JP2007185746A - Part gripping mechanism - Google Patents

Part gripping mechanism Download PDF

Info

Publication number
JP2007185746A
JP2007185746A JP2006005968A JP2006005968A JP2007185746A JP 2007185746 A JP2007185746 A JP 2007185746A JP 2006005968 A JP2006005968 A JP 2006005968A JP 2006005968 A JP2006005968 A JP 2006005968A JP 2007185746 A JP2007185746 A JP 2007185746A
Authority
JP
Japan
Prior art keywords
component
claws
jig
holding
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005968A
Other languages
Japanese (ja)
Inventor
Momosuke Takaichi
桃介 高市
Nozomi Takahata
望 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006005968A priority Critical patent/JP2007185746A/en
Publication of JP2007185746A publication Critical patent/JP2007185746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a part gripping mechanism, using a multi-axis robot freely coping with various alterations in a part to be machined. <P>SOLUTION: This part gripping mechanism includes: a parallel hand 4 mounted on the multi-axis robot and having a pair of claws 11; and a part carrying tool 5 for carrying a part gripped by the paired claws 11 of the parallel hand 4. The claws 11 have pins 10 on the opposite surfaces, and the corner parts of the opposite surfaces are chamfered or machined to a curved surface. The part carrying tool 5 includes: a body part 5d gripped by the paired claws 11 of the parallel hand 4; and a holding part 5e holding a part. The side surface of the body part 5d is provided with a pair of gripping grooves 5a where the claws 11 are fitted, and holes 5c to which the pins 10 of the claws 11 are fitted are formed in the gripping grooves 5a. The holding part 5e is provided on the end face outside of the side surface of the body part 5d and has a magnet 5f for attracting the part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多軸ロボットを用いた部品把持機構に関する。   The present invention relates to a component gripping mechanism using a multi-axis robot.

低価格で高品質の工業部品を大量生産する場合、個々の部品専用の加工機を生産品種の数に応じて据えた、無人で自動の一貫加工ライン等を用いるのが一般的である。一貫加工ラインで異品種を加工する場合、多くのラインは全装置を停止して品種替え段取りを行なっている。また上記専用加工機の部品把持、位置決め、部品加工などは、主に直交座標系のオートハンドを用いた部品搬送装置から成立している。   When mass-producing low-priced, high-quality industrial parts, it is common to use unmanned and automated integrated processing lines with processing machines dedicated to individual parts in accordance with the number of production varieties. When processing different varieties in an integrated processing line, many lines stop all equipment and perform product change setup. In addition, the above-mentioned dedicated processing machine, such as component gripping, positioning, and component processing, is mainly realized by a component transport apparatus using an orthogonal coordinate system auto hand.

一方、有人組立作業現場では従来の一貫したベルトコンベア生産方式に代わって、分散したセル生産方式が導入され着実な成果を挙げている。   On the other hand, in the manned assembly work site, instead of the conventional consistent belt conveyor production method, a distributed cell production method has been introduced, and steady results have been achieved.

また、特許文献1にはこれらの生産現場で用いられる、作業空間を効率よく利用可能なロボット装置に関する開示がなされている。
特公平7−73781号公報
Patent Document 1 discloses a robot apparatus that can be used at these production sites and that can efficiently use a work space.
Japanese Patent Publication No. 7-73781

直交座標系の無人で自動の一貫加工ラインを複数ライン用意した多品種生産方式も存在するが、生産変動が起きた時の装置稼働率が低い、ライン占有空間の増大による空調設備の電力消費増加など、この場合改善すべき事項は多い。また、この直交座標系の無人で自動の一貫加工ラインの多品種対応は、専用一貫ラインであるが故、全ラインを停止しての大掛かりな品種替え段取りが必要で、多大な時間と労力を費やしてしまう。その主な原因は直交座標系のオートハンドが主要な装置要素となっていることにある。品種替え段取りに必須の、部品形状変化や加工要素の変更に装置を対応するためには、治工具ならびにオートハンドの交換、それに伴う数多いセンサ類の調整、場合によっては加工機や組立機ごと交換が生じてしまう必要があるからである。   There is also a multi-product production system that has multiple unattended and automated integrated processing lines in a Cartesian coordinate system, but the equipment operation rate is low when production fluctuations occur, and the power consumption of the air conditioning equipment increases due to an increase in the space occupied by the line In this case, there are many things that need to be improved. In addition, the unattended and automatic integrated machining line of this Cartesian coordinate system is a dedicated integrated line, so it is necessary to make a large-scale product change setup with all lines stopped, and a great deal of time and labor is required. To spend. The main reason is that the auto coordinate system hand is a major device element. In order to deal with equipment changes in parts shape and machining elements that are essential for product type change setup, jigs and auto-hands must be replaced, and many sensors must be adjusted accordingly. This is because it is necessary to occur.

また、セル生産方式においては、少子高齢化傾向や若者の理工系離れなど、将来の熟練技能者確保は厳しい。このため、部品加工の分野で多品種大量生産と低コストで効率の良い生産を両立させる、手作業加工の柔軟性と無人専用加工機の高効率性を両立した無人で自動多品種対応の加工機を設計する必要に迫られている。   In the cell production system, it is difficult to secure skilled workers in the future, such as the declining birthrate and aging population and the separation of young people from science and engineering. For this reason, unmanned and automatic multi-product processing that combines the flexibility of manual processing and the high efficiency of unmanned dedicated processing machines to achieve both high-mix mass production and low-cost and efficient production in the parts processing field. There is a need to design the machine.

そこで、本発明は、被加工部品の種々の変更に自在に対応できる多軸ロボットを用いた部品把持機構を提供することを目的とする。   Therefore, an object of the present invention is to provide a component gripping mechanism using a multi-axis robot that can freely cope with various changes of a workpiece.

上記目的を達成するため、本発明の部品把持機構は、多軸ロボットに装着される、一対の爪を備えた平行ハンドと、平行ハンドの一対の爪に把持される、部品を搬送するための冶具とを有する部品把持機構において、爪は、互いに対向する対向面にピンを有し、対向面の角部が面取りまたは曲面加工されており、冶具は、平行ハンドの一対の爪によって把持される本体部と、部品を保持する保持部とを有し、本体部の側面には、爪が嵌合する一対の把持用溝が形成され、かつ把持用溝内に爪のピンが嵌合する穴が形成されており、保持部は、本体部の側面以外の端面に設けられており、部品を吸着する磁石を有することを特徴とする。   In order to achieve the above object, the component gripping mechanism of the present invention is a parallel hand equipped with a pair of claws, which is mounted on a multi-axis robot, and a component gripped by a pair of claws of a parallel hand. In a component gripping mechanism having a jig, the claw has pins on opposing surfaces facing each other, the corners of the opposing surface are chamfered or curved, and the jig is gripped by a pair of claws of a parallel hand. A main body part and a holding part for holding a part are formed, and a pair of gripping grooves for fitting the claws are formed on the side surface of the main body part, and holes for fitting the claws pins are fitted in the gripping grooves. The holding portion is provided on an end surface other than the side surface of the main body portion, and has a magnet that attracts components.

本発明によれば、部品の搬送に応じて搬送用の冶具を取り替える等の簡単な作業で被加工部品の種々の変更に自在に対応できる。また、本発明をマシンセル生産方法に適用することで生産変動に即座に対応可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it can respond to the various change of a to-be-processed part freely by simple operations, such as changing the jig for conveyance according to conveyance of components. Further, by applying the present invention to a machine cell production method, it becomes possible to immediately cope with production fluctuations.

以下、棒状のローラを被加工部品とした例を用いて説明する。   Hereinafter, description will be given using an example in which a rod-shaped roller is a workpiece.

図1に、本発明に適用可能な多軸ロボットの一例の外観斜視図を示す。図2に平行ハンドの斜視図を示す。図3および図4に平行ハンドによって部品搬送冶具を把持した状態を示す。また、図5ないし図8に部品搬送冶具の側面図、平面図および斜視図を示す。図9および図10は平行ハンドのピンが部品搬送冶具の把持用溝の穴に嵌入される状況を示す断面図である。図11は、平行ハンドの三面図であり、表1は、図11に示す平行ハンドの各部の寸法を示す寸法表である。図12は平行ハンドの平面図であり、図13は平行ハンドが部品搬送冶具を把持した状態を示す透視平面図である。   FIG. 1 shows an external perspective view of an example of a multi-axis robot applicable to the present invention. FIG. 2 shows a perspective view of the parallel hand. 3 and 4 show a state in which the component conveying jig is held by the parallel hand. 5 to 8 show a side view, a plan view, and a perspective view of the component conveying jig. 9 and 10 are cross-sectional views showing a state in which the pins of the parallel hand are inserted into the holes of the holding grooves of the component conveying jig. FIG. 11 is a three-sided view of the parallel hand, and Table 1 is a dimension table showing dimensions of each part of the parallel hand shown in FIG. FIG. 12 is a plan view of the parallel hand, and FIG. 13 is a perspective plan view showing a state in which the parallel hand grips the component conveying jig.

Figure 2007185746
Figure 2007185746

平行ハンド4は、6軸の多軸ロボット1のフランジ1aに装着される。平行ハンド4は、多軸ロボット1に装着されることで図3に示すX、Y、Z方向のみならず、軸O周りに回転可能となる。平行ハンド4は、ピン10を備えた2本の爪11を有する。爪11はピン10が対向するように配置されている。これら2本の爪11は部品搬送冶具5を把持する際は互いに近接して閉じる方向に移動する。また、部品搬送冶具5の把持を解除する場合は、互いに遠のく方向、すなわち、開く方向に移動する。ピン10は爪11に形成された穴11aに嵌入されている。爪11はピン10が突出する側、すなわち、左右の爪11が対向する側が、部品搬送冶具5の把持用溝5aに挿入しやすいように面取りされている。   The parallel hand 4 is attached to the flange 1 a of the 6-axis multi-axis robot 1. By attaching the parallel hand 4 to the multi-axis robot 1, the parallel hand 4 can rotate around the axis O as well as the X, Y, and Z directions shown in FIG. 3. The parallel hand 4 has two claws 11 provided with pins 10. The nail | claw 11 is arrange | positioned so that the pin 10 may oppose. These two claws 11 move close to each other in the closing direction when gripping the component conveying jig 5. Further, when releasing the gripping of the component conveying jig 5, the parts are moved away from each other, that is, in the opening direction. The pin 10 is inserted into a hole 11 a formed in the claw 11. The claw 11 is chamfered so that the side where the pin 10 protrudes, that is, the side where the left and right claws 11 face each other can be easily inserted into the gripping groove 5 a of the component conveying jig 5.

部品搬送冶具5は、本体部5dと保持部5eとを有する。本体部5dの側面には2本の把持用溝5aと2本の第2の溝5bとが形成されている。把持用溝5aは平行ハンド4の爪11が嵌り込むための溝であり、本体部5dの両側に1本ずつ、合計2本形成されている。把持用溝5a内には、爪11のピン10が嵌り込む穴5cが形成されている。第2の溝5bは把持用溝5aに平行に形成されている。第2の溝5bは、平行ハンド4の2本の爪11が把持用溝5aに挿入されることで把持された部品搬送冶具5を、置き台3に形成された切り欠き9(図25参照)に挿入しておくために用いられる。本体部5dの上面には、台8に形成された位置決めピン7が嵌り込む位置決め穴5hが2つ形成されている。保持部5eはその4隅に穴5gが形成されており、その底部に磁石5fが設けられている。4つの磁石5fは、被加工物であるローラ6を吸着して搬送するためのものである。   The component conveying jig 5 has a main body part 5d and a holding part 5e. Two gripping grooves 5a and two second grooves 5b are formed on the side surface of the main body 5d. The holding grooves 5a are grooves into which the claws 11 of the parallel hand 4 are fitted, and two grooves are formed on each side of the main body 5d. A hole 5c into which the pin 10 of the claw 11 is fitted is formed in the gripping groove 5a. The second groove 5b is formed in parallel with the gripping groove 5a. The second groove 5b has a notch 9 (see FIG. 25) formed in the table 3 for the component conveying jig 5 gripped by inserting the two claws 11 of the parallel hand 4 into the gripping groove 5a. ) To be inserted in Two positioning holes 5h into which positioning pins 7 formed on the base 8 are fitted are formed on the upper surface of the main body 5d. The holding portion 5e has holes 5g formed at four corners thereof, and a magnet 5f provided at the bottom thereof. The four magnets 5f are for attracting and transporting the roller 6 which is a workpiece.

図14に被加工物であるローラ6を保持した状態の部品搬送冶具5を示す。上述したように穴5gの底部には磁石5fが設けられているのでローラ6は落下することなく保持部5eに吊り下げられた状態で保持される。   FIG. 14 shows the component conveying jig 5 in a state where a roller 6 as a workpiece is held. As described above, since the magnet 5f is provided at the bottom of the hole 5g, the roller 6 is held in a suspended state by the holding portion 5e without dropping.

図15は部品搬送治具5を並べる台8に被加工物6と部品搬送治具5を組合せたものを倒立させパレタイジングした状態を示す図である。   FIG. 15 is a diagram illustrating a state where the combination of the workpiece 6 and the component conveying jig 5 is inverted and palletized on the table 8 on which the component conveying jigs 5 are arranged.

台8には部品搬送治具5の位置決め穴5hにあわせて位置決めピン7が形成されている。部品搬送治具5の位置決め穴5hへの台8の位置決めピン7の挿入は、手指ならびにロボットハンドで容易に可能である。ただし、多軸ロボット1が画像認識装置を装備しておれば台8における位置決めは大雑把でも可能であり、その場合位置決めピン7等は必須ではない。   Positioning pins 7 are formed on the base 8 in accordance with the positioning holes 5 h of the component conveying jig 5. The positioning pins 7 of the table 8 can be easily inserted into the positioning holes 5h of the component conveying jig 5 with fingers or a robot hand. However, if the multi-axis robot 1 is equipped with an image recognition device, positioning on the platform 8 can be performed roughly, and in that case, the positioning pins 7 and the like are not essential.

なお、図15の状態にパレタイズするのは、手作業でもよいが、ロボットによるものでもよい。すなわち、実験用マシンセルに縦置き通函とデパレタイジング用ロボット、ならびにロボットオプションの視覚装置を付加すれば、容易に無人で自動的にパレタイズならびにデパレタイズ可能である。その手法はロボットの取扱説明書に詳細説明されている(1996年12月(株)デンソーFA事業部 発行、小型垂直多関節デンソーロボット MODEL VS−C SERIES 、取扱説明書B(プログラミング)頁8−309以降 および頁9−1以降)。
(実施例)
本発明の実施例を電子写真用機能部品の一つである帯電ローラについて、その表層用塗料を浸漬塗布する工程を例に掲げ説明する。なお本実施例は発明の対象とする被加工部品等を限定するものではない。
The palletizing to the state shown in FIG. 15 may be performed manually or by a robot. That is, if a vertical placement and depalletizing robot and a robot optional visual device are added to the experimental machine cell, it can be easily and automatically palletized and depalletized. The method is described in detail in the instruction manual of the robot (December 1996, published by Denso FA Division, small vertical articulated DENSO robot MODEL VS-C SERIES, instruction manual B (programming) page 8- 309 and later and pages 9-1 and later).
(Example)
An embodiment of the present invention will be described by taking as an example the step of dip-coating the surface layer coating material on a charging roller which is one of functional parts for electrophotography. In addition, a present Example does not limit the workpiece etc. which are the object of invention.

部品搬送治具5の材質は本体部5dがPOM材、保持部5eは主にアルミニウムである。部品搬送治具5の上面には部品搬送治具5を並べる台8における位置決め用穴5hを2つ加工形成した。   As for the material of the component conveying jig 5, the main body 5d is a POM material, and the holding part 5e is mainly aluminum. Two positioning holes 5h in the table 8 on which the component conveying jigs 5 are arranged are formed on the upper surface of the component conveying jig 5.

爪11の内側の対向面には面取り2mmを施し、部品搬送治具5の溝の角を糸面取りした。爪11の面取り加工を大きくした理由は、製作数が爪は一対で済むのに対し治具は数十個必要となるので、加工コストを抑えるためである。爪11内側に面取り2mmを設けることで、ロボットティーチィングの垂直方向の位置決め精度は±1mm程度に粗く済ませることができ、ティーチィング作業負荷が激減できた。   The chamfer 11 was chamfered 2 mm on the inner surface of the claw 11, and the corner of the groove of the component conveying jig 5 was chamfered. The reason why the chamfering process of the claw 11 is increased is to reduce the machining cost because the number of manufactured claw is only one pair, but dozens of jigs are required. By providing 2 mm chamfering on the inside of the claw 11, the vertical positioning accuracy of the robot teaching can be roughly reduced to about ± 1 mm, and the teaching work load can be drastically reduced.

次に塗布マシンセル実験用の部品作成手順を説明する。   Next, a part creation procedure for a coating machine cell experiment will be described.

用紙サイズA4帯電ローラ用に外径φ6mm長さ252mmのSUM材の棒と、用紙サイズA3帯電ローラ用に外径φ6mm長さ355mmのSUM材の棒、以上2種類の棒を用意し、ローラ用芯金とした。次にエピクロルヒドリンゴム、軽質炭酸カルシウム、可塑剤などを主成分にした原料ゴム材料を適量配合した後、45℃に調節した密閉型ミキサーにて10分間混練して、原料コンパウンドを調整した。このコンパウンドに加硫剤としての硫黄、加硫促進剤としてのDM、TSを加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、上記2種類の芯金の周囲に外径Φ15のローラ状になるように押出し成型機にて作製し、加熱蒸気加硫した後、外径がφ12になるように研磨加工を行い、弾性ローラを得た。また芯金はローラ左右それぞれ10mm露出するよう突っ切り加工した。   SUM material rod with outer diameter φ6mm length 252mm for paper size A4 charging roller and SUM material rod with outer diameter φ6mm length 355mm for paper size A3 charging roller A cored bar was used. Next, an appropriate amount of a raw rubber material mainly composed of epichlorohydrin rubber, light calcium carbonate, plasticizer, and the like was blended, and then kneaded for 10 minutes in a closed mixer adjusted to 45 ° C. to prepare a raw material compound. To this compound, sulfur as a vulcanizing agent, DM and TS as a vulcanization accelerator were added, and kneaded for 10 minutes in a two-roll machine cooled to 20 ° C. The obtained compound is produced by an extrusion molding machine so as to form a roller with an outer diameter of Φ15 around the above two types of metal cores, heated and steam vulcanized, and then polished so that the outer diameter becomes φ12. The elastic roller was obtained. The core bar was cut off so that the left and right sides of the roller were exposed 10 mm.

部品搬送治具5の70mm四角面には上記芯金より直径で0.1mm大きな穴5gが形成されており、穴5gの底部には磁石5fが埋め込まれている。穴5gにローラ6をA3、A4各用紙サイズの種類毎に4本ずつ差し込んで被加工物と部品搬送治具5を組合せた。部品搬送治具5の穴5gの底部に埋め込まれた磁石5fの作用で芯金のSUM鋼材が固定されているため、ローラ6を吊り下げても部品搬送治具5からローラ6は落下しない。また穴5gがローラ6の芯金よりも直径で0.1mm大きいため、容易に脱着可能である。なお図14ではローラ6の先端に浸漬塗布用のマスキングキャップ30が装着されている状態を示している。以上の手順で、実験用マシンセルで浸漬塗工する為の帯電ローラと治具のセットを2種類、それぞれ8セット作成した。   A hole 5g that is 0.1 mm larger in diameter than the core metal is formed in the 70 mm square surface of the component conveying jig 5, and a magnet 5f is embedded in the bottom of the hole 5g. Four rollers 6 were inserted into the holes 5g for each of the A3 and A4 paper sizes, and the workpiece and the component conveying jig 5 were combined. Since the SUM steel material of the core metal is fixed by the action of the magnet 5f embedded in the bottom of the hole 5g of the component conveying jig 5, the roller 6 does not fall from the component conveying jig 5 even when the roller 6 is suspended. Further, since the hole 5g is 0.1 mm larger in diameter than the core metal of the roller 6, it can be easily detached. FIG. 14 shows a state in which a masking cap 30 for dip coating is attached to the tip of the roller 6. According to the above procedure, two sets of charging rollers and jigs for dip coating using an experimental machine cell were prepared, each having 8 sets.

次に、塗布マシンセルの概念図を図16に示す。このセルは主に単軸スライダ2、三方チャック22、三方チャック用爪23、そして塗布ポット31(図 参照)から成立している。単軸スライダ2に装着される三方チャック22は、図17に示すように三方チャック用爪23によって部品搬送治具5の本体部5dを掴む。図18にローラ6を保持した部品搬送治具5が三方チャック22に把持された状態の斜視図を示す。なお、図示していないが、本塗布マシンセルは、他に塗工室カバー、HEPAフィルタ、溶剤換気装置、自動扉等が附帯設備として付随している。塗布ポット31は本実験用に必要最低限度の道具建てであって、生産装置で使用する場合は塗料循環ポンプ、オーバフロー液受けタンク、異物除去フィルター等の循環システムを準備することになる。   Next, a conceptual diagram of the coating machine cell is shown in FIG. This cell is mainly composed of a single-axis slider 2, a three-way chuck 22, a three-way chuck claw 23, and a coating pot 31 (see the figure). As shown in FIG. 17, the three-way chuck 22 mounted on the single-axis slider 2 grips the main body 5 d of the component conveying jig 5 by the three-way chuck claw 23. FIG. 18 is a perspective view showing a state in which the component conveying jig 5 holding the roller 6 is held by the three-way chuck 22. Although not shown, this coating machine cell is additionally provided with a coating chamber cover, a HEPA filter, a solvent ventilator, an automatic door, etc. as ancillary equipment. The application pot 31 is built with the minimum necessary tools for this experiment, and when used in a production apparatus, a circulation system such as a paint circulation pump, an overflow liquid receiving tank, and a foreign matter removal filter is prepared.

浸漬塗工に用いる表面層用塗料の調製は以下の手法で実施した。ラクトン変性アクリルポリオール、導電性酸化錫、メチルイソブチルケトンを配合した混合液をサンドミルで分散させた後、ヘキサメチレンジイソシアネートのブタノンオキシムブロック体を添加、溶解し表面層用塗料を調製した。   The surface layer coating material used for dip coating was prepared by the following method. After a mixed liquid containing lactone-modified acrylic polyol, conductive tin oxide, and methyl isobutyl ketone was dispersed with a sand mill, a butanone oxime block of hexamethylene diisocyanate was added and dissolved to prepare a coating for the surface layer.

得られた塗料を用いて最初にA4用紙サイズ用帯電ローラの浸漬塗布をし、次に段取り替え作業の後A3用紙サイズ用帯電ローラの浸漬塗布を行なった。以下実験用マシンセルによる塗布作業の様子を図19に従い説明する。   First, the A4 paper size charging roller was dip-coated using the obtained paint, and then the A3 paper size charging roller was dip-coated after the setup change operation. Hereinafter, the state of the application work by the experimental machine cell will be described with reference to FIG.

多軸ロボット1は予め必要な動作をティーチングされていて、無人稼動が可能になっている。ロボット1は最初にローラ6が取り付けられた部品搬送治具5を平行ハンド4と左右の爪でクランプし、被加工物6を取り置き台8から取り上げる(図19(a))。   The multi-axis robot 1 is taught in advance for necessary operations, and can be operated unattended. The robot 1 first clamps the component conveying jig 5 to which the roller 6 is attached with the parallel hand 4 and the left and right claws, and picks up the workpiece 6 from the holding table 8 (FIG. 19A).

その後塗布マシンセルの単軸スライダ2まで被加工物6を移動させる(図19(b))。移動の途中は各軸を同時に駆動させ、被加工物であるローラ6を天地逆転した後、部品搬送治具5ごと塗布マシンセルに引き渡す。すなわち、図20に示すように台8上に配列された部品搬送治具5を多軸ロボット1の平行ハンド4で掴み取る(図21)。次いで、台8から塗布マシンセルの単軸スライダ2へと移動させる最中に、平行ハンド4を軸O周りに回転させることで(図22)鉛直上方に向いていたローラ6を天地逆転させて鉛直下方に向ける(図23)。   Thereafter, the workpiece 6 is moved to the uniaxial slider 2 of the coating machine cell (FIG. 19B). During the movement, the respective axes are driven simultaneously, and the roller 6 as the workpiece is turned upside down, and then delivered together with the component conveying jig 5 to the coating machine cell. That is, as shown in FIG. 20, the component conveying jigs 5 arranged on the table 8 are grasped by the parallel hand 4 of the multi-axis robot 1 (FIG. 21). Next, during the movement from the table 8 to the uniaxial slider 2 of the coating machine cell, the parallel hand 4 is rotated around the axis O (FIG. 22), and the roller 6 that has been directed vertically upward is reversed upside down. Turn downward (FIG. 23).

次に、ローラ6を吊り下げた状態の部品搬送治具5を単軸スライダ2の三方チャック22に受け渡す。部品搬送治具5を受け取った単軸スライダ2は三方チャック22を下降させることでローラ6を塗布ポット31内に向けて所定の速度で下降し、表面層用塗料の浸漬塗布を行う(図24)。   Next, the component conveying jig 5 with the roller 6 suspended is delivered to the three-way chuck 22 of the single-axis slider 2. The single-axis slider 2 that has received the component conveying jig 5 descends the three-way chuck 22 to lower the roller 6 into the coating pot 31 at a predetermined speed, and dip-coating the surface layer paint (FIG. 24). ).

表面層用塗料の浸漬塗布が終了すると、再び多軸ロボット1が塗工済のローラ6を部品搬送治具5ごと塗工マシンセルから引取る。引取り後、多軸ロボット1は部品搬送治具5を置き台3の切り欠き9に嵌め込んでローラ6を乾燥させる(図19(c)および図25)。部品搬送治具5は、第2の溝5bが切り欠き9に挿入されることで置き台3によって保持されることとなる。置き台3は塗布後の塗工面が生乾き程度に塗膜が安定するまでの乾燥時間を部品に与える、所謂指触乾燥用の置き台である。置き台3は六軸ロボット腕の動作軌跡に沿ってアルミ板を曲面加工した。また、図示しないが切り欠き9には治具の挿入を検知する近接センサを設けた。なお、置き台3は、マシンセル隣のロボットセルに部品を渡すための取り置き場所等に用いることもできる。その場合、切り欠き9は囲まれた形状ではなく、平行したレール形状が好ましい。   When the dip coating of the surface layer coating is completed, the multi-axis robot 1 again takes the coated roller 6 together with the component conveying jig 5 from the coating machine cell. After the take-up, the multi-axis robot 1 fits the component conveying jig 5 into the notch 9 of the table 3 and dries the roller 6 (FIGS. 19C and 25). The component conveying jig 5 is held by the table 3 by inserting the second groove 5 b into the notch 9. The cradle 3 is a so-called finger-drying cradle that gives a part with a drying time until the coating surface is stabilized to the extent that the coated surface after application is dry. The table 3 is a curved surface of an aluminum plate along the movement trajectory of the six-axis robot arm. Although not shown, the notch 9 is provided with a proximity sensor that detects insertion of a jig. The placing table 3 can also be used as a place for placing parts to the robot cell adjacent to the machine cell. In that case, the notch 9 is preferably a parallel rail shape rather than an enclosed shape.

次に乾燥用の置き台3にて塗布後の塗膜が安定するまで、指触乾燥時間の経過を待つ。乾燥時間を待つ間に多軸ロボット1は上記の塗工作業動作を、複数個設けた切り欠き9を用いて続けて繰返した。指触乾燥終了後、多軸ロボット1はローラ6を部品搬送治具5ごと置き台3から引取り、被加工物6を天地逆転した後、塗工済品置き場に搬送して静置させ、一連の動作を完了させた。   Next, it waits for passage of finger touch drying time until the coating film after application | coating is stabilized in the stand 3 for drying. While waiting for the drying time, the multi-axis robot 1 repeated the above-described coating operation using a plurality of cutouts 9. After the touch drying is completed, the multi-axis robot 1 takes the roller 6 together with the component conveying jig 5 from the placing table 3, reverses the workpiece 6 upside down, and then conveys the workpiece 6 to the coated product placing place and leaves it to stand. A series of operations was completed.

なお、本実施例に用いたマシンセル一連の動作には、ロボットコントローラRC3((株)デンソー製)、PLC(三菱電機(株)製)、コントローラEZMC36(オリエンタルモータ(株)製)、近接センサを用いた。また、これらを制御するロボットプログラムとシーケンスラダープログラムによって全自動で行なった。なお、本実施例で用いた各構成の仕様については表2にまとめた。   In addition, for a series of operations of the machine cell used in this example, robot controller RC3 (manufactured by Denso Corporation), PLC (manufactured by Mitsubishi Electric Corporation), controller EZMC36 (manufactured by Oriental Motor Co., Ltd.), and proximity sensor are used. Using. The robot program and sequence ladder program to control these were fully automatic. The specifications of each component used in this example are summarized in Table 2.

Figure 2007185746
Figure 2007185746

本実施例ではA4用紙サイズとA3用紙サイズの帯電ローラと部品搬送治具のセットをそれぞれ8セットづつ、塗布昇降タクトタイム60秒の条件で多軸ロボットに連続動作させ、置き台3の切り欠き9を3箇所使用した。   In this embodiment, eight sets of A4 paper size and A3 paper size charging rollers and parts conveying jigs are set to be continuously operated by the multi-axis robot under the condition of a coating tact time of 60 seconds. 9 was used in three places.

塗工に間する動作は、無人で円滑に実施された。また部品の段取替え作業は、芯金の外径が共通であるため部品搬送治具を共通使用できたので、結果として長さ違いに対応させるための段取りは多軸ロボットおよび単軸スライダのプログラム変更のみで極めて容易に済んだ。プログラム変更は、予め用意したそれぞれの部品に対応したプログラムの入替えを行い、所要時間はPCLプログラム操作用パソコンの準備を含めておよそ30分だった。また、段取替え要員は一名だった。   The operation during coating was carried out smoothly and unattended. In addition, the part changeover work has the same outer diameter of the core bar, so the part conveyance jig can be used in common. As a result, the setup to accommodate different lengths is a program for multi-axis robots and single-axis sliders. It was very easy with only changes. The program was changed by replacing the program corresponding to each part prepared in advance, and the required time was about 30 minutes including the preparation of the PCL program operation personal computer. In addition, the number of setup change personnel was one.

以上、無人自動部品加工の例をローラ浸漬塗布工程について説明したが、図中の塗工マシンセル2を他の加工マシンセル、例えば研削マシンセルに置き換えても良いし、被加工物6を他の部品に持ち替えて異種の加工が可能である。   As mentioned above, although the example of unmanned automatic component processing was demonstrated about the roller immersion coating process, you may replace the coating machine cell 2 in a figure with another processing machine cell, for example, a grinding machine cell, and the workpiece 6 is replaced with other components. It is possible to carry out different types of processing.

上記塗布加工の例において特筆すべきことは、以下の点である。すなわち、ローラの長さ、径、塗工する塗料の種類が他の品種に変動した場合でも、治具の取り替えにより多品種対応が即座に可能なことである。また、多軸ロボット1の動作ティーチングプログラムの切り換え、異品種の塗工マシンセルの用意、被加工物の取り置場所等を必要数用意することで多品種対応が即座に可能なことである。また、異種の被加工物が混在する場合でも、ICタグ等の部品認識方法とティーチングプログラムを併用すれば、必要な加工マシンセルへの被加工物の受渡し動作が無人で自動的に可能である。これは熟練作業者による有人セルと同様に、マシン・ロボットセルが機能できることを示す。
(比較例)
図26は従来の直交座標系オートハンドを用いた、電子写真用帯電ローラ表層塗布パイロットプラントの一例である。
What should be noted in the example of the coating process is as follows. In other words, even when the length, diameter, and type of paint to be applied are changed to other types, it is possible to immediately handle various types by replacing the jig. In addition, it is possible to respond to various types of products immediately by switching the operation teaching program of the multi-axis robot 1, preparing different types of coating machine cells, and preparing a necessary number of places for placing workpieces. Further, even when different types of workpieces are mixed, if a part recognition method such as an IC tag and a teaching program are used in combination, the workpiece can be automatically transferred to a required machining machine cell without an unmanned operation. This indicates that the machine / robot cell can function as well as the manned cell by the skilled worker.
(Comparative example)
FIG. 26 shows an example of an electrophotographic charging roller surface coating pilot plant using a conventional orthogonal coordinate system auto hand.

被塗布部品であるローラは実施例と同様に作成される。但し部品搬送用治具は本比較例では用いられず、A4用紙サイズ用部品およびA3用紙サイズ用部品はそれぞれ専用長さのフィンガで搬送される。   The roller as the part to be coated is prepared in the same manner as in the example. However, the component conveying jig is not used in this comparative example, and the A4 paper size component and the A3 paper size component are each conveyed by a finger having a special length.

以下、部品加工塗布手順と段取替え手順を図26および図27を用いて説明する。なお、本発明を適用した電子写真用帯電ローラ表層塗布パイロットプラントの一例を図28に示しておく。   Hereinafter, the component processing application procedure and the setup change procedure will be described with reference to FIGS. 26 and 27. FIG. An example of an electrophotographic charging roller surface coating pilot plant to which the present invention is applied is shown in FIG.

直交座標系の搬送は被塗布物のローラ部品(以下部品99と呼ぶ)をY軸方向に寝かせて行なうため、部品99は横置き型通函101からZ軸方向に自動デパレタイズされる。比較例のフィンガ102は部品99の長さにより交換が必要で、その際取置き位置確認センサ105の調整が必要となる。   Since the conveyance of the Cartesian coordinate system is performed by laying a roller part (hereinafter referred to as a part 99) of an object to be coated in the Y-axis direction, the part 99 is automatically depalletized in the Z-axis direction from the horizontally placed box 101. The finger 102 of the comparative example needs to be replaced depending on the length of the component 99, and in that case, the reserve position confirmation sensor 105 needs to be adjusted.

その後部品99はオートハンド100でX軸方向に搬送され、投入ストッカ104(取置き台)の所定の場所へZ軸方向に下降して置かれる。投入ストッカ104も部品99の長さによって両持ち受けチャックの幅調整、ならびにセンサ103の位置調整が必要となる。   Thereafter, the component 99 is conveyed in the X-axis direction by the automatic hand 100, and is lowered and placed in the Z-axis direction at a predetermined location on the loading stocker 104 (reservation table). The input stocker 104 also needs to adjust the width of the double-sided chuck and the position of the sensor 103 depending on the length of the component 99.

塗布機110に部品99を投入する際はフィンガ102をX軸方向からZ軸方向へ90度反転させる。ここで部品99の長さ違いに対応するべく段取り調整が必要になる。塗布動作終了後、塗布済部品は乾燥ストッカ前までX軸方向(図では紙面の都合でY軸方向)に移動される。次に部品は反転機で図26に示すように乾燥ストッカ200へ置かれ、最後に自動でパレタイズされる。部品長さ違い対応段取り調整は、投入ストッカの場合と同様に行なう。なお、図26では説明紙面の都合で塗布ポット部分から180°方向が変わっているが、実際のプラントは一列にレイアウトされる。   When the component 99 is put into the coating machine 110, the finger 102 is inverted 90 degrees from the X-axis direction to the Z-axis direction. Here, it is necessary to adjust the setup to cope with the difference in length of the component 99. After the coating operation is completed, the coated parts are moved in the X-axis direction (in the drawing, the Y-axis direction for convenience of paper) until the drying stocker. Next, the parts are placed in a drying stocker 200 as shown in FIG. 26 by a reversing machine, and finally automatically palletized. The setup adjustment for different parts length is performed in the same way as in the case of the input stocker. In FIG. 26, the direction of 180 ° from the coating pot portion is changed for convenience of explanation, but the actual plants are laid out in a line.

部品の長さ違いの段取替え作業に費やす時間は、通常の直交座標系オートハンドを用いた専用プラントの場合、一作業シフトを使って実施され、およそ8時間を要する。段取替え要員はフィンガ交換やセンサ調整等、一名では物理的に無理があり、最低二名必要である。   In the case of a dedicated plant using a normal Cartesian coordinate system auto hand, the time spent for the setup change work for different parts lengths is performed using one work shift, and it takes about 8 hours. The number of setup changers, such as finger replacement and sensor adjustment, is physically unreasonable and requires at least two people.

以上、表3にローラ長さをA4用紙サイズ用電子写真部品からA3用部品に段取り替えした際の、実施例と比較例の違いを比較表にて示す。   Table 3 shows a comparison table showing the difference between the example and the comparative example when the roller length is changed from the A4 paper size electrophotographic part to the A3 part.

Figure 2007185746
Figure 2007185746

(生産ラインの比較)
図29は従来技術の一貫生産ライン概念図であり、図30は本発明を応用することにより可能となる新たなマシンセル生産ラインの概念図である。
(Production line comparison)
FIG. 29 is a conceptual diagram of an integrated production line of the prior art, and FIG. 30 is a conceptual diagram of a new machine cell production line that is made possible by applying the present invention.

図で明らかなように、一貫生産ラインは各工程が直結されておりミニマムコスト生産に有利であるが、加工方法および被加工物の変更等、生産変動対応の装置段取りについては時間とコストの面で不利である。また、各工程が故障し、ライン停止が発生すると直結であるが故、全ラインが稼動停止してしまう。   As can be seen in the figure, the integrated production line is directly connected to each process, which is advantageous for minimum cost production. However, time and cost are required to set up equipment that can handle production fluctuations, such as changing the machining method and workpiece. It is disadvantageous. In addition, when each process fails and a line stop occurs, all the lines stop operating because they are directly connected.

一方、マシンセルラインは、省スペース性に難があるものの、加工セル他を自在に、しかも無限に組み合わせ可能なので、加工方法および被加工物の変更等、生産変動に即座に対応可能である。また図30では「加工3」「フランジ付2」工程が図29に比べて増殖された一例を示している。このようにマシンセルラインが高度に発達・増殖して行くと、個々のセルの故障時に他のセルで相互補完できるため、理論的に生産ライン停止は有り得ない。更に、高度にマシンセルが発達した時点では一貫生産ラインの概念は消失し、製造ラインは一つの複合した生産工場へと進化する。この未来的な工場では、品種の数だけ一貫生産ラインを用意する必要は無く、究極の生産変動対応型生産工場が実現できる。また従来の専用自動機を複数ライン並べて平行生産する多品種生産方式に比べ、機器の稼働率向上による省エネルギ、ライン占有空間の減少による空調設備の省エネルギ化による二酸化炭素排出量削減も図ることができる。   On the other hand, although the machine cell line is difficult to save space, since the processing cells and the like can be freely combined and infinitely combined, it is possible to immediately respond to production fluctuations such as changes in processing methods and workpieces. FIG. 30 shows an example in which the “processing 3” and “flanged 2” processes are expanded as compared with FIG. When machine cell lines are developed and proliferated in this way, production lines can not be stopped theoretically because other cells can complement each other when individual cells fail. Furthermore, the concept of an integrated production line disappears at the time when machine cells are highly developed, and the production line evolves into a single complex production plant. In this futuristic factory, it is not necessary to prepare as many integrated production lines as the number of varieties, and the ultimate production factory that can cope with production fluctuations can be realized. Compared to the conventional multi-variety production method in which multiple dedicated automatic machines are lined up in parallel, energy savings will be achieved by improving the operating rate of the equipment, and CO2 emissions will be reduced by reducing energy consumption of the air conditioning equipment by reducing the line occupation space. Can do.

本発明に適用可能な多軸ロボットの一例の外観斜視図である。1 is an external perspective view of an example of a multi-axis robot applicable to the present invention. 本発明の平行ハンドの一例の斜視図である。It is a perspective view of an example of the parallel hand of the present invention. 平行ハンドによる部品搬送冶具の把持を説明するための図である。It is a figure for demonstrating holding | grip of the components conveyance jig by a parallel hand. 平行ハンドにより部品搬送冶具を把持した状態を説明する図である。It is a figure explaining the state which hold | gripped the component conveyance jig with the parallel hand. 部品搬送冶具の側面図である。It is a side view of a component conveyance jig. 部品搬送冶具の側面図である。It is a side view of a component conveyance jig. 部品搬送冶具の平面図である。It is a top view of a component conveyance jig. 部品搬送冶具の斜視図である。It is a perspective view of a component conveyance jig. 平行ハンドのピンが部品搬送冶具の把持用溝の穴に嵌入される状況を示す断面図である。It is sectional drawing which shows the condition where the pin of a parallel hand is inserted in the hole of the holding groove | channel of a component conveyance jig. 平行ハンドのピンが部品搬送冶具の把持用溝の穴に嵌入される状況を示す断面図である。It is sectional drawing which shows the condition where the pin of a parallel hand is inserted in the hole of the holding groove | channel of a component conveyance jig. 平行ハンドの三面図である。It is a three-sided view of a parallel hand. 平行ハンドの平面図である。It is a top view of a parallel hand. 平行ハンドが部品搬送冶具を把持した状態を示す透視平面図である。It is a perspective top view which shows the state which the parallel hand hold | gripped the component conveyance jig. 被加工物を保持した部品搬送冶具の斜視図である。It is a perspective view of the component conveyance jig holding the workpiece. 被加工物を保持した部品搬送冶具がパレタイズされた状態を示す図である。It is a figure which shows the state by which the component conveyance jig holding the workpiece was palletized. 塗布マシンセルの概念図である。It is a conceptual diagram of a coating machine cell. 部品搬送治具を把持するための三方チャック用爪の斜視図である。It is a perspective view of a claw for a three-way chuck for gripping a component conveying jig. 被加工物を保持した部品搬送治具が三方チャックに把持された状態を示す斜視図である。It is a perspective view which shows the state by which the components conveyance jig | tool holding the to-be-processed object was hold | gripped by the three-way chuck. 実験用マシンセルによる塗布作業の様子を示す図である。It is a figure which shows the mode of the application | coating operation | work by the experimental machine cell. 台に配列された被加工物を保持した部品搬送冶具と、平行ハンドを装着した多軸ロボットとを示す図である。It is a figure which shows the component conveyance jig holding the workpiece arranged on the stand, and the multi-axis robot equipped with the parallel hand. 台に配列された被加工物を保持した部品搬送冶具を平行ハンドにより掴み取った多軸ロボットを示す図である。It is a figure which shows the multi-axis robot which grabbed the component conveyance jig holding the workpiece arranged on the stand with a parallel hand. 多軸ロボットが、移動中に、部品搬送治具を天地逆転させるように平行ハンドを回転させている状態を示す図である。It is a figure which shows the state in which the multi-axis robot is rotating the parallel hand so that a component conveyance jig may be reversed upside down during a movement. 鉛直上方に向いていた被加工物を天地逆転させて鉛直下方に向けた状態を示す図である。It is a figure which shows the state which turned the workpiece which faced the vertical upper direction upside down, and turned to the vertical downward direction. 被加工物の表面層用塗料の浸漬塗布工程を示す図である。It is a figure which shows the dip coating process of the coating material for surface layers of a to-be-processed object. 被加工物を保持した部品搬送冶具を置き台の切り欠きに載置させる、あるいは切り欠きから取り出す状況を示す図である。It is a figure which shows the condition which mounts the component conveyance jig holding the to-be-processed object in the notch of a stand, or takes out from a notch. 従来の直交座標系オートハンドを用いた、電子写真用帯電ローラ表層塗布プラントの一例である。It is an example of the charging roller surface layer coating plant for electrophotography using the conventional orthogonal coordinate system auto hand. 部品加工塗布手順と段取替え手順を説明する図である。It is a figure explaining a component process application | coating procedure and a setup change procedure. 本発明を適用した電子写真用帯電ローラ表層塗布プラントの一例である。It is an example of the charging roller surface layer coating plant for electrophotography to which the present invention is applied. 従来技術の一貫生産ラインの概念図である。It is a conceptual diagram of the integrated production line of a prior art. 本発明を応用することにより可能となる新たなマシンセル生産ラインの概念図である。It is a conceptual diagram of a new machine cell production line made possible by applying the present invention.

符号の説明Explanation of symbols

1 多軸ロボット
4 平行ハンド
5 部品搬送冶具
5a 把持用溝
5c 穴
5d 本体部
5e 保持部
5f 磁石
10 ピン
11 爪
DESCRIPTION OF SYMBOLS 1 Multi-axis robot 4 Parallel hand 5 Parts conveyance jig 5a Gripping groove 5c Hole 5d Body part 5e Holding part 5f Magnet 10 Pin 11 Claw

Claims (3)

多軸ロボットに装着される、一対の爪を備えた平行ハンドと、前記平行ハンドの前記一対の爪に把持される、部品を搬送するための冶具とを有する部品把持機構において、
前記爪は、互いに対向する対向面にピンを有し、前記対向面の角部が面取りまたは曲面加工されており、
前記冶具は、前記平行ハンドの前記一対の爪によって把持される本体部と、部品を保持する保持部とを有し、
前記本体部の側面には、前記爪が嵌合する一対の把持用溝が形成され、かつ前記把持用溝内に前記爪の前記ピンが嵌合する穴が形成されており、
前記保持部は、前記本体部の側面以外の端面に設けられており、部品を吸着する磁石を有することを特徴とする部品把持機構。
In a component gripping mechanism having a parallel hand with a pair of claws attached to a multi-axis robot, and a jig for transporting a component gripped by the pair of claws of the parallel hand,
The claw has pins on opposing surfaces facing each other, and a corner portion of the opposing surface is chamfered or curved.
The jig has a main body portion held by the pair of claws of the parallel hand, and a holding portion for holding a component,
A pair of gripping grooves into which the claws are fitted are formed on the side surface of the main body portion, and holes into which the pins of the claws are fitted are formed in the gripping grooves,
The holding part is provided on an end face other than the side face of the main body part, and has a magnet that attracts the part.
前記本体部の前記側面には、一対の第二の溝が前記把持用溝に対して平行に形成されている、請求項1に記載の部品把持機構。   The component gripping mechanism according to claim 1, wherein a pair of second grooves are formed on the side surface of the main body portion in parallel with the gripping grooves. 前記冶具の前記一対の第二の溝を差し込むことで前記冶具を載置させる切り欠きが形成された置き台を有する、請求項2に記載の部品把持機構。

The component gripping mechanism according to claim 2, further comprising a pedestal formed with a notch on which the jig is placed by inserting the pair of second grooves of the jig.

JP2006005968A 2006-01-13 2006-01-13 Part gripping mechanism Pending JP2007185746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005968A JP2007185746A (en) 2006-01-13 2006-01-13 Part gripping mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005968A JP2007185746A (en) 2006-01-13 2006-01-13 Part gripping mechanism

Publications (1)

Publication Number Publication Date
JP2007185746A true JP2007185746A (en) 2007-07-26

Family

ID=38341260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005968A Pending JP2007185746A (en) 2006-01-13 2006-01-13 Part gripping mechanism

Country Status (1)

Country Link
JP (1) JP2007185746A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291869A (en) * 2008-06-04 2009-12-17 Kawasaki Heavy Ind Ltd Robot, robot hand, and attachment
JP2011250754A (en) * 2010-06-03 2011-12-15 Rheon Automatic Machinerty Co Ltd Auxiliary working tool
JP2011251828A (en) * 2010-06-03 2011-12-15 Rheon Automatic Machinerty Co Ltd Food conveying system
CN104339363A (en) * 2013-07-24 2015-02-11 财团法人工业技术研究院 Clamping mechanism with overturning function and method for overturning and translating workpiece
CN104589362A (en) * 2014-12-31 2015-05-06 苏州市博奥塑胶电子有限公司 Manipulator of injection molding machine
TWI630079B (en) * 2015-11-16 2018-07-21 川崎重工業股份有限公司 End effector, robot, and operation method of robot
JP2019520994A (en) * 2016-07-14 2019-07-25 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Method and apparatus for calibrating the orientation between a robot gripper and a component
KR102202444B1 (en) * 2020-05-18 2021-01-12 권혜진 forming die for powder merallurgy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291869A (en) * 2008-06-04 2009-12-17 Kawasaki Heavy Ind Ltd Robot, robot hand, and attachment
JP2011250754A (en) * 2010-06-03 2011-12-15 Rheon Automatic Machinerty Co Ltd Auxiliary working tool
JP2011251828A (en) * 2010-06-03 2011-12-15 Rheon Automatic Machinerty Co Ltd Food conveying system
CN104339363A (en) * 2013-07-24 2015-02-11 财团法人工业技术研究院 Clamping mechanism with overturning function and method for overturning and translating workpiece
CN104589362A (en) * 2014-12-31 2015-05-06 苏州市博奥塑胶电子有限公司 Manipulator of injection molding machine
TWI630079B (en) * 2015-11-16 2018-07-21 川崎重工業股份有限公司 End effector, robot, and operation method of robot
CN108349092A (en) * 2015-11-16 2018-07-31 川崎重工业株式会社 The operational method of manufacture system, the construction method of manufacture system, end-effector, robot and robot
TWI657903B (en) * 2015-11-16 2019-05-01 日商川崎重工業股份有限公司 Manufacturing system, manufacturing system construction method, end effector, robot, and robot operation method
US10906193B2 (en) 2015-11-16 2021-02-02 Kawasaki Jukogyo Kabushiki Kaisha Manufacturing system, method of constructing the manufacturing system, end effector, robot, and working method of robot
JP2019520994A (en) * 2016-07-14 2019-07-25 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Method and apparatus for calibrating the orientation between a robot gripper and a component
US11498217B2 (en) 2016-07-14 2022-11-15 Siemens Healthcare Diagnostics Inc. Methods and apparatus to calibrate a positional orientation between a robot gripper and a component
KR102202444B1 (en) * 2020-05-18 2021-01-12 권혜진 forming die for powder merallurgy

Similar Documents

Publication Publication Date Title
JP2007185746A (en) Part gripping mechanism
JP5423441B2 (en) Work system, robot apparatus, and manufacturing method of machine product
US20190099879A1 (en) Robot system, method for controlling a robot system, and processing system
CN204621750U (en) A kind of robot combined polishing system
CN110270874A (en) A kind of truss-like lathe loading and unloading robot system and its control method
JP6383537B2 (en) Robot hand, robot, and robot cell
WO2015087856A1 (en) Robot cell
JP2005046966A (en) Production system
CN108393663B (en) full-automatic manufacturing process method of connector
EP2839935A1 (en) Robot system
US7757834B2 (en) Workpiece presentment to a processing device
EP3562625A1 (en) The robotic production line and methods of flexible and chaotic production
JP2012139765A (en) Gripping machine
JP6366932B2 (en) Work reversal support device and robot cell equipped with the same
JP5687854B2 (en) Multi-face processing machine
WO2020103809A1 (en) Automatic tool exchanging method and computer readable storage medium
JP2009131908A (en) Automatic manufacturing system
JP5999198B2 (en) Robot system
CN208758627U (en) A kind of manipulator and automatic production line
JPH04115885A (en) Traveling robot and device therewith
CN217648700U (en) Material taking and replacing manipulator and machine tool with same
KR102189998B1 (en) Apparatus for supplying workpiece automatically
JP2010137339A (en) Production device and production system
JP2006326709A (en) Device for preparing tool holder-changer control program
JPH0885071A (en) Polyhedronal jig and jig switching mechanism