JP2007185101A - Biological sample-analyzing apparatus - Google Patents

Biological sample-analyzing apparatus Download PDF

Info

Publication number
JP2007185101A
JP2007185101A JP2006003164A JP2006003164A JP2007185101A JP 2007185101 A JP2007185101 A JP 2007185101A JP 2006003164 A JP2006003164 A JP 2006003164A JP 2006003164 A JP2006003164 A JP 2006003164A JP 2007185101 A JP2007185101 A JP 2007185101A
Authority
JP
Japan
Prior art keywords
biological sample
temperature
temperature control
control mechanism
sample analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006003164A
Other languages
Japanese (ja)
Other versions
JP4564924B2 (en
Inventor
Tasaku Kiyono
太作 清野
Satoshi Takahashi
智 高橋
Hiroshi Umetsu
廣 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006003164A priority Critical patent/JP4564924B2/en
Publication of JP2007185101A publication Critical patent/JP2007185101A/en
Application granted granted Critical
Publication of JP4564924B2 publication Critical patent/JP4564924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out precise temperature control in analysis of biological samples in a simple constitution. <P>SOLUTION: A system of temperature control is changed in each step in biological sample analysis. A biological sample-analyzing apparatus is equipped with a rotatable structure having a biological sample-retaining area for retaining a biological sample, a reagent-retaining area for retaining a reagent and a reaction area for reacting the biological sample with the reagent, a rotation control mechanism for controlling rotation of the structure, a first temperature control mechanism capable of topically carrying out temperature control of a part of the structure and a second temperature control mechanism capable of carrying out temperature control of the whole structure. In the biological sample-analyzing apparatus, temperature control of the whole structure is carried out while rotating the structure in an extraction step and the structure is kept in a stationary state and topical temperature control of a part of the structure is carried out in a thermal denaturation step and temperature control of the whole structure is carried out while rotating the structure in an amplification step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生体試料の分析装置に関する。例えば、生体試料中に含まれる核酸を抽出し、それを増幅し、そして検出することにより、特定の塩基配列を有する核酸の有無を検出する生体試料検査装置に関する。   The present invention relates to a biological sample analyzer. For example, the present invention relates to a biological sample inspection apparatus that detects the presence or absence of a nucleic acid having a specific base sequence by extracting, amplifying, and detecting a nucleic acid contained in a biological sample.

一般に生体試料から抽出した微量の核酸の検査を行うためには、生体試料から核酸を抽出する抽出工程、抽出された核酸を増幅して検出可能な濃度にまで増幅させる増幅工程、検出対象の核酸に対して蛍光ラベルを標識し、励起光の照射と蛍光の検知を行って対象となる核酸の有無,濃度を調べる検出工程から構成される。このうち、特に、増幅工程と検出工程では、工程中で必要とされる化学反応の温度範囲が狭い場合が多く、厳密な温度管理を要することがある。定温で核酸の増幅を行う方法の一つであるNucleic Acid
Sequence-Based Amplification(NASBA)法では、65℃以上で一度核酸の熱変性を行った後、定温で増幅と検出を同時に行うが、この時40から42℃の間で一定温度に保持しながら増幅を行う必要がある。
In general, in order to examine a small amount of nucleic acid extracted from a biological sample, an extraction step for extracting the nucleic acid from the biological sample, an amplification step for amplifying the extracted nucleic acid to a detectable concentration, and a nucleic acid to be detected It comprises a detection step in which a fluorescent label is labeled to detect the presence and concentration of the target nucleic acid by irradiating with excitation light and detecting fluorescence. Among these, especially in the amplification process and the detection process, the temperature range of the chemical reaction required in the process is often narrow, and strict temperature control may be required. Nucleic Acid, a method of nucleic acid amplification at a constant temperature
In the Sequence-Based Amplification (NASBA) method, after heat denaturation of nucleic acids at 65 ° C or higher, amplification and detection are performed simultaneously at a constant temperature. At this time, amplification is performed while maintaining a constant temperature between 40 and 42 ° C. Need to do.

また、特開平7−75544号には、増幅反応に必要な熱サイクルを実施するために、試料を2つのサーモスタット付液体浴を通過する毛管ループを通して循環させるか、毛管を2つの熱交換器の間で交番に経路定めし、試料を管にたんに1回通過で通すか、定置に維持した熱交換器の間で試料を移動させるか、あるいは毛管内に含有されている試料を通りすぎて熱交換器を自動的に移動または回転させる技術が開示されている。   Japanese Patent Application Laid-Open No. 7-75544 discloses that a sample is circulated through a capillary loop passing through two thermostatic liquid baths or a capillary is connected to two heat exchangers in order to perform the thermal cycle necessary for the amplification reaction. And route the sample in a single pass through the tube, move the sample between heat exchangers that are kept stationary, or pass the sample contained in the capillary A technique for automatically moving or rotating a heat exchanger is disclosed.

特開平7−75544号公報JP-A-7-75544

NASBA法では、一定温度での核酸増幅には酵素試薬が必要とされており、これら試薬は40℃以上の温度域では急速に劣化する特性を有するため、熱変性時は前記酵素試薬保持部の温度は40℃以下に保持されている必要がある。一方で40〜42℃での一定温度での増幅過程中は、保持温度の許容幅が熱変性時に比べて小さく、厳密な温度管理が要求される。   In the NASBA method, enzyme reagents are required for nucleic acid amplification at a constant temperature, and these reagents rapidly deteriorate in a temperature range of 40 ° C. or higher. The temperature needs to be kept below 40 ° C. On the other hand, during the amplification process at a constant temperature of 40 to 42 ° C., the allowable range of the holding temperature is smaller than that during heat denaturation, and strict temperature control is required.

また、特開平7−75544号に開示の技術では、核酸増幅の方法としてポリメラーゼ連鎖反応を前提としており、一連の増幅工程を局所的な部分の温度管理のみで行えるものの、複数の設定温度間の熱サイクルを必要とし、より複雑な温度制御システムを必要とする。   Moreover, in the technique disclosed in JP-A-7-75544, the polymerase chain reaction is premised as a nucleic acid amplification method, and a series of amplification steps can be performed only by local temperature control, but between a plurality of set temperatures. Requires a thermal cycle and requires a more complex temperature control system.

本発明の目的は、生体試料分析における厳密な温度制御を簡易な構成で行うことに関する。   An object of the present invention relates to performing strict temperature control in biological sample analysis with a simple configuration.

本発明は、生体試料分析における各工程で温度制御のシステムを切替えることに関する。例えば、生体試料を保持する生体試料保持領域と、試薬を保持する試薬保持領域と、生体試料と試薬を反応させる反応領域とを備えた回転可能な構造体と、構造体の回転を制御する回転制御機構と、構造体の一部を局所的に温度制御できる第1の温度制御機構と、構造体の全体を温度制御できる第2の温度制御機構と、を備えた生体試料分析装置であって、抽出工程において構造体を回転させながら構造体の全体を温度制御し、熱変成工程において構造体を静止させ構造体の一部を局所的に温度制御し、増幅工程において構造体を回転させながら構造体の全体を温度制御する。   The present invention relates to switching a temperature control system in each step in biological sample analysis. For example, a rotatable structure including a biological sample holding area for holding a biological sample, a reagent holding area for holding a reagent, a reaction area for reacting the biological sample and the reagent, and rotation for controlling the rotation of the structure A biological sample analyzer comprising: a control mechanism; a first temperature control mechanism capable of locally controlling the temperature of a part of the structure; and a second temperature control mechanism capable of controlling the temperature of the entire structure. The temperature of the whole structure is controlled while rotating the structure in the extraction process, the structure is kept stationary in the thermal transformation process, the temperature of a part of the structure is locally controlled, and the structure is rotated in the amplification process. The entire structure is temperature controlled.

本発明により、生体試料分析における厳密な温度制御を簡易な構成で行うことが可能となる。   According to the present invention, strict temperature control in biological sample analysis can be performed with a simple configuration.

例えば、熱変性工程において、構造体の一部を局所的に温度制御することで、熱変性工程の熱により試薬が劣化することを防げる。また、増幅工程において、構造体の全体を温度制御することにより、簡易な構成で厳密な温度制御が可能となる。これにより、回転可能な構造体におけるNASBA法を用いた自動遺伝子検査を、簡易な装置構成で行うことが可能となる。   For example, in the heat denaturation process, the temperature of a part of the structure is locally controlled, thereby preventing the reagent from being deteriorated by the heat of the heat denaturation process. Further, in the amplification process, by controlling the temperature of the entire structure, strict temperature control can be performed with a simple configuration. This makes it possible to perform automatic genetic testing using the NASBA method on a rotatable structure with a simple apparatus configuration.

以下、上記及びその他の本発明の新規な特徴と効果について、図面を参酌して説明する。   The above and other novel features and effects of the present invention will be described below with reference to the drawings.

図1から図6により本実施例について説明する。生体試料分析装置は温度制御可能な恒温槽1内部に、生体試料容器と試薬容器と反応容器とを備えた回転可能な構造体であるカートリッジ4と、構造体の回転を制御する回転制御機構である遠心ロータ2から構成される。遠心ロータ2は、モータ3により回転可能に支持されている。モータ3は回転伝達機構3aを介して遠心ロータ2に接続しており、モータ3と回転伝達機構3aは支持台3bに懸架される。また、カートリッジ4は、図2に示すように遠心ロータ2上の6箇所に放射状に配置されている。   This embodiment will be described with reference to FIGS. The biological sample analyzer includes a cartridge 4 that is a rotatable structure including a biological sample container, a reagent container, and a reaction container in a temperature-controllable thermostat 1 and a rotation control mechanism that controls the rotation of the structure. It is composed of a certain centrifugal rotor 2. The centrifugal rotor 2 is rotatably supported by a motor 3. The motor 3 is connected to the centrifugal rotor 2 via a rotation transmission mechanism 3a, and the motor 3 and the rotation transmission mechanism 3a are suspended on a support base 3b. The cartridges 4 are radially arranged at six locations on the centrifugal rotor 2 as shown in FIG.

カートリッジ4は、図3に示すように透明板状の基材に対し凹部を形成して複数の試料保持ポート4a,試薬保持ポート4b、および反応セル5を備え、それらは基材表面に設けられた溝部である液体流路4cにより相互に接続されている。カートリッジ表面は非浸透性の樹脂膜により被覆され、生体試料,試薬の各ポート4a,4b,反応セル5,流路4cからの液漏れを防止する。   As shown in FIG. 3, the cartridge 4 includes a plurality of sample holding ports 4a, reagent holding ports 4b, and reaction cells 5 formed in a concave portion on a transparent plate-like base material, which are provided on the base material surface. They are connected to each other by a liquid channel 4c which is a groove. The cartridge surface is coated with a non-permeable resin film to prevent liquid leakage from the biological sample and reagent ports 4a and 4b, the reaction cell 5 and the flow path 4c.

遠心ロータ2は、1〜20rpm の回転速度で回転し、任意の位置に静止し、カートリッジ4に内蔵する反応セル内部の試料,試薬に対して蛍光測定部6による蛍光測定,局所温度制御などの操作を行える状態とする。また、1〜10,000rpmの回転速度で回転し、カートリッジ4内に遠心力を発生させることにより、試薬、および試料の流動制御を行う機能を有する。また、試料が血液など、密度による分離操作を必要とする場合は前記の回転操作により遠心分離操作を行える。   The centrifugal rotor 2 rotates at a rotational speed of 1 to 20 rpm, stops at an arbitrary position, and performs fluorescence measurement by the fluorescence measurement unit 6 and local temperature control on the sample and reagent inside the reaction cell built in the cartridge 4. Make the operation ready. Further, it has a function of controlling the flow of the reagent and the sample by rotating at a rotational speed of 1 to 10,000 rpm and generating a centrifugal force in the cartridge 4. When the sample requires a separation operation based on density, such as blood, the centrifugation operation can be performed by the rotation operation.

前記恒温槽は、図4,図5に示すように空気循環ダクト7に接続している。空気循環ダクト7は、吸/放熱板8,9を設けたペルチエ素子10を介して放熱ダクト11と接続し、放熱送風ファン14,15により吸/放熱板8,9からの排熱を装置外に排出し、恒温槽内に予め設定した温度に制御した空気を空気循環送風ファン12,13により循環させる。恒温槽内の測定温度が外気温より高い場合8が吸熱、9が放熱となる。逆に、恒温槽内の測定温度が外気温より低い場合8が放熱、9が吸熱に設定が切替わる。このように空気循環ダクト7により供給される温度制御された気流により、恒温槽1内部は一様に20℃〜50℃までの任意の一定温度に制御される。   The thermostat is connected to an air circulation duct 7 as shown in FIGS. The air circulation duct 7 is connected to the heat radiating duct 11 through the Peltier element 10 provided with the heat sink / heat sinks 8 and 9, and the exhaust heat from the heat sink / heat sinks 8 and 9 is removed from the apparatus by the heat radiating fans 14 and 15. And the air controlled to a preset temperature in the thermostatic chamber is circulated by the air circulation fans 12 and 13. When the measured temperature in the thermostat is higher than the outside air temperature, 8 is heat absorption and 9 is heat dissipation. On the contrary, when the measured temperature in the thermostat is lower than the outside air temperature, the setting is switched to 8 for heat dissipation and 9 for heat absorption. Thus, the temperature controlled airflow supplied by the air circulation duct 7 uniformly controls the interior of the thermostatic chamber 1 to an arbitrary constant temperature of 20 ° C. to 50 ° C.

前記カートリッジ内の反応セルでは電磁誘導加熱によりセル内部の液体のみを加熱するために、図6(a),(b)に示すように反応セル5を囲う形に磁性体材料で構成された加熱リング16を設けており、加熱リング16は各反応セルに固定される。一方遠心ロータ2が初期位置に静止している場合にカートリッジ4に対応する位置6ヶ所の、恒温槽底部には前記加熱リング16に対し誘導電流を誘起するための電磁誘導コイル17と、反応セル内部の温度を測定するための放射温度センサ18を配置している。放射温度センサとしてはセンサ素子として焦電効果素子,サーモパイルなどが使用可能であるが、高速応答が可能で、構成を簡易にできることからサーモパイル方式の放射温度センサが本装置では適している。電磁誘導加熱装置は昇降機19上に配置され、待機時に対して駆動時は上昇して加熱リング16下部に近接できるように構成されている。前記電磁誘導コイルは駆動回路により0〜500kHzまでの周波数の交流電流が通電され、それより加熱リング中に誘導電流が誘起され発熱する。   In the reaction cell in the cartridge, in order to heat only the liquid inside the cell by electromagnetic induction heating, as shown in FIGS. 6 (a) and 6 (b), heating composed of a magnetic material so as to surround the reaction cell 5 A ring 16 is provided, and the heating ring 16 is fixed to each reaction cell. On the other hand, when the centrifugal rotor 2 is stationary at the initial position, an electromagnetic induction coil 17 for inducing an induction current to the heating ring 16 at the bottom of the thermostatic chamber at six positions corresponding to the cartridge 4, and a reaction cell A radiation temperature sensor 18 for measuring the internal temperature is arranged. As the radiation temperature sensor, a pyroelectric effect element, a thermopile, or the like can be used as a sensor element. However, a thermopile type radiation temperature sensor is suitable for this apparatus because it can respond at high speed and can simplify the configuration. The electromagnetic induction heating device is disposed on the elevator 19 and is configured so that it can be raised when driven relative to the stand-by state and be close to the lower portion of the heating ring 16. The electromagnetic induction coil is energized with an alternating current having a frequency of 0 to 500 kHz by a drive circuit, and thereby an induced current is induced in the heating ring to generate heat.

蛍光測定部6は、光電子増倍管を検出素子とする蛍光検知部6aと、励起光源である発光ダイオード6b、および集光レンズ系6cとからなる。本実施例では2つの蛍光測定部を備え、2種類の蛍光体の検出を可能としている。予め定量された核酸、あるいは核酸を含む合成物からなる内部コントロールと、検査対象の核酸抽出溶液に対し、それぞれの核酸に対応する2種の蛍光試薬を含む増幅試薬を反応させ、各試薬からの蛍光強度を測定することにより、内部コントロールの増幅曲線との比較から検査対象の核酸濃度の定量が可能となる。   The fluorescence measurement unit 6 includes a fluorescence detection unit 6a using a photomultiplier tube as a detection element, a light emitting diode 6b as an excitation light source, and a condensing lens system 6c. In this embodiment, two fluorescence measurement units are provided, and two types of phosphors can be detected. An amplification reagent containing two fluorescent reagents corresponding to each nucleic acid is reacted with a nucleic acid quantified in advance or a nucleic acid extraction solution to be examined and a nucleic acid extraction solution to be examined. By measuring the fluorescence intensity, the nucleic acid concentration to be examined can be quantified by comparison with the amplification curve of the internal control.

次に図7に蛍光測定部を除く本実施例の制御系の構成を示す。電磁誘導コイル17は直流電源28,スイッチングFET29,パルス発生回路30からなるインバータ回路に接続している。パルス発生回路30により生成されるパルス信号は、スイッチングFET
29のON/OFFを行う。その際、電磁誘導コイル17には前記パルス信号に応じた周波数の半波交流電流が流れる。これにより発生した交流磁界により、加熱リング16に誘導電流が流れ、誘導電流により生じたジュール熱により反応セル5内の溶液が加熱される。パルス発生回路30はD/A変換ユニット32を介してプログラマブルコントローラ
23に接続している。プログラマブルコントローラ23からの制御に応じてパルス信号のON時間のデューティー比、もしくは周波数を変更可能である。これにより加熱リングで発生するジュール熱の増減を制御することができる。
Next, FIG. 7 shows the configuration of the control system of the present embodiment excluding the fluorescence measuring section. The electromagnetic induction coil 17 is connected to an inverter circuit including a DC power supply 28, a switching FET 29, and a pulse generation circuit 30. The pulse signal generated by the pulse generation circuit 30 is a switching FET
29 is turned ON / OFF. At that time, a half-wave alternating current having a frequency corresponding to the pulse signal flows through the electromagnetic induction coil 17. Due to the alternating magnetic field generated thereby, an induced current flows through the heating ring 16, and the solution in the reaction cell 5 is heated by Joule heat generated by the induced current. The pulse generation circuit 30 is connected to the programmable controller 23 via the D / A conversion unit 32. The duty ratio or frequency of the ON time of the pulse signal can be changed according to control from the programmable controller 23. Thereby, increase / decrease in the Joule heat generated in the heating ring can be controlled.

一方ペルチエ素子ドライバ回路31は、プログラマブルコントローラ23からの信号に応じてペルチエ素子10の吸熱量/放熱量を制御する。ペルチエ素子の吸熱量/放熱量の制御により空気循環ダクトによる恒温槽1全体の温度制御を行う。恒温槽の温度は、ペルチエ素子ドライバ回路31を介して制御する。また一方で遠心ロータ2静止時の反応セル5内の温度制御ではスイッチングFET29を介して加熱量の制御を行う。これら制御のための温度測定は、反応セル内の溶液温度を放射温度センサ18で、恒温槽内の気温測定を熱電対21により検知し、それらの信号出力をA/D変換ユニット22を介して行う。電磁誘導加熱による反応セルへの加熱時はモータドライバ25を介して昇降機19に接続するパルスモータを駆動、昇降機19上に固定された電磁誘導コイル17を加熱リング
16に近接させ、遠心ロータ2の回転時は待機位置に戻るよう制御される。モータドライバ25は遠心ロータ2の回転制御用のモータドライバ26と合わせてパルスコントローラ27を介してプログラマブルコントローラ23に接続する。プログラマブルコントローラ23は以下に述べるプロセスを記述したプログラムを実装し、蛍光測定部を含めた各部の制御を行い遺伝子検査を実施する。
On the other hand, the Peltier element driver circuit 31 controls the heat absorption amount / heat dissipation amount of the Peltier element 10 in accordance with a signal from the programmable controller 23. The temperature control of the entire thermostatic chamber 1 by the air circulation duct is performed by controlling the heat absorption amount / heat radiation amount of the Peltier element. The temperature of the thermostatic chamber is controlled via the Peltier element driver circuit 31. On the other hand, in the temperature control in the reaction cell 5 when the centrifugal rotor 2 is stationary, the heating amount is controlled through the switching FET 29. In the temperature measurement for these controls, the solution temperature in the reaction cell is detected by the radiation temperature sensor 18, the temperature measurement in the thermostatic chamber is detected by the thermocouple 21, and the signal output thereof is sent via the A / D conversion unit 22. Do. When heating the reaction cell by electromagnetic induction heating, a pulse motor connected to the elevator 19 is driven via the motor driver 25, the electromagnetic induction coil 17 fixed on the elevator 19 is brought close to the heating ring 16, and the centrifugal rotor 2 Control is made to return to the standby position during rotation. The motor driver 25 is connected to the programmable controller 23 via the pulse controller 27 together with the motor driver 26 for controlling the rotation of the centrifugal rotor 2. The programmable controller 23 implements a program describing a process described below, and controls each part including the fluorescence measuring part to carry out a genetic test.

次に本実施例による遺伝子検査のプロセスを示す。   Next, a genetic test process according to this example will be described.

本実施例に記載の生体試料検査装置は、生体試料中に検査対象とする細菌、もしくはウイルスの遺伝子が存在するか否かの判定、および存在した場合の濃度測定を行うものである。   The biological sample test apparatus described in the present embodiment is for determining whether or not a bacterial or viral gene to be tested is present in a biological sample, and measuring the concentration when it is present.

生体試料検査装置は、試料から核酸分子を抽出し、それらが検査対象とする細菌、もしくはウイルスの遺伝子の塩基配列に対応するプライマを用いた増幅処理を行い、増幅するか否かを測定することにより対象遺伝子の有無を判定する。また、増幅した場合は、対象遺伝子の増幅曲線を測定することにより、対象遺伝子の濃度について測定を行う。増幅法としては定温増幅法の一種であるNASBA法を採用している。遺伝子検査のプロセスは、熱変成処理と増幅処理から構成されている。   A biological sample testing device extracts nucleic acid molecules from a sample, performs an amplification process using a primer corresponding to the base sequence of a bacterial or viral gene to be tested, and measures whether or not to amplify To determine the presence or absence of the target gene. When amplified, the concentration of the target gene is measured by measuring the amplification curve of the target gene. As an amplification method, a NASBA method which is a kind of constant temperature amplification method is adopted. The genetic testing process consists of a thermal transformation process and an amplification process.

最初に生体試料から抽出された核酸溶液が反応セル内に移動し、保持されている状態で、カートリッジを含む恒温槽内部は41℃±0.5℃ の一定温度に維持されている。   The inside of the thermostatic chamber including the cartridge is maintained at a constant temperature of 41 ° C. ± 0.5 ° C. while the nucleic acid solution first extracted from the biological sample is moved and held in the reaction cell.

次に試薬ポートから反応セルに対して遠心ロータの回転による遠心力で試薬を流動させ、試薬とDNA,RNAを混合し、反応セル内のDNA,RNAの熱変成処理を行う。
RNAの熱変成処理では液温を65℃±1℃、DNAの熱変成処理では95℃±1℃に保持する必要があるのに対して、熱変成処理の後に行う増幅処理で必要とされる液温は41℃±0.5℃ で、かつ増幅処理で使用される試薬は41℃より高い温度では急速に劣化する特性をもつ。このため、熱変成処理の時点では反応セル内部の温度のみ前記の65℃±1℃、もしくは95℃±1℃に局所的に制御し、熱変成処理後の定温での増幅工程では反応セルの温度を恒温槽内と等温の41℃±0.5℃ にするのが望ましい。上記のように熱変成時に要求される温度制御では増幅での制御温度と比較して精度を要求されない。また、増幅処理時には、蛍光標識された核酸の濃度変化を蛍光強度の測定により検出を行うため、2ヶ所の蛍光測定部の配置してある位置に6個のカートリッジが順次配置されるよう、遠心ロータを1〜20rpm で回転させる。これらの温度制御を行うため、熱変成処理時は恒温槽底部に設けた電磁誘導コイルを昇降機により反応セルに近接させ、65℃±1℃、もしくは95℃±1℃に加熱し、局所温度制御を行うとともに、熱変成処理終了後、電磁誘導加熱を停止して電磁誘導コイルを降下させ、反応セルを含めカートリッジは恒温槽により温度制御される。
Next, the reagent is caused to flow from the reagent port to the reaction cell by a centrifugal force generated by the rotation of the centrifugal rotor, the reagent is mixed with DNA and RNA, and the thermal transformation treatment of the DNA and RNA in the reaction cell is performed.
In RNA thermal denaturation treatment, the liquid temperature needs to be maintained at 65 ° C. ± 1 ° C., and in DNA thermal denaturation treatment, it needs to be kept at 95 ° C. ± 1 ° C., whereas it is required for amplification treatment performed after thermal denaturation treatment. The liquid temperature is 41 ° C. ± 0.5 ° C., and the reagent used in the amplification process has a property of rapidly deteriorating at temperatures higher than 41 ° C. For this reason, only the temperature inside the reaction cell is locally controlled to 65 ° C. ± 1 ° C. or 95 ° C. ± 1 ° C. at the time of thermal transformation treatment, and in the amplification process at a constant temperature after thermal transformation treatment, It is desirable to set the temperature to 41 ° C ± 0.5 ° C, which is isothermal with that in the thermostat. As described above, the temperature control required at the time of thermal transformation does not require accuracy as compared with the control temperature in amplification. In addition, since the concentration change of the fluorescence-labeled nucleic acid is detected by measuring the fluorescence intensity during the amplification process, the centrifugation is performed so that six cartridges are sequentially arranged at the positions where the two fluorescence measurement units are arranged. The rotor is rotated at 1-20 rpm. In order to perform these temperature controls, the electromagnetic induction coil provided at the bottom of the thermostatic chamber is brought close to the reaction cell by an elevator and heated to 65 ° C ± 1 ° C or 95 ° C ± 1 ° C for local temperature control. In addition, after completion of the thermal transformation treatment, the electromagnetic induction heating is stopped and the electromagnetic induction coil is lowered, and the temperature of the cartridge including the reaction cell is controlled by the thermostatic bath.

次いで遠心ロータの回転による遠心力で試薬ポートから増幅試薬を反応セルに流動させた後、増幅処理に移行する。増幅処理中は10秒に1回60°ずつ遠心ロータを回転させることにより各カートリッジとも1分間に1回ずつ蛍光測定を行う。以上のプロセスにより、対象とする遺伝子の検査を行う。   Next, after the amplification reagent is caused to flow from the reagent port to the reaction cell by the centrifugal force generated by the rotation of the centrifugal rotor, the process proceeds to the amplification process. During the amplification process, fluorescence is measured once per minute for each cartridge by rotating the centrifugal rotor at 60 ° once every 10 seconds. The target gene is examined by the above process.

本実施例により、遺伝子検査の核酸抽出,熱変成,核酸増幅,検出の各工程において、それぞれ最適な温度制御手順を適用し、工程の進行に応じてそれらを順次切替えることにより、簡易な装置構成で上記工程の温度管理を行い、定温での核酸増幅法であるNASBA 法を用いた自動化された遺伝子検査を行うことが可能となる。   According to the present embodiment, a simple apparatus configuration can be achieved by applying optimal temperature control procedures in each step of nucleic acid extraction, thermal denaturation, nucleic acid amplification, and detection in genetic testing, and sequentially switching them according to the progress of the process. In this way, it is possible to perform the temperature control of the above process and perform an automated genetic test using the NASBA method, which is a nucleic acid amplification method at a constant temperature.

次に図8(a),(b)により第2の実施例について説明する。以下、実施例1との主な相違点についてのみ説明する。   Next, the second embodiment will be described with reference to FIGS. Only the main differences from the first embodiment will be described below.

本実施例では電磁誘導加熱装置をカートリッジに対して上方に配置し、熱変成処理実行時の局所加熱を行う際には電磁誘導コイルを待機位置から降下させ、熱変成処理終了と共に上昇させて待機位置に戻す。カートリッジ上面に電磁誘導コイル17が位置する場合、加熱リング16と電磁誘導コイル17の間にカートリッジの上部壁面4dが入るため、両者を近接させることが難しい。このため、本実施例では図7に示すように加熱リングに突起を設け、突起部をカートリッジ表面に露出させるように配置することとし、これにより電磁誘導コイルと加熱リングを近接させることが可能となる。また、本実施例において放射温度計を電磁誘導コイルに対応する位置で恒温槽底面に6箇所配置し、各反応セルの温度測定と加熱を同時に行う。本実施例では、電磁誘導コイルをカートリッジ上面側に配置できるため、電磁誘導コイルが遠心ロータ2より下側に配置してある場合と比較してその位置調整が容易となる。   In this embodiment, the electromagnetic induction heating device is arranged above the cartridge, and when performing local heating during the thermal transformation process, the electromagnetic induction coil is lowered from the standby position, and is raised at the end of the thermal transformation process to stand by. Return to position. When the electromagnetic induction coil 17 is located on the upper surface of the cartridge, since the upper wall surface 4d of the cartridge enters between the heating ring 16 and the electromagnetic induction coil 17, it is difficult to bring them close to each other. Therefore, in this embodiment, as shown in FIG. 7, a protrusion is provided on the heating ring, and the protrusion is arranged so as to be exposed on the cartridge surface, thereby making it possible to bring the electromagnetic induction coil and the heating ring close to each other. Become. Further, in this embodiment, six radiation thermometers are arranged on the bottom of the thermostatic chamber at positions corresponding to the electromagnetic induction coils, and the temperature measurement and heating of each reaction cell are performed simultaneously. In this embodiment, since the electromagnetic induction coil can be arranged on the upper surface side of the cartridge, the position adjustment becomes easier as compared with the case where the electromagnetic induction coil is arranged below the centrifugal rotor 2.

次に図9により第3の実施例について説明する。以下、実施例1及び実施例2との主な相違点についてのみ説明する。   Next, a third embodiment will be described with reference to FIG. Hereinafter, only main differences from the first embodiment and the second embodiment will be described.

第3の実施例では反応セルの局所温度制御を行うために、光方式の加熱装置を用いるもので、加熱光源33,光シャッタ34,集光レンズ系35から構成される。本実施例による温度制御では、熱変成処理実行時に加熱光源33を点灯させ、放射温度センサ18での測定結果から光シャッタの開閉、もしくは光源への印加電力制御により温度上昇のコントロールを行う。加熱光源33としてはキセノンランプ、もしくはハロゲンランプの適用が考えられるが、サーモパイル方式の放射温度センサ18の短波長側使用波長端が8μm付近であることから、ハロゲンランプを使用する場合光源からの入射光の影響を避けるため、加熱光源に8μm以上の波長を遮断するフィルタを組み込む必要がある。本実施例では局所加熱への切替えに際し、光シャッタの開閉のみで加熱装置そのものの昇降は必要としない。   In the third embodiment, an optical heating device is used to control the local temperature of the reaction cell, and it includes a heating light source 33, an optical shutter 34, and a condenser lens system 35. In the temperature control according to the present embodiment, the heating light source 33 is turned on when the thermal transformation process is performed, and the temperature rise is controlled by opening / closing the optical shutter or controlling the power applied to the light source based on the measurement result of the radiation temperature sensor 18. Although a xenon lamp or a halogen lamp can be used as the heating light source 33, the use wavelength end of the short wavelength side of the thermopile type radiation temperature sensor 18 is around 8 μm. In order to avoid the influence of light, it is necessary to incorporate a filter that blocks wavelengths of 8 μm or more in the heating light source. In this embodiment, when switching to local heating, the heating device itself does not need to be raised or lowered only by opening and closing the optical shutter.

生体試料検査装置の正面図。The front view of a biological sample test | inspection apparatus. 遠心ロータ上での蛍光測定部,カートリッジの配置下面図。The bottom view of arrangement | positioning of the fluorescence measurement part and cartridge on a centrifugal rotor. カートリッジ構成図。FIG. 生体試料検査装置の側面図。The side view of a biological sample test | inspection apparatus. 空気循環ダクト,放熱ダクトの背面図。The rear view of an air circulation duct and a heat radiating duct. 遠心ロータ,電磁誘導加熱部の構成を示す断面図。Sectional drawing which shows the structure of a centrifugal rotor and an electromagnetic induction heating part. 制御系の構成図。The block diagram of a control system. 第2の実施例における遠心ロータ,電磁誘導加熱部の構成を示す断面図。Sectional drawing which shows the structure of the centrifugal rotor in a 2nd Example, and an electromagnetic induction heating part. 第3の実施例における遠心ロータ,光加熱部の構成を示す断面図。Sectional drawing which shows the structure of the centrifugal rotor and optical heating part in a 3rd Example.

符号の説明Explanation of symbols

1…恒温槽、2…遠心ロータ、3…モータ、3a…回転伝達機構、3b…支持台、4…カートリッジ、4a…試料保持ポート、4b…試薬保持ポート、4c…液体流路、5…反応セル、6…蛍光測定部、6a…蛍光検知部、6b…発光ダイオード、6c,35…集光レンズ系、7…空気循環ダクト、8,9…吸/放熱板、10…ペルチエ素子、11…放熱ダクト、12,13…空気循環送風ファン、14,15…放熱送風ファン、16…加熱リング、17…電磁誘導コイル、18…放射温度センサ、19…昇降機、20…センサアンプ、21…熱電対、22…A/D変換ユニット、23…プログラマブルコントローラ、
24…パルスモータ、25,26…モータドライバ、27…パルスコントローラ、28…直流電源、29…スイッチングFET、30…パルス発生回路、31…ペルチエ素子ドライバ回路、32…D/A変換ユニット、33…加熱光源、34…光シャッタ。
DESCRIPTION OF SYMBOLS 1 ... Constant temperature bath, 2 ... Centrifugal rotor, 3 ... Motor, 3a ... Rotation transmission mechanism, 3b ... Support stand, 4 ... Cartridge, 4a ... Sample holding port, 4b ... Reagent holding port, 4c ... Liquid flow path, 5 ... Reaction Cell 6 Fluorescence measuring unit 6 a Fluorescence detecting unit 6 b Light emitting diode 6 c, 35 Condensing lens system 7 Air circulation duct 8, 9 Absorption / heat dissipation plate 10 Peltier element 11 Radiation duct, 12, 13 ... Air circulation fan, 14, 15 ... Radiant fan, 16 ... Heating ring, 17 ... Electromagnetic induction coil, 18 ... Radiation temperature sensor, 19 ... Elevator, 20 ... Sensor amplifier, 21 ... Thermocouple 22 ... A / D conversion unit, 23 ... programmable controller,
24 ... Pulse motor, 25, 26 ... Motor driver, 27 ... Pulse controller, 28 ... DC power supply, 29 ... Switching FET, 30 ... Pulse generation circuit, 31 ... Peltier element driver circuit, 32 ... D / A conversion unit, 33 ... Heating light source, 34... Optical shutter.

Claims (9)

生体試料を保持する生体試料容器と、試薬を保持する試薬容器と、生体試料と試薬を反応させる反応容器とを備えた回転可能な構造体と、
構造体の回転を制御する回転制御機構と、
構造体を内部に配置する恒温槽と、
構造体の一部を温度制御する第1の温度制御機構と、
恒温槽の内部を温度制御する第2の温度制御機構と、を備えた生体試料分析装置であって、
構造体を静止させ、第1の温度制御機構により構造体の一部を温度制御し、
構造体を回転させ、第2の温度制御機構により恒温槽の内部を温度制御することを特徴とする生体試料分析装置。
A rotatable structure comprising a biological sample container for holding a biological sample, a reagent container for holding a reagent, and a reaction container for reacting the biological sample and the reagent;
A rotation control mechanism for controlling the rotation of the structure;
A thermostatic chamber in which the structure is disposed;
A first temperature control mechanism for controlling the temperature of a part of the structure;
A biological sample analyzer comprising a second temperature control mechanism for controlling the temperature inside the thermostatic chamber,
The structure is stationary, and the temperature of a part of the structure is controlled by the first temperature control mechanism.
A biological sample analyzer characterized in that the structure is rotated and the temperature inside the thermostatic chamber is controlled by a second temperature control mechanism.
請求項1記載の生体試料分析装置であって、
生体試料から核酸を摘出する際に、構造体を回転させ、第2の温度制御機構により恒温槽の内部を温度制御し、
核酸を熱変性する際に、構造体を静止させ、第1の温度制御機構により構造体の一部を温度制御することを特徴とする生体試料分析装置。
The biological sample analyzer according to claim 1,
When extracting nucleic acid from a biological sample, the structure is rotated and the temperature inside the thermostatic chamber is controlled by the second temperature control mechanism.
A biological sample analyzer characterized in that, when a nucleic acid is thermally denatured, the structure is stationary and a part of the structure is temperature-controlled by the first temperature control mechanism.
請求項1記載の生体試料分析装置であって、
生体試料から核酸を摘出する際に、構造体を回転させ、第2の温度制御機構により恒温槽の内部を温度制御し、
核酸を増幅する際に、構造体を回転させ、第2の温度制御機構により恒温槽の内部を温度制御することを特徴とする生体試料分析装置。
The biological sample analyzer according to claim 1,
When extracting nucleic acid from a biological sample, the structure is rotated and the temperature inside the thermostatic chamber is controlled by the second temperature control mechanism.
A biological sample analyzer characterized in that when a nucleic acid is amplified, the structure is rotated and the temperature inside the thermostat is controlled by a second temperature control mechanism.
請求項1記載の生体試料分析装置であって、
核酸を分析する分析機構を備え、
核酸を分析する際に、構造体を回転させ、第2の温度制御機構により恒温槽の内部を温度制御することを特徴とする生体試料分析装置。
The biological sample analyzer according to claim 1,
It has an analysis mechanism for analyzing nucleic acids,
A biological sample analyzer characterized in that, when analyzing a nucleic acid, the structure is rotated and the temperature inside the thermostatic chamber is controlled by a second temperature control mechanism.
請求項1記載の生体試料分析装置であって、
第1の温度制御機構が反応容器を温度制御することを特徴とする生体試料分析装置。
The biological sample analyzer according to claim 1,
A biological sample analyzer, wherein the first temperature control mechanism controls the temperature of the reaction vessel.
請求項1記載の生体試料分析装置であって、
第1の温度制御機構が、構造体に設けられた磁性材と、構造体の外部に設けられた電磁誘導コイルとを含み、
電磁誘導方式により磁性材を加熱することを特徴とする生体試料検査装置。
The biological sample analyzer according to claim 1,
The first temperature control mechanism includes a magnetic material provided in the structure and an electromagnetic induction coil provided outside the structure,
A biological specimen inspection apparatus characterized by heating a magnetic material by an electromagnetic induction method.
請求項1記載の生体試料分析装置であって、
第2の温度制御機構が、装置外部との熱交換器と、恒温槽と熱交換器に接続する配管と、配管内の送気機構とを含み、
装置外部と熱交換することにより、恒温槽の内部の温度制御を行うことを特徴とする生体試料検査装置。
The biological sample analyzer according to claim 1,
The second temperature control mechanism includes a heat exchanger with the outside of the apparatus, piping connected to the thermostat and the heat exchanger, and an air supply mechanism in the piping,
A biological sample inspection apparatus that performs temperature control inside a thermostatic chamber by exchanging heat with the outside of the apparatus.
生体試料を保持する生体試料保持領域と、試薬を保持する試薬保持領域と、生体試料と試薬を反応させる反応領域とを備えた回転可能な構造体と、
構造体の回転を制御する回転制御機構と、
構造体の一部を局所的に温度制御できる第1の温度制御機構と、
構造体の全体を温度制御できる第2の温度制御機構と、を備えた生体試料分析装置であって、
生体試料から核酸を摘出する際に、構造体を回転させ、構造体の全体を温度制御し、
核酸を熱変性する際に、構造体を静止させ、構造体の一部を局所的に温度制御し、
核酸を増幅する際に、構造体を回転させ、構造体の全体を温度制御することを特徴とする生体試料分析装置。
A rotatable structure comprising a biological sample holding region for holding a biological sample, a reagent holding region for holding a reagent, and a reaction region for reacting the biological sample with the reagent;
A rotation control mechanism for controlling the rotation of the structure;
A first temperature control mechanism capable of locally controlling the temperature of a part of the structure;
A biological sample analyzer comprising: a second temperature control mechanism capable of controlling the temperature of the entire structure;
When extracting nucleic acid from a biological sample, rotate the structure, control the temperature of the entire structure,
When the nucleic acid is heat denatured, the structure is kept stationary, and the temperature of a part of the structure is locally controlled.
A biological sample analyzer characterized in that when a nucleic acid is amplified, the structure is rotated and the temperature of the entire structure is controlled.
請求項8記載の生体試料分析装置であって、
核酸を分析する分析機構を備え、
核酸を分析する際に、構造体を回転させ、構造体の全体を温度制御することを特徴とする生体試料分析装置。
The biological sample analyzer according to claim 8, wherein
It has an analysis mechanism for analyzing nucleic acids,
A biological sample analyzer characterized in that when a nucleic acid is analyzed, the structure is rotated and the temperature of the entire structure is controlled.
JP2006003164A 2006-01-11 2006-01-11 Biological sample analyzer Active JP4564924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003164A JP4564924B2 (en) 2006-01-11 2006-01-11 Biological sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003164A JP4564924B2 (en) 2006-01-11 2006-01-11 Biological sample analyzer

Publications (2)

Publication Number Publication Date
JP2007185101A true JP2007185101A (en) 2007-07-26
JP4564924B2 JP4564924B2 (en) 2010-10-20

Family

ID=38340707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003164A Active JP4564924B2 (en) 2006-01-11 2006-01-11 Biological sample analyzer

Country Status (1)

Country Link
JP (1) JP4564924B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151665A (en) * 2008-12-25 2010-07-08 Hitachi High-Technologies Corp Analyzer
JP2011239688A (en) * 2010-05-14 2011-12-01 Hitachi High-Technologies Corp Nucleic acid amplification apparatus and method for amplifying nucleic acid
CN102884169A (en) * 2010-05-07 2013-01-16 株式会社日立高新技术 Nucleic acid amplifier and nucleic acid inspection device using same
JP2014525041A (en) * 2011-07-27 2014-09-25 クレティス・アクチェンゲゼルシャフト Equipment and methods for sample lysis, especially automated and / or controlled sample lysis
JP2015028486A (en) * 2008-03-31 2015-02-12 ボストン メディカル センター コーポレーション Predictive marker for topoisomerase i inhibitors
KR101513273B1 (en) * 2012-08-30 2015-04-22 주식회사 메디센서 A rotary type PCR machine and a PCR chip
JP2016176945A (en) * 2016-04-07 2016-10-06 クレティス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCuretis GmbH Equipment and method for lysis of sample in particular for automated and/or controlled lysis of sample
KR101722997B1 (en) * 2014-02-05 2017-04-18 울산과학기술원 Integrated device enabling biomolecule analysis and method using centrifugal force
CN107976402A (en) * 2017-10-19 2018-05-01 广州市第人民医院 It is a kind of based on the modularization bio-analysis system of droplet array chip and its application
CN112410209A (en) * 2020-11-26 2021-02-26 广州达晖生物技术股份有限公司 Temperature control system for chromosome harvesting equipment and automatic temperature control method
CN114774264A (en) * 2022-06-22 2022-07-22 至美时代生物智能科技(北京)有限公司 Automatic air microorganism detection system
KR20230059626A (en) * 2021-10-26 2023-05-03 주식회사 시큐어메드 Apparatus for heating and cooling samples and method for heating and cooling samples using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780334B1 (en) * 2015-09-07 2017-09-21 조원창 Gene Amplification Apparatus and Method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775544A (en) * 1993-07-28 1995-03-20 Perkin Elmer Corp:The Device for causing amplification reaction of nucleic acid and chemical chain reaction, device for causing amplification reaction of nucleic acid including modification, annealing and extension process simultaneously and method of causing amplification reaction of nucleic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775544A (en) * 1993-07-28 1995-03-20 Perkin Elmer Corp:The Device for causing amplification reaction of nucleic acid and chemical chain reaction, device for causing amplification reaction of nucleic acid including modification, annealing and extension process simultaneously and method of causing amplification reaction of nucleic acid

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028486A (en) * 2008-03-31 2015-02-12 ボストン メディカル センター コーポレーション Predictive marker for topoisomerase i inhibitors
US9523114B2 (en) 2008-12-25 2016-12-20 Hitachi High-Technologies Corporation Analyzer
US8895296B2 (en) 2008-12-25 2014-11-25 Hitachi High-Technologies Corporation Analyzer
EP2381243B1 (en) * 2008-12-25 2020-11-11 Hitachi High-Tech Corporation Analyzer
JP2010151665A (en) * 2008-12-25 2010-07-08 Hitachi High-Technologies Corp Analyzer
CN102884169A (en) * 2010-05-07 2013-01-16 株式会社日立高新技术 Nucleic acid amplifier and nucleic acid inspection device using same
US10512915B2 (en) 2010-05-07 2019-12-24 Hitachi High-Technologies Corporation Nucleic acid amplifier and nucleic acid inspection device employing the same
CN102884169B (en) * 2010-05-07 2016-05-18 株式会社日立高新技术 Nucleic acid amplitude device and used the nucleic acid testing fixture of this nucleic acid amplitude device
JP2011239688A (en) * 2010-05-14 2011-12-01 Hitachi High-Technologies Corp Nucleic acid amplification apparatus and method for amplifying nucleic acid
JP2014525041A (en) * 2011-07-27 2014-09-25 クレティス・アクチェンゲゼルシャフト Equipment and methods for sample lysis, especially automated and / or controlled sample lysis
US11447737B2 (en) 2011-07-27 2022-09-20 Curetis Gmbh Apparatus and method for a lysis of a sample, in particular for an automated and/or controlled lysis of a sample
US9963670B2 (en) 2011-07-27 2018-05-08 Curetis Gmbh Apparatus and method for a lysis of a sample, in particular for an automated and/or controlled lysis of a sample
KR101513273B1 (en) * 2012-08-30 2015-04-22 주식회사 메디센서 A rotary type PCR machine and a PCR chip
KR101722997B1 (en) * 2014-02-05 2017-04-18 울산과학기술원 Integrated device enabling biomolecule analysis and method using centrifugal force
JP2016176945A (en) * 2016-04-07 2016-10-06 クレティス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCuretis GmbH Equipment and method for lysis of sample in particular for automated and/or controlled lysis of sample
CN107976402A (en) * 2017-10-19 2018-05-01 广州市第人民医院 It is a kind of based on the modularization bio-analysis system of droplet array chip and its application
CN107976402B (en) * 2017-10-19 2021-06-04 广州市第一人民医院 Modular biological analysis system based on liquid drop array chip and application thereof
CN112410209A (en) * 2020-11-26 2021-02-26 广州达晖生物技术股份有限公司 Temperature control system for chromosome harvesting equipment and automatic temperature control method
KR20230059626A (en) * 2021-10-26 2023-05-03 주식회사 시큐어메드 Apparatus for heating and cooling samples and method for heating and cooling samples using the same
KR102652958B1 (en) * 2021-10-26 2024-04-01 주식회사 시큐어메드 Apparatus for heating and cooling samples and method for heating and cooling samples using the same
CN114774264A (en) * 2022-06-22 2022-07-22 至美时代生物智能科技(北京)有限公司 Automatic air microorganism detection system

Also Published As

Publication number Publication date
JP4564924B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4564924B2 (en) Biological sample analyzer
US10512915B2 (en) Nucleic acid amplifier and nucleic acid inspection device employing the same
JP4281877B2 (en) System and method for performing and monitoring biological processes
US7081226B1 (en) System and method for fluorescence monitoring
US5721123A (en) Methods and apparatus for direct heating of biological material
US7273749B1 (en) Container for carrying out and monitoring biological processes
RU2487944C2 (en) Apparatus and method of controlling temperature of reaction mixture
US9993822B2 (en) Nucleic acid amplification/detection device and nucleic acid inspection device using same
US20090221060A1 (en) Nucleic acid analyzer
WO2014115863A1 (en) Nucleic acid amplifying device and method for detecting abnormal temperature regulating function
JP5759818B2 (en) Nucleic acid testing equipment
KR101302748B1 (en) System for multiplexing DNA amplification by non contact heating
JP6754420B2 (en) Convection PCR device
US20050233324A1 (en) Device for the amplification of dna, comprising a microwave energy source
JP2003344290A (en) Fluorescence detector with temperature controller
US9993819B2 (en) Apparatus for actuating and reading a centrifugal microfluidic disk for biological and biochemical analyses, and use of the apparatus
WO2017213590A1 (en) Rapid thermal cycling for sample analyses and processing
JP2017504355A (en) Non-contact infrared thermal cycle
JP2010139491A (en) Method for measuring temperature of reaction liquid, apparatus for measuring temperature of reaction liquid, apparatus for adjusting temperature of reaction liquid, and apparatus for bringing genes into amplification reaction
JP2010002247A (en) Autoanalyzer
KR101335940B1 (en) Bio material test device and controlling method thereof
KR100479782B1 (en) Biological Process Monitoring Methods and Systems
JP5339838B2 (en) Genetic testing equipment
WO2022233783A1 (en) A temperature controller and a method for controlling a temperature of a sample, and an analysis instrument
CN115078313A (en) Biomolecule analysis system based on micro-fluidic chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350