JP2007184236A - Substrate with transparent conductive film for laser patterning, and its manufacturing method - Google Patents

Substrate with transparent conductive film for laser patterning, and its manufacturing method Download PDF

Info

Publication number
JP2007184236A
JP2007184236A JP2006274016A JP2006274016A JP2007184236A JP 2007184236 A JP2007184236 A JP 2007184236A JP 2006274016 A JP2006274016 A JP 2006274016A JP 2006274016 A JP2006274016 A JP 2006274016A JP 2007184236 A JP2007184236 A JP 2007184236A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
substrate
glass substrate
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006274016A
Other languages
Japanese (ja)
Other versions
JP4872585B2 (en
Inventor
Masahiro Kishi
政洋 岸
Yasuhiko Akao
安彦 赤尾
Hiroshi Yamakawa
博 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006274016A priority Critical patent/JP4872585B2/en
Publication of JP2007184236A publication Critical patent/JP2007184236A/en
Application granted granted Critical
Publication of JP4872585B2 publication Critical patent/JP4872585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for a flat panel display with a transparent conductive film for laser patterning of which laser etching property becomes excellent, and to provide its manufacturing method. <P>SOLUTION: This is the substrate with the transparent conductive film which is employed in order to form transparent conductive film patterns by pattering the transparent conductive film formed on the glass substrate with a laser beam. A material forming the transparent conductive film contains indium oxide, tin oxide, or zinc oxide as main components, and an absorptivity of the transparent conductive film obtained by the formula (1) in wavelength 1,064 nm is 5% or more and 20% or less. In the formula (1), the absorptivity of transparent conductive film=ä100-(transmittance of glass substrate with transparent conductive film+reflectance of glass substrate with transparent conductive film)}-ä100-(transmittance of glass substrate+reflectance of glass substrate)}. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はプラズマディスプレイパネル(以下、PDPと略記する)の前面板に用いることのできる透明導電膜付き基板に関する。   The present invention relates to a substrate with a transparent conductive film that can be used for a front plate of a plasma display panel (hereinafter abbreviated as PDP).

フラットパネルディスプレイの透明電極は、従来ガラス基板上に形成された酸化インジュウムを主成分とする透明導電膜をフォトリソグラフィによるウエットエッチング法でパターニングしたものが透明電極等として用いられている。しかし、基板の大型化に伴い、フォトリソグラフィ法によるウエットパターニングは、フォトリソグラフィに使用する大型マスク作製の困難化と、パターニング工程数が多いことによるコストアップと、が問題となっている。そこで、特許文献1、2に示すように、レーザー光で直接基板に透明導電膜のパターンを形成するレーザーパターニング法が用いられつつある。   As a transparent electrode of a flat panel display, a transparent electrode or the like obtained by patterning a transparent conductive film mainly composed of indium oxide formed on a glass substrate by a wet etching method using photolithography has been used. However, with the increase in the size of the substrate, wet patterning by photolithography has been problematic in that it makes it difficult to produce a large mask used for photolithography and increases the cost due to the large number of patterning steps. Therefore, as shown in Patent Documents 1 and 2, a laser patterning method in which a transparent conductive film pattern is directly formed on a substrate with laser light is being used.

特開2001−52602号公報JP 2001-52602 A 特開2005−108668号公報JP 2005-108668 A

しかし、従来使用されている酸化インジュウム膜を主成分とする透明導電膜は、単位面積あたりのレーザの照射エネルギーが低下した時に酸化インジュウム膜が残ることにより、残存した膜残りが原因となって形成された導電膜パターン間が絶縁とならずにリークが発生する問題がある。逆に、レーザの照射エネルギーを上げるとガラス基板自体にキズが発生しやすくなる問題がある。また、タクトアップが困難で、生産効率が低いという問題がある。   However, the conventionally used transparent conductive film mainly composed of indium oxide film is formed due to the remaining film because the indium oxide film remains when the laser irradiation energy per unit area decreases. There is a problem in that leakage occurs without insulation between the formed conductive film patterns. Conversely, when the laser irradiation energy is increased, there is a problem that the glass substrate itself is easily scratched. In addition, there is a problem that tact-up is difficult and production efficiency is low.

本発明は、このような現状を考慮したものであって、容易にパターニングが可能なレーザーパターニング用透明導電膜付きガラス基板およびその製造方法、前記導電膜のパターニング方法を提供することを目的とする。   The present invention has been made in consideration of such a current situation, and an object thereof is to provide a glass substrate with a transparent conductive film for laser patterning that can be easily patterned, a method for manufacturing the same, and a method for patterning the conductive film. .

特に、波長が250〜1500nm、特に1000〜1500nm(さらには波長が1064nmの場合)のレーザー光に対し、パターニング性が良好で、安定したパターニング性を有するレーザーパターニング用透明導電膜付きガラス基板を提供することを目的とする。   In particular, a glass substrate with a transparent conductive film for laser patterning, which has good patternability and stable patternability with respect to laser light having a wavelength of 250 to 1500 nm, particularly 1000 to 1500 nm (and when the wavelength is 1064 nm), is provided. The purpose is to do.

上記目的を達成するため、本出願は下記の発明を提供する。
(1)ガラス基板上に形成された透明導電膜をレーザー光によりパターニングすることによって透明導電膜パターンを形成するために使用される透明導電膜付き基板であって、
前記透明導電膜を形成する材料が酸化インジウム、酸化スズまたは酸化亜鉛を主成分とし、
波長1064nmにおける式(1)にて求められる前記透明導電膜の吸収率が5%以上20%以下である透明導電膜付き基板。
透明導電膜の吸収率={100−(透明導電膜付きガラス基板の透過率+透明導電膜付きガラス基板の反射率)}−{100−(ガラス基板の透過率+ガラス基板の反射率)}
‥‥‥(1)式
(2)前記レーザー光の波長が1000〜1500nmである(1)に記載の透明導電膜付き基板。
In order to achieve the above object, the present application provides the following inventions.
(1) A substrate with a transparent conductive film used for forming a transparent conductive film pattern by patterning a transparent conductive film formed on a glass substrate with a laser beam,
The material forming the transparent conductive film is mainly composed of indium oxide, tin oxide or zinc oxide,
The board | substrate with a transparent conductive film whose absorptivity of the said transparent conductive film calculated | required by Formula (1) in wavelength 1064nm is 5% or more and 20% or less.
Absorbance of transparent conductive film = {100- (transmittance of glass substrate with transparent conductive film + reflectance of glass substrate with transparent conductive film)}-{100- (transmittance of glass substrate + reflectance of glass substrate)}
(1) Formula (2) The substrate with a transparent conductive film according to (1), wherein the wavelength of the laser beam is 1000 to 1500 nm.

(3)前記透明導電膜の比抵抗値が4×10−3Ω・cm以下である(1)または(2)に記載の透明導電膜付き基板。
(4)プラズマディスプレイパネルの前面板に用いることのできる(1)、(2)または(3)に記載の透明導電膜付き基板。
(3) The substrate with a transparent conductive film according to (1) or (2), wherein the specific resistance value of the transparent conductive film is 4 × 10 −3 Ω · cm or less.
(4) The substrate with a transparent conductive film according to (1), (2) or (3), which can be used for a front plate of a plasma display panel.

(5)成膜時の基板温度を220℃〜400℃、スパッタガス中のO濃度を0.5〜1.5%とすることにより(1)〜(4)いずれか1項に記載の透明導電膜を形成する透明導電膜付き基板の製造方法。
(6)(1)〜(4)いずれか1項に記載の透明導電膜をレーザパターニングすることによって得られる透明導電膜パターン付き基板。
(7)(5)に記載の透明導電膜付き基板の製造方法により得られた透明導電膜をレーザパターニングすることによって得られる透明導電膜パターン付き基板。
(5) The substrate temperature during film formation is 220 ° C. to 400 ° C., and the O 2 concentration in the sputtering gas is 0.5 to 1.5%, according to any one of (1) to (4) The manufacturing method of a board | substrate with a transparent conductive film which forms a transparent conductive film.
(6) A substrate with a transparent conductive film pattern obtained by laser patterning the transparent conductive film according to any one of (1) to (4).
(7) A substrate with a transparent conductive film pattern obtained by laser patterning a transparent conductive film obtained by the method for manufacturing a substrate with a transparent conductive film according to (5).

(8)(6)または(7)に記載の透明導電膜パターン付き基板を用いたプラズマディスプレイパネルの前面板。
(9)(8)に記載の前面板を用いたプラズマディスプレイパネル。
(8) A front panel of a plasma display panel using the substrate with a transparent conductive film pattern according to (6) or (7).
(9) A plasma display panel using the front plate according to (8).

本発明によれば、エッチングしやすく、安定したレーザエッチング性を有するレーザパターニング用透明導電膜付きガラス基板、特にPDP用透明導電膜付きガラス基板を得ることができる。   According to the present invention, it is possible to obtain a glass substrate with a transparent conductive film for laser patterning, particularly a glass substrate with a transparent conductive film for PDP, which is easy to etch and has a stable laser etching property.

また、本発明のPDP用透明導電膜付きガラス基板によれば、レーザーが低出力であっても所望の形状にパターニングできる結果、安定して絶縁することができる。よって、低出力のレーザの使用が可能であり、同じレーザ出力でも広範囲のエッチングが可能である。したがって、タクトアップが可能になるので生産効率をあげることができる。以上より、上記透明導電膜付きガラス基板は、本発明のPPD用の前面板用の基板として最適である。   Moreover, according to the glass substrate with a transparent conductive film for PDP of the present invention, as a result of patterning into a desired shape even if the laser output is low, it is possible to stably insulate. Therefore, a low-power laser can be used, and a wide range of etching can be performed with the same laser power. Therefore, tact-up is possible and production efficiency can be increased. As mentioned above, the said glass substrate with a transparent conductive film is optimal as a board | substrate for front plates for PPD of this invention.

本発明に用いられる基板はソーダライムガラス、無アルカリガラス等特に限定されず、各種ガラス基板が使用できる。本実施例においてはPDP用ガラス(旭硝子製PD200)を用いる。   The substrate used in the present invention is not particularly limited, such as soda lime glass and non-alkali glass, and various glass substrates can be used. In this embodiment, glass for PDP (PD200 manufactured by Asahi Glass) is used.

ガラス基板の大きさは、特に限定されず、縦および横ともに100〜3000mm、特に500〜2500mmであることが好ましい。またガラス基板の厚さは0.3〜3mm、特に1.5〜3mmであることが好ましい。   The size of the glass substrate is not particularly limited, and is preferably 100 to 3000 mm, particularly 500 to 2500 mm in both length and width. Moreover, it is preferable that the thickness of a glass substrate is 0.3-3 mm, especially 1.5-3 mm.

ガラス基板上に透明導電膜を形成する材料は酸化インジウム、酸化スズまたは酸化亜鉛を主成分とする材料である。具体的には、酸化インジウム、酸化スズまたは酸化亜鉛が透明導電膜中に60質量%以上、特に70質量%以上、さらには80質量%以上であることが好ましい。特に、酸化スズ、酸化スズをドープした酸化インジウム(以下、ITOと記す。)、酸化アルミニウムをドープした酸化亜鉛(AZO)、等が挙げられる。透明導電膜は、1種の導電材料からなる単層膜であってもよく、異なる種類の透明導電材料からなる複合層であってもよく、さらに異なる層を2層以上有する積層膜であってもよい。また、透明導電膜の膜厚は、抵抗値、透過率等の観点から50〜250nmが好ましい。   The material for forming the transparent conductive film on the glass substrate is a material mainly composed of indium oxide, tin oxide, or zinc oxide. Specifically, indium oxide, tin oxide or zinc oxide is preferably 60% by mass or more, particularly 70% by mass or more, and more preferably 80% by mass or more in the transparent conductive film. In particular, tin oxide, indium oxide doped with tin oxide (hereinafter referred to as ITO), zinc oxide doped with aluminum oxide (AZO), and the like can be given. The transparent conductive film may be a single layer film made of one kind of conductive material, may be a composite layer made of different kinds of transparent conductive material, and is a laminated film having two or more different layers. Also good. The film thickness of the transparent conductive film is preferably 50 to 250 nm from the viewpoint of resistance value, transmittance, and the like.

これらのうち、透明導電膜としては上記導電材料を主成分とする膜、すなわち上記導電材料を80〜99質量%、ドーパンド材料を1〜20質量%含む膜であることが好ましい。さらに、透明導電膜は、酸化インジウムを主成分とする膜が好ましく、ITOからなる膜(以下、ITO膜と記す。)や酸化スズ膜が特に好ましい。また、透明導電膜の比抵抗値は4×10-4Ω・cm以下、特に3×10-4Ω・cm以下、さらには2.5×10-4Ω・cm以下が好ましい。また、前記透明導電膜の可視光透過率は、透明性の点で、80%以上であることが好ましい。 Among these, the transparent conductive film is preferably a film containing the conductive material as a main component, that is, a film containing 80 to 99% by mass of the conductive material and 1 to 20% by mass of a dopant material. Further, the transparent conductive film is preferably a film containing indium oxide as a main component, and a film made of ITO (hereinafter referred to as ITO film) or a tin oxide film is particularly preferable. The specific resistance value of the transparent conductive film is preferably 4 × 10 −4 Ω · cm or less, particularly 3 × 10 −4 Ω · cm or less, and more preferably 2.5 × 10 −4 Ω · cm or less. In addition, the visible light transmittance of the transparent conductive film is preferably 80% or more in terms of transparency.

ITO膜は、酸化インジウムと酸化スズとの合計100質量%中、酸化スズを1〜20質量%含むものが導電性を良好とできる点で好ましい。ITO膜の膜厚は、抵抗値、透過率等の観点から50〜250nmが好ましい。また、ITO膜の比抵抗値は4×10-4Ω・cm以下が好ましい。 It is preferable that the ITO film contains 1 to 20% by mass of tin oxide in a total of 100% by mass of indium oxide and tin oxide because the conductivity can be improved. The thickness of the ITO film is preferably 50 to 250 nm from the viewpoint of resistance value, transmittance, and the like. The specific resistance value of the ITO film is preferably 4 × 10 −4 Ω · cm or less.

酸化スズ膜は、酸化スズを85質量%以上含むものが導電性を良好とできる点で好ましい。酸化スズ膜の膜厚は、抵抗値、透過率等の観点から100〜250nmが好ましい。また、酸化スズ膜の比抵抗値は5×10-4Ω・cm以下が好ましい。 A tin oxide film containing 85% by mass or more of tin oxide is preferable in that the conductivity can be improved. The thickness of the tin oxide film is preferably 100 to 250 nm from the viewpoint of resistance value, transmittance, and the like. Further, the specific resistance value of the tin oxide film is preferably 5 × 10 −4 Ω · cm or less.

ITO膜や酸化スズ膜の形成方法としては、熱分解法(原料溶液を塗布後加熱して膜を形成する方法)、化学気相成長法(CVD)法、スパッタリング法、蒸着法、イオンプレーティング法等が挙げられるが、これらのうち、ITOターゲットを用いてRF(高周波)またはDC(直流)スパッタリング法で形成する方法が好ましい。   Methods for forming ITO films and tin oxide films include thermal decomposition (method of forming a film by applying a raw material solution followed by heating), chemical vapor deposition (CVD), sputtering, vapor deposition, and ion plating. Among them, the method of forming by an RF (high frequency) or DC (direct current) sputtering method using an ITO target is preferable.

スパッタリング法による成膜時の雰囲気ガスとしては、アルゴン−酸素混合ガスを用い、ITO膜の比抵抗値が最小になるようにアルゴンと酸素のガス比を定めることが好ましい。雰囲気ガス中の酸素ガスの含有量は、0.1〜5体積%であることが比抵抗の点で好ましい。また、スパッタリング法による成膜時のガラス基板温度は、100〜500℃が好ましい。これは、ガラス基板温度を100℃以上とすることにより、ITO膜が非晶質になりにくく、ITO膜の耐薬品性が良好になり、成膜温度を500℃以下とすることにより、結晶性が抑えられ、膜表面の凹凸が大きくなり難くなるからである。   It is preferable to use an argon-oxygen mixed gas as an atmosphere gas during film formation by sputtering, and to determine the gas ratio between argon and oxygen so that the specific resistance value of the ITO film is minimized. The content of oxygen gas in the atmospheric gas is preferably 0.1 to 5% by volume in terms of specific resistance. Moreover, the glass substrate temperature at the time of film-forming by sputtering method has preferable 100-500 degreeC. This is because when the glass substrate temperature is set to 100 ° C. or higher, the ITO film is less likely to be amorphous, the chemical resistance of the ITO film is improved, and the film forming temperature is set to 500 ° C. or lower to achieve crystallinity. This is because the unevenness of the film surface is difficult to increase.

レーザ光を透明導電膜に照射することにより透明導電膜パターンを形成するレーザとしては、COレーザー、YVOレーザー、Ne−YAGレーザー等挙げられる。特に、高出力で安定したレーザーを安価に得られることから、Ne−YAGレーザーの基本波(1064nm)を使用することが好ましい。 Examples of the laser that forms a transparent conductive film pattern by irradiating the transparent conductive film with laser light include a CO 2 laser, a YVO laser, and a Ne-YAG laser. In particular, it is preferable to use a fundamental wave (1064 nm) of a Ne-YAG laser because a high-power and stable laser can be obtained at low cost.

ITO膜や酸化スズ膜、AZO膜の結晶性は、可視光(波長400〜750nm)の領域においては、スパッタリング法による成膜時のガラス基板温度が高くなるほど向上し、その結果、吸収率が低くなる傾向がある。つまり、従来は、可視光域の吸収率を考慮すると、成膜時のガラス基板温度は下げて行うことが通常であった。   In the visible light (wavelength 400 to 750 nm) region, the crystallinity of the ITO film, the tin oxide film, and the AZO film improves as the glass substrate temperature during film formation by the sputtering method increases, and as a result, the absorptance is low. Tend to be. That is, conventionally, taking into consideration the absorptance in the visible light region, it has been usual to lower the glass substrate temperature during film formation.

一方、波長1064nmにおけるITO膜の吸収率は、スパッタリング法による成膜時のガラス基板温度を高くすると上がり、低くすると下がる傾向があることがわかった。したがって、成膜時の基板温度は高いほうが好ましい。特に波長1064nmにおけるITO膜の吸収率を5%以上とするには、成膜時の基板温度を220℃以上400℃以下とすることが好ましい。   On the other hand, it was found that the absorptance of the ITO film at a wavelength of 1064 nm tends to increase when the glass substrate temperature during film formation by sputtering is increased and decrease when the glass substrate temperature is decreased. Therefore, it is preferable that the substrate temperature during film formation is high. In particular, in order to set the absorption rate of the ITO film at a wavelength of 1064 nm to 5% or more, it is preferable to set the substrate temperature during film formation to 220 ° C. or more and 400 ° C. or less.

ここで吸収率とは、下記式(1)によって求められた値である。なお、反射率は5°入射のときの反射率を意味する。   Here, the absorptance is a value obtained by the following formula (1). The reflectance means the reflectance at 5 ° incidence.

透明導電膜の吸収率={100−(透明導電膜付きガラス基板の透過率+透明導電膜付きガラス基板の反射率)}−{100−(ガラス基板の透過率+ガラス基板の反射率)} ‥‥‥(1)式
なお、式中のそれぞれの透過率、反射率はJIS R3106(1998年)に準じて測定したものである。
Absorbance of transparent conductive film = {100- (transmittance of glass substrate with transparent conductive film + reflectance of glass substrate with transparent conductive film)}-{100- (transmittance of glass substrate + reflectance of glass substrate)} (1) Formula Each transmittance and reflectance in the formula is measured according to JIS R3106 (1998).

本発明においては、上記透明導電膜の吸収率を5%以上とすることを特徴としている。あるレーザの波長において、その吸収率を上げることでレーザの吸収が良好となる結果、レーザパターニングがしやすくなると考えられる。   In the present invention, the absorptivity of the transparent conductive film is 5% or more. It is considered that the laser patterning is facilitated as a result of improving the absorption of the laser by increasing the absorption rate at a certain wavelength of the laser.

しかし、特にレーザとしてNe−YAGレーザーの基本波(1064nm)を使用してパターニングを行う場合、本発明に記載されている透明導電膜の吸収率を高くする方法は当業者が容易に考え付く内容ではない。
ITO膜に代表される透明導電膜は可視光(波長400〜750nm)の領域においては、スパッタリング法による成膜時のガラス基板温度が高くなるほど結晶性が向上し、吸収率が低くなる。つまり、レーザエッチング性を向上を目的として吸収率を高くする為には、成膜温度を下げれば良いと考えるのが一般的であった。
However, especially when patterning is performed using the fundamental wave (1064 nm) of a Ne-YAG laser as the laser, the method for increasing the absorptivity of the transparent conductive film described in the present invention is easily understood by those skilled in the art. Absent.
In a transparent conductive film typified by an ITO film, in the visible light (wavelength 400 to 750 nm) region, the higher the glass substrate temperature during film formation by sputtering, the better the crystallinity and the lower the absorptance. In other words, it has been generally considered that the film formation temperature should be lowered in order to increase the absorption rate for the purpose of improving the laser etching property.

しかし、以下の実施例で示すように、波長1064nmにおけるITO膜の吸収率は、スパッタリング法による成膜時のガラス基板温度を高くすると上がり、低くすると下がる傾向があることがわかった。   However, as shown in the following examples, it has been found that the absorption rate of the ITO film at a wavelength of 1064 nm tends to increase when the glass substrate temperature at the time of film formation by the sputtering method is increased and decrease when the glass substrate temperature is decreased.

このように可視光(波長400〜700nm)と波長1064nmで成膜温度と吸収率がまったく反対の挙動を示す理由として以下のことが考えられる。   As described above, the reason why the film forming temperature and the absorptance are completely opposite in visible light (wavelength 400 to 700 nm) and wavelength 1064 nm can be considered as follows.

透明導電膜では成膜温度を高くすることで(1)結晶性が向上し欠陥による吸収率か低下する効果と(2)キャリア密度が上昇しキャリアによる吸収が大きくなる効果が考えられる。   In the transparent conductive film, it is conceivable that by raising the film formation temperature, (1) the crystallinity is improved and the absorptance due to defects is lowered, and (2) the carrier density is increased and the absorption by carriers is increased.

可視光(波長400〜700nm)の透明導電膜では欠陥による吸収に比べキャリアによる吸収が小さい為、成膜温度を高くすると(1)結晶性が向上し欠陥による吸収率か低下の効果が大きく作用する為。吸収率が小さくなると考えられている。   In the transparent conductive film of visible light (wavelength 400 to 700 nm), the absorption by carriers is smaller than the absorption by defects. Therefore, when the film formation temperature is increased, (1) the crystallinity is improved and the effect of reducing or reducing the absorption rate due to defects is greatly affected. To do. It is believed that the absorption rate is reduced.

一方、1064nmの波長では欠陥による吸収に比べキャリアによる吸収が大きいため、成膜温度を高くすると(2)キャリア密度が上昇しキャリアによる吸収が大きくなる効果がより大きく作用するため、吸収率が大きくなると考えられる。   On the other hand, since the absorption due to carriers is larger than the absorption due to defects at a wavelength of 1064 nm, the effect of increasing the carrier density and increasing the absorption due to carriers is greater when the film forming temperature is increased. It is considered to be.

比抵抗と吸収率条件を考慮すると、成膜時の基板温度は220℃以上、500℃以下が好ましいが、高温域で使用できる装置の製作上の困難性から、400℃以下がより好ましい。さらに好ましくは、250〜350℃である。   Considering the specific resistance and absorptance conditions, the substrate temperature during film formation is preferably 220 ° C. or more and 500 ° C. or less. However, 400 ° C. or less is more preferable because of difficulty in manufacturing an apparatus that can be used in a high temperature range. More preferably, it is 250-350 degreeC.

また、スパッタリング法による成膜時における雰囲気ガス中のO濃度を高くすると、ITO膜の1064nmの波長における吸収率は下がり、O濃度を低くすると1064nmの波長における吸収率は上がる傾向がある。よって、O濃度は低い方が好ましい。特に波長1064nmにおけるITO膜の吸収率を5%以上とするには、上記雰囲気中のO濃度を2.5体積%以下とすることが好ましい。また、O濃度を0.3体積%未満するとITO膜が酸素欠乏になり、透明性が悪くなるとともに抵抗値が悪化する可能性がある。よって、O濃度は0.3〜2.5体積%、特に0.5〜1.5体積%、さらには0.6〜1.2体積%であることが好ましい。 Further, when the O 2 concentration in the atmospheric gas during film formation by sputtering is increased, the absorptance at a wavelength of 1064 nm of the ITO film decreases, and when the O 2 concentration is decreased, the absorptance at a wavelength of 1064 nm tends to increase. Therefore, a lower O 2 concentration is preferable. In particular, in order to set the absorption rate of the ITO film at a wavelength of 1064 nm to 5% or more, the O 2 concentration in the atmosphere is preferably 2.5% by volume or less. On the other hand, if the O 2 concentration is less than 0.3% by volume, the ITO film becomes deficient in oxygen, and the transparency may deteriorate and the resistance value may deteriorate. Therefore, the O 2 concentration is preferably 0.3 to 2.5% by volume, particularly 0.5 to 1.5% by volume, and more preferably 0.6 to 1.2% by volume.

なお、従来のITO膜は、その透明性などを考慮して、O濃度を高くして成膜することが通常であった。本発明は、ITO膜の1064nmの波長における吸収性を考慮して、雰囲気ガス中のO濃度をより低い範囲に限定したものである。 Note that the conventional ITO film is usually formed with a high O 2 concentration in consideration of its transparency and the like. In the present invention, the O 2 concentration in the atmospheric gas is limited to a lower range in consideration of the absorbability of the ITO film at a wavelength of 1064 nm.

ITO膜の吸収率は成膜時の基板温度と上記雰囲気中のO濃度との両方の条件が大きく影響を与える。特に波長1064nmにおける吸収率を5%以上となるITO膜を安定して得るためには、成膜時の基板温度を220℃〜400℃、スパッタガス中のO濃度を0.6〜1.2%とすることが好ましい。 The conditions for both the substrate temperature at the time of film formation and the O 2 concentration in the atmosphere are greatly affected by the absorption rate of the ITO film. In particular, in order to stably obtain an ITO film having an absorption rate of 5% or more at a wavelength of 1064 nm, the substrate temperature during film formation is 220 ° C. to 400 ° C., and the O 2 concentration in the sputtering gas is 0.6 to 1. 2% is preferable.

アルカリ含有ガラス基板を用いる場合には、ガラス基板に含まれるアルカリイオンがITO膜へ拡散してITO膜の抵抗値に影響を及ぼすことがある。そのため、アルカリバリア層として二酸化ケイ素膜等をガラス基板とITO膜の間に形成することが好ましい。アルカリバリア層の形成方法としては、熱分解法、CVD法、スパッタリング法、蒸着法、イオンプレーティング法等が挙げられる。アルカリバリア膜の膜厚は、アルカリバリア性能の観点から、10nm以上が好ましく、コスト面から500nm以下が好ましい。   When an alkali-containing glass substrate is used, alkali ions contained in the glass substrate may diffuse into the ITO film and affect the resistance value of the ITO film. Therefore, it is preferable to form a silicon dioxide film or the like as an alkali barrier layer between the glass substrate and the ITO film. Examples of the method for forming the alkali barrier layer include a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method, and an ion plating method. The thickness of the alkali barrier film is preferably 10 nm or more from the viewpoint of alkali barrier performance, and preferably 500 nm or less from the viewpoint of cost.

以上の様に、エッチングしやすく、安定したレーザエッチング性を持つ透明導電膜を有するレーザパターニング用透明導電膜付きガラス基板を得ることができる。   As described above, a glass substrate with a transparent conductive film for laser patterning having a transparent conductive film that is easy to etch and has stable laser etching properties can be obtained.

以下、本発明の実施例および比較例を示す。
(実施例1)
まず、サンプル基板として50mm×50mmのPDP用高歪み点ガラス(旭硝子製PD200)基板を用いる。このサンプル基板にDCマグネトロンスパッタリング法により、膜厚が130nmとなるようにITO膜の成膜を行い、ITO膜付きサンプル基板を得た。ターゲットは、10質量%の酸化スズがドープした酸化インジュウムターゲットを使用した。成膜時のサンプル基板温度は250℃とし、Ar−O混合ガス雰囲気中でスパッタリングを行った。Oの含有量は0.6体積%であった。
Examples of the present invention and comparative examples are shown below.
(Example 1)
First, a 50 mm × 50 mm high strain point glass for PDP (PD200 manufactured by Asahi Glass) is used as a sample substrate. An ITO film was formed on this sample substrate by DC magnetron sputtering so that the film thickness became 130 nm, and a sample substrate with an ITO film was obtained. As the target, an indium oxide target doped with 10% by mass of tin oxide was used. The sample substrate temperature during film formation was 250 ° C., and sputtering was performed in an Ar—O 2 mixed gas atmosphere. The content of O 2 was 0.6% by volume.

<ITO膜の吸収率Eの測定>
JIS R3106(1998年)に従って、波長532nmおよび1064nmにおけるITO膜付きサンプル基板の反射率および吸収率の測定を行った。本測定においては日立分光光度計U-4000を使用し、ITOを成膜した基板の成膜面から、(1)式における透過率A、入射角を5°とした場合の5°反射率Bを測定した。
<Measurement of absorption rate E of ITO film>
According to JIS R3106 (1998), the reflectance and absorptivity of the sample substrate with the ITO film at wavelengths of 532 nm and 1064 nm were measured. In this measurement, Hitachi spectrophotometer U-4000 was used. From the film-forming surface of the substrate on which ITO was formed, transmittance A in equation (1), 5 ° reflectance B when the incident angle was 5 ° Was measured.

次に、透過率Aおよび5°反射率Bを測定したITO膜付きサンプル基板を、47℃に加熱したエッチング液(水1000ml、40質量%塩化第二鉄水溶液500ml、35質量%塩酸1000mlの混合液)に3分間浸漬して、すべてのITO膜をガラス表面から除去した。その後、波長532nmおよび1064nmにおける膜を除去したガラス基板単体の透過率C、入射角を5°とした場合の5°反射率Dを測定した。   Next, a sample substrate with an ITO film whose transmittance A and 5 ° reflectance B were measured was mixed with an etching solution heated to 47 ° C. (mixture of water 1000 ml, 40 mass% ferric chloride aqueous solution 500 ml, 35 mass% hydrochloric acid 1000 ml). All the ITO films were removed from the glass surface by immersing in the liquid for 3 minutes. Thereafter, the transmittance C of the glass substrate alone from which the films at wavelengths of 532 nm and 1064 nm were removed, and the 5 ° reflectance D when the incident angle was 5 ° were measured.

これら測定値A、B、C、Dから以下に示す式を用いて、ITO膜の波長1064nmにおける吸収率Eを算出した。結果を表1に示す。
ITO膜の吸収率E={100−(ITO膜付きガラス基板の透過率A+ITO膜付きガラス基板の5°反射率B)}−{100−(ガラス基板の透過率C+ガラス基板の5°反射率D)} ‥‥‥(1)式。
From these measured values A, B, C, and D, an absorptance E at a wavelength of 1064 nm of the ITO film was calculated using the following equation. The results are shown in Table 1.
Absorbance E = {100− (transmittance A of glass substrate with ITO film + 5 ° reflectivity B of glass substrate with ITO film)} − {100− (transmittance C of glass substrate + 5 ° reflectivity of glass substrate) D)} (1) Formula.

図1は、透過率A、5°反射率B、透過率C、5°反射率Dを測定する場合の、レーザ光の進行方向を記載した断面図である。なお、図1において、1は透明導電膜(ITO膜)、2はガラス基板である。   FIG. 1 is a cross-sectional view illustrating the traveling direction of laser light when measuring transmittance A, 5 ° reflectance B, transmittance C, and 5 ° reflectance D. FIG. In FIG. 1, 1 is a transparent conductive film (ITO film), and 2 is a glass substrate.

<レーザーエッチング後抵抗値とレーザーエッチングされた部分の線幅の測定>
吸収率Eを算出したITO膜と同条件でITO膜付きサンプル基板表面にレーザー光を照射し、パターニングを行った。具体的には、図2のとおり、基板の中心を通りかつ辺に平行な直線形状をパターニングできるように、基板を搬送してパターニングを行った。パターニング幅は48μm目標とした。このときのエッチング条件は、レーザー光波長1064nm、レーザー出力5W、レーザー径60μm、周波数30kHzの設定でレーザー光を照射し、基板の搬送速度は500mm/秒とした。
<Measurement of resistance value after laser etching and line width of laser etched part>
Patterning was performed by irradiating the surface of the sample substrate with the ITO film with laser light under the same conditions as the ITO film for which the absorption rate E was calculated. Specifically, as shown in FIG. 2, the substrate was transported and patterned so that a linear shape passing through the center of the substrate and parallel to the side could be patterned. The patterning width was targeted at 48 μm. Etching conditions at this time were as follows: laser light was irradiated with a laser light wavelength of 1064 nm, a laser output of 5 W, a laser diameter of 60 μm, and a frequency of 30 kHz, and the substrate conveyance speed was 500 mm / second.

図2は、レーザーエッチング後のITO膜付きガラス基板の抵抗値の測定方法を説明する図である。図2に示すように、ITO膜付きガラス基板3のレーザーエッチングされた部分4を挟んで、10mm間隔の抵抗値測定点5にテスター(PC510:三和電気計器社製)をあて、レーザーエッチング後の抵抗値(以下、レーザーエッチング後抵抗値と記す。)とレーザーエッチングされた部分4の線幅とを測定した。結果を表1に示す。   FIG. 2 is a diagram illustrating a method for measuring the resistance value of a glass substrate with an ITO film after laser etching. As shown in FIG. 2, a tester (PC510: manufactured by Sanwa Denki Keiki Co., Ltd.) is applied to the resistance measurement points 5 at intervals of 10 mm across the laser-etched portion 4 of the glass substrate 3 with ITO film, and after laser etching The resistance value (hereinafter referred to as resistance value after laser etching) and the line width of the laser-etched portion 4 were measured. The results are shown in Table 1.

なお、レーザエッチング後抵抗値でO.L.と記載されているものは、レーザエッチング後抵抗値が50MΩ以上となっており、実用上PDP用透明導電膜付きパターニング基板として問題の無いレベルにあることを意味する。   The resistance value after laser etching is O.D. L. This means that the resistance value after laser etching is 50 MΩ or more, which is practically at a level where there is no problem as a patterned substrate with a transparent conductive film for PDP.

<線幅目標を変更した場合のレーザーエッチングされた部分の線幅の測定>
PDP用ITOの放電電極幅は通常100μm程度であることが多い。そこで、次に、レーザ径を変更して1064nmのITO膜の吸収率と、100μm幅でレーザパターニングした時のパターニング性を評価した。具体的には、上記線幅目標を48μmから100μmと変更した以外は上記と同様にパターニングを行い、レーザーエッチングされた部分4の線幅を測定した。結果を表1に示す。
<Measurement of the line width of the laser-etched part when the line width target is changed>
The discharge electrode width of ITO for PDP is usually about 100 μm in many cases. Then, next, the laser diameter was changed, and the absorptivity of the 1064 nm ITO film and the patterning property when laser patterning was performed with a width of 100 μm were evaluated. Specifically, patterning was performed in the same manner as described above except that the line width target was changed from 48 μm to 100 μm, and the line width of the laser-etched portion 4 was measured. The results are shown in Table 1.

<最小レーザ密度の測定>
レーザ出力を変更してレーザエッチング後抵抗値が50MΩ以上となるような最低のパワーを有するレーザ密度(最小レーザ密度)を測定した。
<Measurement of minimum laser density>
The laser output having the lowest power (minimum laser density) was measured such that the resistance after laser etching was changed to 50 MΩ or more by changing the laser output.

吸収率Eを算出したITO膜と同条件でITO膜付きサンプル基板を形成した。形成したITO膜表面にレーザー光を照射し、パターニングを行った。具体的には、図2のとおり、基板の中心を通りかつ辺に平行な直線形状をパターニングできるように、基板を搬送してパターニングを行った。パターニング幅は48μm目標とした。このときのエッチング条件は、レーザー光波長1064nm、レーザー出力5W、レーザー径60μm、周波数30kHzの設定でレーザー光を照射し、基板の搬送速度は500mm/秒とした。   A sample substrate with an ITO film was formed under the same conditions as the ITO film for which the absorption rate E was calculated. Patterning was performed by irradiating the formed ITO film surface with laser light. Specifically, as shown in FIG. 2, the substrate was transported and patterned so that a linear shape passing through the center of the substrate and parallel to the side could be patterned. The patterning width was targeted at 48 μm. Etching conditions at this time were as follows: laser light was irradiated with a laser light wavelength of 1064 nm, a laser output of 5 W, a laser diameter of 60 μm, and a frequency of 30 kHz, and the substrate conveyance speed was 500 mm / second.

なお、パターニングにおいて、レーザ密度については、レーザの1回照射におけるエネルギー密度を1.8、2.4、2.9、3.5および4.1J/cm2の5段階で変更して、おのおののレーザ密度でレーザエッチングを行いサンプルを作成した。その後、各サンプルのレーザエッチング後抵抗値を測定し、レーザエッチング後抵抗値が50MΩ以上となる最小のレーザ密度もとめ、それを最低レーザ密度とした。結果を表1に示す。この値が小さいほど、小さいエネルギー密度のレーザ光で、絶縁性を十分に有するパターンを形成することができることになる。   In the patterning, the laser density is changed in five steps of 1.8, 2.4, 2.9, 3.5, and 4.1 J / cm 2 for each laser irradiation. Laser etching was performed at a laser density to prepare a sample. Thereafter, the resistance value after laser etching of each sample was measured, the minimum laser density at which the resistance value after laser etching was 50 MΩ or more was determined, and this was set as the minimum laser density. The results are shown in Table 1. As this value is smaller, a pattern having sufficient insulation can be formed with a laser beam having a smaller energy density.

(実施例2〜4、比較例1〜5)
吸収率は成膜中の基板温度およびスパッタリング雰囲気中のO濃度により影響するので、この二つの変数を変えて、8パターンのサンプル基板を作製し、ITO膜の比抵抗、吸収率、レーザーエッチング後抵抗値、レーザーエッチングされたパターン線幅および最小レーザ密度を測定した。その結果を表1に示す(表中のO.L:オーバーロード)。
(Examples 2-4, Comparative Examples 1-5)
Since the absorption rate is affected by the substrate temperature during film formation and the O 2 concentration in the sputtering atmosphere, by changing these two variables, an 8-pattern sample substrate is prepared, and the resistivity, absorption rate, and laser etching of the ITO film are produced. The post resistance value, laser etched pattern line width and minimum laser density were measured. The results are shown in Table 1 (OL in the table: overload).

Figure 2007184236
Figure 2007184236

表1より、成膜基板温度が同じ時、スパッタガス中のO濃度が低い方が波長1064nmにおける吸収率が高くなり、スパッタガス中のO濃度が同じ時、成膜基板温度が高い方が波長1064nmにおける吸収率が高くなることが確認できる。 From Table 1, when the deposition substrate temperature is the same, the lower the O 2 concentration in the sputtering gas, the higher the absorption rate at a wavelength of 1064 nm, and the higher the deposition substrate temperature when the O 2 concentration in the sputtering gas is the same. It can be confirmed that the absorptance at a wavelength of 1064 nm increases.

また、波長1064nmの吸収率が5%以上のサンプル基板では、レーザーエッチング後抵抗値がオーバーロードとなり、ITO膜残りが無いことが確認できる。一方波長1064nmの吸収率が5%未満のサンプル基板では、ITO膜残りが発生しレーザーエッチング後抵抗値がオーバーロードとならなかった。また波長1064nmにおける吸収率が小さくなるほどITO膜残りが多くなり、レーザーエッチング後抵抗値が小さくなっている。   In addition, in the sample substrate having an absorptance of 5% or more at a wavelength of 1064 nm, the resistance value after laser etching is overloaded, and it can be confirmed that there is no ITO film residue. On the other hand, in the sample substrate having an absorptance of less than 5% at a wavelength of 1064 nm, an ITO film residue was generated, and the resistance value did not become overloaded after laser etching. Further, as the absorptance at a wavelength of 1064 nm decreases, the remaining ITO film increases and the resistance value after laser etching decreases.

また、波長1064nmにおける吸収率の高いITO膜ほどレーザーエッチングされたパターン線幅が大きくなっていることが確認できる。   Further, it can be confirmed that the ITO film having a higher absorption rate at a wavelength of 1064 nm has a larger pattern line width etched by laser.

以上本試験より、波長1064nmにおける吸収率の高いITO膜ほど、レーザー光波長1064nmにおけるレーザーエッチングが安定しており、レーザー出力が低出力で良いことが確認できた。特に、波長1064nmにおける吸収率が5%以上であればレーザーパターニング用透明導電膜付きガラス基板として好適的あることが確認できた。   As described above, it was confirmed that the ITO film having a higher absorption rate at a wavelength of 1064 nm has a more stable laser etching at a laser beam wavelength of 1064 nm and a low laser output. In particular, it was confirmed that if the absorptance at a wavelength of 1064 nm is 5% or more, it is suitable as a glass substrate with a transparent conductive film for laser patterning.

また、実施例1〜4は波長1064nmにおける吸収率が高く、5%以上になっている。したがって、スパッタリング時の基板温度と雰囲気中のO濃度を実施例1〜4の条件で成膜されたITO膜は、レーザーパターニング用透明導電膜付きガラス基板として好適であることが確認できた。 In Examples 1 to 4, the absorptance at a wavelength of 1064 nm is high and is 5% or more. Therefore, it was confirmed that the ITO film formed under the conditions of Examples 1 to 4 with the substrate temperature during sputtering and the O 2 concentration in the atmosphere being suitable as a glass substrate with a transparent conductive film for laser patterning.

さらに、雰囲気中の酸素分圧濃度が同じ1.2%で、成膜基板温度が違う比較例1と実施例2、4を比較する。532nmの吸収率は成膜基板温度が200℃のときが0.7%、250℃のときが0.5%、320℃のときが0.3%と成膜基板温度が高くなるほど532nmの吸収率は低くなっている。   Further, Comparative Example 1 and Examples 2 and 4 in which the oxygen partial pressure concentration in the atmosphere is the same 1.2% and the film formation substrate temperature is different are compared. The absorption rate at 532 nm is 0.7% when the film formation substrate temperature is 200 ° C., 0.5% when the film formation substrate temperature is 250 ° C., and 0.3% when the film formation substrate temperature is 320 ° C. The rate is low.

一方、1064nmにおけるITO膜の吸収率は逆に、200℃のときが4.4%、250℃のときが5.5%、320℃のときが6.8%となっている。532nmの吸収率とは逆に成膜基板温度が高くなるほど1064nmの吸収率は逆に低くなっていることが判る。   On the other hand, the absorptivity of the ITO film at 1064 nm is 4.4% at 200 ° C., 5.5% at 250 ° C., and 6.8% at 320 ° C. In contrast to the absorptance at 532 nm, it can be seen that the absorptance at 1064 nm decreases as the deposition substrate temperature increases.

ITO膜に代表される透明導電膜は可視光(波長400〜700nm)の領域においては、スパッタリング法による成膜時のガラス基板温度が高くなるほど結晶性が向上し、吸収率が低くなることが知られている。しかし、1064nmの吸収率は逆にガラス基板温度が高くなるほど吸収率が高くなることが判った。これはキャリア密度がによる効果であると推察される。   It is known that a transparent conductive film typified by an ITO film has higher crystallinity and lower absorptance in the visible light (wavelength 400 to 700 nm) region as the glass substrate temperature during film formation by sputtering is increased. It has been. However, it has been found that the absorptance at 1064 nm increases as the glass substrate temperature increases. This is presumed to be due to the effect of carrier density.

また、2.9J/cmのレーザ密度でエッチングした時、波長1064nmの吸収率が5%以上のサンプル基板では、レーザエッチング後抵抗値がオーバーロードとなり、ITO膜残りが無いことが確認できる。一方波長1064nmの吸収率が5%未満のサンプル基板では、ITO膜残りが発生しているため、レーザエッチング後抵抗値がオーバーロードとならなかった。また波長1064nmにおける吸収率が小さくなるほどITO膜残りが多くなり、レーザエッチング後抵抗値が小さくなっている。 In addition, when etching is performed at a laser density of 2.9 J / cm 2 , it can be confirmed that the resistance value after laser etching is overloaded and there is no ITO film residue in the sample substrate having an absorptivity at a wavelength of 1064 nm of 5% or more. On the other hand, in the sample substrate having an absorptance of less than 5% at a wavelength of 1064 nm, the ITO film remains, so that the resistance value after laser etching did not become overloaded. Further, as the absorptance at a wavelength of 1064 nm decreases, the remaining ITO film increases and the resistance value after laser etching decreases.

また、波長1064nmにおける吸収率の高いITO膜ほどレーザエッチングされたパターン線幅が大きくなっていることが確認できる。また、波長1064nmの吸収率が大きい例ほど最低レーザ密度も小さな値を示している。このことからも波長1064nmの吸収率が大きいほどレーザパターニングが容易な膜となっていることがわかる。   In addition, it can be confirmed that the ITO film having a higher absorptance at a wavelength of 1064 nm has a larger pattern line width by laser etching. In addition, the minimum laser density shows a smaller value as the absorption rate at a wavelength of 1064 nm is larger. From this, it can be seen that the larger the absorptivity at the wavelength of 1064 nm, the easier the laser patterning is.

透明導電膜の最低レーザ密度が小さいほど、レーザパターニングで照射するレーザ密度を小さくすることができ、タクトアップやコストダウンが可能となる。PDP用前面板の透明電極のパターニングにおいては、ガラス基板の傷つきや生産性の点で、最低レーザ密度を3J/cm以下とすることが望ましいと考えられる。表1の結果からその為には波長1064nmの吸収率が5%以上とすることが良いことが判る。 As the minimum laser density of the transparent conductive film is smaller, the laser density irradiated by laser patterning can be reduced, and tact-up and cost reduction are possible. In the patterning of the transparent electrode of the front plate for PDP, it is considered desirable that the minimum laser density is 3 J / cm 2 or less from the viewpoint of scratching the glass substrate and productivity. From the results shown in Table 1, it can be seen that the absorptance at a wavelength of 1064 nm is preferably 5% or more.

本発明のガラス基板は、レーザーパターニングが容易であるので、PDP、LCD、ELD、FED等のFPDのガラス基板として有用である。   The glass substrate of the present invention is useful as a glass substrate for FPD such as PDP, LCD, ELD, FED and the like because laser patterning is easy.

透過率A、5°反射率B、透過率C、5°反射率Dを用いてITO膜の吸収率Eを求める式の概念図。The conceptual diagram of the type | formula which calculates | requires the absorptivity E of an ITO film | membrane using the transmittance | permeability A, the 5 degree reflectance B, the transmittance C, and the 5 degree reflectance D. サンプル基板をレーザーエッチング後の測定内容を説明する図。The figure explaining the measurement content after laser etching the sample board | substrate.

符号の説明Explanation of symbols

1:透明導電膜
2:ガラス基板(フラットパネルディスプレイ用ガラス基板)
3:ITO膜付きガラス基板
4:レーザーエッチングされた部分
5:抵抗値測定点
A:透明導電膜付きガラス基板の透過率
B:透明導電膜付きガラス基板の反射率
C:ガラス基板の透過率
D:ガラス基板の反射率
1: Transparent conductive film 2: Glass substrate (glass substrate for flat panel display)
3: Glass substrate with ITO film 4: Laser etched part 5: Resistance measurement point A: Transmittance of glass substrate with transparent conductive film B: Reflectance of glass substrate with transparent conductive film C: Transmittance D of glass substrate : Reflectance of glass substrate

Claims (9)

ガラス基板上に形成された透明導電膜をレーザー光によりパターニングすることによって透明導電膜パターンを形成するために使用される透明導電膜付き基板であって、
前記透明導電膜を形成する材料が酸化インジウム、酸化スズまたは酸化亜鉛を主成分とし、
波長1064nmにおける式(1)にて求められる前記透明導電膜の吸収率が5%以上20%以下である透明導電膜付き基板。
透明導電膜の吸収率={100−(透明導電膜付きガラス基板の透過率+透明導電膜付きガラス基板の反射率)}−{100−(ガラス基板の透過率+ガラス基板の反射率)}
‥‥‥(1)式
A substrate with a transparent conductive film used for forming a transparent conductive film pattern by patterning a transparent conductive film formed on a glass substrate with laser light,
The material forming the transparent conductive film is mainly composed of indium oxide, tin oxide or zinc oxide,
The board | substrate with a transparent conductive film whose absorptivity of the said transparent conductive film calculated | required by Formula (1) in wavelength 1064nm is 5% or more and 20% or less.
Absorbance of transparent conductive film = {100- (transmittance of glass substrate with transparent conductive film + reflectance of glass substrate with transparent conductive film)}-{100- (transmittance of glass substrate + reflectance of glass substrate)}
(1) Formula
前記レーザー光の波長が1000〜1500nmである請求項1に記載の透明導電膜付き基板。   The substrate with a transparent conductive film according to claim 1, wherein the wavelength of the laser light is 1000 to 1500 nm. 前記透明導電膜の比抵抗値が4×10−3Ω・cm以下である請求項1または2に記載の透明導電膜付き基板。 The substrate with a transparent conductive film according to claim 1, wherein the transparent conductive film has a specific resistance value of 4 × 10 −3 Ω · cm or less. プラズマディスプレイパネルの前面板に用いることのできる請求項1、2または3に記載の透明導電膜付き基板。   The substrate with a transparent conductive film according to claim 1, 2 or 3, which can be used for a front plate of a plasma display panel. 成膜時の基板温度を220℃〜400℃、スパッタガス中のO濃度を0.5〜1.5%とすることにより請求項1〜4いずれか1項に記載の透明導電膜を形成する透明導電膜付き基板の製造方法。 The transparent conductive film according to any one of claims 1 to 4 is formed by setting the substrate temperature during film formation to 220 ° C to 400 ° C and the O 2 concentration in the sputtering gas to 0.5 to 1.5%. A method for manufacturing a substrate with a transparent conductive film. 請求項1〜4いずれか1項に記載の透明導電膜をレーザパターニングすることによって得られる透明導電膜パターン付き基板。   The board | substrate with a transparent conductive film pattern obtained by carrying out laser patterning of the transparent conductive film of any one of Claims 1-4. 請求項5に記載の透明導電膜付き基板の製造方法により得られた透明導電膜をレーザパターニングすることによって得られる透明導電膜パターン付き基板。   The board | substrate with a transparent conductive film pattern obtained by carrying out laser patterning of the transparent conductive film obtained by the manufacturing method of the board | substrate with a transparent conductive film of Claim 5. 請求項6または7に記載の透明導電膜パターン付き基板を用いたプラズマディスプレイパネルの前面板。   The front plate of the plasma display panel using the board | substrate with a transparent conductive film pattern of Claim 6 or 7. 請求項8に記載の前面板を用いたプラズマディスプレイパネル。   A plasma display panel using the front plate according to claim 8.
JP2006274016A 2005-12-06 2006-10-05 Substrate with transparent conductive film for laser patterning and manufacturing method thereof Expired - Fee Related JP4872585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274016A JP4872585B2 (en) 2005-12-06 2006-10-05 Substrate with transparent conductive film for laser patterning and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005352361 2005-12-06
JP2005352361 2005-12-06
JP2006274016A JP4872585B2 (en) 2005-12-06 2006-10-05 Substrate with transparent conductive film for laser patterning and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007184236A true JP2007184236A (en) 2007-07-19
JP4872585B2 JP4872585B2 (en) 2012-02-08

Family

ID=38340121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274016A Expired - Fee Related JP4872585B2 (en) 2005-12-06 2006-10-05 Substrate with transparent conductive film for laser patterning and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4872585B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097728A (en) * 2008-10-14 2010-04-30 Osaka Univ Method for forming transparent conductive film
JP2010253813A (en) * 2009-04-24 2010-11-11 Nissha Printing Co Ltd Mat electrically conductive nano-fiber sheet and method of manufacturing the same
JP2016166110A (en) * 2015-03-10 2016-09-15 日本電気硝子株式会社 Transparent conductive film-fitted glass substrate and method for producing the same
WO2023211699A1 (en) * 2022-04-27 2023-11-02 E Ink Corporation Electro-optic display stacks with segmented electrodes and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414707A (en) * 1990-05-07 1992-01-20 Toyobo Co Ltd Manufacture of transparent conductive film
JP2001052602A (en) * 1999-08-10 2001-02-23 Matsushita Electric Ind Co Ltd Plasma display panel, method and device for manufacturing plasma display panel, and manufacture of transparent electrode board
JP2002026350A (en) * 2000-07-07 2002-01-25 Sanyo Electric Co Ltd Energy beam processing method, glass board with transparent conductive film, and semiconductor device
JP2004030934A (en) * 2002-06-21 2004-01-29 Idemitsu Kosan Co Ltd Manufacturing method of sputtering target and conductive film using it, transparent conductive film formed by the method
JP2004207221A (en) * 2002-10-04 2004-07-22 Sumitomo Metal Mining Co Ltd Oxide transparent electrode film, its manufacturing method, transparent conductive substrate, solar battery, and photo detecting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414707A (en) * 1990-05-07 1992-01-20 Toyobo Co Ltd Manufacture of transparent conductive film
JP2001052602A (en) * 1999-08-10 2001-02-23 Matsushita Electric Ind Co Ltd Plasma display panel, method and device for manufacturing plasma display panel, and manufacture of transparent electrode board
JP2002026350A (en) * 2000-07-07 2002-01-25 Sanyo Electric Co Ltd Energy beam processing method, glass board with transparent conductive film, and semiconductor device
JP2004030934A (en) * 2002-06-21 2004-01-29 Idemitsu Kosan Co Ltd Manufacturing method of sputtering target and conductive film using it, transparent conductive film formed by the method
JP2004207221A (en) * 2002-10-04 2004-07-22 Sumitomo Metal Mining Co Ltd Oxide transparent electrode film, its manufacturing method, transparent conductive substrate, solar battery, and photo detecting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097728A (en) * 2008-10-14 2010-04-30 Osaka Univ Method for forming transparent conductive film
JP2010253813A (en) * 2009-04-24 2010-11-11 Nissha Printing Co Ltd Mat electrically conductive nano-fiber sheet and method of manufacturing the same
JP2016166110A (en) * 2015-03-10 2016-09-15 日本電気硝子株式会社 Transparent conductive film-fitted glass substrate and method for producing the same
WO2023211699A1 (en) * 2022-04-27 2023-11-02 E Ink Corporation Electro-optic display stacks with segmented electrodes and methods of making the same

Also Published As

Publication number Publication date
JP4872585B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
KR101419068B1 (en) Glass substrate provided with transparent electrode and method for manufacturing such glass substrate
US10241376B2 (en) Laser cutting strengthened glass
JP4655939B2 (en) Manufacturing method of transparent electrode
KR101677783B1 (en) Method for depositing a thin film, and resulting material
Kim et al. Direct laser patterning of transparent ITO–Ag–ITO multilayer anodes for organic solar cells
TWI492304B (en) A substrate to which an oxide layer is attached, and a method of manufacturing the same
BRPI0808458A2 (en) TREATMENT PROCEDURES AT LEAST A CONTINUOUS FINE LAYER deposited on a FIRST SIDE OF A SUBSTRATE AND OBTAINING A MATERIAL UNDERSTANDING A SUBSTRATE AND AT LEAST A FINE LAYER, MATERIAL AND USE OF MATERIAL
WO2006068204A1 (en) Substrate with transparent conductive film and patterning method thereof
KR20070084121A (en) Substratum with conductive film and process for producing the same
JP4872585B2 (en) Substrate with transparent conductive film for laser patterning and manufacturing method thereof
US20120100774A1 (en) Transparent substrate with thin film and method for manufacturing transparent substrate with circuit pattern wherein such transparent substrate with thin film is used
JP6295957B2 (en) Method for producing glass substrate with conductive thin film
KR101109444B1 (en) Substrate in which transparent conductive film for laser pattering is formed and fabrication methods thereof
KR102198129B1 (en) Silver &amp; silver alloy etchant for metal electrode &amp; reflection layer
TWI619847B (en) Blackening method of silver line and display device
Kim et al. Laser direct patterning of indium tin oxide layer for plasma display panel bus electrode
JP2001265250A (en) Substrate for display and method for manufacturing the same
JP2010248606A (en) Method for preparing thin film laminated body
CN113130317A (en) Preparation method of indium tin oxide thin film pattern
JP2005308774A (en) Laminate for forming wiring substrate, wiring substrate ans its forming method
JPH0417218A (en) Electron circuit pattern and manufacture thereof
JP2005162503A (en) Method for manufacturing glass substrate with tin oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees