JP2007189151A - Multilayer-film mirror and euv exposure device - Google Patents

Multilayer-film mirror and euv exposure device Download PDF

Info

Publication number
JP2007189151A
JP2007189151A JP2006007502A JP2006007502A JP2007189151A JP 2007189151 A JP2007189151 A JP 2007189151A JP 2006007502 A JP2006007502 A JP 2006007502A JP 2006007502 A JP2006007502 A JP 2006007502A JP 2007189151 A JP2007189151 A JP 2007189151A
Authority
JP
Japan
Prior art keywords
layer
multilayer film
multilayer
film
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007502A
Other languages
Japanese (ja)
Other versions
JP4715525B2 (en
Inventor
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006007502A priority Critical patent/JP4715525B2/en
Publication of JP2007189151A publication Critical patent/JP2007189151A/en
Application granted granted Critical
Publication of JP4715525B2 publication Critical patent/JP4715525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer-film mirror that allows a multilayer film to be simply peeled off, using an etchant. <P>SOLUTION: A protection layer 2 composed of a silicon oxide (SiO<SB>2</SB>) is formed on a substrate 1 by magnetron sputtering. Next, an Mo/Si multilayer film is formed in an (optical) effective region that is one size smaller than the protection layer 2. Here, although a forming region for an Mo layer 3 is formed on the entire face of the effective region, a forming region for an Si layer 4 is formed by dividing it into plural regions. Film formation is executed, in a state in which all the Mo layers 3 are jointed with each other via each gap between the divided regions. When such a multilayer film is immersed in an etchant for dissolving the Mo layers 3, since the etchant infiltrates, while successively dissolving the Mo layers 3 from the layer on the surface side, the Mo/Si multilayered film can be peeled off in a very short period of time, even if an etchant that does not dissolve the Si layers is used 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多層膜反射鏡、及びそれを使用しているEUV露光装置に関するものである。   The present invention relates to a multilayer film reflecting mirror and an EUV exposure apparatus using the same.

半導体集積回路素子の微細化の一層の進展に伴い、紫外線に代わって、波長11〜14nm程度の軟X線を使用する投影リソグラフィの開発が進められている。この技術は、最近ではEUVリソグラフィ(極端紫外線(Extreme Ultraviolet)縮小投影露光)とも呼ばれている。このEUVリソグラフィは、従来の光リソグラフィ(波長190nm程度以上)では実現不可能な、50nm以下の解像力を有するリソグラフィ技術として期待されている。   With further progress in miniaturization of semiconductor integrated circuit elements, development of projection lithography using soft X-rays having a wavelength of about 11 to 14 nm instead of ultraviolet rays is being promoted. This technique is also recently called EUV lithography (Extreme Ultraviolet reduced projection exposure). This EUV lithography is expected as a lithography technique having a resolving power of 50 nm or less, which cannot be realized by conventional optical lithography (wavelength of about 190 nm or more).

この軟X線の波長帯では、透明な物質が存在せず、物質の屈折率が1に非常に近いので、屈折を利用した従来の光学素子は使用できない。それに代わって、全反射を利用した斜入射ミラーや、界面での微弱な反射光の位相を合わせることによりその反射光を多数重畳させて全体としては高い反射率を得る多層膜反射鏡などが使用される。   In this soft X-ray wavelength band, there is no transparent substance, and the refractive index of the substance is very close to 1, so that a conventional optical element utilizing refraction cannot be used. Instead, a grazing incidence mirror that uses total reflection, or a multilayer film reflector that achieves a high reflectivity by superimposing a large number of reflected light by matching the phase of weak reflected light at the interface is used. Is done.

このような多層膜反射鏡においては、入射光の波長帯により、高い反射率を得るのに適した材質が異なる。例えば、13.5nm付近の波長帯では、モリブデン(Mo)層とシリコン(Si)層を基板上に交互に積層したMo/Si多層膜を用いると、直入射で67.5%の反射率を得ることができる。また、11.3nm付近の波長帯では、Mo層とベリリウム(Be)層を基板上に交互に積層したMo/Be多層膜を用いると、直入射で70.2%の反射率を得ることができる。   In such a multilayer-film reflective mirror, the material suitable for obtaining a high reflectance varies depending on the wavelength band of incident light. For example, in the wavelength band near 13.5 nm, using a Mo / Si multilayer film in which a molybdenum (Mo) layer and a silicon (Si) layer are alternately stacked on a substrate, a reflectivity of 67.5% can be obtained at normal incidence. it can. Further, in the wavelength band near 11.3 nm, when a Mo / Be multilayer film in which Mo layers and beryllium (Be) layers are alternately stacked on a substrate is used, a reflectivity of 70.2% can be obtained at normal incidence.

露光装置の投影光学系に使用される多層膜反射鏡において、露光時には、多層膜表面にEUV光が照射されるため、多層膜反射鏡付近に漂っている有機残留物(例えば、排気系のオイル等)がEUV光によって分解され、多層膜表面にカーボンコンタミ(炭素汚れ)となって付着したり、多層膜表面の酸化が進んだりすることにより、多層膜表面が汚染され、反射率を低下させるという問題が生じる。   In a multilayer mirror used in a projection optical system of an exposure apparatus, during exposure, the surface of the multilayer film is irradiated with EUV light, so that organic residues floating in the vicinity of the multilayer mirror (for example, exhaust system oil) Etc.) are decomposed by EUV light and adhere to the surface of the multilayer film as carbon contamination (carbon stains), or the oxidation of the multilayer film surface is contaminated and the reflectance of the multilayer film is reduced. The problem arises.

従って、EUVリソグラフィに用いられる多層膜反射鏡は、一定期間使用した後、新しい反射鏡と交換する必要がある。このとき、傷んだ多層膜を基板表面に影響を与えることなく除去することができれば、もとの基板を再利用することができるので、多層膜を再成膜するだけで、新たな多層膜反射鏡を作製することができ、高価な多層膜反射鏡を新たに製作する必要がない。   Therefore, the multilayer mirror used in EUV lithography needs to be replaced with a new one after being used for a certain period. At this time, if the damaged multilayer film can be removed without affecting the surface of the substrate, the original substrate can be reused. A mirror can be manufactured, and there is no need to newly manufacture an expensive multilayer film reflecting mirror.

多層膜を基板から除去する方法として、例えばAlのような、酸等の薬品で容易に溶かすことのできる下地層を予め形成しておいて、その上に多層膜を形成する方法が知られている。下地層を薬品で溶かすことにより、その上に形成された多層膜を基板から剥離することができる。   As a method for removing the multilayer film from the substrate, a method for forming a multilayer film on a base layer that is easily dissolved with a chemical such as acid, such as Al, is known. Yes. By dissolving the underlayer with a chemical, the multilayer film formed thereon can be peeled from the substrate.

しかしながら、Al等の金属で下地層を形成すると、下地層は微結晶薄膜になりやすく、その結果、その表面粗さは非常に平滑に研磨された基板表面よりも粗くなる。その上に多層膜を形成すると、界面の粗さが増大して反射率が低下してしまうという重大な問題点があった。   However, when the underlayer is formed of a metal such as Al, the underlayer tends to be a microcrystalline thin film, and as a result, the surface roughness becomes rougher than the substrate surface polished very smoothly. When a multilayer film is formed thereon, there is a serious problem that the roughness of the interface increases and the reflectance decreases.

上記のような剥離用の下地層を用いずに、多層膜を直接溶かしてしまう方法も考えられる。EUVリソグラフィで使用される波長13.5nm付近で用いられるMo/Si多層膜の場合には、燐酸、酢酸、硝酸の混合液でMo層をエッチングすることができる。但し、Al等の金属と比べるとエッチング速度は遅い。また、この混合液はSi層は溶かさないので、Mo/Si多層膜を剥離することは、現実には困難であった。   A method of directly dissolving the multilayer film without using the base layer for peeling as described above is also conceivable. In the case of a Mo / Si multilayer film used in the vicinity of a wavelength of 13.5 nm used in EUV lithography, the Mo layer can be etched with a mixed solution of phosphoric acid, acetic acid and nitric acid. However, the etching rate is slow compared to metals such as Al. In addition, since this mixed solution does not dissolve the Si layer, it was actually difficult to peel off the Mo / Si multilayer film.

本発明は、このような事情に鑑みてなされたもので、エッチング液を用いて簡単に多層膜を剥離することが可能な多層膜反射鏡、及びこの多層膜反射鏡を用いたEUV露光装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and a multilayer film reflecting mirror capable of easily peeling a multilayer film using an etching solution, and an EUV exposure apparatus using the multilayer film reflecting mirror. The issue is to provide.

前記課題を解決するための第1の手段は、基板上に、金属を主成分とする層と非金属を主成分とする層を交互に積層してなる多層膜反射鏡であって、前記非金属を主成分とする各層の成膜領域が分割されており、それにより、前記金属を主成分とする各層が相互に結合していることを特徴とする多層膜反射鏡である。   A first means for solving the above-described problem is a multilayer-film reflective mirror formed by alternately laminating a metal-based layer and a non-metal-based layer on a substrate. The multilayer film reflecting mirror is characterized in that a film formation region of each layer containing metal as a main component is divided so that each layer containing the metal as a main component is bonded to each other.

前記課題を解決するための第2の手段は、前記第1の手段である多層膜反射鏡を使用していることを特徴とするEUV露光装置である。   A second means for solving the above-mentioned problems is an EUV exposure apparatus characterized by using a multilayer film reflecting mirror as the first means.

本発明によれば、エッチング液を用いて簡単に多層膜を剥離することが可能な多層膜反射鏡、及びこの多層膜反射鏡を用いたEUV露光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the multilayer film reflective mirror which can peel a multilayer film easily using etching liquid, and EUV exposure apparatus using this multilayer film reflective mirror can be provided.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態であるMo/Si多層膜ミラーの概要を示す図であり、(a)は平面図、(b)は、(a)のA−A断面図である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing an outline of a Mo / Si multilayer mirror according to an embodiment of the present invention, in which FIG. 1A is a plan view and FIG.

まず、低熱膨張ガラスからなる基板1上に、マグネトロンスパッタリングにより酸化ケイ素(SiO)からなる保護層2(厚さ数nm)を形成する。この層は、多層膜のエッチングによる剥離を行う際に、基板が犯されるのを防ぐものである。石英等の化学的に安定な基板材料を用いる場合は、このような保護層2は省略して構わない。また、保護層2の材料は、酸化ケイ素以外にも五酸化タンタル(TaO)など、化学的に安定な材料であれば何でも構わない。なお、SiOやTaOからなる保護層は一般にアモルファス状となるので、Al等の金属下地層を形成したときのように表面粗さが増大することは無い。よって、保護層2を形成しても、それにより、多層膜の反射率が低下することがない。 First, a protective layer 2 (thickness of several nm) made of silicon oxide (SiO 2 ) is formed on a substrate 1 made of low thermal expansion glass by magnetron sputtering. This layer prevents the substrate from being violated when peeling off the multilayer film by etching. When a chemically stable substrate material such as quartz is used, such a protective layer 2 may be omitted. The material of the protective layer 2 may be any material that is chemically stable, such as tantalum pentoxide (Ta 2 O 5 ), in addition to silicon oxide. Since the protective layer made of SiO 2 or Ta 2 O 5 is generally amorphous, the surface roughness does not increase unlike when a metal underlayer such as Al is formed. Therefore, even if the protective layer 2 is formed, the reflectance of the multilayer film does not decrease.

次に、この保護層2よりも一回り小さい(光学的な)有効領域内へ、マグネトロンスパッタリングによりMo/Si多層膜を形成する。この実施の形態においては、Mo層の厚さは2.4nm、Si層の厚さは4.5nmとし、周期長が6.9nmの多層膜を50層対形成している。   Next, a Mo / Si multilayer film is formed by magnetron sputtering in a (optical) effective area that is slightly smaller than the protective layer 2. In this embodiment, the Mo layer has a thickness of 2.4 nm, the Si layer has a thickness of 4.5 nm, and 50 pairs of multilayer films having a period length of 6.9 nm are formed.

このとき、Mo層3の形成領域は有効領域全面とするが、Si層4の形成領域は複数に分割して形成している。この例においては、分割された領域間の隙間の幅は100μmである。このようにSi層4を分割して形成するために、Si層を形成するときだけ、図2のようなマスクを基板に近接して設置して成膜する。このマスクは、環状の板体5に太さ100μmのワイヤ6が張ってあり、そのワイヤ6の影の部分だけSiの付かない領域(上記の隙間)が形成される。このため、この隙間を介して全てのMo層3が結合した状態で成膜される。   At this time, the formation region of the Mo layer 3 is the entire effective region, but the formation region of the Si layer 4 is divided into a plurality. In this example, the width of the gap between the divided areas is 100 μm. In order to form the Si layer 4 in this way, only when the Si layer is formed, a mask as shown in FIG. In this mask, a wire 6 having a thickness of 100 μm is stretched on an annular plate 5, and only a shaded portion of the wire 6 is formed with a region where no Si is attached (the above gap). For this reason, it forms into a film in the state in which all the Mo layers 3 couple | bonded through this clearance gap.

このような多層膜を、Mo層3を溶かすエッチング液に浸漬すると、表面側の層から順にMo層3を溶かしながらエッチング液が侵入して行くので、Si層4は溶かさないエッチング液を用いても、ごく短時間(1例として数分)でMo/Si多層膜を剥離することが可能になる。   When such a multilayer film is immersed in an etching solution that dissolves the Mo layer 3, the etching solution enters while dissolving the Mo layer 3 in order from the surface side layer. Therefore, an etching solution that does not dissolve the Si layer 4 is used. However, the Mo / Si multilayer film can be peeled off in a very short time (a few minutes as an example).

Al等を下地層として用いた場合と比べても、遜色無い剥離時間を達成できる。Al層を下地とする場合は、多層膜の周辺部からその下地層を徐々に溶かしていかなければならないので、有効面積が大きくなるほど剥離に要する時間は長くなる。一方、本実施の形態では、多層膜の表面全体から、Si層4に設けた隙間を介してMo層6を順次溶解していくので、剥離に要する時間は有効面積に依存せず、隙間の入れ方に依存する。隙間を多数設けておけば、それだけ剥離に要する時間は短縮できる。   Compared to the case where Al or the like is used as the underlayer, a peeling time comparable to that when using Al or the like can be achieved. When the Al layer is used as a base, the base layer must be gradually dissolved from the peripheral portion of the multilayer film, so that the longer the effective area, the longer the time required for peeling. On the other hand, in the present embodiment, since the Mo layer 6 is sequentially dissolved from the entire surface of the multilayer film through the gap provided in the Si layer 4, the time required for peeling does not depend on the effective area, and the gap Depends on how you put it. If many gaps are provided, the time required for peeling can be shortened accordingly.

なお、Si層4を分割する隙間は、ミラーの有効領域に比べて充分小さく形成しておけば(例えば100μm程度)、この隙間の光学特性に対する影響は無視できる。又、以上の説明においては、Si層4の成膜領域を扇型の形状に分割したが、分割方法はこれに限定されることはない。   If the gap for dividing the Si layer 4 is formed to be sufficiently smaller than the effective area of the mirror (for example, about 100 μm), the influence of the gap on the optical characteristics can be ignored. In the above description, the film formation region of the Si layer 4 is divided into a fan shape, but the division method is not limited to this.

このようにして形成したMo/Si多層膜の剥離テストを行った。基板1の保護層2の形成されていない領域にはエッチング液が触れないように適宜カバーを設け、燐酸、酢酸、硝酸の混合液からなるエッチング液に多層膜ミラーを浸漬した。エッチング液は表面側から順次Mo層を溶解し、下層のMo層が無くなったSi層は基板から順次剥離した。このようにして、保護層2上のMo/Si多層膜を全て剥離することができた。   A peeling test of the Mo / Si multilayer film thus formed was performed. A cover was appropriately provided so that the etching solution did not come into contact with the region of the substrate 1 where the protective layer 2 was not formed, and the multilayer mirror was immersed in an etching solution composed of a mixed solution of phosphoric acid, acetic acid and nitric acid. The etching solution sequentially dissolved the Mo layer from the surface side, and the Si layer with the lower Mo layer removed was peeled off from the substrate. In this way, the entire Mo / Si multilayer film on the protective layer 2 could be peeled off.

図3は、本発明の実施の形態の1例であるEUV露光装置の概要を示す図である。光源31から放出されたEUV光32は、コリメータミラーとして作用する凹面反射鏡34を介してほぼ平行光束となり、一対のフライアイミラー35aおよび35bからなるオプティカルインテグレータ35に入射する。   FIG. 3 is a diagram showing an outline of an EUV exposure apparatus which is an example of an embodiment of the present invention. The EUV light 32 emitted from the light source 31 becomes a substantially parallel light beam through a concave reflecting mirror 34 that acts as a collimator mirror, and enters an optical integrator 35 including a pair of fly-eye mirrors 35a and 35b.

こうして、フライアイミラー35bの反射面の近傍、すなわちオプティカルインテグレータ35の射出面の近傍には、所定の形状を有する実質的な面光源が形成される。実質的な面光源からの光は平面反射鏡36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する。ここで、円弧状の照明領域を形成するための開口板は、図示していない。マスクMの表面で反射された光は、その後、投影光学系37の多層膜反射鏡M1、M2、M3、M4、M5、M6で順に反射されて、露光光101として、マスクMの表面に形成されたパターンの像を、ウエハ102上に塗布されたレジスト103上に形成する。   Thus, a substantial surface light source having a predetermined shape is formed in the vicinity of the reflective surface of the fly-eye mirror 35b, that is, in the vicinity of the exit surface of the optical integrator 35. The light from the substantial surface light source is deflected by the plane reflecting mirror 36 and then forms an elongated arc-shaped illumination area on the mask M. Here, an aperture plate for forming an arcuate illumination region is not shown. The light reflected by the surface of the mask M is then reflected in turn by the multilayer reflectors M1, M2, M3, M4, M5, and M6 of the projection optical system 37 to form exposure light 101 on the surface of the mask M. An image of the pattern thus formed is formed on the resist 103 coated on the wafer 102.

このEUV装置においては、図1に示したような多層膜ミラーを使用している。よって、ミラーを交換する際に、多層膜を剥離して、多層膜だけを新しくすることができるので、全体として装置の価格が安価となる。   In this EUV apparatus, a multilayer mirror as shown in FIG. 1 is used. Therefore, when the mirror is replaced, the multilayer film can be peeled off and only the multilayer film can be renewed, so that the price of the apparatus as a whole is reduced.

本発明の実施の形態であるMo/Si多層膜ミラーの概要を示す図である。It is a figure which shows the outline | summary of the Mo / Si multilayer mirror which is embodiment of this invention. Si層を形成するときに使用するマスクの例を示す図である。It is a figure which shows the example of the mask used when forming a Si layer. 本発明の実施の形態の1例であるEUV露光装置の概要を示す図である。It is a figure which shows the outline | summary of the EUV exposure apparatus which is an example of Embodiment of this invention.

符号の説明Explanation of symbols

1…基板、2…保護層、3…Mo層、4…Si層、5…板体、6…ワイヤ、31…光源、32…EUV光、33…照明光学系、34…凹面反射鏡、35…オプティカルインテグレータ、35a,35b…フライアイミラー、36…平面反射鏡、37…投影光学系、M…マスク、M1〜M6…多層膜反射鏡、101…露光光、102…ウエハ、103…レジスト、 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Protective layer, 3 ... Mo layer, 4 ... Si layer, 5 ... Plate body, 6 ... Wire, 31 ... Light source, 32 ... EUV light, 33 ... Illumination optical system, 34 ... Concave reflector, 35 Optical integrator 35a, 35b Fly eye mirror 36 Planar reflecting mirror 37 Projection optical system M Mask M1-M6 Multilayer reflecting mirror 101 Exposure light 102 Wafer 103 Resist

Claims (2)

基板上に、金属を主成分とする層と非金属を主成分とする層を交互に積層してなる多層膜反射鏡であって、前記非金属を主成分とする各層の成膜領域が分割されており、それにより、前記金属を主成分とする各層が相互に結合していることを特徴とする多層膜反射鏡。   A multilayer reflector in which a metal-based layer and a non-metal-based layer are alternately stacked on a substrate, wherein the film-forming regions of the non-metal-based layers are divided Thus, the multilayer film reflecting mirror is characterized in that the layers mainly composed of the metal are bonded to each other. 請求項1に記載の多層膜反射鏡を使用していることを特徴とするEUV露光装置。   An EUV exposure apparatus using the multilayer mirror according to claim 1.
JP2006007502A 2006-01-16 2006-01-16 Multilayer reflection mirror and EUV exposure apparatus Active JP4715525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007502A JP4715525B2 (en) 2006-01-16 2006-01-16 Multilayer reflection mirror and EUV exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007502A JP4715525B2 (en) 2006-01-16 2006-01-16 Multilayer reflection mirror and EUV exposure apparatus

Publications (2)

Publication Number Publication Date
JP2007189151A true JP2007189151A (en) 2007-07-26
JP4715525B2 JP4715525B2 (en) 2011-07-06

Family

ID=38344088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007502A Active JP4715525B2 (en) 2006-01-16 2006-01-16 Multilayer reflection mirror and EUV exposure apparatus

Country Status (1)

Country Link
JP (1) JP4715525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185518A (en) * 2014-02-24 2018-11-22 株式会社ニコン Multilayer film reflective mirror and method for manufacturing the same, and exposure apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145999A (en) * 1988-11-28 1990-06-05 Nikon Corp Multi-layered reflecting mirror for x-ray
JPH05157898A (en) * 1991-04-11 1993-06-25 Nikon Corp Optical thin film member
JP2002303695A (en) * 2001-04-03 2002-10-18 Nikon Corp Multi-layer film reflection mirror, removing method for multi-layer film and exposure device
JP2005098930A (en) * 2003-09-26 2005-04-14 Nikon Corp Multilayer-film reflector, method for reconditioning it and exposure system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145999A (en) * 1988-11-28 1990-06-05 Nikon Corp Multi-layered reflecting mirror for x-ray
JPH05157898A (en) * 1991-04-11 1993-06-25 Nikon Corp Optical thin film member
JP2002303695A (en) * 2001-04-03 2002-10-18 Nikon Corp Multi-layer film reflection mirror, removing method for multi-layer film and exposure device
JP2005098930A (en) * 2003-09-26 2005-04-14 Nikon Corp Multilayer-film reflector, method for reconditioning it and exposure system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185518A (en) * 2014-02-24 2018-11-22 株式会社ニコン Multilayer film reflective mirror and method for manufacturing the same, and exposure apparatus

Also Published As

Publication number Publication date
JP4715525B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US5265143A (en) X-ray optical element including a multilayer coating
JP3047541B2 (en) Reflective mask and defect repair method
US6048652A (en) Backside polish EUV mask and method of manufacture
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
US20090141356A1 (en) Optical element, and light source unit and exposure apparatus having the same
US5356662A (en) Method for repairing an optical element which includes a multilayer coating
JP2007133102A (en) Optical element having reflection preventing film, and exposure apparatus having the same
JP2006324268A (en) Mask blanks for euv exposure, its manufacturing method and mask for euv exposure
KR20090032876A (en) Lithograpy apparatus and method for forming semiconductor device using the same
JP2009272347A (en) Light reflecting mask, exposure apparatus, measuring method, and method of manufacturing semiconductor device
JP4715525B2 (en) Multilayer reflection mirror and EUV exposure apparatus
JP2005268359A (en) Mirror and lighting optical equipment
JP2007101349A (en) Multilayer mirror, its reproducing method and exposure system
JP4415523B2 (en) Multilayer reflector, method for manufacturing the same, X-ray exposure apparatus, method for manufacturing semiconductor device, and X-ray optical system
JP7226389B2 (en) Substrate with film for reflective mask blank and reflective mask blank
JP2009519593A (en) Reflective photolithography mask and method of making the mask
JP2001074921A (en) Two-dimensional phase device and its production
JP2004037295A (en) Multilayer reflector, its manufacturing method, reflectivity recovery method of multilayer reflector, soft x-ray optical system, and soft x-ray exposing device
JP2008153395A (en) Multilayer film reflector, exposure apparatus, and semiconductor manufacturing method
JP2007187987A (en) Multilayer film reflecting mirror, and euv (extreme ultraviolet) exposure apparatus
JP3309501B2 (en) Reflective mask
JP2005524862A (en) Method for manufacturing an optical element comprising a quartz substrate
JP2007088237A (en) Multilayer reflector and euv exposure apparatus
JP2007189174A (en) Multilayer-film reflector, method for regenerating same, and exposure apparatus
JP2006179630A (en) Multilayer reflector and euv exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250