JP2007187486A - Method and device for estimating component of material - Google Patents

Method and device for estimating component of material Download PDF

Info

Publication number
JP2007187486A
JP2007187486A JP2006004209A JP2006004209A JP2007187486A JP 2007187486 A JP2007187486 A JP 2007187486A JP 2006004209 A JP2006004209 A JP 2006004209A JP 2006004209 A JP2006004209 A JP 2006004209A JP 2007187486 A JP2007187486 A JP 2007187486A
Authority
JP
Japan
Prior art keywords
luminance
sample
component
specimen
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006004209A
Other languages
Japanese (ja)
Other versions
JP4258780B2 (en
Inventor
Yoshisato Takahashi
良学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Prefectural Government
Original Assignee
Iwate Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Prefectural Government filed Critical Iwate Prefectural Government
Priority to JP2006004209A priority Critical patent/JP4258780B2/en
Publication of JP2007187486A publication Critical patent/JP2007187486A/en
Application granted granted Critical
Publication of JP4258780B2 publication Critical patent/JP4258780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of an estimated value by enabling accurate estimation as much as possible, not only when the type of an imaging part is different but also when an imaging environment such as a temperature condition or a humidity condition is different. <P>SOLUTION: A specimen K having a prescribed quantity of material or an extract of the prescribed quantity of material is stored in a specimen container 1, and a plurality of reference specimens C wherein a known component quantity is different respectively, which are reference specimens C used as a reference for an equivalent configuration to the specimen K wherein a specific component quantity is known beforehand, are stored in a plurality of reference containers 2, respectively. The specimen K in the specimen container 1 and the reference specimen C in each reference container 2 are imaged simultaneously by the imaging part 20, and a mutual relation between the brightness of the reference specimen C and the component quantity of the material is calculated, and the brightness of the specimen K is detected based on an image imaged by the imaging part 20, and the quantity of the specific component among components in the material in the specimen K is calculated based on the brightness and the mutual relation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、土壌や土壌に生育する農作物等の農業に関する各種物質を初めその他の種々の物質において、物質に係る色要素から物質中に含まれる各種成分の成分量を算出する物質の成分推定方法及び物質の成分推定装置に関する。   The present invention relates to a substance component estimation method for calculating the amount of various components contained in a substance from color elements related to the substance in various other substances including agriculture, such as soil and crops grown on the soil. And a component estimation apparatus for substances.

従来、この種の物質の成分推定装置として、本願出願人が先に提案し、物質としての土壌において、土壌の色要素から土壌中に含まれる成分量を算出する推定装置がある(特許文献1)。   Conventionally, as a component estimation device for this kind of substance, there is an estimation device that the applicant of the present application previously proposed and calculates the amount of component contained in the soil from the color element of the soil in the soil as the material (Patent Document 1). ).

これは、図14に示すように、物質である土壌中の含有成分のうち炭素の全炭素量及び窒素の全窒素量を推定するもので、所定量の土壌を、複数列設された透明容器100に収容する。この容器100は、その底壁を露出させて保持する白色のトレー101に一体に設けられている。トレー101の裏面(後述のCCDセンサ側)には、輝度の基準となるカラーバー102が付されている。このトレー101を撮像部としてのスキャナ103のベース104に載置する。スキャナ103は、ベース104の上の容器100の底部及びトレー101にベース104の下から蛍光管やLEDの光を照射し、その反射光を図示外のCCDセンサ等によりRGB輝度を読みとってRGB輝度を取得し、デジタル画像として撮像する。   As shown in FIG. 14, this is to estimate the total carbon amount of carbon and the total nitrogen amount of nitrogen among the components contained in the soil, which is a substance. A transparent container in which a predetermined amount of soil is arranged in a plurality of rows 100. The container 100 is provided integrally with a white tray 101 that holds the bottom wall exposed. A color bar 102 serving as a reference for luminance is attached to the back surface (the CCD sensor side described later) of the tray 101. This tray 101 is placed on a base 104 of a scanner 103 as an imaging unit. The scanner 103 irradiates the bottom of the container 100 on the base 104 and the tray 101 with light from a fluorescent tube or LED from below the base 104, and reads the RGB brightness by a CCD sensor or the like (not shown) to reflect the reflected light. And is captured as a digital image.

そして、スキャナ103を作動させ、ベース104上の容器100及びトレー101を撮像して、即ち、容器100の底部を通して土壌の表面及びカラーバー102を走査して画像を取得し、この画像をCPU等の機能を有した算出部105に出力する。算出部105においては、先ず、R輝度の土壌表面のみの画像を各容器100毎に抜き出す。一方、カラーバー102の画像を抜き出し、カラーバー102の画像から白,灰,黒の各R輝度を算出する。次に、土壌の表面の画像の各画素のR輝度を検出し、この検出した各画素のR輝度を、カラーバーのR輝度を基準に補正し、補正後の画像の各画素を構成するR輝度の値を全てたし合わせ、この画像を構成する画素の総画素数で除算して平均R輝度を算出する。
この場合、カラーバー102のR輝度を基準にして、抽出された画像が補正されることから、例えば、スキャナ103のメーカー,型,種類によってCCD等の性能等が異なっていて、スキャナ103から取得した画像において、各画素の輝度の違いがあっても、これを是正することができ、検出精度が向上させられる。
Then, the scanner 103 is operated to image the container 100 and the tray 101 on the base 104, that is, the image is acquired by scanning the surface of the soil and the color bar 102 through the bottom of the container 100. Is output to the calculation unit 105 having the above function. In the calculation unit 105, first, an image of only the soil surface of R luminance is extracted for each container 100. On the other hand, the color bar 102 image is extracted, and white, gray, and black R luminances are calculated from the color bar 102 image. Next, the R luminance of each pixel of the image on the soil surface is detected, and the detected R luminance of each pixel is corrected with reference to the R luminance of the color bar, and R constituting each pixel of the corrected image is formed. All the luminance values are added together, and the average R luminance is calculated by dividing by the total number of pixels constituting this image.
In this case, since the extracted image is corrected based on the R luminance of the color bar 102, for example, the performance of the CCD or the like varies depending on the manufacturer, type, and type of the scanner 103, and is acquired from the scanner 103. In the obtained image, even if there is a difference in luminance of each pixel, this can be corrected, and the detection accuracy can be improved.

次に、算出部105においては、検出された容器100毎の土壌表面の平均R輝度と、予め記憶手段に記憶した、基準になる土壌表面の輝度及びこの基準となる土壌中の成分量の相関関係とから、容器100毎の土壌中の成分量としての全炭素量及び全窒素量を算出する。
これにより、容器100に土壌を入れてスキャナ103で画像を撮像するだけで、成分量が算出されるので、経験や熟練を必要とせずに、誰が行なっても土壌中の成分量と略同じ成分量を推定できる。
Next, in the calculation unit 105, the correlation between the detected average R luminance of the soil surface for each container 100, the luminance of the soil surface serving as a reference, and the amount of components in the soil serving as the reference stored in the storage unit in advance. From the relationship, the total amount of carbon and the total amount of nitrogen as component amounts in the soil for each container 100 are calculated.
Thus, the component amount is calculated simply by putting the soil in the container 100 and taking an image with the scanner 103. Therefore, almost the same component as the component amount in the soil can be obtained by anyone without experience or skill. The amount can be estimated.

特開2005−17115号公報JP 2005-17115 A

ところで、上記従来の成分推定装置にあっては、カラーバー102を検体としての土壌とともに同時に撮像して、カラーバー102の輝度を基準にして、抽出された画像を補正しているので、撮像部の機種が異なるような場合には有効であるが、例えば、検体を日が異なって撮像する場合等、撮像環境が異なる場合には、推定値の信頼性が必ずしも十分確保できないことがあるという問題があった。例えば、撮像環境として温度条件や湿度条件が異なると、カラーバー102の色は変化しないが、検体の色が変化することがあり、誤差が生じてしまう。また、カラーバー102の色自体が経年変化することもあり、これによっても補正の誤差が生じてしまう。   By the way, in the above-described conventional component estimation apparatus, the color bar 102 is simultaneously imaged together with the soil as the specimen, and the extracted image is corrected based on the luminance of the color bar 102. This is effective when the model is different, but the reliability of the estimated value may not always be sufficiently secured when the imaging environment is different, for example, when the specimen is imaged on different days. was there. For example, when the temperature condition and the humidity condition are different as the imaging environment, the color of the color bar 102 does not change, but the color of the specimen may change, resulting in an error. Further, the color itself of the color bar 102 may change over time, which also causes a correction error.

本発明は上記の問題点に鑑みて為されたもので、撮像部の機種が異なるような場合は勿論のこと、温度条件や湿度条件などの撮像環境が異なる場合でも、できるだけ正確な推定ができるようにして、推定値の信頼性の向上を図った物質の成分推定方法及び物質の成分推定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and it is possible to estimate as accurately as possible even in a case where the imaging environment such as a temperature condition and a humidity condition is different as well as in a case where the model of the imaging unit is different. Thus, an object of the present invention is to provide a substance component estimation method and substance component estimation apparatus that improve the reliability of an estimated value.

このような目的を達成するため本発明は、所定量の物質若しくは所定量の物質の抽出物を有した検体を検体用容器に収容し、該検体用容器に収容された検体の表面を撮像部で撮像し、該撮像部が撮像した画像に基づいて検体の表面の輝度を検出するとともに該検出した輝度に基づいて上記物質中の含有成分のうち特定の成分の成分量を算出する物質の成分推定方法において、
予め特定の成分の成分量が既知になっている上記検体と同等の形態の基準になる基準検体であって該既知の成分量が夫々異なる複数の基準検体を複数の基準用容器に夫々収容し、上記撮像部によって、上記検体用容器に収容された検体の表面及び上記各基準用容器に収容された基準検体の表面を同時に撮像し、上記撮像部が撮像した画像に基づいて上記各基準用容器に収容された基準検体の表面の輝度を検出し、該検出した輝度に基づいて基準検体の表面の輝度と該基準検体に係る特定の成分の成分量との相関関係を算出し、上記撮像部が撮像した画像に基づいて上記検体容器に収容された検体の表面の輝度を検出し、該検出された検体の表面の輝度と上記相関関係とから該検体に係る特定の成分の成分量を算出する構成としている。
In order to achieve such an object, the present invention accommodates a specimen having a predetermined amount of substance or an extract of a predetermined amount of substance in a specimen container, and images the surface of the specimen contained in the specimen container. The component of the substance that detects the luminance of the surface of the specimen based on the image captured by the imaging unit and calculates the component amount of the specific component among the contained components in the substance based on the detected luminance In the estimation method,
A plurality of reference specimens, each of which is a reference specimen in a form equivalent to the above-described specimen whose amount of a specific component is known in advance, each having a different amount of the known component, are housed in a plurality of reference containers, respectively. The imaging unit simultaneously images the surface of the sample accommodated in the sample container and the surface of the reference sample accommodated in each reference container, and each reference reference is based on the image captured by the imaging unit. Detecting the luminance of the surface of the reference sample contained in the container, calculating a correlation between the luminance of the surface of the reference sample and the amount of a specific component related to the reference sample based on the detected luminance, and performing the imaging The luminance of the surface of the sample contained in the sample container is detected based on the image captured by the unit, and the component amount of the specific component related to the sample is determined from the detected luminance of the surface of the sample and the correlation. It is configured to calculate.

これにより、撮像部においては、検体の表面及び基準検体の表面を同時に撮像し、撮像毎に、基準検体の表面の輝度を検出して、基準検体の表面の輝度と基準検体に係る物質の成分の成分量との相関関係を算出するので、撮像部の機種が異なるような場合は勿論のこと、温度条件や湿度条件などの撮像環境が異なる場合でも、その都度、これらの機種条件や撮像環境変化に応じた相関関係を算出することができ、そのため、撮像部が撮像した検体の表面の画像に基づく輝度と上記の相関関係とから算出される成分の成分量が、機種条件や撮像環境変化に応じた正確な推定値となり、推定値の信頼性の向上が図られる。   Thus, the imaging unit simultaneously images the surface of the sample and the surface of the reference sample, detects the luminance of the surface of the reference sample for each imaging, and the luminance of the surface of the reference sample and the component of the substance related to the reference sample Since the correlation with the component amount is calculated, not only when the model of the imaging unit is different, but also when the imaging environment such as the temperature condition and the humidity condition is different, the model condition and the imaging environment each time. The correlation according to the change can be calculated, so that the component amount of the component calculated from the luminance based on the image of the surface of the specimen imaged by the imaging unit and the above correlation is the model condition or imaging environment change Thus, an accurate estimated value corresponding to is obtained, and the reliability of the estimated value is improved.

この場合、上記検体を、所定量の物質を有して構成し、上記基準検体を、予め特定の成分の成分量が既知になっている所定量の上記検体と同種の物質を有して構成することができる。
また、上記検体を、所定量の物質の抽出物を有して構成し、上記基準検体を、特定の成分を混合して予め特定の成分の成分量を既知にした試薬で構成することができる。
In this case, the sample is configured to include a predetermined amount of the substance, and the reference sample is configured to include the same type of substance as the predetermined amount of the sample in which the component amount of the specific component is known in advance. can do.
In addition, the specimen may be configured with an extract of a predetermined amount of the substance, and the reference specimen may be configured with a reagent in which the amount of the specific component is known in advance by mixing the specific component. .

そしてまた、必要に応じ、上記物質が植物である構成としている。また、必要に応じ、上記物質が土壌である構成としている。土壌や土壌に生育する農作物等の農業に関する各種物質の成分量を推定でき、特に、農業分野での利用が図られる。   In addition, if necessary, the substance is a plant. Moreover, it is set as the structure whose said substance is soil as needed. The amount of components of various substances related to agriculture such as soil and crops growing on the soil can be estimated, and in particular, it can be used in the agricultural field.

また、上記の目的を達成するため本発明は、所定量の物質若しくは所定量の物質の抽出物を有した検体を収容する検体用容器と、該検体用容器に収容された検体の表面を撮像する撮像部と、該撮像部が撮像した画像に基づいて検体の表面の輝度を検出するとともに該検出した輝度に基づいて上記物質中の含有成分のうち特定の成分の成分量を算出する算出部とを備えた物質の成分推定装置において、
予め特定の成分の成分量が既知になっている上記検体と同等の形態の基準になる基準検体であって該既知の成分量が夫々異なる複数の基準検体を夫々収容する複数の基準用容器を設け、上記撮像部を、上記検体用容器に収容された検体の表面及び上記各基準用容器に収容された基準検体の表面を同時に撮像するように構成し、
上記算出部に、上記撮像部が撮像した画像に基づいて上記各基準用容器に収容された基準検体の表面の輝度を検出する基準輝度検出手段と、該基準輝度検出手段が検出した輝度に基づいて該基準検体の表面の輝度と該基準検体に係る特定の成分の成分量との相関関係を算出する相関関係算出手段と、上記撮像部が撮像した画像に基づいて上記検体容器に収容された検体の表面の輝度を検出する検体輝度検出手段と、該検体輝度検出手段で検出された検体の表面の輝度と上記相関関係算出手段で算出された相関関係とから該検体に係る特定の成分の成分量を算出する成分量算出手段とを備えて構成している。
Further, in order to achieve the above object, the present invention images a specimen container containing a specimen having a predetermined amount of substance or a predetermined amount of substance extract, and a surface of the specimen contained in the specimen container. An imaging unit that detects the luminance of the surface of the specimen based on the image captured by the imaging unit and calculates a component amount of a specific component among the components contained in the substance based on the detected luminance In the substance component estimation apparatus comprising:
A plurality of reference containers each containing a plurality of reference samples, each of which is a reference sample in a form equivalent to the above-described sample whose component amount of a specific component is known, and each of which has a different known component amount The imaging unit is configured to simultaneously image the surface of the specimen housed in the specimen container and the surface of the reference specimen contained in each of the reference containers;
Based on the luminance detected by the reference luminance detecting means, the reference luminance detecting means for detecting the luminance of the surface of the reference specimen contained in each reference container based on the image picked up by the imaging section, Correlation calculating means for calculating the correlation between the luminance of the surface of the reference sample and the component amount of the specific component related to the reference sample, and the sample container accommodated in the sample container based on the image captured by the imaging unit A sample luminance detecting unit for detecting the luminance of the surface of the sample, a luminance of the surface of the sample detected by the sample luminance detecting unit, and a correlation calculated by the correlation calculating unit; And a component amount calculating means for calculating the component amount.

これにより、撮像部においては、検体の表面及び基準検体の表面を同時に撮像し、撮像毎に、基準検体の表面の輝度を検出して、基準検体の表面の輝度と基準検体に係る特定の成分の成分量との相関関係を算出するので、撮像部の機種が異なるような場合は勿論のこと、温度条件や湿度条件などの撮像環境が異なる場合でも、その都度、これらの機種条件や撮像環境変化に応じた相関関係を算出することができ、そのため、撮像部が撮像した検体の表面の画像に基づく輝度と上記の相関関係とから算出される特定の成分の成分量が、機種条件や撮像環境変化に応じた正確な推定値となり、推定値の信頼性の向上が図られる。   As a result, the imaging unit simultaneously images the surface of the specimen and the surface of the reference specimen, detects the brightness of the surface of the reference specimen for each imaging, and determines the brightness of the surface of the reference specimen and a specific component related to the reference specimen. Since the correlation with the component amount is calculated, not only when the model of the imaging unit is different, but also when the imaging environment such as the temperature condition and the humidity condition is different, the model condition and the imaging environment each time. The correlation according to the change can be calculated. Therefore, the component amount of the specific component calculated from the luminance based on the image of the surface of the specimen imaged by the imaging unit and the above correlation is the model condition or imaging It becomes an accurate estimated value according to the environmental change, and the reliability of the estimated value is improved.

そして、必要に応じ、上記撮像部を、上記検体用容器を複数撮像する構成としている。複数の検体について画像処理して、各々の検体について特定の成分の成分量を一度に算出できるので、処理効率が向上させられる。   And the said imaging part is set as the structure which images multiple said sample containers as needed. Since image processing is performed on a plurality of specimens, and the amount of a specific component for each specimen can be calculated at a time, the processing efficiency is improved.

そしてまた、必要に応じ、上記検体用容器及び上記基準用容器として透明な材料で形成したものを用い、上記撮像部を、上記検体用容器及び上記基準用容器を載置するベースと、該ベース上の上記検体用容器及び上記基準用容器を走査して該各容器の底壁を通して画像を取得するスキャナとを備えて構成し、
上記算出部に、上記スキャナから出力された画像から上記基準用容器の基準検体の表面のみの画像であって所定範囲の画像を抽出する基準画像抽出手段と、上記スキャナから出力された画像から上記検体用容器の検体の表面のみの画像であって所定範囲の画像を抽出する検体画像抽出手段とを備え、
上記算出部の上記基準輝度検出手段に、上記基準画像抽出手段から抽出された画像中の各画素の輝度を検出する画素輝度検出手段と、該画素輝度検出手段が検出した各画素の輝度から平均輝度を算出する平均輝度算出手段とを備え、
上記算出部の上記検体輝度検出手段に、上記検体画像抽出手段から抽出された画像中の各画素の輝度を検出する画素輝度検出手段と、該画素輝度検出手段が検出した各画素の輝度から平均輝度を算出する平均輝度算出手段とを備え、
上記相関関係算出手段を、上記基準輝度検出手段の平均輝度算出手段が算出した上記各基準用容器の基準検体についての平均輝度に基づいて相関関係を算出する構成とし、
上記成分量算出手段を、上記検体輝度検出手段の平均輝度算出手段が算出した上記検体用容器の検体についての平均輝度に基づいて成分量を算出する構成としている。
In addition, if necessary, the specimen container and the reference container formed of a transparent material are used, and the imaging unit includes a base on which the specimen container and the reference container are placed, and the base A scanner that scans the sample container and the reference container and acquires an image through the bottom wall of each container;
The calculation unit includes reference image extraction means for extracting an image of a predetermined range of an image of only the surface of the reference specimen of the reference container from the image output from the scanner, and the image output from the scanner A sample image extracting means for extracting an image of a predetermined range that is an image of only the surface of the sample in the sample container,
The reference luminance detecting means of the calculating unit includes a pixel luminance detecting means for detecting the luminance of each pixel in the image extracted from the reference image extracting means, and an average from the luminance of each pixel detected by the pixel luminance detecting means. An average luminance calculating means for calculating luminance,
The sample luminance detection unit of the calculation unit includes a pixel luminance detection unit that detects the luminance of each pixel in the image extracted from the sample image extraction unit, and an average from the luminance of each pixel detected by the pixel luminance detection unit. An average luminance calculating means for calculating luminance,
The correlation calculation means is configured to calculate the correlation based on the average brightness for the reference specimen of each reference container calculated by the average brightness calculation means of the reference brightness detection means,
The component amount calculation unit is configured to calculate the component amount based on the average luminance of the sample in the sample container calculated by the average luminance calculation unit of the sample luminance detection unit.

画像抽出手段によって、各容器毎の検体表面のみの画像であって所定範囲の画像を抽出し、この画像の各画素の平均輝度を求めるので、誤差が少なくなり、検出輝度のバラツキが防止される。また、スキャナは、一般に市販されているものでよく、既存のものを使用できるので、導入コストを安価に抑えることができる。   The image extracting means extracts an image of only the specimen surface for each container and extracts an image within a predetermined range, and obtains the average luminance of each pixel of the image, thereby reducing errors and preventing variations in detected luminance. . In addition, the scanner may be a commercially available one, and an existing one can be used, so that the introduction cost can be reduced.

また、必要に応じ、上記各容器が底壁を露出させて複数保持され上記撮像部のベースに載置可能なトレーを備え、上記スキャナを上記トレーに設けられた複数の容器の底壁を走査するよう構成している。複数の容器をトレーで保持するので搬送や撮像等の取り扱いが容易になる。また、トレーにより、外部からの光を遮断でき、より精度の良い撮像を行なうことができる。   Further, if necessary, a plurality of each of the above containers is held with the bottom wall exposed and can be placed on the base of the imaging unit, and the scanner scans the bottom walls of the plurality of containers provided on the tray. It is configured to do. Since a plurality of containers are held by a tray, handling such as transportation and imaging becomes easy. In addition, the tray can block light from the outside, and more accurate imaging can be performed.

また、必要に応じ、上記検体を、所定量の物質を有して構成し、上記基準検体を、予め特定の成分の成分量が既知になっている所定量の上記検体と同種の物質を有して構成することができる。
また、上記検体を、所定量の物質の抽出物を有して構成し、上記基準検体を、特定の成分を混合して予め特定の成分の成分量を既知にした試薬で構成することができる。
In addition, if necessary, the sample is configured to have a predetermined amount of substance, and the reference sample has the same kind of substance as the predetermined amount of the sample whose amount of a specific component is known in advance. Can be configured.
In addition, the specimen may be configured with an extract of a predetermined amount of the substance, and the reference specimen may be configured with a reagent in which the amount of the specific component is known in advance by mixing the specific component. .

そしてまた、必要に応じ、上記物質が植物である構成としている。また、必要に応じ、上記物質が土壌である構成としている。土壌や土壌に生育する農作物等の農業に関する各種物質の成分量を推定でき、特に、農業分野での利用が図られる。   In addition, if necessary, the substance is a plant. Moreover, it is set as the structure whose said substance is soil as needed. The amount of components of various substances related to agriculture such as soil and crops growing on the soil can be estimated, and in particular, it can be used in the agricultural field.

本発明の物質の成分推定方法及び物質の成分推定装置によれば、撮像部においては、検体の表面及び基準検体の表面を同時に撮像し、撮像毎に、基準検体の表面の輝度を検出して、基準検体の表面の輝度と基準検体に係る物質の成分の成分量との相関関係を算出するので、撮像部の機種が異なるような場合は勿論のこと、温度条件や湿度条件などの撮像環境が異なる場合でも、その都度、これらの機種条件や撮像環境変化に応じた相関関係を算出することができ、そのため、撮像部が撮像した検体の表面の画像に基づく輝度と上記の相関関係とから算出される成分の成分量が、機種条件や撮像環境変化に応じた正確な推定値となり、推定値の信頼性の向上を図ることができる。
その結果、この成分量の推定は、人間が目視する主観的経験に基づくものではないので、個人差が生じることがなく略一義的に推定でき、推定量にバラツキが生じることがなく安定し、農業分野などでの利用が期待できる。
According to the substance component estimation method and substance component estimation apparatus of the present invention, the imaging unit simultaneously images the surface of the specimen and the surface of the reference specimen, and detects the luminance of the surface of the reference specimen for each imaging. Since the correlation between the brightness of the surface of the reference sample and the amount of the component of the substance related to the reference sample is calculated, the imaging environment such as the temperature condition and humidity condition can be used as well as when the model of the imaging unit is different. Even if they are different, it is possible to calculate the correlation according to these model conditions and imaging environment changes each time. Therefore, from the luminance based on the image of the surface of the specimen imaged by the imaging unit and the above correlation The calculated component amount becomes an accurate estimated value corresponding to the model condition and the imaging environment change, and the reliability of the estimated value can be improved.
As a result, since the estimation of this component amount is not based on the subjective experience that humans visually observe, it can be estimated almost uniquely without causing individual differences, and it is stable without causing variations in the estimated amount. It can be expected to be used in the agricultural field.

以下、添付図面に基づいて本発明の実施の形態に係る物質の成分推定方法及び物質の成分推定装置について詳細に説明する。本発明の実施の形態に係る物質の成分推定方法は、本発明の実施の形態に係る物質の成分推定装置によって実現されるので、本発明の実施の形態に係る物質の成分推定装置の作用において説明する。   Hereinafter, a substance component estimation method and a substance component estimation apparatus according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the substance component estimation method according to the embodiment of the present invention is realized by the substance component estimation apparatus according to the embodiment of the present invention, in the operation of the substance component estimation apparatus according to the embodiment of the present invention. explain.

図1乃至図3に示すように、本発明の実施の形態に係る物質の成分推定装置は、所定量の物質若しくは所定量の物質の抽出物を有した検体Kを収納する検体用容器1を備えている。検体用容器1は複数用意される。
また、予め特定の成分の成分量が既知になっている上記検体Kと同等の形態の基準になる基準検体Cであって該既知の成分量が夫々異なる複数の基準検体Cを夫々収容する複数の基準用容器2を備えている。
As shown in FIG. 1 to FIG. 3, the substance component estimation apparatus according to the embodiment of the present invention includes a specimen container 1 that contains a specimen K having a predetermined amount of substance or a predetermined amount of substance extract. I have. A plurality of specimen containers 1 are prepared.
Further, a plurality of reference samples C each having a reference component C in a form equivalent to the sample K in which the component amount of a specific component is known in advance, each containing a plurality of reference samples C having different known component amounts. The reference container 2 is provided.

検体用容器1及び基準用容器2は、図2に示すように、同じ材質,形状の透明な容器であり、例えば、ガラス,プラスチック樹脂,石英ガラスなどの透明な材料でカップ状に形成されている。例えば、外径32mm、内径27mm、高さ15mm、肉厚1.3mmの容器が用いられる。   As shown in FIG. 2, the sample container 1 and the reference container 2 are transparent containers of the same material and shape, and are formed into a cup shape with a transparent material such as glass, plastic resin, or quartz glass. Yes. For example, a container having an outer diameter of 32 mm, an inner diameter of 27 mm, a height of 15 mm, and a wall thickness of 1.3 mm is used.

また、この容器1,2は、トレー10に保持される。図1及び図3に示すように、トレー10は後述のスキャナ23のベース21に載置されてこれを覆う大きさの樹脂製の矩形板状に形成され、容器1,2が嵌合して保持される行列状(実施の形態では2行5列の10個)の孔11を有している。トレー10は灰色に着色されている。
トレー10の各孔11には、基準用容器2が4つ保持され、検体用容器1が6つ保持される。トレー10には、各容器1,2に入れた検体Kの識別が容易なように、各孔11の近傍であってトレー10の表側に容器1,2の番号が付されている。検体用容器1の番号として1〜6が付され、基準用容器2の番号として、S1〜S4が付されている。
The containers 1 and 2 are held on the tray 10. As shown in FIGS. 1 and 3, the tray 10 is formed on a base plate 21 of a scanner 23, which will be described later, and is formed into a resin-made rectangular plate with a size covering the container. It has holes 11 in the form of a matrix to be held (in the embodiment, 10 in 2 rows and 5 columns). The tray 10 is colored gray.
In each hole 11 of the tray 10, four reference containers 2 and six sample containers 1 are held. In the tray 10, the numbers of the containers 1 and 2 are attached to the front side of the tray 10 in the vicinity of the holes 11 so that the sample K placed in the containers 1 and 2 can be easily identified. 1 to 6 are assigned as the numbers of the sample containers 1, and S1 to S4 are assigned as the numbers of the reference containers 2.

ここで、検体K及び基準検体Cは、その形態としては、粉粒体,液体あるいは、粉粒体と液体との混合した流動状のものが望ましい。
また、検体Kとしては、所定量の物質を有して構成することができる。この場合、基準検体Cを、予め特定の成分の成分量が既知になっている所定量の上記検体Kと同種の物質を有して構成することができる。例えば、物質が後述の水稲の茎葉部(所定区画の水田に植えられた水稲の多数の株から任意に選択された株のうち、地上に出ている茎及び葉の部分をいう。穂がある場合は穂を取り除く。)の場合であって、この茎葉部の成分量である窒素の質量パーセントを求める場合がある。物質として、水稲の葉のみあるいは茎のみを選択することもできる。
また、検体Kとしては、所定量の物質の抽出物を有して構成することができる。この場合、基準検体Cを、特定の成分を混合して予め特定の成分の成分量を既知にした試薬で構成することができる。例えば、物質が後述の土壌の場合であって、土壌の100g当りの可給態リン酸含量(mg)を求める場合がある。この場合、土壌抽出溶液中のリンを、化学反応により発色させ、その発色液の輝度情報を解析することにより、成分量を推定できる。また、リン酸に限らず、土壌抽出溶液中の窒素,カリウム,カルシウム,マグネシウム含量を、化学反応により発色させ、その発色液の輝度情報を解析することにより、各成分量を推定できる。
Here, the sample K and the reference sample C are desirably in the form of powder, liquid, or a fluid mixture of powder and liquid.
In addition, the specimen K can be configured to have a predetermined amount of substance. In this case, the reference sample C can be configured by having a predetermined amount of the same kind of substance as the sample K in which the component amount of the specific component is known in advance. For example, the stems and leaves of paddy rice described later (referred to as stems and leaves on the ground among strains arbitrarily selected from a large number of paddy rice plants planted in a predetermined paddy field. In some cases, the ears are removed.) In some cases, the mass percentage of nitrogen, which is the amount of components in the foliage, may be obtained. As a substance, only rice leaves or stems can be selected.
In addition, the specimen K can be configured with an extract of a predetermined amount of substance. In this case, the reference sample C can be composed of a reagent in which a specific component is mixed and the amount of the specific component is known in advance. For example, when the substance is soil described later, the available phosphate content (mg) per 100 g of soil may be obtained. In this case, the amount of components can be estimated by coloring phosphorus in the soil extraction solution by a chemical reaction and analyzing luminance information of the color developing solution. In addition to phosphoric acid, the amount of each component can be estimated by coloring the nitrogen, potassium, calcium, and magnesium contents in the soil extraction solution by a chemical reaction and analyzing the luminance information of the coloring solution.

また、本発明の実施の形態に係る物質の成分推定装置は、検体用容器1に収容された検体Kの表面及び基準用容器2に収容された基準検体Cの表面を同時に撮像する撮像部20を備えている。
詳しくは、撮像部20は、容器1,2を保持したトレー10が容器1,2の底壁3を当接させて載置されるガラス板で形成されたベース21と、ベース21上のトレー10及び容器1,2の開口側を覆いベース21に対して開閉可能に設けられた覆体22と、ベース21上のトレー10を走査して画像を撮像するスキャナ23とを備えて構成されている。ベース21は、例えば、A4サイズの原稿載置台で形成されている。
The substance component estimation apparatus according to the embodiment of the present invention simultaneously captures the surface of the specimen K accommodated in the specimen container 1 and the surface of the reference specimen C accommodated in the reference container 2. It has.
Specifically, the imaging unit 20 includes a base 21 formed of a glass plate on which the tray 10 holding the containers 1 and 2 is placed in contact with the bottom walls 3 of the containers 1 and 2, and a tray on the base 21. 10 and a cover 22 that covers the opening side of the containers 1 and 2 and that can be opened and closed with respect to the base 21, and a scanner 23 that scans the tray 10 on the base 21 to capture an image. Yes. The base 21 is formed of, for example, an A4 size document placing table.

スキャナ23は、ベース21の上のトレー10及び容器1,2の底壁3にベース21の下から蛍光管やLEDの光を照射し、その反射光をCCDセンサ等によりRGB輝度を読みとって、容器1,2の底壁3を通して基準検体C及び検体KのRGB輝度を取得し、デジタル画像として撮像する。R輝度,G輝度,B輝度は、夫々、0から255までの256段階であって、画像の画素はこのRGB輝度の組み合わせからなり、約1600万通りの色が表現される。
スキャナ23は、一般に市販されているものでよく、既存のものを使用することから導入コストを安価に抑えることができる。
The scanner 23 irradiates the tray 10 on the base 21 and the bottom wall 3 of the containers 1 and 2 with the light of the fluorescent tube and the LED from below the base 21, reads the RGB luminance by the CCD sensor or the like from the reflected light, The RGB brightness of the reference specimen C and specimen K is acquired through the bottom walls 3 of the containers 1 and 2 and captured as digital images. R luminance, G luminance, and B luminance are each 256 steps from 0 to 255, and the pixels of the image are composed of combinations of the RGB luminances, and about 16 million colors are expressed.
The scanner 23 may be a commercially available one, and since an existing one is used, the introduction cost can be kept low.

更に、本発明の実施の形態に係る物質の成分推定装置は、CPUなどの機能によって作動する算出部30を備えている。算出部30は、撮像部20が撮像した画像に基づいて検体Kの表面の輝度を検出するとともに該検出した輝度に基づいて物質中の含有成分の推定しようとする特定の成分の成分量を算出する。   Furthermore, the substance component estimation apparatus according to the embodiment of the present invention includes a calculation unit 30 that operates by a function of a CPU or the like. The calculation unit 30 detects the luminance of the surface of the specimen K based on the image captured by the imaging unit 20, and calculates the component amount of a specific component to be estimated for the contained component in the substance based on the detected luminance. To do.

詳しくは、算出部30は、基準画像抽出手段31と、検体画像抽出手段32と、基準輝度検出手段33と、相関関係算出手段34と、検体輝度検出手段35と、成分量算出手段36とを備えて構成されている。   Specifically, the calculation unit 30 includes a reference image extraction unit 31, a sample image extraction unit 32, a reference luminance detection unit 33, a correlation calculation unit 34, a sample luminance detection unit 35, and a component amount calculation unit 36. It is prepared for.

基準画像抽出手段31は、スキャナ23から出力された画像から各基準用容器2の基準検体Cの表面のみの画像であって所定範囲eの画像を抽出する。例えば、図2(a)に示すように、容器1,2の底壁3面の中心に重心をもつ正方形(例えば1辺が15mmの正方形)を所定範囲e(解析領域)とする。
検体画像抽出手段32は、スキャナ23から出力された画像から検体用容器1の検体Kの表面のみの画像であって所定範囲eの画像を抽出する。例えば、上記と同様、図2(a)に示すように、容器1,2の底壁3面の中心に重心をもつ正方形(例えば1辺が15mmの正方形)を所定範囲e(解析領域)とする。
より詳しくは、各画像抽出手段31,32は、トレー10の裏面と基準用容器2および検体用容器1に収容された検体表面との輝度の差および検体容器の形状から、各容器1,2毎に区分けして各容器1,2の表面のみの画像を抜き出し、この各容器1,2の表面画像から所定範囲の画像を抽出している。
The reference image extracting unit 31 extracts an image of only the surface of the reference sample C of each reference container 2 from the image output from the scanner 23 and having a predetermined range e. For example, as shown in FIG. 2A, a square having a center of gravity at the center of the bottom wall 3 surface of the containers 1 and 2 (for example, a square having a side of 15 mm) is defined as a predetermined range e (analysis region).
The sample image extraction unit 32 extracts an image of only the surface of the sample K of the sample container 1 from the image output from the scanner 23 and an image in a predetermined range e. For example, as described above, as shown in FIG. 2A, a square having a center of gravity at the center of the bottom wall 3 surface of the containers 1 and 2 (for example, a square having a side of 15 mm) is defined as a predetermined range e (analysis region). To do.
More specifically, each of the image extraction means 31 and 32 is based on the difference in luminance between the back surface of the tray 10 and the surface of the specimen contained in the reference container 2 and the specimen container 1 and the shape of the specimen container. The images of only the surfaces of the containers 1 and 2 are extracted in each case, and an image in a predetermined range is extracted from the surface images of the containers 1 and 2.

基準輝度検出手段33は、撮像部20が撮像した各基準用容器2に収容された基準検体Cの表面の輝度を検出する。基準輝度検出手段33には、基準画像抽出手段31から抽出された画像中の各画素の輝度を検出する画素輝度検出手段33aと、この画素輝度検出手段33aが検出した各画素の輝度から平均輝度を算出する平均輝度算出手段33bとが備えられている。画素輝度検出手段33aは、基準画像抽出手段31から抽出された基準検体Cの表面の所定範囲の画像中において各画素のR,G,B輝度の検出を行なっている。この値は、0から255までの256段階である。平均輝度算出手段33bは、所定範囲の画像の各画素のR,G,B毎の輝度をたし合わせ、この所定範囲の画像を構成する画素数で除算してR,G,B毎に平均輝度を算出している。   The reference luminance detection unit 33 detects the luminance of the surface of the reference sample C accommodated in each reference container 2 imaged by the imaging unit 20. The reference luminance detecting unit 33 includes a pixel luminance detecting unit 33a for detecting the luminance of each pixel in the image extracted from the reference image extracting unit 31, and an average luminance from the luminance of each pixel detected by the pixel luminance detecting unit 33a. And an average luminance calculating means 33b for calculating. The pixel luminance detecting unit 33a detects the R, G, and B luminances of each pixel in an image in a predetermined range on the surface of the reference specimen C extracted from the reference image extracting unit 31. This value is 256 steps from 0 to 255. The average luminance calculating means 33b adds the luminance for each of R, G, and B of each pixel of the image in the predetermined range, and divides by the number of pixels constituting the image in the predetermined range, and averages for each R, G, and B The brightness is calculated.

相関関係算出手段34は、基準輝度検出手段33が検出した輝度に基づいて基準検体Cの表面の輝度と基準検体Cに係る物質の推定しようとする成分量との相関関係を算出する。この相関関係は、上記の選択された特定の成分量が異なる複数の基準検体Cがスキャナ23で走査されると、基準画像抽出手段31が所定範囲の画像を抜き出し、基準輝度検出手段33が平均輝度を算出し、そして、上記の実測値と算出された平均輝度との相関を例えば最小2乗法で予測式化して定める。   The correlation calculation unit 34 calculates the correlation between the luminance of the surface of the reference sample C and the component amount to be estimated of the substance related to the reference sample C based on the luminance detected by the reference luminance detection unit 33. When the plurality of reference samples C having different specific component amounts selected above are scanned by the scanner 23, the reference image extraction unit 31 extracts a predetermined range of images, and the reference luminance detection unit 33 averages the correlation. Luminance is calculated, and a correlation between the measured value and the calculated average luminance is determined by, for example, a prediction formula using the least square method.

検体輝度検出手段35は、上記基準輝度検出手段33と同様に、撮像部20が撮像した各検体用容器1に収容された検体Kの表面の輝度を検出する。検体輝度検出手段35には、検体画像抽出手段32から抽出された画像中の各画素の輝度を検出する画素輝度検出手段35aと、この画素輝度検出手段35aが検出した各画素の輝度から平均輝度を算出する平均輝度算出手段35bとが備えられている。画素輝度検出手段35aは、検体画像抽出手段32から抽出された検体Kの表面の所定範囲の画像中において各画素のR,G,B輝度の検出を行なっている。この値は、0から255までの256段階である。平均輝度算出手段35bは、所定範囲の画像の各画素のR,G,B毎の輝度をたし合わせ、この所定範囲の画像を構成する画素数で除算してR,G,B毎に平均輝度を算出している。   Similar to the reference luminance detection unit 33, the sample luminance detection unit 35 detects the luminance of the surface of the sample K stored in each sample container 1 imaged by the imaging unit 20. The sample luminance detecting unit 35 includes a pixel luminance detecting unit 35a for detecting the luminance of each pixel in the image extracted from the sample image extracting unit 32, and an average luminance from the luminance of each pixel detected by the pixel luminance detecting unit 35a. And an average luminance calculating means 35b for calculating. The pixel luminance detecting unit 35a detects R, G, and B luminances of each pixel in an image in a predetermined range on the surface of the sample K extracted from the sample image extracting unit 32. This value is 256 steps from 0 to 255. The average luminance calculating means 35b adds the luminance for each of R, G, and B of each pixel of the image in the predetermined range, and divides by the number of pixels constituting the image in the predetermined range, and averages for each of R, G, and B The brightness is calculated.

成分量算出手段36は、検体輝度検出手段35で検出された検体Kの表面の輝度と、相関関係算出手段34で算出された相関関係とから、検体Kに係る特定の成分の成分量を算出する。
それから、算出部30に接続されたディスプレイモニタやプリンタ等の出力機器37に、各容器の番号とともに輝度と成分量と併記した表を表示させる。
The component amount calculation unit 36 calculates the component amount of a specific component related to the sample K from the surface luminance of the sample K detected by the sample luminance detection unit 35 and the correlation calculated by the correlation calculation unit 34. To do.
Then, the output device 37 such as a display monitor or a printer connected to the calculation unit 30 displays a table in which the number of each container is written together with the luminance and the component amount.

従って、この物質の成分推定装置を使用して成分量を推定する場合は、以下のようにして行なう。
先ず、検体Kとして、所定量の物質を有して構成した場合について説明する。この場合、基準検体Cを、予め特定の成分の成分量が既知になっている所定量の上記検体Kと同種の物質を有して構成する。
例えば、物質が水稲の場合であって、水稲の茎葉部の成分量である窒素の質量パーセントを求める場合、先ず、稲の茎葉部を採取する。茎葉部とは、所定区画の水田に植えられた水稲の多数の株から任意に選択された株のうち、地上に出ている茎及び葉の部分をいう。穂がある場合は穂を取り除く。また、平均化のために、所定区画の水田から、複数株(例えば、3株)を採取する。そして、検体Kとしては、これら複数株の茎葉部全部を用い、通風乾燥機により所定時間乾燥して水分量を略0質量%にし、この乾燥した茎葉部を粉砕器により粉砕し、所定量を検体用容器1に入れ、エタノールを所定量加えたものとする。
また、基準検体Cにおいては、生育状態の違う水田から、上記と同様の方法にて茎葉部の試料を採取し、この試料の成分量である窒素の質量パーセントを、周知の定量分析法(例えば、湿式灰化の後,インドフェノール法により窒素含量を定量)により、予め実測値として正確に求めておく。そして、複数の基準検体Cとして、その成分が段階的に異なるものを種々の試料から選択し、同様に、所定量を基準用容器2に入れ、エタノールを所定量加えたものとする。
Therefore, when estimating the amount of a component using the component estimation apparatus of this substance, it is performed as follows.
First, a case where the specimen K is configured to have a predetermined amount of substance will be described. In this case, the reference sample C is configured to have a predetermined amount of the same kind of substance as the sample K in which the component amount of a specific component is known in advance.
For example, when the substance is paddy rice and the mass percentage of nitrogen, which is the component amount of the paddy rice foliage, is determined, first the rice foliage is collected. The stem and leaf part refers to a part of a stem and a leaf that is on the ground, among strains arbitrarily selected from a large number of strains of paddy rice planted in a paddy field of a predetermined section. If there are spikes, remove the spikes. In addition, a plurality of strains (for example, 3 strains) are collected from a paddy field in a predetermined section for averaging. And as the specimen K, using all of the foliage parts of these multiple strains, it is dried for a predetermined time with a ventilator to make the water content approximately 0% by mass, the dried foliage part is pulverized with a pulverizer, and a predetermined amount is obtained. It is assumed that a predetermined amount of ethanol is added to the specimen container 1.
Further, in the reference sample C, a sample of the foliage is collected from a paddy field having a different growth state by the same method as described above, and the mass percentage of nitrogen as the component amount of this sample is determined by a well-known quantitative analysis method (for example, Then, after wet ashing, the nitrogen content is determined by the indophenol method) and is accurately obtained in advance as an actually measured value. Then, a plurality of reference samples C having different components in stages are selected from various samples. Similarly, a predetermined amount is placed in the reference container 2 and a predetermined amount of ethanol is added.

尚、アルコールを加える理由は、検体表面の凹凸による乱反射を防ぐため、粉末試料の色差を強調するためである。   The reason for adding alcohol is to emphasize the color difference of the powder sample in order to prevent irregular reflection due to unevenness of the specimen surface.

次に、トレー10に、基準検体Cの4つの基準用容器2を載せ、検体Kとして、同一ロットのもの、あるいは、異なるロットのものなど、適宜の検体Kの6つの検体用容器1を載せる。それから、スキャナ23のベース21にトレー10を載置し、覆体22で覆う。容器を持ち運ぶ際はトレー10を持てばよく取扱性が向上する。
そして、スキャナ23を作動させ、トレー10の表面の画像を撮像し、この画像を算出部30に出力する。
Next, the four reference containers 2 of the reference sample C are placed on the tray 10, and the six sample containers 1 of appropriate specimens K such as those of the same lot or different lots are placed as the specimen K. . Then, the tray 10 is placed on the base 21 of the scanner 23 and covered with the cover 22. When carrying the container, the handleability can be improved by holding the tray 10.
Then, the scanner 23 is operated to take an image of the surface of the tray 10, and this image is output to the calculation unit 30.

そして、算出部30を作動させて、各検体容器毎の平均R輝度と窒素量の推定量を得る。
詳しくは、算出部30が作動すると、先ず、基準画像抽出手段31は、スキャナ23から出力された画像から各基準用容器2の基準検体Cの表面のみの画像であって所定範囲eの画像を抽出する。
基準輝度検出手段33は、撮像部20が撮像した各基準用容器2に収容された基準検体Cの表面の輝度を検出する。基準輝度検出手段33において、画素輝度検出手段33aは、基準画像抽出手段31から抽出された基準検体Cの表面の所定範囲の画像中において各画素のR,G,B輝度の検出を行なっており、平均輝度算出手段33bは、所定範囲の画像の各画素のR,G,B毎の輝度をたし合わせ、この所定範囲eの画像を構成する画素数で除算してR,G,B毎に平均輝度を算出する。実施の形態では、窒素については、各基準用容器2毎の平均R輝度を得ている。
Then, the calculation unit 30 is operated to obtain an estimated amount of average R luminance and nitrogen amount for each specimen container.
Specifically, when the calculation unit 30 operates, first, the reference image extraction unit 31 obtains an image of only the surface of the reference specimen C of each reference container 2 from the image output from the scanner 23 and an image in a predetermined range e. Extract.
The reference luminance detection unit 33 detects the luminance of the surface of the reference sample C accommodated in each reference container 2 imaged by the imaging unit 20. In the reference luminance detection means 33, the pixel luminance detection means 33a detects the R, G, B luminance of each pixel in the image in a predetermined range on the surface of the reference specimen C extracted from the reference image extraction means 31. The average luminance calculation means 33b adds the luminances of R, G, and B of each pixel of the image in the predetermined range, and divides by the number of pixels constituting the image of the predetermined range e for each of R, G, and B. The average brightness is calculated. In the embodiment, the average R brightness for each reference container 2 is obtained for nitrogen.

そして、相関関係算出手段34は、基準輝度検出手段33が検出した輝度に基づいて基準検体Cの表面の輝度と基準検体Cに係る物質の推定しようとする成分量との相関関係を算出する。この相関関係は、上記の選択された特定の成分量が異なる複数の基準検体Cがスキャナ23で走査されると、基準画像抽出手段31が所定範囲eの画像を抜き出し、基準輝度検出手段33が平均輝度を算出し、そして、上記の実測値と算出された平均輝度との相関を例えば最小2乗法で予測式化して定める。   Then, the correlation calculation unit 34 calculates the correlation between the luminance of the surface of the reference sample C and the component amount to be estimated of the substance related to the reference sample C based on the luminance detected by the reference luminance detection unit 33. When the plurality of reference specimens C having different selected specific component amounts are scanned by the scanner 23, the reference image extraction unit 31 extracts an image in a predetermined range e, and the reference luminance detection unit 33 The average luminance is calculated, and the correlation between the actually measured value and the calculated average luminance is determined by, for example, a prediction formula using the least square method.

一方、検体画像抽出手段32は、スキャナ23から出力された画像から検体用容器1の検体Kの表面のみの画像であって所定範囲eの画像を抽出する。検体輝度検出手段35は、基準輝度検出手段33と同様に、撮像部20が撮像した各検体用容器1に収容された検体Kの表面の輝度を検出する。検体輝度検出手段35においては、画素輝度検出手段35aが、検体画像抽出手段32から抽出された検体Kの表面の所定範囲の画像中において各画素のR,G,B輝度の検出を行なっている。また、平均輝度算出手段35bは、所定範囲の画像の各画素24のR,G,B毎の輝度をたし合わせ、この所定範囲eの画像を構成する画素数で除算してR,G,B毎に平均輝度を算出している。実施の形態では、窒素量については、各検体用容器1毎の平均R輝度を得ている。   On the other hand, the sample image extraction means 32 extracts an image of only the surface of the sample K of the sample container 1 from the image output from the scanner 23 and an image in a predetermined range e. Similar to the reference luminance detection unit 33, the sample luminance detection unit 35 detects the luminance of the surface of the sample K stored in each sample container 1 imaged by the imaging unit 20. In the sample luminance detecting means 35, the pixel luminance detecting means 35a detects the R, G, B luminance of each pixel in the image in the predetermined range on the surface of the sample K extracted from the sample image extracting means 32. . Further, the average luminance calculating means 35b adds the luminance for each R, G, B of each pixel 24 of the image in the predetermined range, and divides by the number of pixels constituting the image in the predetermined range e to obtain R, G, The average brightness is calculated for each B. In the embodiment, the average R luminance for each specimen container 1 is obtained for the nitrogen amount.

そして、成分量算出手段36は、検体輝度検出手段35で検出された検体Kの表面の輝度と、相関関係算出手段34で算出された相関関係とから、検体Kに係る特定の成分の成分量を算出する。
それから、算出部30に接続されたディスプレイモニタやプリンタ等の出力機器37に、各容器1,2の番号とともに輝度と成分量と併記した表を表示させる。
Then, the component amount calculation unit 36 determines the component amount of a specific component related to the sample K from the surface luminance of the sample K detected by the sample luminance detection unit 35 and the correlation calculated by the correlation calculation unit 34. Is calculated.
Then, on the output device 37 such as a display monitor or a printer connected to the calculation unit 30, a table in which the luminance and the component amount are written together with the numbers of the containers 1 and 2 is displayed.

この場合、撮像部20においては、検体Kの表面及び基準検体Cの表面を同時に撮像し、撮像毎に、基準検体Cの表面の輝度を検出して、基準検体Cの表面の輝度と基準検体Cに係る特定の成分の成分量との相関関係を算出するので、撮像部20の機種が異なるような場合は勿論のこと、温度条件や湿度条件などの撮像環境が異なる場合でも、その都度、これらの機種条件や撮像環境変化に応じた相関関係を算出することができ、そのため、撮像部20が撮像した検体Kの表面の画像に基づく輝度と上記の相関関係とから算出される特定の成分の成分量が、機種条件や撮像環境変化に応じた正確な推定値となり、推定値の信頼性の向上が図られる。   In this case, the imaging unit 20 images the surface of the sample K and the surface of the reference sample C at the same time, detects the luminance of the surface of the reference sample C for each imaging, and the luminance of the surface of the reference sample C and the reference sample Since the correlation with the component amount of the specific component related to C is calculated, not only when the model of the imaging unit 20 is different, but also when the imaging environment such as the temperature condition and the humidity condition is different, each time, Correlation according to these model conditions and imaging environment changes can be calculated. Therefore, a specific component calculated from the luminance based on the image of the surface of the specimen K captured by the imaging unit 20 and the above correlation This component amount becomes an accurate estimated value according to the model conditions and the imaging environment change, and the reliability of the estimated value is improved.

また、容器1に検体Kを入れてスキャナ23で画像を撮像するだけで、特定の成分の成分量が算出されるので、経験や熟練を必要とせずに、誰が行なっても特定の成分の成分量を推定できる。また、この成分量の推定は、人間が目視する主観的経験に基づくものではないので、成分量の測定に個人差が生じることがなく略一義的に推定でき、成分量にバラツキが生じることがなく安定し、信頼性も向上させられる。更に、スキャナ23で取得した複数の検体用容器1の画像を一度に処理できるので、処理効率が向上させられる。   Further, the component amount of the specific component is calculated simply by putting the sample K in the container 1 and taking an image with the scanner 23, so that the component of the specific component can be performed by anyone without experience or skill. The amount can be estimated. In addition, the estimation of the amount of the component is not based on the subjective experience that is visually observed by humans. Therefore, there is no individual difference in the measurement of the amount of the component, and the amount of the component may vary. It is stable and reliability is improved. Furthermore, since the images of the plurality of sample containers 1 acquired by the scanner 23 can be processed at a time, the processing efficiency can be improved.

そしてまた、RGB輝度のうち、R輝度から算出したので最適なパラメータとして、水稲の窒素量を安定して推定できる。このようにして推定された窒素含量は、追肥等の肥培管理の際の参考に供することができる。   Moreover, since the RGB luminance is calculated from the R luminance, the nitrogen amount of the rice can be stably estimated as an optimum parameter. The nitrogen content estimated in this way can be used as a reference during the cultivation management such as topdressing.

次に、検体Kとして、所定量の物質の抽出物を有して構成した場合について説明する。この場合、基準検体Cを、特定の成分を混合して予め特定の成分の成分量を既知にした試薬で構成する。
例えば、物質が土壌の場合であって、土壌の可給態リン酸含量(mg)を乾土100gあたりの含量(mg)として求める場合、土壌を採取し、通風乾燥機により所要時間乾燥して水分量を略0質量%にし、乾燥した土壌を乳鉢により粉砕し、円孔篩で粒度を揃え、篩を通した土壌を所定量とり、三角フラスコに入れ、これに所定濃度の硫酸を所定量加え、振とう後、濾過する。濾液を所定量メスフラスコにとり、脱塩水を所定量加え、これに、混合発色液を所定量加え、更に所定量の上記の脱塩水を加え、充分混合する。この作成した混合液を所定量容器に入れこれを検体Kとする。
一方、基準検体Cとしては、リン標準液を希釈して作成する。作成する基準検体Cは、例えば、4段階のリン含量のものを用意し、混合発色液を所定量加え、所定量を容器に入れる。
Next, a case where the specimen K is configured to have a predetermined amount of substance extract will be described. In this case, the reference sample C is composed of a reagent in which a specific component is mixed to make the amount of the specific component known in advance.
For example, when the substance is soil, and when the available phosphate content (mg) of the soil is determined as the content (mg) per 100 g of dry soil, the soil is collected and dried for a required time with an air dryer. The water content is reduced to about 0% by mass, the dried soil is pulverized with a mortar, the particle size is made uniform with a round-hole sieve, a predetermined amount of soil passed through the sieve is taken into an Erlenmeyer flask, and a predetermined amount of sulfuric acid is added to the predetermined amount. In addition, after shaking, filter. A predetermined amount of the filtrate is placed in a volumetric flask, a predetermined amount of demineralized water is added, a predetermined amount of the mixed color solution is added, and a predetermined amount of the above-mentioned demineralized water is further added and mixed well. A predetermined amount of the prepared mixed solution is put into a container and this is used as a specimen K.
On the other hand, the reference sample C is prepared by diluting a phosphorus standard solution. The reference sample C to be prepared is prepared, for example, with a phosphorus content of four stages, a predetermined amount of mixed color developing solution is added, and a predetermined amount is put in a container.

そして、上記と同様の操作により、測定を行なう。算出部30の成分量算出手段36は、検体輝度検出手段35で検出された検体Kの表面の輝度と、相関関係算出手段34で算出された相関関係とから、検体Kに係る特定の成分の成分量を算出する。
それから、算出部30に接続されたディスプレイモニタやプリンタ等の出力機器に、各容器の番号とともに輝度と成分量と併記した表を表示させる。
尚、検体Kは、所定量の土壌の抽出物のうちから更に所定量を取り出して作成されているので、求める土壌中の可給態リン酸含量(乾土100gあたりの含量)は、測定値について所要の換算を行なう。換算は算出部30の成分量算出手段36で実施される。
このように、検体Kとして、所定量の物質の抽出物を有して構成した場合も上記と同様の作用,効果が得られる。
Then, measurement is performed by the same operation as described above. The component amount calculation unit 36 of the calculation unit 30 uses the luminance of the surface of the sample K detected by the sample luminance detection unit 35 and the correlation calculated by the correlation calculation unit 34 to determine the specific component related to the sample K. The component amount is calculated.
Then, on the output device such as a display monitor or printer connected to the calculation unit 30, a table in which the luminance and the component amount are written together with the number of each container is displayed.
In addition, since the sample K is prepared by taking out a predetermined amount from a predetermined amount of soil extract, the available phosphate content in the soil (content per 100 g of dry soil) is a measured value. Perform the required conversion for. The conversion is performed by the component amount calculation means 36 of the calculation unit 30.
As described above, even when the specimen K is configured to include an extract of a predetermined amount of substance, the same operations and effects as described above can be obtained.

次に、実施例について説明する。
[実施例1](水稲の茎葉部の乾燥粉末の輝度情報から窒素含有率を推定)
先ず、稲の試料の準備をする。稲の採取条件は以下のようにした。
採取時期:6月中旬から収穫直前にかけて採取
採取方法:1つの所定区画の水田から,平均的な生育状態の稲を3株(連続して植えてあるもの)採取する。採取は,株元から採取する。8月中旬以降は,穂を取り除いて分析した。
また、S1〜S4の試料については、生育状態の違う所定区画の水田から、上記の方法と同様に茎葉部を採取した。試料を採取する水田は、稲の草丈の長さ,葉の色等から適宜のものを選定した。
そして、採取した株の根本の泥をきれいに洗浄し、通風乾燥機で乾燥する。乾燥後、3株を粉砕器で粉砕する。3株まとめて粉砕する。
より具体的には、通風乾燥機(ヤマト科学株式会社製DS400)により70℃で72時間乾燥する。乾燥した稲をウイレー式粉砕器(吉田製作所製 1029−C)により粉砕粒度1.0mmに粉砕する。粉砕したものを容器としての小型シャーレ(フラット社製 FS−30)に入れる。シャーレの寸法は、外径32mm、内径27mm、高さ15mm、肉厚1.3mmである。試料の厚さは5mm程度、重量にして2gである。シャーレに入れた試料にエタノール(和光純薬製)を2ml加える。
シャーレを専用トレー10(ウレタン製 A4サイズ)にはめ込み、スキャナ23に乗せる。トレー10のS1番〜S4番の孔には,窒素含有率が既知の基準検体Cが入ったシャーレをはめ込む。トレー10の1番〜6番の孔には、窒素含有率が未知の検体Kが入ったシャーレをはめ込む。
Next, examples will be described.
[Example 1] (The nitrogen content is estimated from the brightness information of the dry powder of the foliage of paddy rice)
First, prepare rice samples. Rice harvesting conditions were as follows.
Sampling time: From mid-June to just before harvesting Sampling and harvesting method: Three rice plants (those that are planted continuously) are harvested from a paddy field in one predetermined section. Collect from the stock source. After mid-August, the ears were removed and analyzed.
Moreover, about the sample of S1-S4, the foliage part was extract | collected from the paddy field of the predetermined division from which a growth state differs similarly to said method. The paddy field from which the sample was collected was selected appropriately from the length of the rice plant, the color of the leaves, and the like.
Then, the collected base mud is thoroughly washed and dried with a draft dryer. After drying, 3 strains are pulverized with a pulverizer. Crush the 3 stocks together.
More specifically, drying is performed at 70 ° C. for 72 hours with a ventilating dryer (DS400 manufactured by Yamato Scientific Co., Ltd.). The dried rice is pulverized to a pulverized particle size of 1.0 mm by a wheely pulverizer (1029-C, manufactured by Yoshida Seisakusho). The pulverized product is put into a small petri dish (FS-30 manufactured by Flat) as a container. The petri dish has an outer diameter of 32 mm, an inner diameter of 27 mm, a height of 15 mm, and a wall thickness of 1.3 mm. The thickness of the sample is about 5 mm and the weight is 2 g. 2 ml of ethanol (manufactured by Wako Pure Chemical Industries) is added to the sample placed in the petri dish.
Place the petri dish on the special tray 10 (A4 size made of urethane) and place it on the scanner 23. A petri dish containing a reference sample C with a known nitrogen content is fitted into the holes S1 to S4 of the tray 10. A petri dish containing a sample K whose nitrogen content is unknown is inserted into holes 1 to 6 of the tray 10.

そして、装置の解析用プログラムを起動し,トレー10にシャーレをはめ込んだ画像を得る。撮像時の解像度は150dpiである。算出部30において、得られた画像のうち、各シャーレ内の試料の色を解析する。
算出部30においては、シャーレとトレー10の輝度の差から、シャーレ10個を自動的に認識する。10個のシャーレのそれぞれについて、シャーレ底面の円の中心に重心をもつ1辺が15mmの正方形を解析領域に設定する。解析する領域の各画素について、R−G−B成分の輝度値を算出する。解析する領域の各画素のR−G−B値のそれぞれの平均値を試料のR値,G値,B値とする。窒素含有率が既知の基準検体C4点により検量線を作成し、その検量線を用いて、窒素含有率が未知の検体K6点の窒素含有率を推定する。
Then, an analysis program for the apparatus is activated to obtain an image in which a petri dish is fitted in the tray 10. The resolution at the time of imaging is 150 dpi. The calculation unit 30 analyzes the color of the sample in each petri dish among the obtained images.
The calculation unit 30 automatically recognizes 10 petri dishes from the difference in luminance between the petri dish and the tray 10. For each of the 10 petri dishes, a square having a center of gravity at the center of the circle on the bottom of the petri dish and having a side of 15 mm is set as the analysis region. For each pixel in the region to be analyzed, the luminance value of the RGB component is calculated. The average value of the RGB values of each pixel in the region to be analyzed is set as the R value, G value, and B value of the sample. A calibration curve is created using the reference sample C4 with a known nitrogen content, and the nitrogen content of the sample K6 with an unknown nitrogen content is estimated using the calibration curve.

実施例1においては、基準検体Cとして、「あきたこまち」及び「ひとめぼれ」から窒素含有率(質量%)の夫々異なる2種ずつを選択した(S1〜S4)。また、未知検体Kとして「あきたこまち」(2005年産)を12サンプル(1〜12),「ひとめぼれ」(2005年産)を12サンプル(13〜24)を用いた。尚、相関を見るために、未知検体Kについても、窒素含量を実測した。図4に、実施例1の測定データI(8月データ)と、検量線に推定した数値(推定値1)をプロットしたグラフを示す。
この結果から、極めて高い相関が認められ、推定値の精度が高いことが認められる。
In Example 1, two different types of nitrogen content (mass%) were selected from “Akitakomachi” and “Hitomebore” as reference samples C (S1 to S4). As the unknown specimen K, 12 samples (1-12) of “Akitakomachi” (produced in 2005) and 12 samples (13-24) of “Hitomebore” (produced in 2005) were used. In order to see the correlation, the nitrogen content of the unknown sample K was also measured. FIG. 4 shows a graph in which the measurement data I (August data) of Example 1 and the estimated numerical value (estimated value 1) are plotted on the calibration curve.
From this result, extremely high correlation is recognized, and it is recognized that the accuracy of the estimated value is high.

次に、実施例1において、上記と同じ試料を用いて、日を異ならせて(2ヵ月後の10月)同様の測定を行なった。図5に、測定データII(10月データ)と、検量線に推定した数値(推定値2)をプロットしたグラフを示す。
この結果からも、極めて高い相関が認められ、推定値の精度が高いことが認められる。
Next, in Example 1, using the same sample as above, the same measurement was performed with different days (October after 2 months). FIG. 5 shows a graph in which the measurement data II (October data) and the estimated value (estimated value 2) are plotted on the calibration curve.
From this result, it is recognized that an extremely high correlation is recognized and the accuracy of the estimated value is high.

図6には、検量線として、測定データIの結果を用い、測定データII(10月データ)の未知検体KのR輝度値により、窒素含量を推定した数値(推定値3)を示す。
そして、上記の推定値1,2,3について、相関を比較した。図7乃至図9には、上記の推定値1,2,3についての相関図を示す。
この結果から、推定値1,2は、検体K及び基準検体Cを同時に撮像し、撮像毎に、基準検体Cの輝度を検出して作成した検量線により成分量を推定したので、高い相関が見られる(図7及び図8)のに比較して、推定値3は別の検量線を用いたので、推定値3の相関はこれらよりは劣る(図9)。このことより、検量線を一義的に決めるのに比較して、測定の都度、検量線を作成して成分量を推定することが、撮像部20の機種が異なるような場合は勿論のこと、温度条件や湿度条件などの撮像環境が異なる場合でも、これらの機種条件や撮像環境変化に応じた推定を行なって、より正確な推定値とすることができ、推定値の信頼性の向上を図ることができ、優れていることが分かる。
FIG. 6 shows a numerical value (estimated value 3) obtained by estimating the nitrogen content from the R luminance value of the unknown sample K of the measured data II (October data) using the result of the measured data I as a calibration curve.
And the correlation was compared about said estimated value 1,2,3. 7 to 9 show correlation diagrams for the estimated values 1, 2, and 3.
From these results, the estimated values 1 and 2 have a high correlation because the sample K and the reference sample C are imaged at the same time, and the component amount is estimated by the calibration curve created by detecting the luminance of the reference sample C for each imaging. Compared to those seen (FIGS. 7 and 8), the estimated value 3 uses a different calibration curve, so the correlation of the estimated value 3 is inferior to these (FIG. 9). From this, compared to determining the calibration curve uniquely, it is of course possible to create a calibration curve and estimate the component amount for each measurement, when the model of the imaging unit 20 is different, Even when the imaging environment such as temperature and humidity conditions are different, the estimation can be made according to these model conditions and changes in the imaging environment to obtain a more accurate estimated value, and the reliability of the estimated value is improved. It can be seen that it is excellent.

[実施例2](土壌の可給態リン酸含量の推定)
(1)検体Kの作成
土壌を採取し、通風乾燥機(ヤマト科学株式会社製DS400)により70℃で72時間乾燥する。乾燥した土壌を乳鉢により粉砕し、篩目2mmの円孔篩で粒度を揃える。篩を通した土壌を1gとり、300ml容の三角フラスコに入れる。これに0.002Nの硫酸(pH3.0)を200ml加え、30分間振とうする。振とう後、東洋濾紙No.5Bで濾過する。ろ液20mlを50ml容のメスフラスコにとり、脱塩水20mlを加える。これに、混合発色液を8ml加える。混合発色液は、5Nの硫酸、4%モリブデン酸アンモニウム、0.1Mアスコルビン酸溶液、酒石酸アンモニルカリウム溶液からなる。メスフラスコの標線まで脱塩水を加え、充分混合する。作成した検体Kを2ml上記と同様のシャーレに入れる。
[Example 2] (Estimation of available phosphate content of soil)
(1) Preparation of specimen K Soil is collected and dried at 70 ° C. for 72 hours with a ventilator (DS400 manufactured by Yamato Scientific Co., Ltd.). The dried soil is pulverized with a mortar, and the particle size is made uniform with a circular hole sieve having a mesh size of 2 mm. 1 g of the soil passed through the sieve is taken and put into a 300 ml Erlenmeyer flask. Add 200 ml of 0.002N sulfuric acid (pH 3.0) and shake for 30 minutes. After shaking, Toyo Filter Paper No. Filter through 5B. Take 20 ml of the filtrate into a 50 ml volumetric flask and add 20 ml of demineralized water. To this, 8 ml of the mixed color developer is added. The mixed color solution consists of 5N sulfuric acid, 4% ammonium molybdate, 0.1M ascorbic acid solution, and ammonium potassium tartrate solution. Add demineralized water to the mark of the volumetric flask and mix well. 2 ml of the prepared specimen K is placed in the same petri dish as described above.

(2)基準検体Cの作成
一方、別途、リン標準液を希釈して、検量線作成用の標準試料を作成する。作成する標準試料のリン含量は、0ppm,0.2ppm,0.4ppm,0.8ppmである。これら夫々20mlを50ml容のメスフラスコにとり、脱塩水20mlを加える。これに、混合発色液を8ml加える。メスフラスコの標線まで脱塩水を加え、充分混合する。作成した基準検体Cを2ml上記のシャーレに入れる。
(2) Preparation of reference sample C On the other hand, a standard sample for preparing a calibration curve is prepared by separately diluting a phosphor standard solution. The phosphorus content of the prepared standard sample is 0 ppm, 0.2 ppm, 0.4 ppm, and 0.8 ppm. Take 20 ml of each of these in a 50 ml volumetric flask and add 20 ml of demineralized water. To this, 8 ml of the mixed color developer is added. Add demineralized water to the mark of the volumetric flask and mix well. 2 ml of the prepared reference sample C is placed in the above petri dish.

シャーレを専用トレー10(ウレタン製 A4サイズ)にはめ込み,スキャナ23に乗せる。トレー10のS1番〜S4番の孔には、リン含量が既知の基準検体Cが入ったシャーレをはめ込む。トレー10の1番〜6番の孔には、リン含量が未知の検体Kが入ったシャーレをはめ込む。   Place the petri dish on the special tray 10 (A4 size made of urethane) and place it on the scanner 23. A petri dish containing a reference sample C with a known phosphorus content is fitted into the holes S1 to S4 of the tray 10. A petri dish containing a sample K with an unknown phosphorus content is inserted into the first through sixth holes of the tray 10.

そして、装置の解析用プログラムを起動し,トレー10にシャーレをはめ込んだ画像を得る。撮像時の解像度は150dpiである。算出部30において、得られた画像のうち、各シャーレ内の試料の色を解析する。
算出部30においては、シャーレとトレー10の輝度の差から、シャーレ10個を自動的に認識する。10個のシャーレのそれぞれについて,シャーレ底面の円の中心に重心をもつ1辺が15mmの正方形を解析領域に設定する。解析する領域の各画素について、R−G−B成分の輝度値を算出する。解析する領域の各画素のR−G−B値のそれぞれの平均値を試料のR値,G値,B値とする。リン含量が既知の基準検体C4点により検量線を作成し、その検量線を用いて、リン含量が未知の検体K6点のリン含量を推定する。
Then, an analysis program for the apparatus is activated to obtain an image in which a petri dish is fitted in the tray 10. The resolution at the time of imaging is 150 dpi. The calculation unit 30 analyzes the color of the sample in each petri dish among the obtained images.
The calculation unit 30 automatically recognizes 10 petri dishes from the difference in luminance between the petri dish and the tray 10. For each of the ten petri dishes, a square having a center of gravity at the center of the circle on the bottom of the petri dish and having a side of 15 mm is set as the analysis region. For each pixel in the region to be analyzed, the luminance value of the RGB component is calculated. The average value of the RGB values of each pixel in the region to be analyzed is set as the R value, G value, and B value of the sample. A calibration curve is created from the reference sample C4 having a known phosphorus content, and the phosphorus content of the sample K6 having an unknown phosphorus content is estimated using the calibration curve.

実施例2においては、未知検体Kとして2005年度に調査した岩手県農業研究センター内の試験圃場の土壌抽出液を用いた。24の未知検体Kについて、上記のように測定した。
図10に、実施例2の基準検体Cの測定データを示す。また、図11に、24の未知検体Kについて、実測値と推定数値との相関図を示す。この結果から、極めて高い相関が認められ、推定値の精度が高いことが認められる。
尚、分析値は、硫酸を用いた土壌抽出液の中にどれだけ(何ppm)リンが含まれているかを表している。この値(ppm)から、乾燥土壌100g当りに何mgのリン酸が含まれているかという値に換算する。
In Example 2, the soil extract of the test field in Iwate Agricultural Research Center, which was investigated in 2005 as the unknown specimen K, was used. Twenty-four unknown specimens K were measured as described above.
FIG. 10 shows measurement data of the reference sample C of Example 2. FIG. 11 shows a correlation diagram between actual measurement values and estimated numerical values for 24 unknown specimens K. From this result, extremely high correlation is recognized, and it is recognized that the accuracy of the estimated value is high.
The analytical value represents how much (in ppm) phosphorus is contained in the soil extract using sulfuric acid. This value (ppm) is converted into a value indicating how many mg of phosphoric acid is contained per 100 g of dry soil.

<実験例>
次に、同じ基準検体Cにおいて、時間若しくは日を異ならせて輝度の測定を行なった。図12には、上記実施例1の基準検体Cについて、装置の起動直後の輝度の測定値(図12(a))と、起動後20回目の輝度の測定値(図12(b))との結果を示す。この結果から、同じ成分含量でも、測定毎に輝度が微妙に異なることが分かり、測定の都度、検量線を作成して成分量を推定することが有効であることが分かる。
また、図13には、上記実施例2の基準検体Cについて、第1回目の輝度の測定値(図13(a))と、測定日を異ならせて行なった輝度の測定値(図13(b))との結果を示す。この結果から、同じ成分含量でも、測定毎に輝度が異なることが分かり、測定の都度、検量線を作成して成分量を推定することが有効であることが分かる。
<Experimental example>
Next, the luminance of the same reference sample C was measured at different times or days. In FIG. 12, with respect to the reference specimen C of Example 1 above, the measured luminance value immediately after the start of the apparatus (FIG. 12A) and the measured luminance value for the 20th time after starting (FIG. 12B) The results are shown. From this result, it can be seen that even with the same component content, the luminance is slightly different for each measurement, and it is effective to estimate the component amount by creating a calibration curve for each measurement.
In addition, FIG. 13 shows the first measured luminance value (FIG. 13A) for the reference sample C of Example 2 and the measured luminance value (FIG. 13 (FIG. 13 (A)) with different measurement dates. The result of b)) is shown. From this result, it can be seen that even with the same component content, the luminance differs for each measurement, and it is effective to estimate the component amount by creating a calibration curve for each measurement.

尚、本発明の実施の形態に係る物質の成分推定方法及び物質の成分推定装置においては、撮像部20にスキャナ23を備えて構成したが、これに限定されるものでなく、デジタル画像を取得可能な機器、例えば、デジタルスチルカメラ,フィルムスキャナ等を用いてもよい。
また、物質としては、上記の植物や土壌などに限定されるものではなく、どのような物質を対象にしてよいことは勿論である。
例えば、植物,動物,有機物,無機物等どのようなものでも良い。例えば、物質として食品(飲料も含む),水(河川水,水道水)等が想定される。
In the substance component estimation method and substance component estimation apparatus according to the embodiment of the present invention, the imaging unit 20 includes the scanner 23. However, the present invention is not limited to this, and a digital image is acquired. Possible devices such as a digital still camera and a film scanner may be used.
Further, the substance is not limited to the above-mentioned plants and soils, and it is needless to say that any substance may be targeted.
For example, any kind of plant, animal, organic matter, inorganic matter, etc. may be used. For example, food (including beverages), water (river water, tap water) and the like are assumed as substances.

本発明の実施の形態に係る物質の成分推定装置を示す図である。It is a figure which shows the component estimation apparatus of the substance which concerns on embodiment of this invention. 本発明の実施の形態に係る物質の成分推定装置の容器及び画像の抽出例を示す図である。It is a figure which shows the extraction example of the container and image of the component estimation apparatus of the substance which concerns on embodiment of this invention. 本発明の実施の形態に係る物質の成分推定装置のトレーを寸法例とともに示す図である。It is a figure which shows the tray of the component estimation apparatus of the substance which concerns on embodiment of this invention with the dimension example. 本発明の実施例1に係る測定値及び推定値1を示す表図及びグラフである。It is the table | surface figure and graph which show the measured value and the estimated value 1 which concern on Example 1 of this invention. 本発明の実施例1に係り測定日を異にした測定値及び推定値2を示す表図及びグラフである。It is a table | surface figure and graph which show the measured value and the estimated value 2 which concern on Example 1 of this invention and made the measurement date different. 本発明の実施例1に係り検量線として先の測定データの結果を用いて推定した推定値3を示す表図である。It is a table | surface figure which shows the estimated value 3 estimated using the result of the previous measurement data as a calibration curve according to Example 1 of the present invention. 図4に係るデータの相関を示すグラフ図である。It is a graph which shows the correlation of the data which concern on FIG. 図5に係るデータの相関を示すグラフ図である。It is a graph which shows the correlation of the data which concern on FIG. 図6に係るデータの相関を示すグラフ図である。It is a graph which shows the correlation of the data which concern on FIG. 本発明の実施例2に係り基準検体の測定値を示す表図である。It is a table | surface which shows the measured value of a reference | standard sample in connection with Example 2 of this invention. 本発明の実施例2に係るデータの相関を示すグラフ図である。It is a graph which shows the correlation of the data which concern on Example 2 of this invention. 本発明の実験例に係り基準検体の異なる測定時間における測定値を比較して示す表図である。It is a table | surface figure which compares and shows the measured value in the different measurement time of a reference | standard sample concerning the experiment example of this invention. 本発明の実験例に係り基準検体の異なる測定日における測定値を比較して示す表図である。It is a table | surface figure which compares and shows the measured value in the different measurement day of a reference | standard sample concerning the experiment example of this invention. 従来の物質の成分推定装置の一例を示す図である。It is a figure which shows an example of the conventional component estimation apparatus of a substance.

符号の説明Explanation of symbols

K 検体
C 基準検体
1 検体用容器
2 基準用容器
3 底壁
10 トレー
11 孔
20 撮像部
21 ベース
23 スキャナ
30 算出部
31 基準画像抽出手段
32 検体画像抽出手段
33 基準輝度検出手段
33a 画素輝度検出手段
33b 平均輝度算出手段
34 相関関係算出手段
35 検体輝度検出手段
35a 画素輝度検出手段
35b 平均輝度算出手段
36 成分量算出手段
K sample C reference sample 1 sample container 2 reference container 3 bottom wall 10 tray 11 hole 20 imaging unit 21 base 23 scanner 30 calculation unit 31 reference image extraction unit 32 sample image extraction unit 33 reference luminance detection unit 33a pixel luminance detection unit 33b Average luminance calculating unit 34 Correlation calculating unit 35 Sample luminance detecting unit 35a Pixel luminance detecting unit 35b Average luminance calculating unit 36 Component amount calculating unit

Claims (13)

所定量の物質若しくは所定量の物質の抽出物を有した検体を検体用容器に収容し、該検体用容器に収容された検体の表面を撮像部で撮像し、該撮像部が撮像した画像に基づいて検体の表面の輝度を検出するとともに該検出した輝度に基づいて上記物質中の含有成分のうち特定の成分の成分量を算出する物質の成分推定方法において、
予め特定の成分の成分量が既知になっている上記検体と同等の形態の基準になる基準検体であって該既知の成分量が夫々異なる複数の基準検体を複数の基準用容器に夫々収容し、上記撮像部によって、上記検体用容器に収容された検体の表面及び上記各基準用容器に収容された基準検体の表面を同時に撮像し、上記撮像部が撮像した画像に基づいて上記各基準用容器に収容された基準検体の表面の輝度を検出し、該検出した輝度に基づいて基準検体の表面の輝度と該基準検体に係る特定の成分の成分量との相関関係を算出し、上記撮像部が撮像した画像に基づいて上記検体容器に収容された検体の表面の輝度を検出し、該検出された検体の表面の輝度と上記相関関係とから該検体に係る特定の成分の成分量を算出することを特徴とする物質の成分推定方法。
A specimen having a predetermined amount of substance or an extract of a predetermined amount of substance is accommodated in a specimen container, the surface of the specimen contained in the specimen container is imaged by an imaging unit, and an image captured by the imaging unit is obtained. In the component estimation method for a substance that detects the luminance of the surface of the specimen based on the detected luminance and calculates the component amount of a specific component among the contained components in the substance based on the detected luminance,
A plurality of reference specimens, each of which is a reference specimen in a form equivalent to the above-described specimen whose amount of a specific component is known in advance, each having a different amount of the known component, are housed in a plurality of reference containers. The imaging unit simultaneously images the surface of the sample accommodated in the sample container and the surface of the reference sample accommodated in each reference container, and each reference reference is based on the image captured by the imaging unit. Detecting the luminance of the surface of the reference sample contained in the container, calculating a correlation between the luminance of the surface of the reference sample and the amount of a specific component related to the reference sample based on the detected luminance, and performing the imaging The luminance of the surface of the sample contained in the sample container is detected based on the image captured by the unit, and the component amount of the specific component related to the sample is determined from the detected luminance of the surface of the sample and the correlation. Of the substance characterized by calculating Minute estimation method.
上記検体を、所定量の物質を有して構成し、上記基準検体を、予め特定の成分の成分量が既知になっている所定量の上記検体と同種の物質を有して構成したことを特徴とする請求項1記載の物質の成分推定方法。   The sample is configured to have a predetermined amount of substance, and the reference sample is configured to have the same kind of substance as the predetermined amount of the sample whose amount of a specific component is known in advance. The method for estimating a component of a substance according to claim 1. 上記検体を、所定量の物質の抽出物を有して構成し、上記基準検体を、特定の成分を混合して予め特定の成分の成分量を既知にした試薬で構成したことを特徴とする請求項1記載の物質の成分推定方法。   The specimen is composed of an extract of a predetermined amount of a substance, and the reference specimen is composed of a reagent in which a specific component is mixed and a component amount of the specific component is known in advance. The component estimation method of the substance of Claim 1. 上記物質が植物であることを特徴とする請求項1乃至3いずれかに記載の物質の成分推定方法。   4. The method for estimating a component of a substance according to claim 1, wherein the substance is a plant. 上記物質が土壌であることを特徴とする請求項1乃至3いずれかに記載の物質の成分推定方法。   The method for estimating a component of a substance according to any one of claims 1 to 3, wherein the substance is soil. 所定量の物質若しくは所定量の物質の抽出物を有した検体を収容する検体用容器と、該検体用容器に収容された検体の表面を撮像する撮像部と、該撮像部が撮像した画像に基づいて検体の表面の輝度を検出するとともに該検出した輝度に基づいて上記物質中の含有成分のうち特定の成分の成分量を算出する算出部とを備えた物質の成分推定装置において、
予め特定の成分の成分量が既知になっている上記検体と同等の形態の基準になる基準検体であって該既知の成分量が夫々異なる複数の基準検体を夫々収容する複数の基準用容器を設け、上記撮像部を、上記検体用容器に収容された検体の表面及び上記各基準用容器に収容された基準検体の表面を同時に撮像するように構成し、
上記算出部に、上記撮像部が撮像した画像に基づいて上記各基準用容器に収容された基準検体の表面の輝度を検出する基準輝度検出手段と、該基準輝度検出手段が検出した輝度に基づいて該基準検体の表面の輝度と該基準検体に係る特定の成分の成分量との相関関係を算出する相関関係算出手段と、上記撮像部が撮像した画像に基づいて上記検体容器に収容された検体の表面の輝度を検出する検体輝度検出手段と、該検体輝度検出手段で検出された検体の表面の輝度と上記相関関係算出手段で算出された相関関係とから該検体に係る特定の成分の成分量を算出する成分量算出手段とを備えて構成したことを特徴とする物質の成分推定装置。
A specimen container that contains a specimen having a predetermined amount of substance or a predetermined amount of substance extract, an imaging section that images the surface of the specimen contained in the specimen container, and an image captured by the imaging section In the substance component estimation apparatus comprising: a detection unit that detects the luminance of the surface of the specimen based on the calculation unit that calculates a component amount of a specific component among the contained components in the substance based on the detected luminance;
A plurality of reference containers each containing a plurality of reference samples, each of which is a reference sample in a form equivalent to the above-described sample whose component amount of a specific component is known, and each of which has a different known component amount The imaging unit is configured to simultaneously image the surface of the specimen housed in the specimen container and the surface of the reference specimen contained in each of the reference containers;
Based on the luminance detected by the reference luminance detecting means, the reference luminance detecting means for detecting the luminance of the surface of the reference specimen contained in each reference container based on the image picked up by the imaging section, Correlation calculating means for calculating the correlation between the luminance of the surface of the reference sample and the component amount of the specific component related to the reference sample, and the sample container accommodated in the sample container based on the image captured by the imaging unit A sample luminance detecting unit for detecting the luminance of the surface of the sample, a luminance of the surface of the sample detected by the sample luminance detecting unit, and a correlation calculated by the correlation calculating unit; An apparatus for estimating a component of a substance, comprising: a component amount calculating means for calculating a component amount.
上記撮像部を、上記検体用容器を複数撮像する構成としたことを特徴とする請求項6記載の物質の成分推定装置。   7. The substance component estimation apparatus according to claim 6, wherein the imaging unit is configured to image a plurality of the specimen containers. 上記検体用容器及び上記基準用容器として透明な材料で形成したものを用い、上記撮像部を、上記検体用容器及び上記基準用容器を載置するベースと、該ベース上の上記検体用容器及び上記基準用容器を走査して該各容器の底壁を通して画像を取得するスキャナとを備えて構成し、
上記算出部に、上記スキャナから出力された画像から上記基準用容器の基準検体の表面のみの画像であって所定範囲の画像を抽出する基準画像抽出手段と、上記スキャナから出力された画像から上記検体用容器の検体の表面のみの画像であって所定範囲の画像を抽出する検体画像抽出手段とを備え、
上記算出部の上記基準輝度検出手段に、上記基準画像抽出手段から抽出された画像中の各画素の輝度を検出する画素輝度検出手段と、該画素輝度検出手段が検出した各画素の輝度から平均輝度を算出する平均輝度算出手段とを備え、
上記算出部の上記検体輝度検出手段に、上記検体画像抽出手段から抽出された画像中の各画素の輝度を検出する画素輝度検出手段と、該画素輝度検出手段が検出した各画素の輝度から平均輝度を算出する平均輝度算出手段とを備え、
上記相関関係算出手段を、上記基準輝度検出手段の平均輝度算出手段が算出した上記各基準用容器の基準検体についての平均輝度に基づいて相関関係を算出する構成とし、
上記成分量算出手段を、上記検体輝度検出手段の平均輝度算出手段が算出した上記検体用容器の検体についての平均輝度に基づいて成分量を算出する構成としたことを特徴とする請求項6または7記載の物質の成分推定装置。
Using the sample container and the reference container formed of a transparent material, the imaging unit includes a base on which the sample container and the reference container are placed, the sample container on the base, and A scanner that scans the reference container and acquires an image through the bottom wall of each container;
The calculation unit includes reference image extraction means for extracting an image of a predetermined range of an image of only the surface of the reference specimen of the reference container from the image output from the scanner, and the image output from the scanner A sample image extracting means for extracting an image of a predetermined range that is an image of only the surface of the sample in the sample container,
The reference luminance detecting means of the calculating unit includes a pixel luminance detecting means for detecting the luminance of each pixel in the image extracted from the reference image extracting means, and an average from the luminance of each pixel detected by the pixel luminance detecting means. An average luminance calculating means for calculating luminance,
The sample luminance detection unit of the calculation unit includes a pixel luminance detection unit that detects the luminance of each pixel in the image extracted from the sample image extraction unit, and an average from the luminance of each pixel detected by the pixel luminance detection unit. An average luminance calculating means for calculating luminance,
The correlation calculation means is configured to calculate the correlation based on the average brightness for the reference specimen of each reference container calculated by the average brightness calculation means of the reference brightness detection means,
7. The component amount calculating unit is configured to calculate a component amount based on the average luminance of the sample in the sample container calculated by the average luminance calculating unit of the sample luminance detecting unit. 7. A component estimation apparatus for a substance according to 7.
上記各容器が底壁を露出させて複数保持され上記撮像部のベースに載置可能なトレーを備え、上記スキャナを上記トレーに設けられた複数の容器の底壁を走査するよう構成したことを特徴とする請求項8記載の物質の成分推定装置。   A plurality of containers each having a bottom wall exposed and having a tray that can be placed on the base of the imaging unit; and the scanner is configured to scan the bottom walls of the plurality of containers provided on the tray. 9. The component estimation apparatus for a substance according to claim 8, 上記検体を、所定量の物質を有して構成し、上記基準検体を、予め特定の成分の成分量が既知になっている所定量の上記検体と同種の物質を有して構成したことを特徴とする請求項6乃至9いずれかに記載の物質の成分推定装置。   The sample is configured to have a predetermined amount of substance, and the reference sample is configured to have the same kind of substance as the predetermined amount of the sample whose amount of a specific component is known in advance. The substance component estimation apparatus according to any one of claims 6 to 9, 上記検体を、所定量の物質の抽出物を有して構成し、上記基準検体を、特定の成分を混合して予め特定の成分の成分量を既知にした試薬で構成したことを特徴とする請求項6乃至9いずれかに記載の物質の成分推定装置。   The specimen is composed of an extract of a predetermined amount of a substance, and the reference specimen is composed of a reagent in which a specific component is mixed and a component amount of the specific component is known in advance. The component estimation apparatus of the substance in any one of Claims 6 thru | or 9. 上記物質が植物であることを特徴とする請求項6乃至11いずれかに記載の物質の成分推定装置。   12. The substance component estimation apparatus according to claim 6, wherein the substance is a plant. 上記物質が土壌であることを特徴とする請求項6乃至11いずれかに記載の物質の成分推定装置。   The apparatus for estimating a component of a substance according to claim 6, wherein the substance is soil.
JP2006004209A 2006-01-11 2006-01-11 Substance component estimation device Expired - Fee Related JP4258780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004209A JP4258780B2 (en) 2006-01-11 2006-01-11 Substance component estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004209A JP4258780B2 (en) 2006-01-11 2006-01-11 Substance component estimation device

Publications (2)

Publication Number Publication Date
JP2007187486A true JP2007187486A (en) 2007-07-26
JP4258780B2 JP4258780B2 (en) 2009-04-30

Family

ID=38342761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004209A Expired - Fee Related JP4258780B2 (en) 2006-01-11 2006-01-11 Substance component estimation device

Country Status (1)

Country Link
JP (1) JP4258780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046968A1 (en) * 2008-10-21 2010-04-29 西日本高速道路エンジニアリング四国株式会社 Diagnostic device and diagnostic method for concrete structure
JP2013005725A (en) * 2011-06-22 2013-01-10 Nikon Corp Growth degree detection device, plant cultivation system, plant cultivation plant, growth degree detection method, and program
JP2017067605A (en) * 2015-09-30 2017-04-06 高電工業株式会社 Specimen measurement device and specimen measurement method
JP7156746B1 (en) * 2022-06-15 2022-10-19 国土防災技術株式会社 SOIL CHEMICAL ANALYSIS METHOD AND CHEMICAL ANALYZER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046968A1 (en) * 2008-10-21 2010-04-29 西日本高速道路エンジニアリング四国株式会社 Diagnostic device and diagnostic method for concrete structure
JPWO2010046968A1 (en) * 2008-10-21 2012-03-15 西日本高速道路エンジニアリング四国株式会社 Diagnostic device and diagnostic method for concrete structure
JP2013005725A (en) * 2011-06-22 2013-01-10 Nikon Corp Growth degree detection device, plant cultivation system, plant cultivation plant, growth degree detection method, and program
JP2017067605A (en) * 2015-09-30 2017-04-06 高電工業株式会社 Specimen measurement device and specimen measurement method
JP7156746B1 (en) * 2022-06-15 2022-10-19 国土防災技術株式会社 SOIL CHEMICAL ANALYSIS METHOD AND CHEMICAL ANALYZER

Also Published As

Publication number Publication date
JP4258780B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
Buchaillot et al. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques
Saberioon et al. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale
Trogisch et al. Toward a methodical framework for comprehensively assessing forest multifunctionality
Lamb The use of qualitative airborne multispectral imaging for managing agricultural crops-a case study in south-eastern Australia
Lee et al. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis
Dissard et al. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments
Goggin et al. Applying high-throughput phenotyping to plant–insect interactions: picturing more resistant crops
Wiwart et al. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis
De Swaef et al. Applying RGB-and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses
Prey et al. Evaluating RGB imaging and multispectral active and hyperspectral passive sensing for assessing early plant vigor in winter wheat
Demotes-Mainard et al. Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents
Mumby et al. The cover of living and dead corals from airborne remote sensing
Elsayed et al. Passive reflectance sensing and digital image analysis allows for assessing the biomass and nitrogen status of wheat in early and late tillering stages
US7933430B2 (en) Method and apparatus for spectral mixture resolution
Aasen et al. PhenoCams for field phenotyping: using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits
Zhao et al. Autumn-based vegetation indices for estimating nitrate leaching during autumn and winter in arable cropping systems
JP4258780B2 (en) Substance component estimation device
Confalonieri et al. Improving in vivo plant nitrogen content estimates from digital images: Trueness and precision of a new approach as compared to other methods and commercial devices
Roeben et al. Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity
Zadeh et al. Assessing urban habitat quality using spectral characteristics of Tilia leaves
JP2018080990A (en) Concentration measurement system
Sünnemann et al. Combined effects of land-use type and climate change on soil microbial activity and invertebrate decomposer activity
Bian et al. Closing the gap between phenotyping and genotyping: review of advanced, image-based phenotyping technologies in forestry
Sunoj et al. Digital image analysis estimates of biomass, carbon, and nitrogen uptake of winter cereal cover crops
Buddenbaum et al. Field imaging spectroscopy of beech seedlings under dryness stress

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees