil 54 and the permanent magnet 30 are relative to each other. A position will shift | deviate and the opposing area of the armature coil 54 and the permanent magnet 30 will reduce. Thereby, the area | region of the effective field magnetic flux from the permanent magnet 30 reduces.

さらに、電機子組立体40が右方(Xb方向)へ平行移動すると、回転軸50の右端50bに係止されたC字状の止め輪68bが軸受支持部26aのスラストワッシャ70bに当接する。そして、電機子組立体40の右方(Xb方向)への移動がスラストワッシャ70bによって制限されると、雌ねじ軸受部材64の雌ねじ64aと雄ねじ50cとの螺合関係が締まり、ねじ間の摩擦が増大する。そのため、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa>Fbとなり、雌ねじ軸受部材64は軸受メタル62の環状凹部62aを摺接しながら回転する。   Further, when the armature assembly 40 is translated to the right (Xb direction), the C-shaped retaining ring 68b locked to the right end 50b of the rotating shaft 50 comes into contact with the thrust washer 70b of the bearing support portion 26a. When the movement of the armature assembly 40 to the right (Xb direction) is restricted by the thrust washer 70b, the screwing relationship between the female screw 64a of the female screw bearing member 64 and the male screw 50c is tightened, and the friction between the screws is reduced. Increase. Therefore, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa> Fb, and the female screw bearing member 64 rotates while slidingly contacting the annular recess 62 a of the bearing metal 62.

従って、電機子組立体40は、止め輪68aがスラストワッシャ70aに当接して右方(Xb方向)への移動を制限されると、雌ねじ軸受部材64が回転軸50と一体的に回転する。このように、永久磁石30に対する電機子コイル54の対向面積を減少させた状態では、電機子コイル54が永久磁石30からの磁束を切る際の抵抗が減少して電機子組立体40が高速回転する。よって、モータ80では、電機子組立体40を左回り(反時計方向)に回転駆動することにより、高速回転モードとなる。   Therefore, in the armature assembly 40, when the retaining ring 68a abuts against the thrust washer 70a and the movement to the right (Xb direction) is restricted, the female screw bearing member 64 rotates integrally with the rotary shaft 50. Thus, in a state where the facing area of the armature coil 54 with respect to the permanent magnet 30 is reduced, the resistance when the armature coil 54 cuts the magnetic flux from the permanent magnet 30 is reduced, and the armature assembly 40 rotates at high speed. To do. Therefore, the motor 80 is in the high-speed rotation mode by rotationally driving the armature assembly 40 counterclockwise (counterclockwise).

さらに、図4に示す高速回転モードから低速回転モードに切り換える場合は、電機子組立体40を右回り(時計方向)に回転させる。電機子組立体40に右回り(時計方向)の回転力が付与されると、雌ねじ軸受部材64と雄ねじ50cとの螺合関係が緩み、ねじ間の摩擦が減少する。   Furthermore, when switching from the high-speed rotation mode shown in FIG. 4 to the low-speed rotation mode, the armature assembly 40 is rotated clockwise (clockwise). When a clockwise (clockwise) rotational force is applied to the armature assembly 40, the screwed relationship between the female screw bearing member 64 and the male screw 50c is loosened, and friction between the screws is reduced.

そのため、雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa<Fbとなり、雌ねじ軸受部材64は軸受メタル62の環状凹部62aに静止状態に保持される。よって、雌ねじ64aと雄ねじ50cとの螺合により、回転運動が直線運動に変換されるため、電機子組立体40は、図3に示すように、左方(Xa方向)へ平行移動する。   Therefore, the relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the female screw bearing member 64 is Fa <Fb, and the female screw bearing member 64 is held in a stationary state in the annular recess 62 a of the bearing metal 62. Therefore, since the rotational motion is converted into a linear motion by screwing the female screw 64a and the male screw 50c, the armature assembly 40 translates leftward (Xa direction) as shown in FIG.

そして、回転軸50の右端50bに係止されたC字状の止め輪68bが軸受支持部26aのスラストワッシャ70bに当接する位置まで左方(Xa方向)へ移動すると、前述したように雌ねじ軸受部材64に対する内周側摩擦Faと外周側摩擦Fbとの相対関係がFa>Fbとなる。そのため、右回り(時計方向)の回転力が付与されると、雌ねじ軸受部材64が回転軸50と一体に回転する。この状態では、電機子コイル54が永久磁石30の軸方向の全幅(寸法Lの全範囲)で永久磁石30に近接対向しているため、回転数は低速となる。   When the C-shaped retaining ring 68b locked to the right end 50b of the rotating shaft 50 moves to the left (Xa direction) to a position where it abuts against the thrust washer 70b of the bearing support portion 26a, as described above, the female screw bearing The relative relationship between the inner peripheral friction Fa and the outer peripheral friction Fb with respect to the member 64 is Fa> Fb. Therefore, when a clockwise (clockwise) rotational force is applied, the female screw bearing member 64 rotates integrally with the rotary shaft 50. In this state, since the armature coil 54 is close to and opposed to the permanent magnet 30 with the full axial width of the permanent magnet 30 (the entire range of the dimension L), the rotational speed is low.

従って、本実施例のモータ80では、上記実施例1のモータ10と同様な効果が得られると共に、回転軸50の両端の出力軸50d,50eを別々の装置の駆動軸に連結すること可能になり、夫々の装置を異なる回転数あるいは異なるトルクで駆動することが可能になる。また、電機子組立体40の回転方向を切り換えることで低速回転モードから高速回転モード、あるいは高速回転モードから低速回転モードに切り換えると共に、被駆動系路を選択することも可能になる。   Therefore, in the motor 80 of the present embodiment, the same effect as the motor 10 of the first embodiment can be obtained, and the output shafts 50d and 50e at both ends of the rotating shaft 50 can be connected to the drive shafts of different devices. Thus, each device can be driven at different rotational speeds or different torques. Further, by switching the rotation direction of the armature assembly 40, the low speed rotation mode can be switched to the high speed rotation mode, or the high speed rotation mode can be switched to the low speed rotation mode, and the driven system path can be selected.

例えば、高回転型ポンプと低回転型ポンプをモータ80の両側に配置する構成とした場合、回転軸50の移動方向によって何れか一方のポンプを駆動するようにできるので、要求されるポンプ吐出量に応じて電機子組立体40の回転方向を切り換えることで、流体供給量を切り換えることが可能になる。   For example, when the high-rotation pump and the low-rotation pump are arranged on both sides of the motor 80, one of the pumps can be driven depending on the moving direction of the rotary shaft 50. Accordingly, the fluid supply amount can be switched by switching the rotation direction of the armature assembly 40 according to the above.

尚、上記実施例では、本発明の適用例の一例を説明したに過ぎず、自動車以外のあらゆる用途にも用いることができるのは言うまでもない。   In addition, in the said Example, it is needless to say that it can use for all uses other than a motor vehicle only as an example of the example of application of this invention.

また、上記実施例において、回転軸50と雌ねじ軸受部材64との螺合をボールねじとしても良いのは勿論である。   Of course, in the above embodiment, the screwing of the rotary shaft 50 and the female screw bearing member 64 may be a ball screw.

本発明によるモータの実施例1を示しており、電機子組立体が左方に移動した低速回転モードを示す縦断面図である。1 is a longitudinal sectional view illustrating a first embodiment of a motor according to the present invention and illustrating a low-speed rotation mode in which an armature assembly is moved leftward. FIG. 電機子組立体40が右方に移動した高速回転モードを示す縦断面図である。It is a longitudinal cross-sectional view which shows the high-speed rotation mode which the armature assembly 40 moved to the right. 実施例2の電機子組立体40が左方に移動した低速回転モードを示す縦断面図である。It is a longitudinal cross-sectional view which shows the low speed rotation mode which the armature assembly 40 of Example 2 moved to the left. 実施例2の電機子組立体40が右方に移動した高速回転モードを示す縦断面図である。It is a longitudinal cross-sectional view which shows the high-speed rotation mode which the armature assembly 40 of Example 2 moved rightward.

符号の説明Explanation of symbols

10,80 モータ
20 ハウジング
22 収納ケース
24 収納室
26 蓋部材
30 永久磁石
40 電機子組立体
50 回転軸
50c 雄ねじ
50d,50e 出力軸
52 電機子コア
54 電機子コイル
56 整流子
60 ボール軸受
62 軸受メタル
64 雌ねじ軸受部材
64a 雌ねじ
68,68a,68b 止め輪
70,70a,70b スラストワッシャ
71 第1ブラシ
72 第2ブラシ
DESCRIPTION OF SYMBOLS 10,80 Motor 20 Housing 22 Storage case 24 Storage chamber 26 Cover member 30 Permanent magnet 40 Armature assembly 50 Rotating shaft 50c Male screw 50d, 50e Output shaft 52 Armature core 54 Armature coil 56 Commutator 60 Ball bearing 62 Bearing metal 64 Female thread bearing member 64a Female thread 68, 68a, 68b Retaining ring 70, 70a, 70b Thrust washer 71 First brush 72 Second brush

Claims (3)

ハウジングと、
該ハウジングの径方向内側に固定され、界磁束を発生する永久磁石と、
雄ねじを有する回転軸、該回転軸の外周に固定される電機子コア、該電機子コアの外周に巻装される電機子コイルを有し、前記永久磁石の径方向内側で回転し、且つ軸方向に移動可能な電機子組立体と、
軸方向に貫通する貫通孔の内周面に前記回転軸の雄ねじに螺合する雌ねじを有し、前記回転軸の回転方向に応じた軸方向に前記電機子組立体を平行移動させる雌ねじ軸受部材と、
前記ハウジングに外周面が固定され、内周面が前記雌ねじ軸受部材を回転可能に支持する軸受と、
前記雌ねじ軸受部材と前記軸受との相対回転を可能もしくは規制する回転制御手段と、
を備えたことを特徴とするモータ。
A housing;
A permanent magnet that is fixed on the radially inner side of the housing and generates a field flux;
A rotating shaft having a male screw; an armature core fixed to the outer periphery of the rotating shaft; an armature coil wound around the outer periphery of the armature core; and rotating on a radially inner side of the permanent magnet; An armature assembly movable in a direction;
A female screw bearing member having a female screw threadedly engaged with a male screw of the rotating shaft on the inner peripheral surface of the through hole penetrating in the axial direction, and translating the armature assembly in the axial direction corresponding to the rotating direction of the rotating shaft When,
A bearing having an outer peripheral surface fixed to the housing, and an inner peripheral surface rotatably supporting the female screw bearing member;
Rotation control means for enabling or restricting relative rotation between the female screw bearing member and the bearing;
A motor comprising:
前記回転制御手段は、前記電機子組立体の回転方向を反転させることにより前記雌ねじ軸受部材に螺合された前記回転軸の雄ねじが軸方向に駆動され、前記永久磁石に対向する電機子コイルの対向面積を変更して前記電機子組立体の回転数を切り換えることを特徴とする請求項1に記載のモータ。   The rotation control means reverses the rotation direction of the armature assembly so that the male screw of the rotary shaft screwed to the female screw bearing member is driven in the axial direction, and the armature coil facing the permanent magnet is driven. The motor according to claim 1, wherein the rotation speed of the armature assembly is switched by changing the facing area. 前記軸受は、前記雌ねじ軸受部材との間の摩擦により前記雌ねじ軸受部材の回転を規制し、前記電機子組立体がストッパにより軸方向への移動を制限されて軸方向の移動を停止されると、前記雌ねじ軸受部材との相対回転を許容することを特徴とする請求項1に記載のモータ。
The bearing restricts the rotation of the female screw bearing member due to friction with the female screw bearing member, and when the armature assembly is restricted from moving in the axial direction by a stopper, the axial movement is stopped. The motor according to claim 1, wherein relative rotation with the female screw bearing member is allowed.
JP2006005100A 2006-01-12 2006-01-12 Motor Pending JP2007189811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005100A JP2007189811A (en) 2006-01-12 2006-01-12 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005100A JP2007189811A (en) 2006-01-12 2006-01-12 Motor

Publications (1)

Publication Number Publication Date
JP2007189811A true JP2007189811A (en) 2007-07-26

Family

ID=38344597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005100A Pending JP2007189811A (en) 2006-01-12 2006-01-12 Motor

Country Status (1)

Country Link
JP (1) JP2007189811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005951A (en) * 2020-02-06 2020-04-14 姚长水 One-way clutch capable of realizing separation and non-contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005951A (en) * 2020-02-06 2020-04-14 姚长水 One-way clutch capable of realizing separation and non-contact

Similar Documents

Publication Publication Date Title
JP2008524975A (en) Electric motor for rotation and axial movement
JP5563078B2 (en) Gear pump
CN108779659B (en) Opening/closing body control device
KR20140104340A (en) Stepping motor and motor-operated valve using the same
EP1102935B1 (en) A motor driven pump
KR20110066859A (en) Linear actuator
JP2012062888A (en) Pump unit
JP6671209B2 (en) Electric actuator
JP2006214291A (en) Actuator of valve lift control device
JP2008125235A (en) Electric motor
JP2007285483A (en) Actuator with feed screw mechanism
JP2007189811A (en) Motor
JP2007231774A (en) Electric motor
JP4584073B2 (en) Electric steering lock device
JP2015192459A (en) Electric motor integrated actuator
KR20170003024A (en) Structure for motor
EP2893231B1 (en) Magnetic holding brake and actuator with a magnetic holding brake
WO2018131403A1 (en) Electrically driven oil pump
JP5149703B2 (en) Gripper and gripper control method
JP6651381B2 (en) Electric actuator
JP2006214290A (en) Actuator of valve lift control device
JP2018127918A (en) Motor pump
EP3583320B1 (en) Pump for circulating a cooling fluid for combustion engines with electric motor control device
JP7210478B2 (en) Gear motor for automotive wiping system
KR102485896B1 (en) Electric cylinder apparatus provided with improved bearing cover assembly structure of screw shaft