JP2007187356A - Combustion furnace and boiler apparatus - Google Patents

Combustion furnace and boiler apparatus Download PDF

Info

Publication number
JP2007187356A
JP2007187356A JP2006004430A JP2006004430A JP2007187356A JP 2007187356 A JP2007187356 A JP 2007187356A JP 2006004430 A JP2006004430 A JP 2006004430A JP 2006004430 A JP2006004430 A JP 2006004430A JP 2007187356 A JP2007187356 A JP 2007187356A
Authority
JP
Japan
Prior art keywords
burner
combustion furnace
combustion
burners
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004430A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shimogoori
嘉大 下郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006004430A priority Critical patent/JP2007187356A/en
Publication of JP2007187356A publication Critical patent/JP2007187356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress oxygen concentration imbalance in gas, and to suppress gas temperature imbalance, by promoting effective practical use of a combustion space inside a combustion furnace. <P>SOLUTION: In this combustion furnace 1, burners 11 of a front wall A on one side of walls facing each other and burners 12 of a rear wall B are disposed in the same horizontal plane or in nearly same horizontal planes, and respective burner central axis 2 and burner central axis 3 are disposed in positions slightly out of alignment from each other, so that flame from the burners 11 provided in the front wall A partially collides with flame from the burners 12 provided in the rear wall B, and partially not. Flame not colliding with the front or rear wall A, B facing each other of the flame from the burners 11, 12, uses a space between side walls C and the burner flame as the combustion space, and flame close to the side walls C is thrusted in a bulging direction (the arrow (R) direction as shown in a figure) to the side wall side, so that there is action reducing spaces inside the combustion furnace not effectively used for combustion generated in areas β, β'. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃焼炉と該燃焼炉を蒸気発生装置の燃焼炉とするボイラ装置に関する。   The present invention relates to a combustion furnace and a boiler apparatus that uses the combustion furnace as a combustion furnace of a steam generator.

図3には、ボイラ装置の燃焼炉における基本的なバーナ配置である対向する前後壁A,Bにバーナ4,5をそれぞれ配置するバーナの配置構造(対向燃焼配置ということがある)を燃焼炉1の側壁の側から見た図を示す。バーナ4とバーナ5は燃焼炉1にてお互いに各々が対向する前後壁A,Bの位置に配置される。このとき、同一水平方向に複数のバーナ4,5が配置され、該バーナ4,5をバーナ火炎の流れる方向である上下方向に複数段配置する。   FIG. 3 shows a burner arrangement structure (sometimes referred to as opposed combustion arrangement) in which burners 4 and 5 are arranged on opposing front and rear walls A and B, which are basic burner arrangements in a combustion furnace of a boiler apparatus. The figure seen from the side of 1 side wall is shown. The burner 4 and the burner 5 are disposed at the positions of the front and rear walls A and B facing each other in the combustion furnace 1. At this time, a plurality of burners 4 and 5 are arranged in the same horizontal direction, and the burners 4 and 5 are arranged in a plurality of stages in the vertical direction, which is the direction in which the burner flame flows.

図3の対向燃焼配置構造の燃焼炉の従来技術の一つの水平断面図を図6に示す。対向する炉壁A又はBの少なくとも一段のバーナ4又は5の組は、対向する炉壁B又はAで互いのバーナ5又は4の中心軸の延長線が同一水平面上にあるよう配置されており、対向する各々のバーナ4及び5から燃焼ガスは衝突し、ガス流れ6及びガス流れ7に示すように流れ方向をほぼ180度変えて再びバーナ4又は5の火炎の根元へ戻る循環流れの形態を示している。   FIG. 6 shows a horizontal sectional view of one prior art of the combustion furnace having the opposed combustion arrangement structure of FIG. The set of at least one burner 4 or 5 on the opposite furnace wall A or B is arranged such that the extension line of the central axis of each burner 5 or 4 is on the same horizontal plane in the opposite furnace wall B or A. Combustion gas collides from each of the opposing burners 4 and 5 and forms a circulating flow that returns to the flame root of the burner 4 or 5 again by changing the flow direction by approximately 180 degrees as shown in the gas flow 6 and the gas flow 7. Is shown.

また、対向燃焼配置のその他の公知例として、図7のように、バーナ4とバーナ5はお互いが向き合ってはいるが、対向する壁面のバーナ間隔の中間位置に来るよう配置される、いわゆる千鳥配列や、特開2002−122304号公報記載の発明のように、いずれも向き合うバーナの火炎が衝突しないよう配置し、炉内で大きな旋回流を水平面に形成することを目的としたものがある。   As another known example of the opposed combustion arrangement, as shown in FIG. 7, the burner 4 and the burner 5 face each other but are arranged so as to be located at an intermediate position between the burner intervals of the opposing wall surfaces. Some of them are arranged so that the flames of the burners facing each other do not collide with each other as in the arrangement and the invention described in JP-A-2002-122304, and a large swirling flow is formed in the horizontal plane in the furnace.

更に、特開平7−119923号公報記載の発明のように、燃焼炉の4つの壁面にそれぞれバーナを配置し、炉内の旋回流を起こすいわゆるタンジェンシャル燃焼方式もある。
特開2002−122304号公報 特開平7−119923号公報
Furthermore, there is a so-called tangential combustion system in which burners are arranged on four wall surfaces of a combustion furnace to cause a swirling flow in the furnace, as in the invention described in Japanese Patent Application Laid-Open No. 7-119923.
JP 2002-122304 A Japanese Patent Application Laid-Open No. 7-119923

上記従来技術では、バーナの大容量化に伴い燃焼炉内で有効に活用できない領域が大きくなり、ガス温度のアンバランスが生じ、結果として燃焼炉の後流に設置された後部伝熱部での収熱アンバランスを生じさせていた。
図7に示す従来技術では、領域(ロ)が有効に活用されない。領域(ロ)の反対側壁面に設置されるバーナ4は、火炎が直接燃焼炉1の側壁Cに当たる、いわゆる干渉を防ぐため燃焼炉1の側壁Cとの間に充分な距離を保つ必要がある。しかし、バーナの大容量化によりこの距離は大きくなっている。結果として、バーナ4の対向位置である反対側に位置する領域(ロ)が大きくなり、燃焼空間として有効に活用されない領域が拡大する。この領域(ロ)は、燃焼空間として活用されていないため、ガス中の酸素濃度が高く、またガス温度は低い。従って、ガス温度アンバランスがボイラ装置の後部伝熱部での収熱アンバランスを生じさせる。
In the above prior art, as the capacity of the burner increases, the area that cannot be effectively used in the combustion furnace increases, resulting in gas temperature imbalance, and as a result, the rear heat transfer section installed in the downstream of the combustion furnace. A heat recovery imbalance was generated.
In the prior art shown in FIG. 7, the area (b) is not effectively used. The burner 4 installed on the opposite side wall surface of the region (b) needs to maintain a sufficient distance from the side wall C of the combustion furnace 1 in order to prevent so-called interference in which the flame directly hits the side wall C of the combustion furnace 1. . However, this distance is increasing due to the increased capacity of the burner. As a result, the region (b) located on the opposite side, which is the opposite position of the burner 4, becomes larger, and the region that is not effectively used as the combustion space is expanded. Since this region (b) is not utilized as a combustion space, the oxygen concentration in the gas is high and the gas temperature is low. Therefore, the gas temperature imbalance causes heat recovery imbalance in the rear heat transfer section of the boiler device.

図6のバーナ中心軸の延長線を水平方向で同一線上とする配置は、領域(ロ)を最小限にするには有効な手段であったが、バーナの大容量化に伴い、やはりガス温度のアンバランスが生じることになる。
図8にそのメカニズムを示す。一方の炉壁A又はBのバーナ4又は5から投じられたガス流れが対向する他方の炉壁B又はAに配置されたバーナ5又は4からのガス流れと衝突し、バーナ火炎の根元に戻ってくる循環流を形成することが、この対向配置の理想とするところであるが、実際には図8に示すように火炎(ガス流れ)は各バーナ中心軸同士に沿って理想的に衝突することはなく、燃焼炉1内の微妙な横方向の流れなどが影響し、どちらかにずれる。バーナ4,5が比較的小容量の時には本現象の影響も小さかったが、バーナ4,5の大容量化によりバーナ4,5と燃焼炉1の側壁Cとの距離は長くなっているため、燃焼空間として有効に活用されない領域(イ)が拡大してきた。特に、本例の場合には各バーナ4,5の中心軸の延長線同士が同一線上にあるため、わずかな外乱により図8に示す状態から図9に示す状態に容易に変化し、領域(ロ)が新たに燃焼に有効に使われない空間となる(チャタリング現象)。結果としてガス温度の分布が時間の変化と伴に変わる不安定な現象なため、本現象がボイラ装置の燃焼炉1内において発生したとき、バーナレジスタの開度などハード側でのこの現象を解消するための対策が講じられなくなる問題があった。
The arrangement in which the extension line of the burner central axis in FIG. 6 is on the same line in the horizontal direction is an effective means for minimizing the area (b), but as the capacity of the burner increases, the gas temperature is still increased. An imbalance occurs.
FIG. 8 shows the mechanism. The gas flow thrown from the burner 4 or 5 on one furnace wall A or B collides with the gas flow from the burner 5 or 4 arranged on the other furnace wall B or A, and returns to the root of the burner flame. Forming a circulating flow to come is the ideal of this opposing arrangement, but in reality, as shown in FIG. 8, the flame (gas flow) ideally collides along each burner central axis. There is not, and the delicate lateral flow in the combustion furnace 1 influences and shifts to either. Although the influence of this phenomenon was small when the burners 4 and 5 had a relatively small capacity, the distance between the burners 4 and 5 and the side wall C of the combustion furnace 1 became longer due to the increased capacity of the burners 4 and 5. The area (a) that is not effectively used as a combustion space has expanded. In particular, in the case of this example, since the extension lines of the central axes of the burners 4 and 5 are on the same line, the state shown in FIG. (B) becomes a space that is not used effectively for new combustion (chattering phenomenon). As a result, the gas temperature distribution is an unstable phenomenon that changes with time, so when this phenomenon occurs in the combustion furnace 1 of the boiler unit, this phenomenon on the hardware side such as the opening of the burner register is eliminated. There was a problem that measures to do so could not be taken.

図10は燃焼炉1で生じたガス温度アンバランスが後部伝熱部へ与える影響として最も顕著な例を示している。図10(a)はボイラ装置の燃焼炉1と後部伝熱部8,9の縦断面図、図10(b)は燃焼炉1のバーナ設置部の水平断面図、図10(c)は後部伝熱部8,9の水平断面図である。   FIG. 10 shows the most prominent example of the influence of the gas temperature imbalance generated in the combustion furnace 1 on the rear heat transfer section. 10A is a longitudinal sectional view of the combustion furnace 1 and the rear heat transfer portions 8 and 9 of the boiler apparatus, FIG. 10B is a horizontal sectional view of the burner installation portion of the combustion furnace 1, and FIG. It is a horizontal sectional view of heat transfer parts 8 and 9.

燃焼炉1のバーナ火炎が当たらない領域(イ)では酸素濃度が高く、ガス温度が低い領域のガスは後流側の後部伝熱部8においては領域(ハ)に流れる。わかりやすい例として、図10のように後部伝熱部が分割壁10により伝熱部8と伝熱部9に分かれていた場合、伝熱部8に配置された伝熱管は領域(ハ)の影響を受けるため、この領域(ハ)の部位の伝熱管の収熱が低く、一方で伝熱部8の領域(ハ)の反対側に配置された伝熱管の収熱は高くなる。結果として伝熱部8の出口蒸気は缶の左右で温度差を生じる。同様に伝熱部9では燃焼炉1の領域(イ’)の影響を受けた領域(ハ’)のため、伝熱部8とは左右逆の蒸気温度分布が生じるという問題があった。   In the region (a) where the burner flame of the combustion furnace 1 does not hit, the gas in the region where the oxygen concentration is high and the gas temperature is low flows to the region (c) in the rear heat transfer section 8 on the wake side. As an easy-to-understand example, when the rear heat transfer section is divided into the heat transfer section 8 and the heat transfer section 9 by the dividing wall 10 as shown in FIG. 10, the heat transfer tubes arranged in the heat transfer section 8 are affected by the region (c). Therefore, the heat collection of the heat transfer tubes in the region (c) is low, while the heat collection of the heat transfer tubes arranged on the opposite side of the region (c) of the heat transfer unit 8 is high. As a result, the outlet steam of the heat transfer section 8 causes a temperature difference between the left and right of the can. Similarly, in the heat transfer section 9, there is a problem that a steam temperature distribution opposite to that of the heat transfer section 8 is generated because of the area (C ′) affected by the area (A ′) of the combustion furnace 1.

また、特開2002−122304号公報及び特開平7−119923号公報記載の発明は、バーナからの火炎を衝突させずに旋回流を形成するようなバーナ配置を用いている。火炎の旋回流は、衝突方式とは混合手法が異なるが、燃料と燃焼空気の混合促進という点では有効な手法である。ただし矩形の燃焼炉断面内に円形又は楕円形の旋回流をおくことから、燃焼炉の4隅など旋回流の影響が及びにくい領域が生じるという点では、図7の従来技術と同様の問題がある。   The inventions described in JP-A-2002-122304 and JP-A-7-119923 use a burner arrangement that forms a swirl flow without causing a flame from the burner to collide. The swirling flow of the flame is an effective method in terms of promoting the mixing of fuel and combustion air, although the mixing method is different from the collision method. However, since the circular or elliptical swirling flow is placed in the rectangular combustion furnace cross section, the problem similar to the prior art of FIG. is there.

特開2002−122304号公報記載の発明のような火炉の各側壁面の中央付近にバーナを設置するタンジェンシャル燃焼のほかに、燃焼炉の側壁隅部(コーナ)にバーナを配置するタンジェンシャル燃焼、いわゆるコーナファイアリングの場合もある。この燃焼方式は燃焼炉の隅部を燃焼空間として有効に活用するという点で優れているが、バーナからの火炎と燃焼炉壁との距離が、対向燃焼方式に比べ非常に近づいため、火炎の燃料炉壁との干渉によって生ずる腐食などの問題を解決する別の工夫が必要であった。
本発明の課題は、燃焼炉内にて燃焼空間の有効活用を促進させ、ガス中の酸素濃度アンバランスの抑制、ガス温度アンバランスの抑制を実現することにある。
In addition to the tangential combustion in which the burner is installed near the center of each side wall surface of the furnace as in the invention described in Japanese Patent Application Laid-Open No. 2002-122304, the tangential combustion in which the burner is arranged at the corner (corner) of the side wall of the combustion furnace. In some cases, so-called corner firing. This combustion method is excellent in that it effectively uses the corner of the combustion furnace as a combustion space, but the distance between the flame from the burner and the combustion furnace wall is much closer than the opposed combustion method, so the flame Another contrivance was needed to solve problems such as corrosion caused by interference with the fuel furnace wall.
An object of the present invention is to promote effective utilization of a combustion space in a combustion furnace and realize suppression of oxygen concentration imbalance in gas and suppression of gas temperature imbalance.

本発明の上記課題は次の解決手段により達成される。
請求項1記載の発明は、対向する壁面の同一高さ又はほぼ同一高さ位置に複数のバーナの組をそれぞれ配置し、前記バーナの組をバーナ火炎の流れる方向に少なくとも一段配置した燃焼炉において、対向する壁面の同一高さ又はほぼ同一高さ位置にある少なくとも一段のバーナの組は、対向する壁面で互いのバーナの中心軸の水平方向の延長線のなす距離がずれた位置に配置されている燃焼炉である。
The above object of the present invention is achieved by the following means.
The invention according to claim 1 is a combustion furnace in which a plurality of burner groups are respectively arranged at the same height or substantially the same height position of opposing wall surfaces, and the burner groups are arranged in at least one stage in the direction in which the burner flame flows. The pair of at least one burner at the same height or almost the same height position of the opposing wall surfaces is arranged at a position where the distance formed by the horizontal extension line of the central axis of each burner is shifted on the opposite wall surfaces. It is a combustion furnace.

請求項2記載の発明は、対向する壁面での互いのバーナ中心軸の延長線のなす前記水平距離は、バーナのスロート径Dの0.2〜1.5倍の間の値である請求項1記載の燃焼炉である。
請求項3記載の発明は、請求項1記載の燃焼炉を蒸気発生装置の燃焼炉として用いるボイラ装置である。
According to a second aspect of the present invention, the horizontal distance formed by the extension lines of the burner central axes on the opposing wall surfaces is a value between 0.2 and 1.5 times the throat diameter D of the burner. 1. A combustion furnace according to 1.
Invention of Claim 3 is a boiler apparatus which uses the combustion furnace of Claim 1 as a combustion furnace of a steam generator.

請求項1記載の発明によれば、燃焼炉の前壁と後壁の同一水平面又はほぼ同一水平面に配置されている各バーナの中心軸の延長線は水平方向に互いにわずかにずれた位置(このずれをオフセット距離ということがある)に配置されているので、一方の炉壁に設けられたバーナからの火炎(ガス流れ)の一部は対向位置の炉壁に設けられたバーナからの火炎(ガス流れ)と衝突するが、一部は衝突しない。   According to the first aspect of the present invention, the extension lines of the central axes of the burners arranged on the same horizontal plane or substantially the same horizontal plane on the front wall and the rear wall of the combustion furnace are slightly displaced from each other in the horizontal direction (this Since the deviation is sometimes referred to as an offset distance), a part of the flame (gas flow) from the burner provided on one furnace wall is part of the flame (from the burner provided on the furnace wall at the opposite position ( Gas flow) but some do not.

図2に示すように一対の側壁Cに隣接する前後壁A,Bに設けられる各バーナ12,11からの火炎の中で対向する壁面と衝突しないガス流れは、側壁Cとバーナ火炎との間の空間を燃焼空間として使い、側壁Cに近い火炎は側壁側に膨らむ方向(図2の矢印(R)の方向)に押しやられるため、領域(イ)、(イ’)に生じていた燃焼に有効に使われていなかった燃焼炉1内の空間を縮小する作用がある。   As shown in FIG. 2, the gas flow that does not collide with the opposing wall surface in the flames from the respective burners 12 and 11 provided on the front and rear walls A and B adjacent to the pair of side walls C is between the side wall C and the burner flame. Is used as a combustion space, and the flame close to the side wall C is pushed in the direction of expansion toward the side wall (the direction of the arrow (R) in FIG. 2). There is an effect of reducing the space in the combustion furnace 1 that has not been used effectively.

請求項1記載の発明によれば、燃焼に有効に使われていなかった燃焼炉内の空間を縮小するので大容量の燃焼炉でも燃焼炉内で均一な燃焼が行われ、排ガス中の未燃炭素の発生量、一酸化炭素の発生量の低減にも有効な燃焼が行われる。   According to the invention described in claim 1, since the space in the combustion furnace that has not been used effectively for combustion is reduced, even in a large-capacity combustion furnace, uniform combustion is performed in the combustion furnace, and unburned in the exhaust gas. Combustion is also effective for reducing the amount of carbon and carbon monoxide.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、オフセット距離をバーナスロート径の0.2Dから1.5Dの間にすると燃焼に有効に使用されない燃焼炉内の空間を縮小する効果がある。
請求項3記載の発明によれば、請求項1記載の発明の効果をボイラ装置で効果的に使用でき、蒸気発生効率が従来より高まる。
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, if the offset distance is between 0.2D and 1.5D of the burner throat diameter, the combustion chamber is not used effectively for combustion. It has the effect of reducing the space.
According to invention of Claim 3, the effect of invention of Claim 1 can be used effectively with a boiler apparatus, and steam generation efficiency increases from before.

本発明の実施例を図面と共に説明する。
図1は本発明の実施例の燃焼炉の水平断面図を示す。本図はバーナをその中心軸で表しており、燃焼炉1の対向する一方の壁面である前壁Aにバーナ中心軸2が配置され、他方の壁面である後壁Bにバーナ中心軸3が配置され、これらのバーナ中心軸2とバーナ中心軸3同士の延長線同士の水平方向の距離Lを当該バーナのスロート径をDとしたとき、Dの0.2倍から1.5倍となるよう配置している。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a horizontal sectional view of a combustion furnace according to an embodiment of the present invention. In this figure, the burner is represented by its central axis. The burner central axis 2 is arranged on the front wall A which is one wall surface of the combustion furnace 1 facing, and the burner central axis 3 is arranged on the rear wall B which is the other wall surface. The horizontal distance L between the extension lines between the burner central axis 2 and the burner central axis 3 is 0.2 to 1.5 times D, where D is the throat diameter of the burner. Is arranged.

図2に本実施例の作用を示す燃焼炉のバーナ設置部の燃焼炉水平断面図を示す。バーナ11とバーナ12は燃焼炉1内で互いに向き合う燃焼炉1の前後の対向する前後壁A,Bの同一水平面又はほぼ同一水平面に配置されているが、前壁Aと後壁Bの各バーナ中心軸2,3の延長線同士は水平方向に互いにわずかにずれた位置に配置されている。この場合、一方の炉壁A又はBに設けられたバーナ11又は12からの火炎(ガス流れ)の一部は対向位置の炉壁B又はAに設けられたバーナ12又は11からの火炎(ガス流れ)と衝突するが、一部は衝突しない。このような火炎の衝突態様を、ここではオフセット衝突と呼ぶことにする。   FIG. 2 shows a horizontal cross-sectional view of the combustion furnace at the burner installation portion of the combustion furnace showing the operation of this embodiment. The burner 11 and the burner 12 are disposed on the same horizontal surface or substantially the same horizontal surface of the front and rear walls A and B facing each other in the combustion furnace 1 facing each other. The extension lines of the central axes 2 and 3 are arranged at positions slightly shifted from each other in the horizontal direction. In this case, a part of the flame (gas flow) from the burner 11 or 12 provided on one furnace wall A or B is part of the flame (gas) from the burner 12 or 11 provided on the furnace wall B or A at the opposite position. Flow) but some do not. Such a flame collision mode is referred to as an offset collision here.

燃焼炉1の前後壁A,Bの両端部を接続する壁面である一対の側壁Cに隣接する前後壁A,Bに設けられるバーナ11又は12からの火炎の中で対向する炉壁A又はBと衝突しないガス流れは、側壁Cとバーナ火炎との間の空間を燃焼空間として使う。特に、オフセット衝突の際に生じた力の反作用で、側壁Cに近い火炎は側壁側に膨らむ方向に図中の矢印(R)方向に押しやられるため、領域(イ)、(イ’)に生じていた燃焼に有効に使われていなかった燃焼炉1内の空間を縮小する作用がある。   The furnace wall A or B facing in the flame from the burner 11 or 12 provided on the front and rear walls A and B adjacent to the pair of side walls C, which are wall surfaces connecting both ends of the front and rear walls A and B of the combustion furnace 1 The gas flow that does not collide with the gas uses the space between the side wall C and the burner flame as a combustion space. In particular, due to the reaction of the force generated at the time of the offset collision, the flame close to the side wall C is pushed in the direction of the arrow (R) in the figure in the direction in which the side wall swells. There is an effect of reducing the space in the combustion furnace 1 that has not been used effectively for the combustion that has been performed.

対向する前後壁A,Bにそれぞれ配置され、対向する炉壁同士で位置に最も近い位置にある2つのバーナの中心軸2,3間の距離L(オフセット距離L)を変えることにより、オフセット衝突により生ずる反作用力の方向を制御することができ、たとえば、図2のように領域(イ)を最小とする最適なオフセット距離Lの設定が可能である。   Offset collision by changing the distance L (offset distance L) between the central axes 2 and 3 of the two burners located on the front and rear walls A and B facing each other and located closest to each other between the facing furnace walls For example, the optimum offset distance L can be set to minimize the region (A) as shown in FIG.

図5に本実施例の効果の一例を示す。横軸は前記オフセット距離L、縦軸にガス中の酸素濃度偏差を示す。曲線(イ)は図2における領域(イ)及び領域(イ’)におけるガス中の酸素濃度偏差、曲線(ロ)は図2における領域(ロ)及び領域(ロ’)におけるガス中の酸素濃度偏差を示す。また破線(ハ)は酸素濃度アンバランス指数を示す。酸素濃度アンバランス指数が小さいほど、ガス中の酸素濃度アンバランスが小さく、ガス温度アンバランスも小さいことを示す。曲線(イ)と曲線(ロ)から酸素濃度アンバランス指数が求まるが、酸素濃度アンバランス指数はバーナの型式、容量や、燃焼炉に配置されるバーナの位置に影響され、また、オフセット距離がバーナスロート径の0.2Dから1.5Dの間で燃焼に有効に使用されない燃焼炉1内の空間を縮小する効果があることが分かる。 また、ガス中の酸素濃度アンバランスがなくなるということは燃焼炉1内で均一な燃焼が行われていることであり、本実施例により排ガス中の未燃炭素の発生量、一酸化炭素の発生量の低減にも効果がある。   FIG. 5 shows an example of the effect of this embodiment. The horizontal axis represents the offset distance L, and the vertical axis represents the oxygen concentration deviation in the gas. Curve (A) is the oxygen concentration deviation in the gas in region (A) and region (I ') in FIG. 2, and curve (B) is the oxygen concentration in the gas in region (B) and region (B') in FIG. Indicates the deviation. A broken line (c) indicates an oxygen concentration imbalance index. A smaller oxygen concentration imbalance index indicates a smaller oxygen concentration imbalance in the gas and a smaller gas temperature imbalance. The oxygen concentration imbalance index can be obtained from the curves (b) and (b). The oxygen concentration imbalance index is affected by the burner type and capacity, the position of the burner placed in the combustion furnace, and the offset distance is It can be seen that there is an effect of reducing the space in the combustion furnace 1 that is not effectively used for combustion within the burner throat diameter of 0.2D to 1.5D. In addition, the fact that the oxygen concentration imbalance in the gas is eliminated means that uniform combustion is performed in the combustion furnace 1, and according to this embodiment, the amount of unburned carbon generated in the exhaust gas and the generation of carbon monoxide. It is also effective in reducing the amount.

L=0.2Dなどオフセット距離が小さい場合、酸素濃度、ガス温度アンバランスの抑制という点での効果は小さいが、図8と図9に示すように燃焼ガスの流れ方向が時間の経過と共にずれが生じることが原因で燃焼ガスの不安定なガス温度分布の変化(チャタリング現象)の発生を抑える効果があるため、ガス温度アンバランスが発生してもその分布は一つのパターンに固定される。従って、バーナレジスタ開度の調整や水、蒸気経路側での調整などハード面の対策が有効となる効果がある。   When the offset distance is small, such as L = 0.2D, the effect of suppressing the oxygen concentration and gas temperature imbalance is small, but the flow direction of the combustion gas shifts with time as shown in FIGS. This has the effect of suppressing the occurrence of unstable gas temperature distribution changes (chattering phenomenon) due to the occurrence of combustion gas, so even if gas temperature imbalance occurs, the distribution is fixed in one pattern. Therefore, hardware measures such as adjustment of the burner register opening and adjustment on the water and steam paths are effective.

燃焼炉1の対向する前後壁A,Bに配置されたバーナ11,12(図2)間において、対向する前後壁A,Bの同一高さ位置又はほぼ同一高さ位置にそれぞれ配置されたバーナ11,12の組が上下方向に一段しかない場合、その一段のバーナに対して本実施例を適用する。   Between the burners 11 and 12 (FIG. 2) disposed on the front and rear walls A and B facing each other in the combustion furnace 1, the burners disposed at the same height position or substantially the same height position of the front and rear walls A and B facing each other. When the set of 11 and 12 has only one stage in the vertical direction, the present embodiment is applied to the one-stage burner.

図3に一例を示すように、対向する前後壁A,Bの同一高さ位置にそれぞれ配置されたバーナ11,12の組がそれぞれの炉壁A,Bに上下方向に複数段ある場合には、本実施例を全べての段のバーナ11,12に適用するのが望ましい。しかしボイラ構造あるいはバーナ配置上の制限で、特定の一段のみに本実施が適用できる場合、上段側のバーナ段に本実施例を適用するのがより効果的である。これは上段側のバーナの組に本実施例を適用した場合には、上段側のバーナ11,12の組だけの酸素濃度アンバランス指数を小さくする効果だけでなく、下段側のバーナ11,12の組において発生したガス中の酸素濃度の高い領域を、上段側のバーナ11,12の組において低減することができるからである。   As shown in an example in FIG. 3, when a set of burners 11 and 12 arranged at the same height position of the front and rear walls A and B facing each other has a plurality of stages in the vertical direction on each furnace wall A and B, The present embodiment is preferably applied to the burners 11 and 12 in all stages. However, when this embodiment can be applied to only one specific stage due to restrictions on the boiler structure or burner arrangement, it is more effective to apply this embodiment to the upper burner stage. When this embodiment is applied to a set of upper burners, not only the effect of reducing the oxygen concentration unbalance index of only the set of upper burners 11 and 12 but also the lower burners 11 and 12 is set. This is because the region having a high oxygen concentration in the gas generated in the above set can be reduced in the set of burners 11 and 12 on the upper stage side.

図4に本発明のその他の実施例を示す。この実施例の場合の対向する前壁Aに配置されるバーナと後壁Bに配置されるバーナの同士のオフセットされた配置位置は必ずしも全てのバーナで同じ方向に規則的に配置されるものである必要はない。また、前後壁A,Bに配置されるバーナ中心軸2,3の延長線同士のオフセット距離L自体も同一である必要もない。
また図示はしていないが、側壁にもっとも近い前後壁の位置に配置されたバーナのみに対して選択的に実施しても効果はある。
FIG. 4 shows another embodiment of the present invention. In this embodiment, the offset arrangement positions of the burners arranged on the opposed front wall A and the burner arranged on the rear wall B are regularly arranged in the same direction in all the burners. There is no need. Further, the offset distance L itself between the extension lines of the burner central axes 2 and 3 arranged on the front and rear walls A and B need not be the same.
Although not shown in the drawings, it is effective to selectively carry out only the burner arranged at the position of the front and rear walls closest to the side wall.

バーナと燃焼炉の大容量化に対応可能なバーナの配置構造としてボイラ装置などの燃焼炉としての利用可能性が高い。   As a burner arrangement structure that can cope with an increase in the capacity of the burner and the combustion furnace, it can be used as a combustion furnace such as boiler equipment.

本発明となる燃焼炉でのバーナ配置を示す平面図である。It is a top view which shows burner arrangement | positioning in the combustion furnace used as this invention. 図1の燃焼炉での作用を示す燃焼炉のバーナ設置部の水平断面図である。It is a horizontal sectional view of the burner installation part of the combustion furnace which shows the effect | action in the combustion furnace of FIG. 本発明となる燃焼炉での対向燃焼バーナ配置を示す側面図である。It is a side view which shows the opposing combustion burner arrangement | positioning in the combustion furnace used as this invention. 本発明となる燃焼炉での対向燃焼バーナ配置を示す平面図である。It is a top view which shows the opposing combustion burner arrangement | positioning in the combustion furnace used as this invention. 本発明となる燃焼炉での対向燃焼バーナ配置の効果を説明する図である。It is a figure explaining the effect of arrangement | positioning of the opposing combustion burner in the combustion furnace used as this invention. 従来の燃焼炉での対向燃焼バーナ配置を示す平面図である。It is a top view which shows arrangement | positioning of the opposing combustion burner in the conventional combustion furnace. 従来の燃焼炉での対向燃焼バーナの千鳥配置を示す平面図である。It is a top view which shows staggered arrangement | positioning of the opposing combustion burner in the conventional combustion furnace. 従来の燃焼炉でのバーナ大容量化によるガス流れを示す平面図である。It is a top view which shows the gas flow by the burner capacity increase in the conventional combustion furnace. 図8の別パターンを示す燃焼炉の平面図である。It is a top view of the combustion furnace which shows another pattern of FIG. 従来の燃焼炉での分布が後部伝熱部へ影響を及ぼすことを示す側面図(図10(a))及び燃焼炉の平面図(図10(b))と後部伝熱部の平面図(図10(c))である。A side view (FIG. 10 (a)) showing that the distribution in the conventional combustion furnace affects the rear heat transfer section, a plan view of the combustion furnace (FIG. 10 (b)), and a plan view of the rear heat transfer section ( FIG. 10 (c)).

符号の説明Explanation of symbols

1 燃焼炉 2,3 バーナ中心軸
4,5 バーナ 6,7 ガス流れ
8,9 伝熱部 10 分割壁
11,12 バーナ A 前壁
B 後壁 C 側壁
DESCRIPTION OF SYMBOLS 1 Combustion furnace 2,3 Burner center axis | shaft 4,5 Burner 6,7 Gas flow 8,9 Heat transfer part 10 Dividing wall 11,12 Burner A Front wall B Rear wall C Side wall

Claims (3)

対向する壁面の同一高さ又はほぼ同一高さ位置に複数のバーナの組をそれぞれ配置し、前記バーナの組をバーナ火炎の流れる方向に少なくとも一段配置した燃焼炉において、
対向する壁面の同一高さ又はほぼ同一高さ位置にある少なくとも一段のバーナの組は、対向する壁面で互いのバーナの中心軸の水平方向の延長線のなす距離がずれた位置に配置されていることを特徴とする燃焼炉。
In a combustion furnace in which a plurality of sets of burners are arranged at the same height or almost the same height position of opposing wall surfaces, and the set of burners is arranged in at least one stage in the direction in which the burner flame flows.
The pair of at least one burner at the same height or almost the same height position of the opposing wall surfaces is arranged at a position where the distance formed by the horizontal extension line of the central axis of each burner is shifted on the opposite wall surfaces. A combustion furnace characterized by having
対向する壁面での互いのバーナ中心軸の延長線のなす前記水平距離は、バーナのスロート径Dの0.2〜1.5倍の間の値であることを特徴とする請求項1記載の燃焼炉。   The said horizontal distance which the extension line of the mutual burner center axis | shaft in an opposing wall surface makes is a value between 0.2 to 1.5 times the throat diameter D of a burner. Combustion furnace. 請求項1記載の燃焼炉を蒸気発生装置の燃焼炉として用いることを特徴とするボイラ装置。   A boiler apparatus using the combustion furnace according to claim 1 as a combustion furnace of a steam generator.
JP2006004430A 2006-01-12 2006-01-12 Combustion furnace and boiler apparatus Pending JP2007187356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004430A JP2007187356A (en) 2006-01-12 2006-01-12 Combustion furnace and boiler apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004430A JP2007187356A (en) 2006-01-12 2006-01-12 Combustion furnace and boiler apparatus

Publications (1)

Publication Number Publication Date
JP2007187356A true JP2007187356A (en) 2007-07-26

Family

ID=38342643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004430A Pending JP2007187356A (en) 2006-01-12 2006-01-12 Combustion furnace and boiler apparatus

Country Status (1)

Country Link
JP (1) JP2007187356A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986805A (en) * 1982-11-09 1984-05-19 Babcock Hitachi Kk High load burner device
JPS61141515U (en) * 1985-02-18 1986-09-01
JPH07119923A (en) * 1993-10-26 1995-05-12 Mitsubishi Heavy Ind Ltd Burner for pulverized coal firing boiler
JPH07180803A (en) * 1993-12-22 1995-07-18 Mitsubishi Heavy Ind Ltd Boiler furnace
JP2002122304A (en) * 2000-10-13 2002-04-26 Babcock Hitachi Kk Boiler apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986805A (en) * 1982-11-09 1984-05-19 Babcock Hitachi Kk High load burner device
JPS61141515U (en) * 1985-02-18 1986-09-01
JPH07119923A (en) * 1993-10-26 1995-05-12 Mitsubishi Heavy Ind Ltd Burner for pulverized coal firing boiler
JPH07180803A (en) * 1993-12-22 1995-07-18 Mitsubishi Heavy Ind Ltd Boiler furnace
JP2002122304A (en) * 2000-10-13 2002-04-26 Babcock Hitachi Kk Boiler apparatus

Similar Documents

Publication Publication Date Title
CA2535674A1 (en) Boiler and low-nox combustion method
JP5806550B2 (en) Gas burner
KR101247620B1 (en) Hot water boiler of negative pressure and steam type with low pressure low nox burner
US20080156236A1 (en) Pulverized coal combustion boiler
KR101331645B1 (en) Boiler structure for vessel
JP2007187356A (en) Combustion furnace and boiler apparatus
JP6879771B2 (en) Combustion burner and boiler equipped with it
KR101280130B1 (en) Reheat boiler
JP2001221406A (en) Boiler and its reconstruction method
JP2006349255A (en) Boiler
JP7105707B2 (en) After-airport and combustion device equipped with the same
WO2018150701A1 (en) Combustion burner and boiler with same
JP2006292317A (en) Boiler and low-nox combustion method
JP2005147426A (en) Heat exchanger
JP5364534B2 (en) Marine boiler structure
JP5010425B2 (en) Reheat boiler and gas temperature control method for reheat boiler
CN215112714U (en) Cyclone burner and system thereof
JP2010025443A (en) Low nox combustion device and burner used for the same
JP7285685B2 (en) Furnaces and boilers equipped therewith
JP2019007629A (en) Boiler device
JP7046579B2 (en) Combustion burner and boiler equipped with it
KR20100021937A (en) Economizer
US20140202400A1 (en) Water cooled co boiler floor with screen gas distribution inlet
JP3662599B2 (en) Water tube boiler
CN112944383A (en) Cyclone burner and system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804