JP2007189095A - Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board - Google Patents

Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board Download PDF

Info

Publication number
JP2007189095A
JP2007189095A JP2006006430A JP2006006430A JP2007189095A JP 2007189095 A JP2007189095 A JP 2007189095A JP 2006006430 A JP2006006430 A JP 2006006430A JP 2006006430 A JP2006006430 A JP 2006006430A JP 2007189095 A JP2007189095 A JP 2007189095A
Authority
JP
Japan
Prior art keywords
film
multilayer wiring
wiring layer
photosensitive organic
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006006430A
Other languages
Japanese (ja)
Inventor
Koji Sakata
晃次 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006006430A priority Critical patent/JP2007189095A/en
Publication of JP2007189095A publication Critical patent/JP2007189095A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate film peeling and to appropriately make Al wiring into multiple layers when a photosensitive organic film is used for an interlayer insulating film. <P>SOLUTION: When multilayer wiring is manufactured on a silicon substrate by using the photosensitive organic film in the interlayer dielectric of an Al wiring layer 13, either of depositing pressure, substrate heating or heat treatment after depositing as a depositing condition of the Al film by sputtering when forming the Al wiring layer 13 is controlled so that the surface of the Al film becomes roughness of an unevenness shape, where a surface area increases. When the photosensitive organic film is formed on the Al wiring layer 13, both contact areas are increased, and both adhesivenesses are improved. Thus, film peeling of the photosensitive organic film is eliminated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体分野に代表されるシリコン基板を用いた集積回路やSiP(System in Package)向けのシリコンインターポーザ基板の層間絶縁膜に感光性有機膜を用いたシリコン多層配線基板の製造方法及びシリコン多層配線基板の評価方法に関する。   The present invention relates to a method for manufacturing a silicon multilayer wiring substrate using a photosensitive organic film as an interlayer insulating film of an integrated circuit using a silicon substrate typified by the semiconductor field and a silicon interposer substrate for SiP (System in Package), and silicon. The present invention relates to a method for evaluating a multilayer wiring board.

近年、SiPにおいては、抵抗器やコンデンサ、ダイオード等の受動素子をプリント基板に内蔵して実現され、機能LSI(Large Scale Integrated circuit)においては、従来のようなQFP(Quad Flat Package)のような大きな部品から、CSP(Chip size Package)のような小型な部品の開発が進むなど、プリント基板、搭載部品の双方から小型化が図られている。   In recent years, SiP has been realized by incorporating passive elements such as resistors, capacitors, and diodes in a printed circuit board, and in a functional LSI (Large Scale Integrated circuit), such as a conventional QFP (Quad Flat Package). The development of small components such as CSP (Chip Size Package) has progressed from large components, and miniaturization has been achieved from both printed circuit boards and mounted components.

しかし、更なる小型化を実現するために、フォト精度やエッチング工程の制約から、新しい技術が必要となってきている。このため、従来のプリント基板に代わり、機能LSIをCSPやベアチップの状態で、シリコンインターポーザ基板に搭載する技術が開発されている。
シリコンインターポーザ基板は、LSIプロセスと同様な工程で製造されているため、抵抗器・コンデンサ・ダイオードの搭載が可能である。配線にはAl(アルミニュウム)系の導電材料を用いており、層間絶縁膜にはプラズマCVD(Chemical Vapor Deposition)法により形成するSi02(酸化シリコン膜)を採用している。
However, in order to achieve further miniaturization, new technologies are required due to the limitations of photo accuracy and etching processes. For this reason, a technique for mounting a functional LSI on a silicon interposer substrate in a CSP or bare chip state instead of a conventional printed circuit board has been developed.
Since the silicon interposer substrate is manufactured in the same process as the LSI process, it is possible to mount resistors, capacitors, and diodes. Al (aluminum) -based conductive material is used for the wiring, and SiO 2 (silicon oxide film) formed by plasma CVD (Chemical Vapor Deposition) is used for the interlayer insulating film.

Si02は、P−Si02とも称す。しかし、P−Si02は比誘電率εrが4.0〜4.2と大きいため、今後主流となる高Q(Quality Factor)値が求められるようなRF(Radio Frequency)コイルの搭載や、数十GHz帯の高周波デバイスへの適用が困難である。
この対策として、一般的に、シリコン酸化膜にN(窒素原子)やF(弗素原子)、C(炭素原子)を添加することにより、誘電率を2.9〜3.5に低下させたSiOX系の材料が用いられている。
Si0 2 is also referred to as P-Si0 2. However, since P-Si0 2 is the relative dielectric constant εr is as large as 4.0 to 4.2, mounting and the RF (Radio Frequency) coil as high Q (Quality Factor) value is obtained as a mainstream future, few It is difficult to apply to a 10 GHz band high frequency device.
As a countermeasure, generally, SiOX whose dielectric constant is reduced to 2.9 to 3.5 by adding N (nitrogen atom), F (fluorine atom), or C (carbon atom) to the silicon oxide film. System materials are used.

従来のP−SiO2やSiOX系の材料は、既存のLSI工程にフィットしやすい利点を有するが、図7の従来のシリコン多層配線基板の製造工程図に示すように、大きく分けて(a)〜(c)の成膜工程、(d)のフォト工程、(e)〜(h)のエッチング工程の3つの工程が必要となる。この製造工程を説明する。
まず、成膜工程において、(a)は層間膜成膜工程であり、Si基板11の上にT−SiO2層12、Al配線層13、CVD−SiO2層14を順次積層する。(b)はレジスト塗布工程であり、CVD−SiO2層14の上にレジストを塗布し、(c)のプリベーク工程にてプリベークを行う。そして、フォト工程において、(d)で露光・現像工程でレジスト層15の所定位置16に露光・現像を行う。
Conventional P-SiO 2 and SiOX-based materials have the advantage of being easily fitted to existing LSI processes, but can be broadly divided into (a) as shown in the manufacturing process diagram of the conventional silicon multilayer wiring board in FIG. Three processes are required: a film forming process of (c), a photo process of (d), and an etching process of (e) to (h). This manufacturing process will be described.
First, in the film forming process, (a) is an interlayer film forming process, in which a T-SiO 2 layer 12, an Al wiring layer 13, and a CVD-SiO 2 layer 14 are sequentially stacked on a Si substrate 11. (B) is a resist coating step, in which a resist is coated on the CVD-SiO 2 layer 14 and prebaked in the prebaking step (c). Then, in the photo process, exposure / development is performed at a predetermined position 16 of the resist layer 15 in the exposure / development process in (d).

次に、エッチング工程において、(e)ポストベーク工程にてポストベークを行い、(f)の層間膜ウエットエッチング工程にてCVD−SiO2層14に対して所定深さ17までウエットエッチングを行う。(g)層間膜ドライエッチング工程にてCVD−SiO2層14のウエットエッチング処理の箇所17にドライエッチング18を行い、(h)のレジストアッシング工程にてレジスト層15を剥離する。 Next, in the etching step, (e) post-baking is performed in the post-baking step, and wet etching is performed up to a predetermined depth 17 on the CVD-SiO 2 layer 14 in the interlayer film wet etching step (f). (G) In the interlayer film dry etching step, dry etching 18 is performed on the portion 17 of the wet etching process of the CVD-SiO 2 layer 14, and the resist layer 15 is peeled off in the resist ashing step (h).

このように多くの工程が必要となるので、既存設備で製造可能であって、図8に示すように製造工程を短縮できる感光性有機膜(感光性ポリイミド膜)の適用を検討した。
まず、(a)の層間膜塗布工程にて、Si基板11の上にT−SiO212、Al配線層13と順次積層し、この上に感光性有機膜21を塗布する。そして、(b)のプリベーク工程にてプリベークを行い、(c)のフォト工程にて感光性有機膜21の所定位置22に露光・現像を行い、(d)のキュア工程によって加熱処理で硬化させる。
Since many processes are required in this way, the application of a photosensitive organic film (photosensitive polyimide film) that can be manufactured with existing equipment and can shorten the manufacturing process as shown in FIG. 8 was examined.
First, in the interlayer film coating step (a), the T-SiO 2 12 and the Al wiring layer 13 are sequentially laminated on the Si substrate 11, and the photosensitive organic film 21 is coated thereon. Then, pre-baking is performed in the pre-baking step (b), exposure / development is performed on the predetermined position 22 of the photosensitive organic film 21 in the photo step (c), and curing is performed by heat treatment in the curing step (d). .

感光性有機膜は、LSIの表面保護膜として用いられていたが、材料の性質が優れている点から、近年、MEMS(Mechan1ca1 E1ectric Machining System)を中心とした、Si機能デバイスへの表面保護膜や層間絶縁膜として応用される例が増えている。
また、感光性有機膜は従来のP‐SiO2と比較し、比誘電率εrが2.6〜2.9と低いこと、応力が1桁程低いので厚膜塗布が可能である。また、上記の図7に示したように、従来のP‐SiO2の工程と比較し、工程数を約1/2に削減できることから、高機能且つ低コストで高周波デバイスや多層配線デバイスの層間膜として適用が期待できる材料である。
Photosensitive organic films have been used as LSI surface protective films, but due to their superior material properties, in recent years, surface protective films for Si functional devices centered on MEMS (Mechan1ca1 E1ectric Machining System). More and more examples are applied as interlayer insulating films.
In addition, the photosensitive organic film can be applied to a thick film because the relative dielectric constant εr is as low as 2.6 to 2.9 and the stress is an order of magnitude lower than that of conventional P-SiO 2 . Further, as shown in FIG. 7 above, the number of steps can be reduced to about 1/2 compared with the conventional P-SiO 2 step, so that it is possible to reduce the number of layers between high-frequency devices and multilayer wiring devices with high functionality and low cost. It is a material that can be expected to be applied as a film.

この種の従来のシリコン多層配線基板の製造方法として、例えば特許文献1に記載のものがある。
特開平5−304362号公報
As a method for manufacturing this type of conventional silicon multilayer wiring substrate, for example, there is a method described in Patent Document 1.
JP-A-5-304362

しかし、上述した従来のシリコン多層配線基板の製造に用いられる感光性有機膜は、金属表面との密着性がP−SiO2と比較すると格段に悪く、この点が次に説明するように、感光性有機膜を用いたシリコン多層配線基板を製造する上での問題となっている。
感光性有機膜21は、図8(c)に示したフォト工程では図9(a−1)及び(a−2)に示すように、Al配線層13の基板と密着している。図8(d)に示したキュア工程では、脱水反応によって生じる水分や感光基成分が除去されるため、材料にも依存するが、感光性有機膜21で10〜50%の膜収縮(膜減り)が生じる。
However, the photosensitive organic film used for manufacturing the above-described conventional silicon multilayer wiring board has much worse adhesion to the metal surface than P-SiO 2, and this point will be explained as follows. This is a problem in manufacturing a silicon multilayer wiring board using a conductive organic film.
The photosensitive organic film 21 is in close contact with the substrate of the Al wiring layer 13 as shown in FIGS. 9A-1 and 9A-2 in the photo process shown in FIG. 8C. In the curing process shown in FIG. 8 (d), moisture and photosensitive group components generated by the dehydration reaction are removed, and depending on the material, the photosensitive organic film 21 contracts by 10 to 50% (film reduction). ) Occurs.

この膜収縮によって、特に、図9(b−1)及び(b−2)に示すように、Al配線層13の膜厚の薄いコンタクトホール32の部分において、金属表面と有機膜との界面でgapで示すような膜剥がれが発生し易くなる。
この部分については、剥離がない場合、図10(a)に示すように、感光性有機膜21の上にAl配線層33を形成した際に層間絶縁膜(感光性有機膜)21をカバレッジすることが可能である。
Due to this film shrinkage, particularly at the interface between the metal surface and the organic film in the thin contact hole 32 of the Al wiring layer 13, as shown in FIGS. 9B-1 and 9B-2. Film peeling as indicated by gap is likely to occur.
In this portion, when there is no peeling, the interlayer insulating film (photosensitive organic film) 21 is covered when the Al wiring layer 33 is formed on the photosensitive organic film 21 as shown in FIG. It is possible.

しかし、図10(b)に示すように、界面に剥離が発生すると、Al配線層33を形成した際に、○34内に示すようにコンタクトホール32の段差部分において層間絶縁膜21へのAl配線のカバレッジ性が劣化し、断線又はルーズコンタクトの状態が発生する。このため、コンタクト抵抗がオープン又は高抵抗状態となるので、Al配線の多層化を行うことが出来なくなる。   However, as shown in FIG. 10B, when peeling occurs at the interface, when the Al wiring layer 33 is formed, the Al to the interlayer insulating film 21 is formed at the step portion of the contact hole 32 as indicated by. The coverage of the wiring deteriorates, and a disconnection or loose contact state occurs. For this reason, since the contact resistance is open or in a high resistance state, the Al wiring cannot be multilayered.

本発明は、このような課題に鑑みてなされたものであり、層間絶縁膜に感光性有機膜を用いた際にその膜剥がれを無くして適正にAl配線の多層化を行うことができるシリコン多層配線基板の製造方法及びシリコン多層配線基板の評価方法を提供することを目的としている。   The present invention has been made in view of such problems, and when a photosensitive organic film is used as an interlayer insulating film, a silicon multilayer capable of appropriately multilayering Al wiring without the film peeling. An object of the present invention is to provide a method for manufacturing a wiring board and a method for evaluating a silicon multilayer wiring board.

上記目的を達成するために、本発明の請求項1によるシリコン多層配線基板の製造方法は、金属配線層の層間絶縁膜に感光性有機膜を用いてシリコン基板上に多層配線を製造するシリコン多層配線基板の製造方法において、前記金属配線層を形成する際のスパッタリングによる金属膜の成膜条件である成膜圧力、基板加熱、成膜後の熱処理の何れかを、当該金属膜の表面がこの表面積が増大する凹凸状の粗さとなるように制御することを特徴とする。
この方法によれば、感光性有機膜を形成する際の下地金属膜の表面積が多数の凹凸によって増大するので、金属膜上に感光性有機膜を形成した際に金属膜との接触面積が増大し、双方の膜の密着性が向上する。この結果、従来のような感光性有機膜の膜剥がれがなくなる。
In order to achieve the above object, a method for manufacturing a silicon multilayer wiring board according to claim 1 of the present invention is a silicon multilayer manufacturing method in which a multilayer wiring is manufactured on a silicon substrate using a photosensitive organic film as an interlayer insulating film of a metal wiring layer. In the method of manufacturing a wiring board, the surface of the metal film is subjected to any one of film formation pressure, substrate heating, and heat treatment after film formation, which are film formation conditions of the metal film by sputtering when forming the metal wiring layer. It is characterized by controlling the roughness so as to increase the surface area.
According to this method, the surface area of the base metal film when forming the photosensitive organic film is increased by a large number of irregularities, so that the contact area with the metal film is increased when the photosensitive organic film is formed on the metal film. In addition, the adhesion between both films is improved. As a result, the conventional photosensitive organic film does not peel off.

また、本発明の請求項2によるシリコン多層配線基板の評価方法は、金属配線層の層間絶縁膜に感光性有機膜を用いてシリコン基板上に多層配線を製造する際に、金属配線層の表面の凹凸状の粗さの適正性を評価するシリコン多層配線基板の評価方法において、前記表面に光を照射して得られる反射率と前記光の波長との特性曲線と、前記表面の粗さとの関係から当該表面の粗さの適正性を評価することを特徴とする。
この方法によれば、従来のように金属表面粗さ計を用いず、金属配線層の表面に光を照射し、この反射率を測定してその表面の粗さの良/不良を評価するので、従来よりも大幅に測定時間が短く、表面接触による金属配線層の欠陥も発生しないので、製品を欠陥品とすることなく短時間で評価することができる。
According to a second aspect of the present invention, there is provided a method for evaluating a silicon multilayer wiring board, wherein a multilayer wiring is produced on a silicon substrate using a photosensitive organic film as an interlayer insulating film of the metal wiring layer. In the evaluation method of the silicon multilayer wiring board for evaluating the appropriateness of the unevenness of the surface, the characteristic curve between the reflectance obtained by irradiating the surface with light and the wavelength of the light, and the roughness of the surface From the relationship, the appropriateness of the roughness of the surface is evaluated.
According to this method, the surface of the metal wiring layer is irradiated with light without using a metal surface roughness meter as in the prior art, and the reflectance is measured to evaluate whether the surface roughness is good or bad. Since the measurement time is significantly shorter than in the prior art and no defects in the metal wiring layer due to surface contact occur, evaluation can be performed in a short time without making the product defective.

以上説明したように本発明によれば、層間絶縁膜に感光性有機膜を用いた際にその膜剥がれを無くして適正にAl配線の多層化を行うことができるという効果がある。また、金属配線層の表面の粗さの良/不良の評価を、当該評価品を欠陥品とすることなく短時間で評価することができる。   As described above, according to the present invention, when a photosensitive organic film is used as an interlayer insulating film, there is an effect that the film can be appropriately removed and the Al wiring can be appropriately multilayered. Also, the evaluation of good / bad surface roughness of the metal wiring layer can be evaluated in a short time without making the evaluation product a defective product.

以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
図1は、本発明の実施の形態に係るシリコン多層配線基板の製造方法によって各種条件のもとに成膜されたAl配線層の表面の粗さを断面で示し、(a)は標準条件、(b)所定圧力条件、(c)所定アニール条件、(d)所定基板加熱条件で得られたAl配線層の断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
FIG. 1 shows in cross section the roughness of the surface of an Al wiring layer formed under various conditions by the method for manufacturing a silicon multilayer wiring board according to the embodiment of the present invention. It is sectional drawing of Al wiring layer obtained on (b) predetermined pressure conditions, (c) predetermined annealing conditions, and (d) predetermined substrate heating conditions.

本発明の特徴は、図8(a)に示した層間膜塗布工程において感光性有機膜21を形成する際の下地金属膜であるAl配線層13の表面を図1に示すように凹凸形状とする。この凹凸による表面粗さを最適化することにより、Al配線層13と感光性有機膜21との接触面積を増大させるアンカー効果を利用し、感光性有機膜21の密着性を向上させるようにした。
そのアンカー効果を発生させるためのAl膜表面粗さを改善する方法として、Alスパッタリング(スパッタとも略す)の条件において、成膜圧力の変更と基板加熱の追加、また、成膜後の熱処理工程の追加を行い、それらの効果について検証した。
The feature of the present invention is that the surface of the Al wiring layer 13 which is a base metal film when forming the photosensitive organic film 21 in the interlayer coating process shown in FIG. To do. By optimizing the surface roughness due to the irregularities, the anchor effect of increasing the contact area between the Al wiring layer 13 and the photosensitive organic film 21 is used to improve the adhesion of the photosensitive organic film 21. .
As a method for improving the Al film surface roughness for generating the anchor effect, under the conditions of Al sputtering (also abbreviated as sputtering), a change in film formation pressure and addition of substrate heating, and a heat treatment process after film formation are performed. Additions were made and their effects were verified.

本実施の形態では、図2に示すようなAlスパッタの実験条件で第1層目のAl配線層13の成膜を行った。この際、圧力が0.2Paの場合の条件のサンプル名を「Nomal」とし、圧力が0.5Paの場合の条件を「Presure」、基板加熱温度が75℃の場合の条件を「Sub.−heating1」、基板加熱温度が150℃の場合の条件を「Sub.−heating2」、アニール温度が350℃の場合の条件を「Annealed」とした。
また、圧力0.2Paで基板加熱無しの条件を、Alの膜質及び配線膜厚バラツキについて最適化を行っている標準条件(現最適条件)とした。
In the present embodiment, the first Al wiring layer 13 is formed under the Al sputtering experimental conditions as shown in FIG. At this time, the sample name of the condition when the pressure is 0.2 Pa is “Nomal”, the condition when the pressure is 0.5 Pa is “Presure”, and the condition when the substrate heating temperature is 75 ° C. is “Sub.- The condition when the substrate heating temperature is 150 ° C. is “Sub.-heating 2”, and the condition when the annealing temperature is 350 ° C. is “Annealed”.
Further, the condition without substrate heating at a pressure of 0.2 Pa was set as a standard condition (current optimum condition) in which the Al film quality and the wiring film thickness variation were optimized.

Al表面の粗さを大きくするには、大きく分けて次の(1)と(2)で説明する2つの方法が考えられる。
(1)加熱によるAl結晶粒の変化を利用する方法。
これは、Al膜成長時に熱エネルギーを与えて異常成長させた際に、結晶粒が粗大化する現象を利用する方法である。Al層の成膜時に、基板加熱を行うと、スパッタされたAl原子が基板に到達した際に、基板から熱エネルギーを受ける。
これを、基板加熱無しの場合と比較すると、熱エネルギーを得た分、基板表面の拡散長が長くなるため、結晶核へのAl原子の付着確率が上がって結晶粒が粗大化する。このメカニズムを利用して凹凸面を形成し、アンカー効果を得る。
In order to increase the roughness of the Al surface, two methods described in the following (1) and (2) can be considered.
(1) A method using change in Al crystal grains by heating.
This is a method that utilizes the phenomenon that crystal grains become coarse when an abnormal growth is performed by applying thermal energy during the growth of an Al film. If the substrate is heated during the formation of the Al layer, when the sputtered Al atoms reach the substrate, the substrate receives thermal energy from the substrate.
Compared with the case where the substrate is not heated, the diffusion length of the substrate surface is increased by the amount of thermal energy, so that the probability of adhesion of Al atoms to the crystal nuclei increases and the crystal grains become coarse. Using this mechanism, an uneven surface is formed and an anchor effect is obtained.

また、Al成膜後に熱エネルギーを与えることによって、結晶の異常成長を利用する。成膜後、Al膜をアニールすると膜中の結晶が近隣の結晶と再結晶を起こす。温度や温度勾配の条件によって、結晶粒の粗大化だけでなく、膜中の残留応力を吸収して、結晶が凹凸に異常成長したもの(ヒロック)が発生する。
このメカニズムを利用することで、凹凸面を形成し、アンカー効果を得る。これらの効果を検証するため、図2に示すように基板加熱温度を75℃、150℃と設定した。また、成膜後のアニール温度を350℃に設定した。
Further, the abnormal growth of crystals is utilized by applying thermal energy after Al film formation. When the Al film is annealed after film formation, crystals in the film recrystallize with neighboring crystals. Depending on the conditions of temperature and temperature gradient, not only the crystal grains become coarse, but also the residual stress in the film is absorbed, and the crystals grow abnormally in irregularities (hillocks).
By utilizing this mechanism, an uneven surface is formed and an anchor effect is obtained. In order to verify these effects, the substrate heating temperature was set to 75 ° C. and 150 ° C. as shown in FIG. The annealing temperature after film formation was set to 350 ° C.

(2)Al成膜時に粗密な針状や柱状晶の結晶構造を実現させることにより凹凸表面を形成する方法。
成膜圧力を上げると、Ar(アルゴン)イオンの数が増加するため、成膜電力一定とした条件下では、電力=電圧×電流の関係から、Arイオン1個当りに加わる電圧が低くなる。
つまり、Arイオン1個当りの運動エネルギーが低くなってArイオンの個数が増えるため、スパッタされたAl原子はエネルギーが低く、数が多い状態となる。上記の基板加熱とは逆の現象となり、結晶核が成長する前に、膜厚方向の成長が進むため、結果として粗密な針状や柱状晶の膜が形成される。この場合、非常に細かい凹凸面が形成される。また、図2に示すように成膜圧力を0.2Pa(圧力変更無し)、0.5Paとした。
(2) A method of forming an uneven surface by realizing a dense needle-like or columnar crystal structure during Al film formation.
When the film forming pressure is increased, the number of Ar (argon) ions increases, so that the voltage applied to each Ar ion becomes lower from the relationship of power = voltage × current under the condition that the film forming power is constant.
That is, since the kinetic energy per Ar ion is reduced and the number of Ar ions is increased, the sputtered Al atoms have a low energy and a large number. This phenomenon is the reverse of the above substrate heating, and the growth in the film thickness direction proceeds before the crystal nucleus grows. As a result, a dense needle-like or columnar crystal film is formed. In this case, a very fine uneven surface is formed. Further, as shown in FIG. 2, the film forming pressure was set to 0.2 Pa (no pressure change) and 0.5 Pa.

上記の各条件にて作成したAl配線層13のサンプルの表面粗さを図3に示す。
その表面粗さは、JIS規格より、Ra(算術平均粗さ)、Ry(最大高さ)、Rz(10点平均粗さ)、Sm(凹凸の平均間隔)、S(局部山頂の平均間隔)、Tp(負荷長さ率)の6項目を、各サンプルで2点ずつ光学式3次元表面形状測定器にて測定した。測定距離は70μm、適用した測定器の光の波長のメインは408nmである。
FIG. 3 shows the surface roughness of the sample of the Al wiring layer 13 created under each of the above conditions.
The surface roughness is Ra (arithmetic average roughness), Ry (maximum height), Rz (10-point average roughness), Sm (average interval of unevenness), S (average interval of local peaks) according to JIS standards. , 6 items of Tp (load length ratio) were measured with an optical three-dimensional surface shape measuring instrument at two points for each sample. The measurement distance is 70 μm, and the main wavelength of light of the applied measuring instrument is 408 nm.

これらの図3の測定結果に基づき表した各サンプルの表面構造が、図1に示した各モデルである。但し、図1では、Ry、Smの寸法位置は(a)に代表して示した。
「Nomal」の測定結果に基づき表した図1(a)の標準条件では、Ra、Ry、Rzが測定箇所に依存せず小さく、Smが大きいことから、凹凸が小さく、凹凸間隔が周期的に広く存在する表面状態を有することが分かる。
The surface structure of each sample expressed based on the measurement results of FIG. 3 is each model shown in FIG. However, in FIG. 1, the dimension positions of Ry and Sm are shown as a representative of (a).
In the standard condition of FIG. 1A expressed based on the measurement result of “Nomal”, Ra, Ry, and Rz are small regardless of the measurement location, and Sm is large, so that the unevenness is small and the unevenness interval is periodically. It turns out that it has the surface state which exists widely.

「Presure」の測定結果に基づき表した図1(b)の圧力0.5Paの成膜条件では、Ra、Ry、Rzが測定箇所によらず比較的大きく、凹凸間隔が通常条件に比べ、周期的に狭く存在する表面状態を有することが分かる。
「Annealed」の測定結果に基づき表した図1(c)の成膜後のアニールでは、Ra、Ry、Rzが位置によって大小に差があり、Smが大きいことから、凹凸が大きく、凹凸間隔が非周期的に広く存在する表面を有する。
In the film forming conditions with a pressure of 0.5 Pa in FIG. 1B expressed based on the measurement result of “Presure”, Ra, Ry, and Rz are relatively large regardless of the measurement location, and the unevenness interval is longer than the normal conditions. It can be seen that it has a surface state that exists narrowly.
In the annealing after film formation shown in FIG. 1C expressed based on the measurement result of “Annealed”, Ra, Ry, and Rz are different depending on the position, and Sm is large, so that the unevenness is large and the unevenness interval is large. It has a non-periodically wide surface.

「Sub.−heating1及び2」の測定結果に基づき表した図1(d)の成膜中の基板加熱では、Ra、Ry、Rzは比較的大きいが場所による差がなく、Smが小さいことから、凹凸が通常条件に比べ大きく、凹凸間隔が周期的に狭く存在する表面を有することが分かる。
次に、これらのサンプルについて、Al表面の光の反射率を用いた評価を実施した。この場合、表面粗さ計は用いない。
Al表面の反射率測定は、前述の単波長の光学式測定器と異なり、入射光源の波長は230nm〜800nm(紫外線及び可視光線領域)を用いている。これは、各波長帯において、光のエネルギーが異なる性質、特に、高エネルギー帯の光は、表面の凹凸によって散乱・減衰しやすい特徴があるため、表面粗さの評価として適用できると考えた。
In the substrate heating during film formation shown in FIG. 1D expressed based on the measurement results of “Sub.-heating 1 and 2,” Ra, Ry, and Rz are relatively large, but there is no difference depending on the location, and Sm is small. It can be seen that the unevenness is larger than the normal condition and the surface where the unevenness interval is periodically narrow is present.
Next, these samples were evaluated using the reflectance of light on the Al surface. In this case, a surface roughness meter is not used.
In the reflectance measurement of the Al surface, the wavelength of the incident light source is 230 nm to 800 nm (ultraviolet and visible light region), unlike the above-described single wavelength optical measuring instrument. This is considered to be applicable as an evaluation of the surface roughness because the light energy is different in each wavelength band, and particularly, the light in the high energy band is easily scattered and attenuated by the unevenness of the surface.

図4に、各サンプルの各波長帯100nm〜900nmにおける反射率0〜1の測定結果の曲線を示す。
Sa1は「Nomal」、Sa2は「Annealed」、Sa3は「Sub.−heating1」、Sa4は「Sub.−heating2」、Sa5は「Presure」の反射率測定結果の曲線である。
Sa1の標準条件では、殆ど、どの波長帯においても、高い反射率を有しており、表面粗さは小さいことがわかる。
In FIG. 4, the curve of the measurement result of the reflectance 0-1 in each wavelength range 100nm -900nm of each sample is shown.
Sa1 is “Nomal”, Sa2 is “Annealed”, Sa3 is “Sub.-heating1”, Sa4 is “Sub.-heating2”, and Sa5 is a curve of reflectance measurement results.
It can be seen that the standard condition of Sa1 has a high reflectance in almost any wavelength band and the surface roughness is small.

Sa5の圧力0.5Paでは、低エネルギー側では、ある程度高い反射率を有しているが、エネルギーが高くなるにつれて、低い凹凸での散乱・減衰が生じるため、反射率が低下している。
Sa2の成膜後のアニールでは、低エネルギー側では、大きな高い反射率を有するが、エネルギーが高くなるにつれて、大きな凹凸での散乱・減衰が発生するため、反射率が低下している。
When the pressure of Sa5 is 0.5 Pa, the low energy side has a somewhat high reflectivity. However, as the energy increases, the scattering / attenuation with low unevenness occurs, and thus the reflectivity decreases.
In the annealing after the formation of the Sa2 film, the low energy side has a large and high reflectance, but as the energy increases, the scattering / attenuation with large unevenness occurs, and thus the reflectance decreases.

Sa3,Sa4の基板加熱では、2条件とも、凹凸のある程度の高さと、間隔の狭さから、低エネルギーから高エネルギーの光に対し、ほぼ、一定の割合で減衰するため、直線的な反射率の低下が生じている。
これらの測定結果から、反射率測定では、Al表面粗さの凹凸の差と、凹凸の間隔に関係した結果が得られることがわかった。
In the substrate heating of Sa3 and Sa4, the linear reflectivity is attenuated at a constant rate with respect to light of low energy to high energy due to a certain level of unevenness and a narrow interval in both conditions. There is a drop in
From these measurement results, it was found that in the reflectance measurement, a result related to the difference in unevenness of the Al surface roughness and the interval between the unevennesses was obtained.

従来の光学式表面粗さ測定器では、表面粗さの測定に数十分かかり、換言すれば測定時間が長くかかり、また、接触式の表面粗さ測定器では、接触によるサンプルの欠陥発生が生じていた。
しかし、本実施の形態の光の反射率を利用した測定では、測定時間が短く、また、接触しないので接触によるサンプルの欠陥も発生しない。
With conventional optical surface roughness measuring instruments, it takes several tens of minutes to measure surface roughness, in other words, it takes a long time to measure, and with contact type surface roughness measuring instruments, sample defects due to contact occur. It was happening.
However, in the measurement using the reflectance of the light according to the present embodiment, the measurement time is short, and since there is no contact, a sample defect due to contact does not occur.

なお、このような測定による評価方法の利用用途としては、実測値による評価ではないため、工程検査への適用を検討している。
また、上述のように実験からアンカー効果を利用するために必要な表面粗さを制御する方法を得たので、その結果を反映し、実際に感光性有機膜のコンタクトホール部分における膜剥れ防止効果についても下記の様に検証した。膜剥れの有無は、コンタクトホール端部でのAl膜カバレッジ状態により変化する抵抗値を測定することにより評価することができる。
In addition, since the usage of the evaluation method based on such measurement is not evaluation based on actual measurement values, application to process inspection is being considered.
Also, as described above, we obtained a method to control the surface roughness necessary for using the anchor effect from the experiment, reflecting the result and actually preventing film peeling at the contact hole portion of the photosensitive organic film The effect was also verified as follows. The presence or absence of film peeling can be evaluated by measuring the resistance value that varies depending on the Al film coverage state at the end of the contact hole.

このため、図5に示すようなテストパターンモデルを用いて、コンタクト抵抗の評価を実施した。但し、図5(a)はモデルの斜視図、(b)は(a)に示すB1−B2断面図である。
表面粗さを制御した第1層目のAlベタ膜(Al配線層)13上に感光性有機膜21を形成し、2箇所にコンタクトホール32a,32bを開口する。この上に第2層目のAl配線層33及び電極34a,34bを形成し、この2つの電極34a,34b間における抵抗値を測定した。
Therefore, contact resistance was evaluated using a test pattern model as shown in FIG. However, FIG. 5A is a perspective view of the model, and FIG. 5B is a B1-B2 cross-sectional view shown in FIG.
A photosensitive organic film 21 is formed on the first Al solid film (Al wiring layer) 13 whose surface roughness is controlled, and contact holes 32a and 32b are opened at two locations. A second Al wiring layer 33 and electrodes 34a and 34b were formed thereon, and the resistance value between the two electrodes 34a and 34b was measured.

但し、2つの電極34a,34bの寸法は、縦横L1,L2=300μm、各コンタクトホール32a,32bの中心間隔L3=1000μmである。
第1層目のAl配線層13は、各製膜条件でベタ成膜を行った後、電極距離L3分の抵抗値の測定を事前に行い、抵抗値が31〜39mΩであることが分かっている。このべタ膜13の抵抗値と、テストパターンモデルの寸法とから、テストパターンモデルの理想的な抵抗値を算出し、この理想抵抗値を比較対象とした。理想抵抗値は381mgである。
However, the dimensions of the two electrodes 34a and 34b are vertical and horizontal L1, L2 = 300 μm, and the center interval L3 of each contact hole 32a, 32b = 1000 μm.
The first Al wiring layer 13 is solidly formed under each film forming condition, and then the resistance value for the electrode distance L3 is measured in advance, and the resistance value is found to be 31 to 39 mΩ. Yes. The ideal resistance value of the test pattern model was calculated from the resistance value of the solid film 13 and the dimensions of the test pattern model, and this ideal resistance value was used as a comparison target. The ideal resistance value is 381 mg.

このテストパターンモデルでは、第1層目をベタ膜としているため、一方のコンタクトホール32aから他方のコンタクトホール32bまでの第1層のみの抵抗値は、31〜39mΩと低く、ほぼ無視できる値としている。
抵抗値を測定するに当たって、図6(a)に示すように、シリコンウエハ上に形成した第1〜第9のサンプルP1〜P9について抵抗値の測定を行い、この結果を同図(b)に示すように表で表した。但し、その表に示すNo.1は図1(a)に示す標準条件でのAl成膜時の抵抗値であり、No.2は図1(c)に示す成膜後にアニールした条件下での抵抗値、No.3は図1(b)に示す圧力0.5Paでの成膜時の抵抗値、No.4は図1(d)に示す成膜後にアニールした条件下での抵抗値である。
In this test pattern model, since the first layer is a solid film, the resistance value of only the first layer from one contact hole 32a to the other contact hole 32b is as low as 31 to 39 mΩ, which is almost negligible. Yes.
In measuring the resistance value, as shown in FIG. 6A, the resistance values of the first to ninth samples P1 to P9 formed on the silicon wafer were measured, and the results are shown in FIG. Expressed in a table as shown. However, No. shown in the table. 1 is a resistance value at the time of Al film formation under the standard conditions shown in FIG. 2 shows the resistance value under the condition of annealing after film formation shown in FIG. 3 is a resistance value during film formation at a pressure of 0.5 Pa shown in FIG. 4 is a resistance value under the condition of annealing after film formation shown in FIG.

図6(b)に示すように、まず、No.1に示す従来条件で成膜を行ったサンプルP1〜P9と、No.2に示す成膜後のアニールしたサンプルP1〜P9との抵抗値は、68Ω(最小値)〜611Ω(最大値)程度と全体的に抵抗値が高く、コンタクトホール32a,32bでの配線の接続状態が悪い。
つまり、図1(a)に示した表面粗さが小さいものや、同図(c)に示した凹凸が大きく且つ間隔が広いものは、略平坦な状態と変わらないため、感光性有機膜21とAl配線層13との密着性が悪いと考えられる。
As shown in FIG. Samples P1 to P9 that were deposited under the conventional conditions shown in FIG. The resistance values of the annealed samples P1 to P9 after film formation shown in FIG. 2 are as high as 68Ω (minimum value) to 611Ω (maximum value) as a whole, and the wiring connection in the contact holes 32a and 32b is high. The state is bad.
That is, since the surface roughness shown in FIG. 1A having a small surface roughness and the surface having large irregularities and a wide space shown in FIG. It is considered that the adhesion between Al and the Al wiring layer 13 is poor.

No.3に示す圧力0.5Paで成膜を行ったサンプルP1〜P9は、抵抗値が730mΩ〜126Ωと先の2サンプルと比較して低い。これは、図1(b)に示したように凹凸が比較的小さく、間隔が狭いものは、実質、接触面積が増加し、密着性が改善されたと考えられる。
No.4に示す成膜時の基板加熱を行ったサンプルP1〜P9については、No.3に比べ、図1(d)のように凹凸の差を大きくし、間隔を狭くした状態では、表面粗さの抵抗値が410mΩ〜560mΩと低い上、バラツキが少ない最良の結果が得られた。
No. Samples P1 to P9, which were formed at a pressure of 0.5 Pa shown in FIG. 3, have a resistance value of 730 mΩ to 126Ω, which is lower than the previous two samples. As shown in FIG. 1 (b), it is considered that when the unevenness is relatively small and the interval is narrow, the contact area is substantially increased and the adhesion is improved.
No. Samples P1 to P9 subjected to substrate heating during film formation shown in FIG. Compared to 3, the surface roughness resistance value was low at 410 mΩ to 560 mΩ and the best results were obtained with less variation when the difference in unevenness was increased as shown in FIG. .

これらの結果から、Al配線層13の凹凸の差とその間隔がアンカー効果を向上させる重要なパラメータであることが確認できた。
以上説明したように本実施の形態のシリコン多層配線基板の製造方法によれば、Al成膜条件の最適化によってAl表面粗さを制御することが可能となり、これによって感光性有機膜21の膜剥れを防止することができるので、Al配線の多層化を実現することができる。
From these results, it was confirmed that the unevenness difference and the interval of the Al wiring layer 13 are important parameters for improving the anchor effect.
As described above, according to the method for manufacturing a silicon multilayer wiring substrate of the present embodiment, it is possible to control the Al surface roughness by optimizing the Al film formation conditions, and thereby the film of the photosensitive organic film 21 is obtained. Since peeling can be prevented, multilayering of Al wiring can be realized.

特に、Al成膜中に基板加熱を行うと、Al表面の凹凸が標準条件に比べ大きく且つ凹凸間隔が周期的に狭く存在するようになるので、より感光性有機膜21の膜剥れを防止することができる。
また、シリコン多層配線基板の評価方法において、従来のようにAl表面粗さ計を用いず、Al表面の反射率を測定して良/不良を評価するようにした。この評価時の光の反射率を利用したAl表面の測定では、測定時間が短く、表面接触によるサンプルの欠陥も発生しないので、被測定対象品を欠陥品とすることなく短時間で評価することができる。
従来、光学式表面粗さ測定器では数十分かかっていた測定時間の問題や、接触式の表面粗さ測定器では接触によるサンプルの欠陥発生といった問題を回避することができる。
In particular, when the substrate is heated during the Al film formation, the unevenness of the Al surface is larger than the standard condition and the unevenness interval is periodically narrow, so that the photosensitive organic film 21 is prevented from peeling off. can do.
Further, in the evaluation method of the silicon multilayer wiring board, the Al surface roughness meter is not used as in the prior art, and the reflectivity of the Al surface is measured to evaluate good / bad. In the measurement of the Al surface using the reflectance of light at the time of this evaluation, the measurement time is short and no sample defects due to surface contact occur. Therefore, the measurement target product should be evaluated in a short time without making it a defective product. Can do.
Conventionally, it is possible to avoid the problem of measurement time that has been several tens of minutes with an optical surface roughness measuring instrument and the problem of sample defects caused by contact with a contact type surface roughness measuring instrument.

本発明の実施の形態に係るシリコン多層配線基板の製造方法によって各種条件のもとに成膜されたAl配線層の表面の粗さを断面で示し、(a)は標準条件、(b)所定圧力条件、(c)所定アニール条件、(d)所定基板加熱条件で得られたAl配線層の断面図である。The surface roughness of the Al wiring layer formed under various conditions by the method for manufacturing a silicon multilayer wiring board according to the embodiment of the present invention is shown in cross section, (a) is a standard condition, (b) predetermined It is sectional drawing of the Al wiring layer obtained on pressure conditions, (c) predetermined annealing conditions, and (d) predetermined substrate heating conditions. シリコン多層配線基板のAl配線層の成膜を行う際のAlスパッタの実験条件を示す図である。It is a figure which shows the experimental conditions of Al sputtering at the time of film-forming of Al wiring layer of a silicon multilayer wiring board. 上記実験条件にて作成した各サンプルのAl配線層の表面粗さを示す図である。It is a figure which shows the surface roughness of Al wiring layer of each sample created on the said experimental conditions. 各サンプルの波長帯における光の反射率の測定結果の曲線を示す図である。It is a figure which shows the curve of the measurement result of the reflectance of the light in the wavelength range of each sample. シリコン多層配線基板のテストパターンモデルを示し、(a)はモデルの斜視図、(b)は(a)に示すB1−B2断面図である。The test pattern model of a silicon | silicone multilayer wiring board is shown, (a) is a perspective view of a model, (b) is B1-B2 sectional drawing shown to (a). (a)シリコンウエハ上に形成したシリコン多層配線基板の各サンプル採取位置を示す図、(b)各サンプルの測定抵抗値の集計表を示す図である。(A) It is a figure which shows each sample collection position of the silicon multilayer wiring board formed on the silicon wafer, (b) It is a figure which shows the totalization table of the measured resistance value of each sample. 従来のシリコン多層配線基板の製造工程図である。It is a manufacturing process figure of the conventional silicon multilayer wiring board. 従来の感光性有機膜を適用したシリコン多層配線基板の製造工程図である。It is a manufacturing-process figure of the silicon multilayer wiring board to which the conventional photosensitive organic film is applied. 従来の感光性有機膜を適用したシリコン多層配線基板のコンタクトホール付近の断面図であり、(a−1)及び(a−2)は金属表面(Al配線層)と有機膜(感光性有機膜)との界面が密着した状態、(b−1)及び(b−2)は金属表面と有機膜界面との間で膜剥がれが生じた状態を示す図である。It is sectional drawing of the contact hole vicinity of the silicon multilayer wiring board which applied the conventional photosensitive organic film, (a-1) and (a-2) are a metal surface (Al wiring layer) and an organic film (photosensitive organic film) (B-1) and (b-2) are diagrams showing a state in which film peeling occurs between the metal surface and the organic film interface. (a)感光性有機膜上に2層目のAl配線層が適正に形成された状態、(b)不適正に形成された状態を示す図である。(A) It is a figure which shows the state in which the 2nd Al wiring layer was formed appropriately on the photosensitive organic film, and (b) the state formed improperly.

符号の説明Explanation of symbols

11 Si基板
12 T−SiO2
13 1層目のAl配線層
14 CVD−SiO2
15 レジスト層
21 感光性有機膜
32,32a,32b コンタクトホール
33 2層目のAl配線層
34a,34b 電極
11 Si substrate 12 T-SiO 2 layer 13 First Al wiring layer 14 CVD-SiO 2 layer 15 Resist layer 21 Photosensitive organic film 32, 32a, 32b Contact hole 33 Second Al wiring layer 34a, 34b Electrode

Claims (2)

金属配線層の層間絶縁膜に感光性有機膜を用いてシリコン基板上に多層配線を製造するシリコン多層配線基板の製造方法において、
前記金属配線層を形成する際のスパッタリングによる金属膜の成膜条件である成膜圧力、基板加熱、成膜後の熱処理の何れかを、当該金属膜の表面がこの表面積が増大する凹凸状の粗さとなるように制御することを特徴とするシリコン多層配線基板の製造方法。
In a method for manufacturing a silicon multilayer wiring board, in which a multilayer wiring is manufactured on a silicon substrate using a photosensitive organic film as an interlayer insulating film of a metal wiring layer,
Any of the deposition pressure, substrate heating, and post-deposition heat treatment, which is the deposition condition of the metal film by sputtering when forming the metal wiring layer, is applied to the surface of the metal film so that the surface area increases. A method of manufacturing a silicon multilayer wiring board, wherein the control is performed so as to be rough.
金属配線層の層間絶縁膜に感光性有機膜を用いてシリコン基板上に多層配線を製造する際に、金属配線層の表面の凹凸状の粗さの適正性を評価するシリコン多層配線基板の評価方法において、
前記表面に光を照射して得られる反射率と前記光の波長との特性曲線と、前記表面の粗さとの関係から当該表面の粗さの適正性を評価することを特徴とするシリコン多層配線基板の評価方法。
Evaluation of the silicon multilayer wiring board that evaluates the appropriateness of the roughness of the surface of the metal wiring layer when manufacturing multilayer wiring on the silicon substrate using a photosensitive organic film as the interlayer insulating film of the metal wiring layer In the method
Silicon multilayer wiring characterized by evaluating the appropriateness of the roughness of the surface from the relationship between the reflectance obtained by irradiating the surface with light and the characteristic curve of the wavelength of the light and the roughness of the surface Evaluation method of substrate.
JP2006006430A 2006-01-13 2006-01-13 Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board Pending JP2007189095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006430A JP2007189095A (en) 2006-01-13 2006-01-13 Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006430A JP2007189095A (en) 2006-01-13 2006-01-13 Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2007189095A true JP2007189095A (en) 2007-07-26

Family

ID=38344042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006430A Pending JP2007189095A (en) 2006-01-13 2006-01-13 Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2007189095A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181124A (en) * 1981-05-01 1982-11-08 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH05304362A (en) * 1992-04-28 1993-11-16 Murata Mfg Co Ltd Manufacture of multi-layer wiring board
JPH08254415A (en) * 1995-03-16 1996-10-01 Nec Corp Surface monitoring method
JP2001217291A (en) * 2000-02-02 2001-08-10 Hitachi Ltd Method and device for estimating form of rough-face semiconductor thin film and manufacturing method of semiconductor device using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181124A (en) * 1981-05-01 1982-11-08 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH05304362A (en) * 1992-04-28 1993-11-16 Murata Mfg Co Ltd Manufacture of multi-layer wiring board
JPH08254415A (en) * 1995-03-16 1996-10-01 Nec Corp Surface monitoring method
JP2001217291A (en) * 2000-02-02 2001-08-10 Hitachi Ltd Method and device for estimating form of rough-face semiconductor thin film and manufacturing method of semiconductor device using them

Similar Documents

Publication Publication Date Title
US5675310A (en) Thin film resistors on organic surfaces
US5872040A (en) Method for fabricating a thin film capacitor
US6040226A (en) Method for fabricating a thin film inductor
JP5760990B2 (en) Method for producing reflective mask blanks for EUV lithography, and method for producing a substrate with a functional film for the mask blanks
Saxena et al. Kinetics of voiding and agglomeration of copper nanolayers on silica
Aryal et al. In situ and ex situ studies of molybdenum thin films deposited by rf and dc magnetron sputtering as a back contact for CIGS solar cells
TW200832552A (en) Amorphous carbon film, semiconductor device, film forming method, film forming apparatus and storage medium
US8956972B2 (en) Method for manufacturing semiconductor thick metal structure
JP6233445B2 (en) Electronic components
JP2024050818A (en) Packaging substrate and semiconductor device including same
WO2017130876A1 (en) Chip resistor and method for producing same
JP2007189095A (en) Method of manufacturing silicon multilayer wiring board, and method of evaluating silicon multilayer wiring board
US6156646A (en) Method of manufacturing semiconductor devices
JP5929540B2 (en) Electronic components
JP2002118168A (en) Thin film circuit board and its producing method
JP2007280998A (en) Thin-film capacitor
US20240188225A1 (en) Glass coating to minimize roughness inside through glass vias
JP2004140198A (en) Semiconductor device and its manufacturing method
KR20000059312A (en) Method for forming contact of semiconductor device
Mukai et al. Adhesive enabling technology for directly plating copper onto glass
JP7424785B2 (en) Temperature sensor film, conductive film and manufacturing method thereof
WO2024070319A1 (en) Glass substrate, multilayer wiring substrate, and method for producing glass substrate
JPH0766201A (en) Semiconductor device for electromigration test, manufacture thereof, and method of electromigration test
Hunegnaw et al. Adhesion enabling technology for reliable metallization and patterning of glass interposers
JP2010232239A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081211

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090716

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Effective date: 20110727

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A02