JP2007186726A - Sputtering apparatus - Google Patents

Sputtering apparatus Download PDF

Info

Publication number
JP2007186726A
JP2007186726A JP2006003445A JP2006003445A JP2007186726A JP 2007186726 A JP2007186726 A JP 2007186726A JP 2006003445 A JP2006003445 A JP 2006003445A JP 2006003445 A JP2006003445 A JP 2006003445A JP 2007186726 A JP2007186726 A JP 2007186726A
Authority
JP
Japan
Prior art keywords
targets
power
sputtering apparatus
target
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006003445A
Other languages
Japanese (ja)
Other versions
JP2007186726A5 (en
JP4320019B2 (en
Inventor
Hiroshi Kobayashi
大士 小林
Junya Kiyota
淳也 清田
Yoshikuni Horishita
芳邦 堀下
Hidenori Yoda
英徳 依田
Shigemitsu Sato
重光 佐藤
Toshio Nakajima
利夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006003445A priority Critical patent/JP4320019B2/en
Priority to TW096101144A priority patent/TWI390065B/en
Priority to PCT/JP2007/050201 priority patent/WO2007080906A1/en
Priority to CN2007800022085A priority patent/CN101370958B/en
Priority to KR1020087016806A priority patent/KR101018652B1/en
Publication of JP2007186726A publication Critical patent/JP2007186726A/en
Publication of JP2007186726A5 publication Critical patent/JP2007186726A5/ja
Application granted granted Critical
Publication of JP4320019B2 publication Critical patent/JP4320019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a sputtering apparatus using an AC power source in such a manner that electric power can be applied with high precision without depending on the distance between the installation place thereof and the installation place of the AC power source. <P>SOLUTION: The inside of a vacuum chamber 11 is provided with: a pair of targets 41a, 41b; and an AC power source E of applying voltage to the pair of targets in such a manner that polarities are alternately changed. The AC power source E is composed so as to be divided into a power feed part 6 of enabling the feed of power and an oscillation part 7 having a switch circuit 72 for oscillation connected to a power line from the power feed part, and the oscillation part and each target are connected by a busbar 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、処理基板表面への成膜を可能とするスパッタリング装置、特に、交流電源を用いたスパッタリング装置に関する。   The present invention relates to a sputtering apparatus capable of forming a film on the surface of a processing substrate, and more particularly to a sputtering apparatus using an AC power source.

スパッタリング法では、プラズマ雰囲気中のイオンを、処理基板表面に成膜しようする膜の組成に応じて所定形状に作製されたターゲットに向けて加速させて衝撃させ、ターゲット原子を飛散させ、処理基板表面に薄膜を形成する。この場合、カソード電極であるターゲットに、直流電源または交流電源などのスパッタ電源を介して電圧を印加することでカソード電極と、アノード電極またはアース電極との間にグロー放電を生じさせてプラズマ雰囲気を形成しているが、特に、交流電源を用いると、カソード表面に蓄積する電荷を反対の位相電圧を印加し打ち消すことにより、安定的な放電が得られる。   In the sputtering method, ions in a plasma atmosphere are accelerated and bombarded toward a target formed in a predetermined shape according to the composition of a film to be formed on the surface of the processing substrate, and target atoms are scattered, thereby processing the substrate surface. A thin film is formed. In this case, a glow discharge is generated between the cathode electrode and the anode electrode or the earth electrode by applying a voltage to the target, which is a cathode electrode, via a sputtering power source such as a DC power source or an AC power source, thereby creating a plasma atmosphere. In particular, when an AC power supply is used, a stable discharge can be obtained by applying the opposite phase voltage to cancel the charge accumulated on the cathode surface.

このことから、真空チャンバ内に一対のターゲットを配置し、この一対のターゲットに、交流電源を介して所定の周波数で交互に極性をかえて電圧を印加し、各ターゲットをアノード電極、カソード電極に交互に切替え、アノード電極及びカソード電極間にグロー放電を生じさせてプラズマ雰囲気を形成し、各ターゲットをスパッタリングすることが知られている(例えば、特許文献1)。
国際公開WO2003/14410号公報(例えば、請求項1参照)。
For this reason, a pair of targets are arranged in the vacuum chamber, and a voltage is applied to the pair of targets by alternately changing the polarity at a predetermined frequency via an AC power source, and each target is applied to the anode electrode and the cathode electrode. It is known to alternately switch to generate a glow discharge between the anode electrode and the cathode electrode to form a plasma atmosphere and to sputter each target (for example, Patent Document 1).
International Publication WO2003 / 14410 (see, for example, claim 1).

上記のものでは、一対のターゲットに交流電力を出力(電力投入)するための発振部を内蔵した交流電源を用いている。一般に、この交流電源と各ターゲットとは、例えば導線を多数本撚り合わせてなる公知の交流電源ケーブルを介して接続される。この場合、交流電流を流したときの表皮効果により、交流電源の周波数の上昇と共に、導体の実効断面積が減少して交流抵抗が増加し、導体損失が増えることで、交流電源から一対のターゲットへの投入電力の損失を招き易く、また、ノイズの影響を受けて一対のターゲットへの投入電力の電力波形が乱れ易くなる。このことは、スパッタ装置本体の設置場所と交流電源の設置場所との間の距離が長くなるに従いより顕著になり、その結果、一対のターゲットに精度よく投入電力できないという問題がある。   In the above, an AC power source including an oscillation unit for outputting (powering on) AC power to a pair of targets is used. In general, the AC power source and each target are connected via a known AC power cable formed by twisting a large number of conducting wires, for example. In this case, due to the skin effect when an alternating current is passed, the effective cross-sectional area of the conductor decreases and the alternating current resistance increases and the conductor loss increases as the frequency of the alternating current power supply increases. It is easy to cause a loss of power input to the power source, and the power waveform of power input to the pair of targets is likely to be disturbed due to the influence of noise. This becomes more conspicuous as the distance between the installation location of the sputtering apparatus main body and the installation location of the AC power supply becomes longer. As a result, there is a problem that power cannot be input to a pair of targets with high accuracy.

そこで、本発明は、上記点に鑑み、スパッタ装置本体の設置場所と交流電源の設置場所との間の距離に依存せず、精度良く電力投入できるようにしたスパッタリング装置を提供することを目的とする。   Accordingly, in view of the above points, the present invention has an object to provide a sputtering apparatus that can accurately input power without depending on the distance between the installation place of the sputtering apparatus main body and the installation place of the AC power supply. To do.

上記課題を解決するために、本発明のスパッタリング装置は、真空チャンバ内に設けた一対のターゲットと、この一対のターゲットに対し所定の周波数で交互に極性をかえて電圧を印加する交流電源とを備え、この交流電源を、電力の供給を可能とする電力供給部と、この電力供給部からの電力ラインに接続された発振用スイッチ回路を有する発振部とに分けて構成し、この発振部と各ターゲットとをブスバーによって連結したことを特徴とする。   In order to solve the above problems, a sputtering apparatus of the present invention includes a pair of targets provided in a vacuum chamber, and an alternating current power source that alternately applies a polarity to the pair of targets at a predetermined frequency and applies a voltage. The AC power supply is divided into a power supply unit capable of supplying power and an oscillation unit having an oscillation switch circuit connected to a power line from the power supply unit, and the oscillation unit and Each target is connected by a bus bar.

本発明によれば、電力供給部と発振部とを分けて構成したため、交流電力を出力する発振部のみを、一対のターゲットとの間の距離が一定の短い距離に保持されるように配置できる。また、この発振部と各ターゲットとをブスバーによって連結したため、交流電流が流れる部分の表面積が大きく、表皮効果の影響を受けずに大電流を流すことができる。その結果、公知の交流電源ケーブルを用いるのに比較して投入電力の損失を招き難くでき、その上、ノイズの影響を受け難くでき、ひいては、交流電源から精度よく一対のターゲットに電力投入できる。   According to the present invention, since the power supply unit and the oscillating unit are configured separately, only the oscillating unit that outputs AC power can be arranged so that the distance between the pair of targets is kept at a constant short distance. . In addition, since the oscillating portion and each target are connected by a bus bar, the surface area of the portion where the alternating current flows is large, and a large current can flow without being affected by the skin effect. As a result, compared to the use of a known AC power cable, it is difficult to cause a loss of input power, and moreover, it is difficult to be affected by noise. As a result, power can be input to the pair of targets with high accuracy from the AC power supply.

この場合、前記ブスバーを、その表面をAuまたはAgの薄膜で覆ったものとすれば、交流電力を投入する際に、交流電流が流れる部分だけを導電率の高い材料にすることで、コスト低減を図ることができてよい。   In this case, if the bus bar has its surface covered with a thin film of Au or Ag, when AC power is applied, only the portion where the AC current flows is made of a highly conductive material, thereby reducing the cost. It may be possible to plan.

また、前記ブスバーを伸縮自在としておけば、このブスバーを取付ける際に、発振部とターゲットとの間の間隔の誤差を吸収でき、ブスバーの取付作業を容易にできてよい。   If the bus bar is made to be extendable and retractable, an error in the distance between the oscillating portion and the target can be absorbed when the bus bar is attached, and the bus bar can be attached easily.

また、交流電力を出力する発振部と各ターゲットとの間の距離を一定の短い距離に保持するために、前記発振部の筐体を真空チャンバの外壁に取付けておけばよい。   Further, in order to maintain the distance between the oscillation unit that outputs AC power and each target at a certain short distance, the casing of the oscillation unit may be attached to the outer wall of the vacuum chamber.

また、前記真空チャンバ内に一対のターゲットを複数並設すると共に一対のターゲット毎に交流電源を設け、各ターゲットの前方に磁束をそれぞれ形成するように各ターゲットの後方に設けられ、交互に極性を変えて設けた複数個の磁石から構成される磁石組立体を配置したものの場合、交流電源から精度よく各一対のターゲットにそれぞれ電力投入できるため、各ターゲットを均等にスパッタして良好な成膜が可能になる。   In addition, a plurality of pairs of targets are arranged in parallel in the vacuum chamber, and an AC power source is provided for each pair of targets, and is provided at the rear of each target so as to form a magnetic flux in front of each target. In the case where a magnet assembly composed of a plurality of magnets arranged in a different manner is arranged, each pair of targets can be powered with high accuracy from an AC power source, so that each target is sputtered evenly to form a good film. It becomes possible.

この場合、前記磁束がターゲットに対して平行移動自在であるように各磁石組立体を一体に駆動する駆動手段を設けておけば、各ターゲットを均等に侵食できてよい。   In this case, if a driving means for integrally driving each magnet assembly is provided so that the magnetic flux is movable in parallel with respect to the target, each target may be eroded equally.

以上説明したように、本発明のスパッタリング装置は、投入電力の損失やノイズの影響を受け難く、精度よくターゲットに電力投入でき、その上、高価な交流電源ケーブルが不要になりコスト低減を図れるという効果を奏する。   As described above, the sputtering apparatus of the present invention is less susceptible to the loss of input power and noise, can accurately power on the target, and further eliminates the need for an expensive AC power cable, thereby reducing costs. There is an effect.

図1を参照して、1は、本発明のマグネトロンスパッタリング装置(以下、「スパッタ装置」という)である。スパッタ装置1は、後述するターゲット表面に蓄積する電荷を反対の位相電圧を印加し打ち消すことで安定的な放電が得られるように、交流電源を用いたインライン式のものである。スパッタ装置1は、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段(図示せず)を介して所定の真空度に保持できる真空チャンバ11を有する。真空チャンバ11の上部には基板搬送手段が設けられている。この基板搬送手段は、公知の構造を有し、例えば、処理基板Sが装着されるキャリア2を有し、駆動手段を間欠駆動させてターゲットに対向した位置に処理基板Sを順次搬送できる。   Referring to FIG. 1, reference numeral 1 denotes a magnetron sputtering apparatus (hereinafter referred to as “sputtering apparatus”) of the present invention. The sputtering apparatus 1 is of an in-line type using an AC power supply so that a stable discharge can be obtained by applying an opposite phase voltage to cancel charges accumulated on the target surface described later. The sputtering apparatus 1 has a vacuum chamber 11 that can be maintained at a predetermined degree of vacuum via vacuum exhaust means (not shown) such as a rotary pump or a turbo molecular pump. A substrate transfer means is provided in the upper part of the vacuum chamber 11. The substrate transport unit has a known structure, and has, for example, a carrier 2 on which the process substrate S is mounted, and can sequentially transport the process substrate S to a position facing the target by intermittently driving the drive unit.

真空チャンバ11には、ガス導入手段3が設けられている。ガス導入手段3は、マスフローコントローラ31を設けたガス管32を介してガス源33に連通しており、Arなどのスパッタガスや反応性スパッタリングの際に用いるO、HO、H、Nなどの反応ガスが真空チャンバ11内に一定の流量で導入できる。真空チャンバ11の下側には、カソード電極Cが配置されている。 A gas introducing means 3 is provided in the vacuum chamber 11. The gas introduction means 3 communicates with a gas source 33 through a gas pipe 32 provided with a mass flow controller 31, and O 2 , H 2 O, H 2 , used for sputtering gas such as Ar, or reactive sputtering. A reactive gas such as N 2 can be introduced into the vacuum chamber 11 at a constant flow rate. A cathode electrode C is disposed below the vacuum chamber 11.

カソード電極Cは、処理基板Sに対向して配置された一対のターゲット41a、41bを有する。各ターゲット41a、41bは、Al、Ti、MoやITOなど、処理基板S上に成膜しようする薄膜の組成に応じて公知の方法で作製され、略直方体(上面視において長方形)に形成されている。各ターゲット41a、41bは、スパッタリング中、ターゲット41a、41bを冷却するバッキングプレート42に、インジウムやスズなどのボンディング材を介して接合され、図示しない絶縁材を介してカソード電極Cのフレームに取付けられ、真空チャンバ11内にフローティング状態に配置されている。   The cathode electrode C has a pair of targets 41a and 41b disposed to face the processing substrate S. Each target 41a, 41b is manufactured by a known method according to the composition of a thin film to be formed on the processing substrate S, such as Al, Ti, Mo, or ITO, and is formed in a substantially rectangular parallelepiped (rectangular in a top view). Yes. Each target 41a, 41b is joined to a backing plate 42 for cooling the target 41a, 41b during sputtering through a bonding material such as indium or tin, and is attached to the frame of the cathode electrode C through an insulating material (not shown). In the vacuum chamber 11, it is arranged in a floating state.

この場合、ターゲット41a、41bは、その未使時のスパッタ面411が、処理基板Sに平行な同一平面上に位置するように並設され、各ターゲット41a、41bの向かい合う側面412相互の間には、アノードやシールドなどの構成部品を何ら設けていない。各ターゲット41a、41bの外形寸法は、各ターゲット41a、41bを並設した際に処理基板Sの外形寸法より大きくなるように設定している。   In this case, the targets 41a and 41b are juxtaposed so that the unused sputtering surface 411 is located on the same plane parallel to the processing substrate S, and between the opposing side surfaces 412 of the targets 41a and 41b. Does not have any components such as an anode or a shield. The external dimensions of the targets 41a and 41b are set to be larger than the external dimensions of the processing substrate S when the targets 41a and 41b are arranged side by side.

また、カソード電極Cは、各ターゲット41a、41bの後方に位置して磁石組立体5を装備している。磁石組立体5は、各ターゲット41a、41bに平行に設けられた支持板51を有する。この支持板51は、各ターゲット41a、41bの横幅より小さく、ターゲット41a、41bの長手方向に沿ってその両側に延出するように形成した長方形状の平板から構成され、磁石の吸着力を増幅する磁性材料製である。支持板51上には、ターゲット41a、41bの長手方向に沿った棒状の中央磁石52と、支持板51の外周に沿って設けた周辺磁石53とが交互に極性を変えて設けられている。この場合、中央磁石52の同磁化に換算したときの体積を、例えば周辺磁石52の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1)に等しくなるように設計している。   Further, the cathode electrode C is equipped with a magnet assembly 5 positioned behind each of the targets 41a and 41b. The magnet assembly 5 includes a support plate 51 provided in parallel with the targets 41a and 41b. The support plate 51 is made of a rectangular flat plate formed so as to extend to both sides of the targets 41a and 41b along the longitudinal direction of the targets 41a and 41b. The support plate 51 amplifies the magnet's adsorption force. Made of magnetic material. On the support plate 51, rod-shaped central magnets 52 along the longitudinal direction of the targets 41a and 41b and peripheral magnets 53 provided along the outer periphery of the support plate 51 are provided with alternating polarities. In this case, the volume when converted to the same magnetization of the central magnet 52 is, for example, equal to the sum of the volumes when converted to the same magnetization of the peripheral magnet 52 (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1). It is designed to be.

これにより、各ターゲット41a、41bの前方に、釣り合った閉ループのトンネル状の磁束がそれぞれ形成され、ターゲット41a、41bの前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット41a、41bのそれぞれ前方での電子密度を高くしてプラズマ密度を高くできる。また、一対のターゲット41a、41bに所定の周波数(1〜400KHz)で交互に極性をかえて電圧が印加できるように交流電源Eが設けられている。   Thereby, balanced closed-loop tunnel-shaped magnetic fluxes are formed in front of the targets 41a and 41b, respectively, and the ions ionized in front of the targets 41a and 41b and the secondary electrons generated by sputtering are captured. The plasma density can be increased by increasing the electron density in front of each of 41a and 41b. In addition, an AC power source E is provided so that a voltage can be applied to the pair of targets 41a and 41b by alternately changing the polarity at a predetermined frequency (1 to 400 KHz).

ところで、交流電源Eを用いて一対のターゲット41a、41bに電力投入する際、投入電力が損失せず、また、ノイズの影響を受け難くして、精度よく設定した電力が投入できるようにする必要がある。本実施の形態では、電力の供給を可能とする電力供給部6と、所定の周波数で交互に極性をかえて電圧を各ターゲット41a、41bに出力する発振部7とに分けて交流電源Eを構成し、発振部7の筐体70を真空チャンバ11の底壁に取付けると共に、後述するように発振部7と各ターゲット41a、41bとを所定長さ寸法を有するブスバー8によって連結することとした。この場合、出力電圧の波形については正弦波であるが、これに限定されるものではなく、例えば方形波でもよい。   By the way, when power is supplied to the pair of targets 41a and 41b using the AC power source E, the input power is not lost, and it is difficult to be affected by noise, so that the set power can be input with high accuracy. There is. In the present embodiment, the AC power supply E is divided into the power supply unit 6 that can supply power and the oscillation unit 7 that alternately changes the polarity at a predetermined frequency and outputs a voltage to each of the targets 41a and 41b. The casing 70 of the oscillating unit 7 is attached to the bottom wall of the vacuum chamber 11, and the oscillating unit 7 and the targets 41a and 41b are connected by a bus bar 8 having a predetermined length as will be described later. . In this case, the waveform of the output voltage is a sine wave, but is not limited thereto, and may be a square wave, for example.

図2に示すように、電力供給部6は箱状の筐体60を有し、筐体60内には、その作動を制御する第1のCPU回路61と、商用の交流電力(3相AC200Vまたは400V)が入力される入力部62と、入力された交流電力を整流して直流電力に変換する6個のダイオード63とを有し、直流電力ライン64a、64bを介して直流電力を発振部7に出力する役割を果たす。   As shown in FIG. 2, the power supply unit 6 has a box-shaped casing 60, and a first CPU circuit 61 that controls the operation of the casing 60 and commercial AC power (three-phase AC 200 V). Or an input unit 62 to which 400V) is input, and six diodes 63 that rectify the input AC power and convert it to DC power, and oscillate DC power through DC power lines 64a and 64b. 7 plays the role of outputting.

また、直流電力ライン64a、64b間には、スイッチングトランジスタ65が設けられ、第1のCPU回路61に通信自在に接続され、スイッチングトランジスタ65のオン、オフを制御する第1のドライバー回路66a及び第1のPMW制御回路66bが設けられている。この場合、電流検出センサ及び電圧検出トランスを有し、直流電力ライン64a、64b間の電流、電圧を検出する検出回路67a及びAD変換回路67bが設けられ、検出回路67a及びAD変換回路67bを介してCPU回路61に入力されるようになっている。   Further, a switching transistor 65 is provided between the DC power lines 64a and 64b, and is connected to the first CPU circuit 61 so as to be communicable. The first driver circuit 66a and the second driver circuit 66a for controlling on / off of the switching transistor 65 are provided. 1 PMW control circuit 66b is provided. In this case, a detection circuit 67a and an AD conversion circuit 67b are provided which have a current detection sensor and a voltage detection transformer and detect the current and voltage between the DC power lines 64a and 64b, and are provided via the detection circuit 67a and the AD conversion circuit 67b. Are input to the CPU circuit 61.

他方、発振部7は、箱状の筐体70を有し、真空チャンバ11下側の外壁に取付けられている。筐体70内には、第1のCPU回路61に通信自在に接続された第2のCPU回路71と、直流電力ライン64a、64b間に設けた発振用スイッチ回路72を構成する4個の第1乃至第4のスイッチングトランジスタ72a、72b、72c、72dと、第2のCPU回路71に通信自在に接続され、各スイッチングトランジスタ72a、72b、72c、72dのオン、オフを制御する第2のドライバー回路73a及び第2のPMW制御回路73bとが設けられている。   On the other hand, the oscillating unit 7 has a box-shaped housing 70 and is attached to the outer wall below the vacuum chamber 11. In the housing 70, there are four second CPU circuits 71 communicably connected to the first CPU circuit 61 and four switch circuits 72 constituting an oscillation switch circuit 72 provided between the DC power lines 64a and 64b. The first to fourth switching transistors 72a, 72b, 72c, 72d and a second driver that is connected to the second CPU circuit 71 so as to be communicable and controls the on / off of each of the switching transistors 72a, 72b, 72c, 72d. A circuit 73a and a second PMW control circuit 73b are provided.

そして、第2のドライバー回路73a及び第2のPMW制御回路73bによって、例えば第1及び第2のスイッチングトランジスタ72a、72bと、第3及び第4のスイッチングトランジスタ72c、72dとのオン、オフのタイミングが反転するように各スイッチングトランジスタ72a、72b、72c、72dの作動を制御すると、発振用スイッチ回路72からの交流電力ライン74a、74bを介して正弦波の交流電力が出力できる。この場合、発振電圧、発振電流を検出する検出回路75a及びAD変換回路75bが設けられ、検出回路75a及びAD変換回路75bを介して第2のCPU回路71に入力されるようになっている。   Then, by the second driver circuit 73a and the second PMW control circuit 73b, for example, on and off timings of the first and second switching transistors 72a and 72b and the third and fourth switching transistors 72c and 72d. When the operations of the switching transistors 72a, 72b, 72c, 72d are controlled so as to be inverted, sinusoidal AC power can be output via the AC power lines 74a, 74b from the oscillation switch circuit 72. In this case, a detection circuit 75a and an AD conversion circuit 75b for detecting an oscillation voltage and an oscillation current are provided, and are input to the second CPU circuit 71 via the detection circuit 75a and the AD conversion circuit 75b.

交流電力ライン74a、74bは、直列もしくは並列またはこれらを組合わせた共振用LC回路を経て公知の構造を有する出力トランス76に接続され、出力トランス76からの出力端子76a、76bと、一対のターゲット41a、41bとの間をブスバー8によって接続している。この場合、電流検出センサ及び電圧検出トランスを有し、一対のターゲット41a、41bへの出力電圧、出力電流を検出する検出回路77a及びAD変換回路77bが設けられ、検出回路77a及びAD変換回路77bを介して第2のCPU回路71に入力されるようになっている。これにより、スパッタリング中、交流電源Eを介して一定の周波数で交互に極性をかえて一対のターゲット41a、41bに一定の電圧が印加できる。   The AC power lines 74a and 74b are connected to an output transformer 76 having a known structure via a resonance LC circuit in series, parallel, or a combination thereof, and output terminals 76a and 76b from the output transformer 76 and a pair of targets. The bus bars 8 are connected to 41a and 41b. In this case, a detection circuit 77a and an AD conversion circuit 77b are provided, which have a current detection sensor and a voltage detection transformer, and detect an output voltage and an output current to the pair of targets 41a and 41b. To be input to the second CPU circuit 71 via. This makes it possible to apply a constant voltage to the pair of targets 41a and 41b while changing the polarity alternately at a constant frequency via the AC power source E during sputtering.

また、検出回路77aからの出力は、出力電圧と出力電流との出力位相及び周波数を検出する検出回路78aに接続され、この検出回路78aに通信自在に接続された出力位相周波数制御回路78bを介して、出力電圧と出力電流の位相及び周波数が第2のCPU回路71に入力されるようになっている。これにより、第2のCPU回路71からの制御信号で第2のドライバー回路73aによって発振用スイッチ回路72の各スイッチングトランジスタ72a、72b、72c、73dのオン、オフを制御し、出力電圧と出力電流の位相が相互に略一致するように制御できる。   The output from the detection circuit 77a is connected to a detection circuit 78a that detects the output phase and frequency of the output voltage and output current, and through an output phase frequency control circuit 78b that is communicably connected to the detection circuit 78a. Thus, the phase and frequency of the output voltage and output current are input to the second CPU circuit 71. Thus, the on / off of each switching transistor 72a, 72b, 72c, 73d of the oscillation switch circuit 72 is controlled by the second driver circuit 73a by the control signal from the second CPU circuit 71, and the output voltage and output current are controlled. Can be controlled so that their phases substantially coincide with each other.

図3に示すように、ブスバー8は、板状の中央部81の両側に、ボルトB及びナットNからなる締結手段を介して取付部81、82をそれぞれ連結して構成されている。中央部81と各取付部82、83とは、導電率が高い同一の材料から構成することが好ましく、例えば、Cu、Au、Agやアルミ合金製である。   As shown in FIG. 3, the bus bar 8 is configured by connecting attachment portions 81 and 82 to both sides of a plate-like central portion 81 via fastening means including bolts B and nuts N, respectively. The central portion 81 and the mounting portions 82 and 83 are preferably made of the same material having high conductivity, and are made of, for example, Cu, Au, Ag, or an aluminum alloy.

この場合、中央部81の表面積や板厚は、この中央部81を構成する板材の材質やスパッタ装置1を用いて成膜処理する際のターゲット41a、41bへの投入電力、交流電力の周波数などを考慮して適宜設定される(例えば、中央部81の長さが約300mmで、幅が40mmのとき、その板厚は6mmに設定する)。他方、取付部82、83は、発振部7の出力トランス76の出力側に設けた出力端子76a、76b及び各ターゲット41a、41bへの取付けを考慮して、中央部81の板材より幅の広い板材を、断面視で略Z字状に屈曲させて構成され、その一端に設けた取付孔82a、83aを介してボルト等の締結手段(図示せず)で出力端子76a、76b及び各ターゲット41a、41bにそれぞれ固定される。   In this case, the surface area and the plate thickness of the central portion 81 are the material of the plate material constituting the central portion 81, the input power to the targets 41a and 41b when performing the film forming process using the sputtering apparatus 1, the frequency of the alternating current power, etc. (For example, when the length of the central portion 81 is about 300 mm and the width is 40 mm, the plate thickness is set to 6 mm). On the other hand, the attachment portions 82 and 83 are wider than the plate material of the central portion 81 in consideration of attachment to the output terminals 76a and 76b provided on the output side of the output transformer 76 of the oscillation portion 7 and the targets 41a and 41b. The plate material is configured to be bent in a substantially Z shape in cross-sectional view, and output terminals 76a and 76b and each target 41a are connected by fastening means (not shown) such as bolts through mounting holes 82a and 83a provided at one end thereof. , 41b.

また、中央部81の両端と、各取付部82、83の他端とには、それぞれ2個の貫通孔81a、82b、83bが形成され、各貫通孔81a、82b、83bを上下方向で一致させて中央部81の両端と各取付部82、83の一端とを相互に重ね合わせ、各貫通孔81a、82b、83bにボルトBの軸部を挿通させた後、その他端にナットNを締結して相互に連結される。この場合、一方の取付部82の貫通孔82bが長孔に形成され、出力端子76a、76bと各ターゲット41a、41bとの間の距離に応じてブスバー8自体の長さが調節できるように、つまり、ブスバー8を伸縮自在としている。これにより、発振部7とターゲット41a、41bとの間の間隔の誤差を吸収でき、ブスバー8の取付作業を容易にできる。   In addition, two through holes 81a, 82b, and 83b are formed at both ends of the central portion 81 and the other ends of the mounting portions 82 and 83, respectively, and the through holes 81a, 82b, and 83b are aligned in the vertical direction. Then, both ends of the central portion 81 and one ends of the mounting portions 82 and 83 are overlapped with each other, and the shaft portion of the bolt B is inserted into each of the through holes 81a, 82b, and 83b, and then a nut N is fastened to the other end. Are connected to each other. In this case, the through hole 82b of one attachment portion 82 is formed as a long hole, and the length of the bus bar 8 itself can be adjusted according to the distance between the output terminals 76a and 76b and the targets 41a and 41b. That is, the bus bar 8 can be extended and contracted. Thereby, the error of the space | interval between the oscillation part 7 and target 41a, 41b can be absorbed, and the attachment operation | work of the bus bar 8 can be made easy.

ブスバー8を、出力端子76a、76bと各ターゲット41a、41bとの間に取付けた場合に、支持板51を貫通する中央部81が露出するため、この中央部81を、セラミックスなどの公知の絶縁材料9によって覆っている。   When the bus bar 8 is mounted between the output terminals 76a and 76b and the targets 41a and 41b, the central portion 81 penetrating the support plate 51 is exposed. Covered by material 9.

これにより、交流電流が流れる部分の表面積が大きく、表皮効果の影響を受けずに大電流を流すことができる。その結果、公知の交流電源ケーブルを用いるのに比較して投入電力の損失を招き難くできると共に、ノイズの影響を受け難くでき、ひいては、交流電源Eから精度よく一対のターゲット41a、41bに電力投入できる。   Thereby, the surface area of the part through which the alternating current flows is large, and a large current can flow without being affected by the skin effect. As a result, compared to the use of a known AC power cable, it is possible to make it difficult to cause a loss of input power and to be less susceptible to noise. it can.

そして、基板搬送手段によって処理基板Sを一対のターゲット41a、41bと対向した位置に搬送し、ガス導入手段3を介して所定のスパッタガスを導入する。交流電源Eを介して一対のターゲット41a、41bに交流電圧を印加し、各ターゲット41a、41bをアノード電極、カソード電極に交互に切替え、アノード電極及びカソード電極間にグロー放電を生じさせてプラズマ雰囲気を形成する。これにより、プラズマ雰囲気中のイオンがカソード電極となった一方のターゲット41a、41bに向けて加速されて衝撃し、ターゲット原子が飛散されることで、処理基板S表面に薄膜が形成される。   Then, the processing substrate S is transferred to a position facing the pair of targets 41 a and 41 b by the substrate transfer means, and a predetermined sputtering gas is introduced through the gas introduction means 3. An AC voltage is applied to the pair of targets 41a and 41b via the AC power source E, and the targets 41a and 41b are alternately switched between the anode electrode and the cathode electrode, and a glow discharge is generated between the anode electrode and the cathode electrode to generate a plasma atmosphere. Form. As a result, ions in the plasma atmosphere are accelerated and bombarded toward one of the targets 41a and 41b that have become cathode electrodes, and target atoms are scattered to form a thin film on the surface of the processing substrate S.

この場合、磁石組立体5に、図示しないモータなどの駆動手段を設け、この駆動手段によって、ターゲット41a、41bの水平方向に沿った2箇所の位置の間で平行かつ等速で往復動させるようにし、ターゲット41a、41b全面に亘って均等に侵食領域が得られるようにしている。   In this case, the magnet assembly 5 is provided with driving means such as a motor (not shown), and is reciprocated between the two positions along the horizontal direction of the targets 41a and 41b in parallel and at a constant speed by the driving means. In addition, the erosion area is obtained uniformly over the entire surface of the targets 41a and 41b.

本実施の形態では、ブスバー8を、中央部81の両側に2個の取付部82、83を連結して構成したものについて説明したが、これに限定されるものではなく、一体に製作してもよい。また、導電率の高い材料製としたが、交流電力を投入する際に、交流電流が流れる部分だけをAuやAgなどの導電率の高い材料にすることで、つまり、ブスバー8の表面をAuやAgの薄膜で覆って構成し、コスト低減を図るようにしてもよい。   In the present embodiment, the bus bar 8 has been described in which two mounting portions 82 and 83 are connected to both sides of the central portion 81. However, the present invention is not limited to this, and the bus bar 8 is manufactured integrally. Also good. Moreover, although it was made of a material having high conductivity, when AC power is applied, only the portion where the AC current flows is made of a material having high conductivity such as Au or Ag, that is, the surface of the bus bar 8 is made Au. Alternatively, it may be covered with a thin film of Ag or Ag so as to reduce the cost.

また、本実施の形態では、真空チャンバ11内に一対のターゲット41a、41bを設けたものについて説明したが、これに限定されるものではなく、図4に示すように、真空チャンバ11a内に、複数のターゲット41a〜41fを並設し、相互に隣接するターゲット41a〜41f毎に、同一構造を有する交流電源E1〜E3を割り当て、各交流電源E1、E2、E3を介して複数の一対のターゲット41a〜41fに電力投入できるようにスパッタ装置を構成したものにも本発明は適用できる。この場合、異なる交流電源E1〜E3から各ターゲット41a〜41fに交流電力を投入することになるが、交流電源E1〜E3から精度よく各一対のターゲット41a〜41fにそれぞれ電力投入できる(各交流電源からの投入電力を略一致させることができる)ため、各ターゲット41a〜41fを均等にスパッタして良好な成膜が可能になる。   In the present embodiment, the case where the pair of targets 41a and 41b are provided in the vacuum chamber 11 has been described. However, the present invention is not limited to this, and as shown in FIG. A plurality of targets 41a to 41f are arranged side by side, and AC power sources E1 to E3 having the same structure are allocated to the targets 41a to 41f adjacent to each other, and a plurality of pairs of targets are connected via the AC power sources E1, E2, and E3. The present invention can also be applied to devices in which the sputtering apparatus is configured so that power can be input to 41a to 41f. In this case, AC power is supplied to each of the targets 41a to 41f from different AC power supplies E1 to E3, but each of the pair of targets 41a to 41f can be supplied with high accuracy from each of the AC power supplies E1 to E3 (each AC power supply). Therefore, the targets 41a to 41f can be sputtered evenly to achieve good film formation.

本発明のスパッタリング装置を概略的に説明する図。1 is a diagram schematically illustrating a sputtering apparatus of the present invention. 交流電源の構成を説明する図。The figure explaining the structure of alternating current power supply. ブスバーの構成を説明する分解斜視図。The disassembled perspective view explaining the structure of a bus bar. 本発明のスパッタリング装置の変形例を概略的に説明する図。The figure explaining roughly the modification of the sputtering device of this invention.

符号の説明Explanation of symbols

1 スパッタリング装置
11 真空チャンバ
41a、41b ターゲット
6 電力供給部
7 発振部
8 ブスバー
E 交流電源
DESCRIPTION OF SYMBOLS 1 Sputtering apparatus 11 Vacuum chamber 41a, 41b Target 6 Power supply part 7 Oscillation part
8 Busbar E AC power supply

Claims (6)

真空チャンバ内に設けた一対のターゲットと、この一対のターゲットに対し所定の周波数で交互に極性をかえて電圧を印加する交流電源とを備え、この交流電源を、電力の供給を可能とする電力供給部と、この電力供給部からの電力ラインに接続された発振用スイッチ回路を有する発振部とに分けて構成し、この発振部と各ターゲットとをブスバーによって連結したことを特徴とするスパッタリング装置。 A pair of targets provided in the vacuum chamber, and an alternating current power source for alternately applying a polarity to the pair of targets at a predetermined frequency and applying a voltage, the alternating current power source is capable of supplying power A sputtering apparatus comprising: a supply unit; and an oscillation unit having an oscillation switch circuit connected to a power line from the power supply unit, wherein the oscillation unit and each target are connected by a bus bar. . 前記ブスバーは、その表面をAuまたはAgの薄膜で覆ったものであることを特徴とする請求項1記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the bus bar has a surface covered with a thin film of Au or Ag. 前記ブスバーを伸縮自在としたことを特徴とする請求項1または請求項2記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein the bus bar is extendable. 前記発振部の筐体を真空チャンバの外壁に取付けたことを特徴とする請求項1乃至請求項3のいずれかに記載のスパッタリング装置。 The sputtering apparatus according to claim 1, wherein a housing of the oscillation unit is attached to an outer wall of a vacuum chamber. 前記真空チャンバ内に一対のターゲットを複数並設すると共に一対のターゲット毎に交流電源を設け、各ターゲットの前方に磁束をそれぞれ形成するように各ターゲットの後方に設けられ、交互に極性を変えて設けた複数個の磁石から構成される磁石組立体を配置したことを特徴とする請求項1乃至請求項4のいずれかに記載のスパッタリング装置。 A plurality of pairs of targets are arranged side by side in the vacuum chamber, and an AC power source is provided for each pair of targets, provided behind each target so as to form a magnetic flux in front of each target, and alternately changing the polarity. The sputtering apparatus according to claim 1, wherein a magnet assembly including a plurality of provided magnets is disposed. 前記磁束がターゲットに対して平行移動自在であるように各磁石組立体を一体に駆動する駆動手段を設けたことを特徴とする請求項5のいずれかに記載のスパッタリング装置。


The sputtering apparatus according to claim 5, further comprising a driving unit that integrally drives the magnet assemblies so that the magnetic flux is movable in parallel with respect to the target.


JP2006003445A 2006-01-11 2006-01-11 Sputtering equipment Active JP4320019B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006003445A JP4320019B2 (en) 2006-01-11 2006-01-11 Sputtering equipment
TW096101144A TWI390065B (en) 2006-01-11 2007-01-11 Sputtering device
PCT/JP2007/050201 WO2007080906A1 (en) 2006-01-11 2007-01-11 Sputtering apparatus
CN2007800022085A CN101370958B (en) 2006-01-11 2007-01-11 Sputtering apparatus
KR1020087016806A KR101018652B1 (en) 2006-01-11 2007-01-11 Sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003445A JP4320019B2 (en) 2006-01-11 2006-01-11 Sputtering equipment

Publications (3)

Publication Number Publication Date
JP2007186726A true JP2007186726A (en) 2007-07-26
JP2007186726A5 JP2007186726A5 (en) 2009-02-19
JP4320019B2 JP4320019B2 (en) 2009-08-26

Family

ID=38256311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003445A Active JP4320019B2 (en) 2006-01-11 2006-01-11 Sputtering equipment

Country Status (5)

Country Link
JP (1) JP4320019B2 (en)
KR (1) KR101018652B1 (en)
CN (1) CN101370958B (en)
TW (1) TWI390065B (en)
WO (1) WO2007080906A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284734A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Bipolar pulsed power supply and power supply comprising multiple bipolar pulsed power supplies connected in parallel
JP2009280890A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Sputtering method
JP2009284733A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Bipolar pulsed power supply, and power supply comprising multiple bipolar pulsed power supplies connected in parallel
WO2010001723A1 (en) * 2008-06-30 2010-01-07 株式会社アルバック Power source device
WO2010001724A1 (en) * 2008-06-30 2010-01-07 株式会社アルバック Power source device
KR20100100531A (en) * 2009-03-06 2010-09-15 위순임 Physical vapor deposition plasma reactor with multi source target assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878361B (en) * 2015-06-24 2017-05-31 安徽纯源镀膜科技有限公司 Magnetic-controlled sputtering coating equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210285A (en) * 1985-07-05 1987-01-19 Hitachi Ltd Plasma treatment device
JPH0668839A (en) * 1992-08-13 1994-03-11 Tokyo Electron Ltd High frequency feeding device in plasma device
JP3100279B2 (en) * 1994-01-24 2000-10-16 三菱重工業株式会社 High frequency power supply method to vacuum equipment
JP4780972B2 (en) * 2004-03-11 2011-09-28 株式会社アルバック Sputtering equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284734A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Bipolar pulsed power supply and power supply comprising multiple bipolar pulsed power supplies connected in parallel
JP2009280890A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Sputtering method
WO2009145093A1 (en) * 2008-05-26 2009-12-03 株式会社アルバック Sputtering method
JP2009284733A (en) * 2008-05-26 2009-12-03 Ulvac Japan Ltd Bipolar pulsed power supply, and power supply comprising multiple bipolar pulsed power supplies connected in parallel
US8404089B2 (en) 2008-05-26 2013-03-26 Ulvac, Inc. Sputtering method
WO2010001723A1 (en) * 2008-06-30 2010-01-07 株式会社アルバック Power source device
WO2010001724A1 (en) * 2008-06-30 2010-01-07 株式会社アルバック Power source device
JP2010007162A (en) * 2008-06-30 2010-01-14 Ulvac Japan Ltd Power supply unit
JP2010007161A (en) * 2008-06-30 2010-01-14 Ulvac Japan Ltd Electric power unit
US9210788B2 (en) 2008-06-30 2015-12-08 Ulvac, Inc. Power supply apparatus
KR20100100531A (en) * 2009-03-06 2010-09-15 위순임 Physical vapor deposition plasma reactor with multi source target assembly
KR101583667B1 (en) * 2009-03-06 2016-01-08 위순임 Physical vapor deposition plasma reactor with multi source target assembly

Also Published As

Publication number Publication date
TW200736406A (en) 2007-10-01
TWI390065B (en) 2013-03-21
KR101018652B1 (en) 2011-03-04
KR20080078054A (en) 2008-08-26
WO2007080906A1 (en) 2007-07-19
CN101370958A (en) 2009-02-18
JP4320019B2 (en) 2009-08-26
CN101370958B (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4320019B2 (en) Sputtering equipment
KR101250336B1 (en) Sputtering method
KR101181875B1 (en) Bipolar pulse power source and power source device formed by connecting a plurality of bipolar pulse power sources in parallel
JP4580781B2 (en) Sputtering method and apparatus
WO2010001723A1 (en) Power source device
JP2007186725A (en) Sputtering method and sputtering apparatus
JP5322234B2 (en) Sputtering method and sputtering apparatus
JP4707693B2 (en) Sputtering apparatus and sputtering method
JP4990521B2 (en) Magnetron sputtering electrode and sputtering apparatus using magnetron sputtering electrode
JP5500794B2 (en) Power supply
JP5322235B2 (en) Sputtering method
JP5903217B2 (en) Magnetron sputtering electrode and sputtering apparatus
JP2007186724A (en) Sputtering method and sputtering apparatus
TWI401334B (en) Sputtering apparatus and sputtering method
JP4889280B2 (en) Sputtering equipment
JPS63230873A (en) Sputtering device
JP2012111975A (en) Film deposition method and film deposition apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4320019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250