JP2007187357A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007187357A
JP2007187357A JP2006004456A JP2006004456A JP2007187357A JP 2007187357 A JP2007187357 A JP 2007187357A JP 2006004456 A JP2006004456 A JP 2006004456A JP 2006004456 A JP2006004456 A JP 2006004456A JP 2007187357 A JP2007187357 A JP 2007187357A
Authority
JP
Japan
Prior art keywords
pipe
opening
heat exchanger
branch pipe
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004456A
Other languages
Japanese (ja)
Inventor
朋子 ▲はま▼川
Tomoko Hamakawa
Takumi Kida
琢己 木田
Masaki Sunada
正樹 砂田
Kazuhiko Machida
和彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006004456A priority Critical patent/JP2007187357A/en
Publication of JP2007187357A publication Critical patent/JP2007187357A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To ensure heat exchanger performance irrespective of variations in brazing in a heat exchanger having a plurality of partitions in annular space, especially low in height, by providing a terminal structure for ensuring the passage of the annular space, and thus preventing the passage of the annular space, serving as a second fluid passage, from being clogged. <P>SOLUTION: At first openings 4a having small diameter portions 5 and large diameter portions 6 into a branch pipe 4, outer tube terminals 3a are projected to the large diameter portions 6. With a space 8 much wider than clearance to the small diameter portions 5 defined around outer tubes 3, even if much brazing material 9 flows when the first openings 4a are brazed, it reaches the large diameter portions 6, which can disable seeping capillarity to ensure even the passage of a finned annular space susceptible to brazing material clogging, especially low in height. The single branch pipe 4 can implement the branching of water and carbon dioxide in two double pipes 1, and the separation of carbon dioxide into two double pipes 1, to provide a reduced number of part items and a simplified structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2種類の流体が熱交換を行う熱交換器の、2種類の流体を分岐する端末部分の構造に関するものである。   The present invention relates to a structure of a terminal portion for branching two kinds of fluids of a heat exchanger in which two kinds of fluids exchange heat.

従来、この種の熱交換器では、管端で2種類の流体を分岐する構造に、T型継手と異型継手を組合せた構造(例えば、特許文献1参照)や、それらを一体成形した異型T型継手がよく使用されている。   Conventionally, in this type of heat exchanger, a structure in which two types of fluid are branched at the pipe end, a structure in which a T-shaped joint and a modified joint are combined (for example, see Patent Document 1), or a modified T in which these are integrally molded. Mold joints are often used.

以下、図面を参照しながら、従来の熱交換器の分岐部分の構造を説明する。   Hereinafter, the structure of a branch portion of a conventional heat exchanger will be described with reference to the drawings.

図7は特許文献1に記載された従来の熱交換器の側面図、図8は継手部分の断面図である。   7 is a side view of a conventional heat exchanger described in Patent Document 1, and FIG. 8 is a cross-sectional view of a joint portion.

図7、図8に示すように、従来の熱交換器100は、チタン製の内壁101aと銅製の外壁101bとからなる二重壁を有する内管101と、内管101を覆うように設置した銅製の外管102と、銅製の継手103と、からなる。   As shown in FIGS. 7 and 8, the conventional heat exchanger 100 is installed so as to cover the inner tube 101 having an inner tube 101 having a double wall composed of an inner wall 101a made of titanium and an outer wall 101b made of copper. It consists of a copper outer tube 102 and a copper joint 103.

継手103は、T形継手部材104と、異型継手部材105と、からなる。T型継手部材104の接続部104aが外管102とロウ付けされ、T型部材104の接続部104bは異型継手部材105の大径部105aとロウ付けされる。また、異型継手部材105の小径部105bは、外管102の端末部より露出して内部を貫通する内管101にロウ付けされる。内管101の端末部には、図示しないソケット等の継手が、溶接またはロウ付けされて、この部分を介して、内管101内に流体を流出入させる。   The joint 103 includes a T-shaped joint member 104 and a modified joint member 105. The connecting portion 104 a of the T-shaped joint member 104 is brazed with the outer tube 102, and the connecting portion 104 b of the T-shaped member 104 is brazed with the large-diameter portion 105 a of the odd-shaped joint member 105. The small-diameter portion 105b of the odd-shaped joint member 105 is brazed to the inner tube 101 that is exposed from the terminal portion of the outer tube 102 and penetrates the inside. A joint such as a socket (not shown) is welded or brazed to a terminal portion of the inner tube 101, and fluid flows into and out of the inner tube 101 through this portion.

一方、T型継手部材104の接続部104cには、図示しないソケット等の継手が溶接またはロウ付けされて、この部分を介して、内管101と外管102との間の環状部に冷媒または熱媒等の流体を流出入させる。   On the other hand, a joint such as a socket (not shown) is welded or brazed to the connection portion 104c of the T-shaped joint member 104, and a refrigerant or an annular portion between the inner tube 101 and the outer tube 102 is passed through this portion. Allow fluids such as heat medium to flow in and out.

以上のように構成された上記の熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

内管101内部には冷媒等の流体が流通し、内管101と外管102との間の環状部には熱交換される水等の液体が流動して、内管101の二重壁を介して熱の授受を行い、冷媒等の流体と、水等の液体が熱交換を行う。   A fluid such as a refrigerant circulates in the inner tube 101, and a liquid such as water that exchanges heat flows in an annular portion between the inner tube 101 and the outer tube 102, and the double wall of the inner tube 101 is formed. Heat is exchanged, and fluid such as refrigerant and liquid such as water exchange heat.

内管101は、内壁101aをチタン製としたので耐食性が高い。また、銅製の外壁101bで二重壁とすることで、高価で熱伝導率の低いチタンを薄肉化して、安く製造でき、熱伝導率が高い銅によって、熱交換効率を向上させている。さらに、外管102と継手103は銅製であることから、入手も容易で、ロウ付けや溶接で接合できるという利点があった。
登録実用新案第3026515号公報
The inner tube 101 has high corrosion resistance because the inner wall 101a is made of titanium. Further, by using a double wall with the copper outer wall 101b, titanium that is expensive and has low thermal conductivity can be thinned and manufactured at low cost, and heat exchange efficiency is improved by copper having high thermal conductivity. Furthermore, since the outer tube 102 and the joint 103 are made of copper, they are easily available and can be joined by brazing or welding.
Registered Utility Model No. 3026515

しかしながら、上記従来の特許文献1に記載の熱交換器100の構成では、T形継手部材104aを外管102にロウ付けする際、多量のロウ材が流れると、毛細管現象によって隙間を伝うロウ材が外管102の端末部にまで達して、環状部がロウ詰りしてしまう。環状部高さが低い場合には、流路の潰れを防ぐ為に、フィンや別部材の仕切りが必要となるが、特に、環状部にフィン等の複数の仕切りを有する場合には、仕切り自体が、ロウ材の伝う経路となる。   However, in the configuration of the heat exchanger 100 described in the above-mentioned conventional Patent Document 1, when a large amount of brazing material flows when the T-shaped joint member 104a is brazed to the outer tube 102, the brazing material propagates through the gap by capillary action. Reaches the terminal portion of the outer tube 102, and the annular portion is brazed. When the height of the annular part is low, it is necessary to partition the fins and other members in order to prevent the flow path from collapsing. In particular, when the annular part has a plurality of partitions such as fins, the partition itself However, this is the route that the brazing material travels.

ロウ詰りは、流路を大幅に減少させたり、完全に閉塞したりして、分流が不均等になったり、冷媒等の流れない流路を生じさせて、熱交換性能を大幅に低下させてしまうという課題があった。   Wax clogging greatly reduces the heat exchange performance by significantly reducing the flow path or completely blocking it, resulting in uneven flow distribution or a flow path through which refrigerant does not flow. There was a problem of ending up.

本発明は、上記従来の課題を解決するもので、環状部に複数の仕切りを有する熱交換器で、特に環状部高さが低い場合について、ロウ付け作業のばらつきに係わらず、環状部の流路を確保することができる端末部分の構造を提供することを目的とする。   The present invention solves the above-described conventional problems, and is a heat exchanger having a plurality of partitions in the annular portion, and particularly when the annular portion has a low height, regardless of variations in brazing work, the flow of the annular portion is reduced. An object of the present invention is to provide a terminal part structure capable of securing a road.

上記従来の課題を解決するために、本発明の熱交換器は、複数本の二重管と分岐管とからなり、前記二重管は、第一流体を流す内管と、前記内管の外周を覆って前記内管との間の環状部に第二流体を流す外管とからなり、前記環状部には複数の仕切りを有し、前記分岐管は、複数の第一開口部と複数の第二開口部と一つの第三開口部とを有し、1つの前記第一開口部と1つの前記第二開口部とが、対となって複数の前記対を成し、前記第一開口部は、前記外管の管軸方向において前記分岐管の内側に向かって小径部と大径部とを有し、前記外管端末部を少なくとも前記大径部にまで突出させて、前記小径部との隙間より十分に広い空間を前記外管外周に有するように覆い、前記第二開口部は、前記外管端末部より露出して前記分岐管内部を貫通する前記内管を覆ったものである。   In order to solve the above-described conventional problems, the heat exchanger of the present invention includes a plurality of double pipes and a branch pipe, and the double pipe includes an inner pipe through which a first fluid flows and an inner pipe of the inner pipe. An outer tube that covers the outer periphery and flows a second fluid to an annular portion between the inner tube and the annular portion has a plurality of partitions, and the branch tube includes a plurality of first openings and a plurality of openings. A second opening and a third opening, and the first opening and the second opening are paired to form a plurality of the pairs. The opening has a small diameter part and a large diameter part toward the inside of the branch pipe in the tube axis direction of the outer pipe, and projects the outer pipe terminal part to at least the large diameter part, so that the small diameter The second opening is exposed from the outer pipe terminal portion and penetrates the inside of the branch pipe. It is obtained by covering the inside tube.

これによって、外管端末部を少なくとも大径部にまで突出させて、小径部との隙間より十分に広い空間を外管外周に設けたことにより、第一開口部のロウ付け時に、多量のロウ材が流れても、第一開口部の小径部を過ぎて大径部に達すると、浸透力である毛細管現象が起こらなくなるので、外管端末部までロウ材が達せず、ロウ詰りし易い複数の仕切りを有する環状部でも、流路がロウ詰りすることがない。   As a result, the outer tube terminal portion protrudes to at least the large diameter portion, and a space sufficiently wider than the gap with the small diameter portion is provided on the outer tube outer periphery, so that a large amount of brazing is applied when brazing the first opening. Even if the material flows, if it passes the small diameter part of the first opening and reaches the large diameter part, the capillary phenomenon that is osmotic force will not occur, so the brazing material will not reach the outer tube end part, and it is easy to braze Even in the annular portion having the partition, the flow path is not clogged.

また、外管端末を大径部まで、深く差し込むことで、第一開口部接合時の加熱で外管の強度が低下しても、小径部と外管外壁とで必ず二重壁となるため、強度が高く、その先に端末部が位置するので、耐圧強度を確保できる。   In addition, by inserting the outer tube end deeply into the large-diameter portion, even if the strength of the outer tube is reduced due to the heating at the time of joining the first opening, the small-diameter portion and the outer wall of the outer tube always become a double wall. Since the strength is high and the terminal portion is located at the end, the pressure resistance strength can be secured.

ここで、環状部に仕切りがない場合、外管端末部の環状部では、第二流体が流出入口である第三開口部側に偏流し易く、偏流によって、環状部での熱交換に偏りが生じる。   Here, when there is no partition in the annular portion, the second fluid tends to drift to the third opening side that is the outflow inlet in the annular portion of the outer tube terminal portion, and the heat exchange in the annular portion is biased by the drift. Arise.

しかし、本発明では、第二流体が環状部へ流入する場合には、外管端末部を分岐管の内側に突出させることで、広い分岐管内部に一旦第二流体を溜めて均圧な状態にした後、外管端末部前後の差圧によって仕切りのある環状部に第二流体を引き入れるため、内管の周囲に均等に分流できる。また、第二流体が環状部から流出する場合には、環状部の仕切りで整流された状態で流出するので、第三開口部までの距離に係わらず、外管端末部の環状部の第二流体に偏流を生じさせない。   However, in the present invention, when the second fluid flows into the annular part, the outer pipe terminal part protrudes to the inside of the branch pipe, so that the second fluid is once accumulated in the wide branch pipe and the pressure is equalized. After that, the second fluid is drawn into the annular portion having a partition by the differential pressure before and after the outer tube terminal portion, so that it can be evenly distributed around the inner tube. In addition, when the second fluid flows out from the annular portion, the second fluid flows out in a state rectified by the partition of the annular portion, so that the second portion of the annular portion of the outer tube terminal portion is irrespective of the distance to the third opening. Does not cause drift in the fluid.

また、対となる第一開口部と第二開口部を、複数対有することで、複数本の二重管内の第一流体と第二流体を分岐することと、第二流体を複数本へ分流することが、1つの分岐管でできる。   In addition, by having a plurality of pairs of the first opening and the second opening to be paired, the first fluid and the second fluid in the plurality of double pipes are branched, and the second fluid is divided into a plurality of branches. Can be done with one branch tube.

本発明の熱交換器は、環状部の流路を確保することができる端末部分の構造を有するので、環状部に複数の仕切りを有する、特に環状部高さが低いロウ詰りし易い構造の場合でも、ロウ付け作業のばらつきに係わらず、熱交換性能を確保できる。   Since the heat exchanger of the present invention has a structure of the terminal portion that can secure the flow path of the annular portion, it has a plurality of partitions in the annular portion, particularly in a structure where the annular portion has a low height and is easily clogged with wax. However, heat exchange performance can be secured regardless of variations in brazing work.

また、耐圧強度について、信頼性を確保することができる。   Further, reliability can be ensured with respect to pressure strength.

また、分岐管の内側に突出する外管端末部の環状部に複数の仕切りを有するので、第二流体が、外管端末部の環状部へ流入する場合には、内管の周囲に均等に分流させることができて、外管端末部の環状部から流出する場合には、均等に流出させることができるので、外管全長に渡って均等な熱交換を環状部で行うことができる。   In addition, since the annular portion of the outer tube terminal portion protruding inside the branch pipe has a plurality of partitions, when the second fluid flows into the annular portion of the outer tube terminal portion, it is evenly distributed around the inner tube. When the flow can be diverted and flows out from the annular portion of the outer tube terminal portion, it can be made to flow out evenly, so that uniform heat exchange can be performed in the annular portion over the entire length of the outer tube.

また、熱交換器端末部の部品点数を低減できて、構造を簡略にできる。   Moreover, the number of parts of the heat exchanger terminal can be reduced, and the structure can be simplified.

請求項1に記載の発明は、複数本の二重管と分岐管とからなり、前記二重管は、第一流体を流す内管と、前記内管の外周を覆って前記内管との間の環状部に第二流体を流す外管とからなり、前記環状部には複数の仕切りを有し、前記分岐管は、複数の第一開口部と複数の第二開口部と一つの第三開口部とを有し、1つの前記第一開口部と1つの前記第二開口部とが、対となって複数の前記対を成し、前記第一開口部は、前記外管の管軸方向において前記分岐管の内側に向かって小径部と大径部とを有し、前記外管端末部を少なくとも前記大径部にまで突出させて、前記小径部との隙間より十分に広い空間を前記外管外周に有するように覆い、前記第二開口部は、前記外管端末部より露出して前記分岐管内部を貫通する前記内管を覆ったものである。   The invention according to claim 1 includes a plurality of double pipes and branch pipes, and the double pipe includes an inner pipe through which a first fluid flows, an outer circumference of the inner pipe and the inner pipe. An outer pipe that allows a second fluid to flow through the annular part between the pipes, the annular part having a plurality of partitions, and the branch pipe includes a plurality of first openings, a plurality of second openings, and a first The first opening and the second opening form a plurality of pairs, and the first opening is a tube of the outer tube. A space that has a small-diameter portion and a large-diameter portion toward the inside of the branch pipe in the axial direction, and projects the outer pipe terminal portion to at least the large-diameter portion, and is sufficiently wider than a gap with the small-diameter portion. And the second opening covers the inner pipe that is exposed from the outer pipe terminal and penetrates the inside of the branch pipe. That.

これによって、外管端末部を少なくとも大径部にまで突出させて、小径部との隙間より十分に広い空間を外管外周に設けたことにより、第一開口部のロウ付け時に、多量のロウ材が流れても、第一開口部の小径部を過ぎて大径部に達すると、浸透力である毛細管現象が起こらなくなって、外管端末部までロウ材が達せず、ロウ詰りし易い複数の仕切りを有する、特に環状部高さが低い環状部でも、流路を確保することができるので、ロウ付け作業のばらつきに係わらず、熱交換性能を確保できる。   As a result, the outer tube terminal portion protrudes to at least the large diameter portion, and a space sufficiently wider than the gap with the small diameter portion is provided on the outer tube outer periphery, so that a large amount of brazing is applied when brazing the first opening. Even if the material flows, if it passes through the small diameter part of the first opening and reaches the large diameter part, the capillary phenomenon that is osmotic force will not occur, the brazing material will not reach the outer tube terminal part, and it is easy to braze Since the flow path can be secured even in the annular portion having the partition, particularly the annular portion having a low height, the heat exchange performance can be ensured regardless of the variation in the brazing operation.

また、外管端末を大径部まで、深く差し込むことで、第一開口部接合時の加熱で外管の強度が低下しても、小径部と外管外壁とで必ず二重壁となるため、強度が高く、その先に端末部が位置するので、耐圧強度を確保して、信頼性を確保することができる。   In addition, by inserting the outer tube end deeply into the large-diameter portion, even if the strength of the outer tube is reduced due to the heating at the time of joining the first opening, the small-diameter portion and the outer wall of the outer tube always become a double wall. Since the strength is high and the terminal portion is located at the tip, the pressure strength can be secured and the reliability can be secured.

また、外管端末部を分岐管の内側に突出させることで、分岐管の内部の広い空間に一旦第二流体を溜めて、溜まった第二流体を環状部の仕切りで整流するので、第三開口部までの距離に係わらず、外管端末部の環状部の第二流体に偏流を生じさせない。従って、第二流体が、外管端末部の環状部へ流入する場合には、内管の周囲に均等に分流させることができて、外管端末部の環状部から流出する場合には、均等に流出させることができるので、圧力損失の増加を抑制できる。   Further, by projecting the outer pipe terminal part inside the branch pipe, the second fluid is temporarily stored in a wide space inside the branch pipe, and the accumulated second fluid is rectified by the partition of the annular part. Regardless of the distance to the opening, no drift occurs in the second fluid in the annular portion of the outer tube terminal portion. Therefore, when the second fluid flows into the annular portion of the outer tube terminal portion, it can be evenly divided around the inner tube, and when it flows out of the annular portion of the outer tube terminal portion, it is evenly distributed. Therefore, increase in pressure loss can be suppressed.

また、対となる第一開口部と第二開口部を、複数対有することで、複数本の二重管内の第一流体と第二流体を分岐することと、第二流体を複数本へ分流することを、1つの分岐管でするので、熱交換器端末部の部品点数を低減できて、構造を簡略にできる。さらに、1つの分岐管で複数本への分流を行うため、分岐管内部の空間は複数本分の、より広い空間となって、第二流体はその空間が広いほど分岐管内部で均圧化されるので、より均等に分流することができる。   In addition, by having a plurality of pairs of the first opening and the second opening to be paired, the first fluid and the second fluid in the plurality of double pipes are branched, and the second fluid is divided into a plurality of branches. Since it is one branch pipe, the number of parts of the heat exchanger terminal can be reduced and the structure can be simplified. Furthermore, since a single branch pipe splits into multiple pipes, the space inside the branch pipe becomes wider, and the second fluid is equalized in the branch pipe as the space increases. Therefore, the current can be divided more evenly.

請求項2に記載の発明は、請求項1に記載の発明において、前記分岐管は、本体部と蓋部とからなり、前記本体部に、前記第一開口部と、前記第二開口部と、を有するものである。   The invention according to claim 2 is the invention according to claim 1, wherein the branch pipe includes a main body portion and a lid portion, and the main body portion includes the first opening portion and the second opening portion. , Has.

これによって、本体部と蓋部の2部式にすることで、分岐管製作において、管や板、ブロックといった素材の形状やその加工方法の選択肢が増えて、たとえば、本体部は管を転用して製作する等、分岐管をより安価に製作することができる。   As a result, by using a two-part system consisting of a main body and a lid, in the production of branch pipes, the shape of the material such as pipes, plates, and blocks and the options for the processing method increase. For example, the main body uses a pipe. The branch pipe can be manufactured at a lower cost.

また、略同一直線上に位置する第一開口部と第二開口部が、本体部に集中するので、第一開口部と第二開口部の位置決めや加工を、容易に行うことが出来る。   Further, since the first opening and the second opening located on substantially the same straight line are concentrated on the main body, positioning and processing of the first opening and the second opening can be easily performed.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記第一流体は水、前記第二流体は二酸化炭素であることを特徴としたものである。   The invention according to claim 3 is the invention according to claim 1 or 2, characterized in that the first fluid is water and the second fluid is carbon dioxide.

これによって、熱交換器として高い熱交換効率を得て、特にヒートポンプ式給湯機に用いると、製品として高い熱交換効率を得ることができる。   As a result, high heat exchange efficiency can be obtained as a heat exchanger, and high heat exchange efficiency can be obtained as a product, particularly when used in a heat pump type water heater.

以下、本発明の実施の形態について、図面を参照しながら説明する。ここで、先に説明した実施の形態と同一の構成については同一の符号を付して、その詳細な説明は省略する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the same reference numerals are given to the same components as those of the above-described embodiment, and the detailed description thereof is omitted. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の側面図である。図2は、同実施の形態の熱交換器の端末部の断面図である。図3は、図2のA−A線断面図である。図4は、同実施の形態の熱交換器の端末部の二酸化炭素の流れを示す図である。図5は、同実施の形態における他の熱交換器の端末部の断面図である。
(Embodiment 1)
FIG. 1 is a side view of a heat exchanger according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a terminal portion of the heat exchanger according to the embodiment. FIG. 3 is a cross-sectional view taken along line AA in FIG. FIG. 4 is a diagram illustrating a flow of carbon dioxide at a terminal portion of the heat exchanger according to the embodiment. FIG. 5 is a cross-sectional view of a terminal portion of another heat exchanger according to the embodiment.

図1から図4において、熱交換器1Xは、2本の二重管1が本体である。二重管1は、二重壁を有して内部に水を流す内管2と、内管2の外周を覆って内管2との間の環状部に二酸化炭素を流す外管3と、からなる。ここで、外管3は外径が11〜15mmで肉厚は1〜2mm、内管2の外径は7〜11mmで二重壁の肉厚は併せて1〜2mmである。内管2と外管3との隙間の環状部の高さhは0.2〜0.8mmである。2本の二重管1の端末には、分岐管4を備える。   1 to 4, the heat exchanger 1X has two double tubes 1 as a main body. The double pipe 1 has a double wall and an inner pipe 2 through which water flows, and an outer pipe 3 that covers the outer periphery of the inner pipe 2 and flows carbon dioxide in an annular portion between the inner pipe 2; Consists of. Here, the outer diameter of the outer tube 3 is 11 to 15 mm, the thickness is 1 to 2 mm, the outer diameter of the inner tube 2 is 7 to 11 mm, and the thickness of the double wall is 1 to 2 mm. The height h of the annular portion in the gap between the inner tube 2 and the outer tube 3 is 0.2 to 0.8 mm. A branch pipe 4 is provided at the terminal of the two double pipes 1.

分岐管4は、2つの第一開口部4aと、2つの第二開口部4bと、1つの第三開口部4cと、を有する。略同一直線上に一対の第一開口部4aと第二開口部4bが位置して、2対の第一開口部4aと第二開口部4bは略平行に位置している。各第一開口部4aは、外管3の管軸方向において分岐管4内部に向かって小径部5と大径部6とを有し、外管3を覆い、外管3の端末部3aを大径部6にまで突出させて、外管3に接合されている。第二開口部4bは、外管端末部3aより露出して分岐管4内部を貫通する内管2を覆って内管2に接合されている。第一開口部4aの大径部6に突出する外管3の端末部3aまでの出代Sは外管3の外径の0.8〜1.8倍で、外管3の外径が12.7mmの場合、出代Sは10mm、分岐管4の高さHは45mm程度、幅Wは35mm程度である。   The branch pipe 4 has two first openings 4a, two second openings 4b, and one third opening 4c. A pair of first opening 4a and second opening 4b are located on substantially the same straight line, and two pairs of first opening 4a and second opening 4b are located substantially in parallel. Each first opening 4a has a small-diameter portion 5 and a large-diameter portion 6 toward the inside of the branch tube 4 in the tube axis direction of the outer tube 3, covers the outer tube 3, and covers the terminal portion 3a of the outer tube 3. It protrudes to the large diameter part 6 and is joined to the outer tube 3. The second opening 4 b is joined to the inner tube 2 so as to cover the inner tube 2 that is exposed from the outer tube terminal portion 3 a and penetrates the inside of the branch tube 4. The allowance S to the terminal portion 3a of the outer tube 3 protruding from the large-diameter portion 6 of the first opening 4a is 0.8 to 1.8 times the outer diameter of the outer tube 3, and the outer diameter of the outer tube 3 is In the case of 12.7 mm, the allowance S is 10 mm, the height H of the branch pipe 4 is about 45 mm, and the width W is about 35 mm.

外管3は内壁に複数のフィン7を有し、フィン7の先端は内管2に接して環状部を仕切っており、また、環状部の流路を確保している。本実施の形態では、フィン7は同一周上に8点設けている。   The outer tube 3 has a plurality of fins 7 on the inner wall, the tips of the fins 7 are in contact with the inner tube 2 to partition the annular portion, and the flow path of the annular portion is secured. In the present embodiment, eight fins 7 are provided on the same circumference.

内管2の端末部には、図示しないソケット等の継手がロウ付けされて、この部分を介して、内管2内に水を流出入させる。分岐管4の第三開口部4cには、図示しない管等がロウ付けされて、この部分を介して、内管2と外管3との間の環状部に二酸化炭素を流出入させる。内管2、外管3、分岐管4は、耐食性、熱伝導性の良い銅製である。   A joint such as a socket (not shown) is brazed to the terminal portion of the inner pipe 2, and water flows into and out of the inner pipe 2 through this portion. A pipe or the like (not shown) is brazed to the third opening 4c of the branch pipe 4, and carbon dioxide flows into and out of the annular portion between the inner pipe 2 and the outer pipe 3 through this portion. The inner tube 2, the outer tube 3, and the branch tube 4 are made of copper having good corrosion resistance and thermal conductivity.

以上のように構成された熱交換器1Xについて、以下その動作、作用を説明する。   About the heat exchanger 1X comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

二重管1内で、内管2の内部を低温の水が流動し、内管2と外管3との間の環状部を高温の二酸化炭素が対向して流れ、内管2の二重壁を介して水と二酸化炭素が熱交換することでお湯ができる。ここで、内管2を二重壁として、水と二酸化炭素との間を二重壁構造とすることで、一方の管が腐食した場合でも水と二酸化炭素が混じることがなく、安全性を確保することができる。また、図示しないが、二重壁の間に溝を設けた場合には、溝を内管端末部で大気に連通させることで、漏洩を検知することができる。   In the double pipe 1, low-temperature water flows inside the inner pipe 2, and high-temperature carbon dioxide flows oppositely through the annular part between the inner pipe 2 and the outer pipe 3. Hot water is produced by heat exchange between water and carbon dioxide through the wall. Here, the inner pipe 2 is a double wall, and a double wall structure is formed between water and carbon dioxide, so that even if one pipe is corroded, water and carbon dioxide are not mixed, and safety is ensured. Can be secured. Moreover, although not shown, when a groove is provided between the double walls, leakage can be detected by communicating the groove with the atmosphere at the inner tube terminal portion.

また、環状部の二重管1半径方向の寸法を環状部高さとした場合、特に、環状部高さを低くすることで、環状部を極薄流路として、マイクロチャネルを模擬して、二酸化炭素の相当直径を小さくして、熱伝達を促進し、高い熱交換効率を得ることができる。ここで、マイクロチャネルとは、文字通り、微小な流路をいい、例えば、二酸化炭素が流動する環状部の高さを内管の外径の0.03倍から0.07倍とすると、熱伝達率と圧力損失のバランスがよく、熱交換器を小型軽量化できる。   In addition, when the dimension of the annular portion in the radial direction of the double pipe 1 is the annular portion height, in particular, by reducing the annular portion height, the annular portion is made an ultrathin channel to simulate the microchannel, and the By reducing the equivalent diameter of carbon, heat transfer can be promoted and high heat exchange efficiency can be obtained. Here, the microchannel literally refers to a minute flow path. For example, if the height of the annular portion through which carbon dioxide flows is 0.03 to 0.07 times the outer diameter of the inner tube, heat transfer The balance between rate and pressure loss is good, and the heat exchanger can be made smaller and lighter.

環状部高さを低くすると環状部は潰れ易くなるので、フィン7を設けて流路を確保する。フィン7を設けると、二重管1の端末に分岐管4の第一開口部4aをロウ付けする際には、フィン7自体がロウ材の伝う経路となって、フィン7のない場合に比してロウ詰りし易い。ロウ詰りすると、環状部で二酸化炭素の流れない箇所が生じ、熱交換器として熱交換性能が著しく低下する。   If the height of the annular portion is lowered, the annular portion is easily crushed, so fins 7 are provided to secure the flow path. When the fin 7 is provided, when the first opening 4 a of the branch pipe 4 is brazed to the end of the double pipe 1, the fin 7 itself becomes a path along which the brazing material is transmitted. And easily clogged with wax. When the wax is clogged, a portion where carbon dioxide does not flow is generated in the annular portion, and the heat exchange performance as a heat exchanger is significantly reduced.

しかし、本実施の形態では、外管端末部3aを大径部6にまで突出させて、小径部5との隙間より十分に広い空間8を外管3の外周に設けたことにより、第一開口部4aのロウ付けで多量のロウ材9が分岐管4内へ流れても、小径部5を過ぎて大径部6に達すると、浸透力である毛細管現象が起こらなくなるので、外管端末部3aまでロウ材9が達することがない。従って、ロウ詰りし易い構造であるフィン7を有する環状部で、特に環状部高さが低い場合でも、ロウ詰りすることがなく、二酸化炭素の流路が確保できる。従って、ロウ付け作業のばらつきに係わらず、熱交換性能を確保できる。   However, in the present embodiment, the outer tube terminal portion 3a is protruded to the large diameter portion 6 and the space 8 sufficiently wider than the gap with the small diameter portion 5 is provided on the outer periphery of the outer tube 3, whereby the first Even if a large amount of brazing material 9 flows into the branch pipe 4 due to brazing of the opening 4a, if it passes through the small diameter part 5 and reaches the large diameter part 6, the capillary phenomenon that is osmotic force does not occur. The brazing material 9 does not reach the portion 3a. Therefore, even if the annular portion having the fins 7 having a structure that is easily clogged with wax is low, particularly when the height of the annular portion is low, the clogging of carbon dioxide can be secured without clogging with wax. Therefore, heat exchange performance can be ensured regardless of variations in brazing work.

また、外管端末部3aを大径部6まで深く差し込むことで、第一開口部4aのロウ付け時の加熱で外管3の強度が低下しても、接合部分である小径部5は必ず二重壁となるため、耐圧強度を確保できて、耐圧強度について信頼性を確保することができる。   Further, by inserting the outer tube terminal portion 3a deeply to the large-diameter portion 6, even if the strength of the outer tube 3 is reduced due to heating during brazing of the first opening 4a, the small-diameter portion 5 that is a joining portion is always provided. Since it is a double wall, the pressure strength can be secured and the reliability of the pressure strength can be secured.

また、図4において、外管端末部3aを分岐管4の内側に突出させることで、狭い環状部から分岐管4の内部の広い空間に一旦二酸化炭素を溜めて、均圧な状態にした後、外管端末部3a前後の差圧によってフィン7のある環状部に二酸化炭素を引き入れるため、内管2の周囲に均等に二酸化炭素を分流できる。   Further, in FIG. 4, after the outer tube terminal portion 3 a protrudes to the inside of the branch pipe 4, carbon dioxide is once stored in a wide space inside the branch pipe 4 from the narrow annular portion, and is brought into a pressure-equalized state. Since carbon dioxide is drawn into the annular portion with the fins 7 by the differential pressure across the outer tube terminal portion 3a, the carbon dioxide can be evenly distributed around the inner tube 2.

また、図1において、二酸化炭素が流出する側の分岐管4を、分岐管4´とする。   In FIG. 1, the branch pipe 4 on the side from which carbon dioxide flows out is referred to as a branch pipe 4 ′.

二酸化炭素が流出する場合、分岐管4´内では、二酸化炭素が外管端末部3aまでフィン7で整流された状態で流出するので、第三開口部4cまでの距離に係わらず、環状部の二酸化炭素に偏流を生じさせない。   In the case where carbon dioxide flows out, carbon dioxide flows out in a state rectified by the fins 7 to the outer tube terminal portion 3a in the branch pipe 4 ', so that regardless of the distance to the third opening 4c, Does not cause drift in carbon dioxide.

従って、外管3全長に渡って、均等な熱交換を環状部で行うことができる。   Therefore, uniform heat exchange can be performed in the annular portion over the entire length of the outer tube 3.

また、2対の第一開口部4aと第二開口部4bを有することで、2本の二重管1内の水と二酸化炭素を分岐することと、二酸化炭素を2本の二重管1に分流することを、1つの分岐管でできるので、熱交換器1Xの端末部の部品点数を低減できて、構造を簡略にできる。さらに、1つの分岐管4で2本の二重管1への分流を行うため、分岐管4内部の空間8は、より広い空間となって、二酸化炭素はその空間8が広いほど分岐管4内部で均圧化されるので、より均等に分流することができる。   Further, by having two pairs of the first opening 4a and the second opening 4b, the water and carbon dioxide in the two double tubes 1 are branched, and the carbon dioxide is separated into two double tubes 1 Therefore, the number of parts at the terminal portion of the heat exchanger 1X can be reduced, and the structure can be simplified. Further, since one branch pipe 4 divides the flow into the two double pipes 1, the space 8 inside the branch pipe 4 becomes a wider space, and the larger the space 8 of carbon dioxide, the wider the space 8, the branch pipe 4. Since the pressure is equalized internally, the flow can be divided more evenly.

また、第一流体を水、第二流体を二酸化炭素とすることで、熱交換器1Xとして高い熱交換効率を得て、ヒートポンプ式給湯機用水冷媒熱交換器として使用することで、高いヒートポンプ効率を得ることができる。   In addition, by using water as the first fluid and carbon dioxide as the second fluid, high heat exchange efficiency can be obtained as the heat exchanger 1X, and high heat pump efficiency can be obtained by using it as a water refrigerant heat exchanger for a heat pump water heater. Can be obtained.

尚、本発明の実施の形態では、分岐管4を筒状の構成で示したが、図5に示すように、銅ブロックに第一開口部4a、第二開口部4b、第三開口部4cを削って製作してもよい。銅ブロックで製作した場合、耐圧強度の信頼性を確保することができる。   In the embodiment of the present invention, the branch pipe 4 is shown in a cylindrical configuration. However, as shown in FIG. 5, the first opening 4a, the second opening 4b, and the third opening 4c are formed in the copper block. You may cut and make. When manufactured with a copper block, the reliability of pressure strength can be secured.

尚、本発明の実施の形態では、分岐管4は2本の二重管1への分流を行う2パス用の分岐管として示したが、これに限らず二重管1が3本の3パス用、4本の4パス用の場合でも同様な効果が得られる。   In the embodiment of the present invention, the branch pipe 4 is shown as a two-pass branch pipe for diverting to two double pipes 1, but the present invention is not limited to this. The same effect can be obtained in the case of four passes for four passes.

尚、本発明の実施の形態では、内管2、外管3の材料は、通常は銅製だが、真ちゅう、SUS、耐食性を持った鉄、アルミ合金等でも同様な効果が得られる。   In the embodiment of the present invention, the material of the inner tube 2 and the outer tube 3 is usually made of copper, but the same effect can be obtained with brass, SUS, corrosion-resistant iron, aluminum alloy, or the like.

尚、本発明の実施の形態では、環状部を流通する冷媒を二酸化炭素としたが、R410A等の高圧で作動する冷媒でも同様な効果が得られる。   In the embodiment of the present invention, carbon dioxide is used as the refrigerant flowing through the annular portion. However, the same effect can be obtained with a refrigerant operating at a high pressure such as R410A.

尚、フィン7は内管2の外壁に設け、フィン7の先端を外管3の内壁に接して環状部を仕切ってもよい。   The fin 7 may be provided on the outer wall of the inner tube 2, and the tip of the fin 7 may be in contact with the inner wall of the outer tube 3 to partition the annular portion.

尚、本発明の実施の形態では、フィン7の数は同一周上に8点設けているが、2点以上あればよく、更には、流路断面積と同心の確保の観点からより好ましくは3点である。   In the embodiment of the present invention, eight fins 7 are provided on the same circumference. However, two or more fins 7 may be provided, and more preferably from the viewpoint of securing concentricity with the cross-sectional area of the flow path. Three points.

尚、本発明の実施の形態では、フィン7は外管3と一体のものとしたが、内管2と外管3との間に柱状材を挿入して、環状部を仕切ってもよい。   In the embodiment of the present invention, the fin 7 is integrated with the outer tube 3, but a columnar material may be inserted between the inner tube 2 and the outer tube 3 to partition the annular portion.

(実施の形態2)
図6は、本発明の実施の形態2における熱交換器の端末部の断面図である。
(Embodiment 2)
FIG. 6 is a cross-sectional view of the terminal portion of the heat exchanger according to Embodiment 2 of the present invention.

図6において、分岐管4は、本体部10と蓋部11とからなり、本体部10に、2つの第一開口部4aと、2つの第二開口部4bと、1つの第三開口部4cと、を有するものである。   In FIG. 6, the branch pipe 4 includes a main body portion 10 and a lid portion 11, and the main body portion 10 has two first opening portions 4 a, two second opening portions 4 b, and one third opening portion 4 c. And.

これによって、本体部10と蓋部11の2部式にすることで、分岐管4の製作において、管や板、ブロックといった素材の形状やその加工方法の選択肢が増えて、分岐管をより安価に製作することができる。たとえば、図6の本体部10は、管を転用し、後加工を加えることで製作できる。   As a result, by using a two-part system consisting of the main body 10 and the lid 11, in the production of the branch pipe 4, the shape of the material such as the pipe, plate, and block and the options for the processing method increase, and the branch pipe is less expensive. Can be produced. For example, the main body 10 of FIG. 6 can be manufactured by diverting a tube and adding post-processing.

また、第一開口部4aと第二開口部4bが、本体部9に集中するので、第一開口部4aと第二開口部4bの位置決めや加工を、容易に行うことが出来る。特に略同一直線上に第一開口部4aと第二開口部4bが位置する場合、製作が容易になり、たとえば、1本の径違いドリルを用いることで、1回で穴あけ加工ができる。   Moreover, since the 1st opening part 4a and the 2nd opening part 4b concentrate on the main-body part 9, positioning and a process of the 1st opening part 4a and the 2nd opening part 4b can be performed easily. In particular, when the first opening 4a and the second opening 4b are positioned on substantially the same straight line, the manufacturing becomes easy. For example, by using a single diameter drill, drilling can be performed once.

以上のように、本発明にかかる熱交換器は、環状部に、ロウ詰りし易い構造である複数の仕切りを有し、特に環状部高さが低い場合でも、ロウ詰りすることがなく、二酸化炭素の流路が確保できる端末構造を有するので、ヒートポンプ給湯器や家庭用、業務用の空気調和機、燃料電池等の用途にも適用できる。   As described above, the heat exchanger according to the present invention has a plurality of partitions having a structure that is easy to clog wax in the annular portion, and is not clogged with wax even when the height of the annular portion is low. Since it has a terminal structure that can secure a carbon flow path, it can also be applied to uses such as heat pump water heaters, home and commercial air conditioners, and fuel cells.

本発明の実施の形態1における熱交換器の側面図Side view of heat exchanger in Embodiment 1 of the present invention 同実施の形態における熱交換器の端末部の断面図Sectional drawing of the terminal part of the heat exchanger in the embodiment 図2のA−A線断面図AA line sectional view of FIG. 同実施の形態における熱交換器の端末部の二酸化炭素の流れを示す図The figure which shows the flow of the carbon dioxide of the terminal part of the heat exchanger in the embodiment 同実施の形態における他の熱交換器の端末部の断面図Sectional drawing of the terminal part of the other heat exchanger in the embodiment 本発明の実施の形態2における熱交換器の端末部の断面図Sectional drawing of the terminal part of the heat exchanger in Embodiment 2 of this invention 従来の熱交換器の側面図Side view of conventional heat exchanger 従来の熱交換器の継手部分の断面図Sectional view of the joint part of a conventional heat exchanger

符号の説明Explanation of symbols

1X 熱交換器
1 二重管
2 内管
3 外管
3a 外管端末部
4 分岐管
4´ 分岐管
4a 第一開口部
4b 第二開口部
4c 第三開口部
5 小径部
6 大径部
7 フィン
8 空間
10 本体部
11 蓋部
1X heat exchanger 1 double pipe 2 inner pipe 3 outer pipe 3a outer pipe terminal 4 branch pipe 4 'branch pipe 4a first opening 4b second opening 4c third opening 5 small diameter section 6 large diameter section 7 fin 8 Space 10 Body 11 Cover

Claims (3)

複数本の二重管と分岐管とからなり、前記二重管は、第一流体を流す内管と、前記内管の外周を覆って前記内管との間の環状部に第二流体を流す外管とからなり、前記環状部には複数の仕切りを有し、前記分岐管は、複数の第一開口部と複数の第二開口部と一つの第三開口部とを有し、1つの前記第一開口部と1つの前記第二開口部とが、対となって複数の前記対を成し、前記第一開口部は、前記外管の管軸方向において前記分岐管の内側に向かって小径部と大径部とを有し、前記外管端末部を少なくとも前記大径部にまで突出させて、前記小径部との隙間より十分に広い空間を前記外管外周に有するように覆い、前記第二開口部は、前記外管端末部より露出して前記分岐管内部を貫通する前記内管を覆ったことを特徴とした熱交換器。   The double pipe includes a plurality of double pipes and a branch pipe. The double pipe covers the outer circumference of the inner pipe and the second fluid in an annular portion between the inner pipe and the inner pipe. The annular pipe has a plurality of partitions, and the branch pipe has a plurality of first openings, a plurality of second openings, and a third opening. One of the first openings and one of the second openings form a plurality of pairs, and the first opening is inside the branch pipe in the tube axis direction of the outer pipe. A small diameter portion and a large diameter portion, and projecting the outer tube end portion to at least the large diameter portion so that a space sufficiently wider than the gap with the small diameter portion is provided on the outer periphery of the outer tube. The heat exchanger according to claim 1, wherein the second opening covers the inner pipe exposed from the outer pipe terminal and penetrating through the branch pipe. 前記分岐管は、本体部と蓋部とからなり、前記本体部に、前記第一開口部と、前記第二開口部と、を有することを特徴とした請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the branch pipe includes a main body portion and a lid portion, and the main body portion includes the first opening portion and the second opening portion. 前記第一流体は水、前記第二流体は二酸化炭素であることを特徴とした請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the first fluid is water and the second fluid is carbon dioxide.
JP2006004456A 2006-01-12 2006-01-12 Heat exchanger Pending JP2007187357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004456A JP2007187357A (en) 2006-01-12 2006-01-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004456A JP2007187357A (en) 2006-01-12 2006-01-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007187357A true JP2007187357A (en) 2007-07-26

Family

ID=38342644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004456A Pending JP2007187357A (en) 2006-01-12 2006-01-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007187357A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162395A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
JP2011027396A (en) * 2009-06-30 2011-02-10 Showa Denko Kk Double-wall-tube heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162395A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
JP2011027396A (en) * 2009-06-30 2011-02-10 Showa Denko Kk Double-wall-tube heat exchanger

Similar Documents

Publication Publication Date Title
CN101482346B (en) Distributor tube subassembly
KR101298703B1 (en) Method for joining the tube and the tube sheet in shell
JP5351386B2 (en) Heat exchanger piping connector
JP4958150B2 (en) Water heat exchanger for water heater
JP6997703B2 (en) Heat exchanger tubes for heat exchangers, heat exchangers, and how to assemble them
KR20130081440A (en) Method for joining the tube and the tube sheet in shell and tube exchanger
JP2006003071A (en) Heat exchanger
KR101359778B1 (en) Welding method for shell and tube
JP2007187357A (en) Heat exchanger
JP5972565B2 (en) Double pipe joint structure
JP2008281249A (en) Heat exchanger
JP2007187360A (en) Heat exchanger
JP2011075156A (en) Heat exchange unit
JP2005024109A (en) Heat exchanger
KR100740699B1 (en) Header pipe for heat exchanger
KR20160117376A (en) Manufacturing method for heat exchanger with i-o pipe connecting member for heat exchanger
JP5802006B2 (en) Heat exchanger and connection method thereof
JPH0640667U (en) Heat exchanger
KR101694671B1 (en) Manufacturing method for heat exchanger with i-o pipe connecting member for heat exchanger
JP5540409B2 (en) Linked pressure heat exchanger and manufacturing method thereof
KR101694670B1 (en) I-o pipe connecting member for heat exchanger
KR200475744Y1 (en) Joint structure of the tube and the tube sheet in shell and tube exchanger
JPH0247418Y2 (en)
JPH10281687A (en) Connecting part of header for heat exchanger to fluid feeding pipe
EP3353459A1 (en) Connection for tubes of a motor vehicle