JP2007184119A - Electron tube - Google Patents

Electron tube Download PDF

Info

Publication number
JP2007184119A
JP2007184119A JP2006000252A JP2006000252A JP2007184119A JP 2007184119 A JP2007184119 A JP 2007184119A JP 2006000252 A JP2006000252 A JP 2006000252A JP 2006000252 A JP2006000252 A JP 2006000252A JP 2007184119 A JP2007184119 A JP 2007184119A
Authority
JP
Japan
Prior art keywords
electrode
photocathode
voltage
electron
electron tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000252A
Other languages
Japanese (ja)
Other versions
JP4832898B2 (en
Inventor
Suenori Kimura
末則 木村
Motohiro Suyama
本比呂 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006000252A priority Critical patent/JP4832898B2/en
Publication of JP2007184119A publication Critical patent/JP2007184119A/en
Application granted granted Critical
Publication of JP4832898B2 publication Critical patent/JP4832898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron tube capable of improving light detection sensitivity while securing response speed. <P>SOLUTION: The electron tube 1 is provided with a housing 2 of which inside is maintained in vacuum, a photoelectric surface 10 formed on the vacuum side of an input surface plate 3 of the housing 2, a semiconductor element 11 which is installed so as to be opposed to the photoelectric surface 10 in the housing 2 and converts electrons emitted from the photoelectric surface 10 into an electric signal, and a plurality of electrodes which are provided at prescribed spacings between the photoelectric surface 10 and the semiconductor element 11 along the inner wall of the housing 2 electrically independently of the photoelectric surface 10 and have an opening part to pass the electrons. A positive voltage to the photoelectric surface 10 is impressed to an intermediate electrode 6a arranged at the nearest location to the photoelectric surface 10 out of the plurality of electrodes, and a voltage same as or lower than the voltage impressed on the intermediate electrode 6a is impressed to an intermediate electrode 6b arranged between the intermediate electrode 6a and the semiconductor element 11 out of the plurality of electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微弱な光を定量的に計測するための光検出器として利用され、特に、光電面より放出された電子を増倍して検出する電子管に関するものである。   The present invention relates to an electron tube that is used as a photodetector for quantitatively measuring weak light, and in particular, detects an electron emitted from a photocathode by multiplying.

従来から、光の入射によって光電面より放出された電子を加速した後、半導体素子等の電子検出用素子に入射して高いゲインを得る電子管が知られている。この電子管は、例えば、下記特許文献1に記載されている。特に、この文献に記載された電子管は、光電面から発生した電子を半導体素子の電子入射面に導入するために、バルブの内側に固定されたリング状の複数の中間電極を備えている。
特開平10−31971号公報
2. Description of the Related Art Conventionally, there has been known an electron tube that obtains a high gain by accelerating electrons emitted from a photocathode by the incidence of light and then entering the electron detection element such as a semiconductor element. This electron tube is described, for example, in Patent Document 1 below. In particular, the electron tube described in this document includes a plurality of ring-shaped intermediate electrodes fixed inside the bulb in order to introduce electrons generated from the photocathode into the electron incident surface of the semiconductor element.
Japanese Patent Laid-Open No. 10-31971

ところで、上述した電子管においては、複数の中間電極のそれぞれに、電子を光電面から電子入射面に向けて加速するような電圧が印加されている。一方、一定の応答速度で光検出感度を向上させるためには、検出素子の小型化を図りつつ光電面の有効面積をより大きくすることが求められる。しかしながら、上述した従来の電子管においては、応答速度を保ちつつ光電面の有効面積を広げた場合に、検出素子の電子入射面に効率よく電子を入射させることが困難となり、その結果、逆に光検出感度が低下する傾向にあった。   In the electron tube described above, a voltage is applied to each of the plurality of intermediate electrodes to accelerate electrons from the photocathode toward the electron incident surface. On the other hand, in order to improve the light detection sensitivity at a constant response speed, it is required to increase the effective area of the photocathode while reducing the size of the detection element. However, in the conventional electron tube described above, when the effective area of the photocathode is expanded while maintaining the response speed, it becomes difficult to efficiently inject electrons into the electron incident surface of the detection element. The detection sensitivity tended to decrease.

そこで、本発明は、かかる課題に鑑みて為されたものであり、応答速度を確保しつつ光検出感度の向上を図ることが可能な電子管を提供することを目的とする。   Therefore, the present invention has been made in view of such a problem, and an object thereof is to provide an electron tube capable of improving the light detection sensitivity while ensuring a response speed.

上記課題を解決するため、本発明の電子管は、内部が真空に保持された外囲器と、外囲器の入射窓の真空側に形成された光電面と、外囲器の内部において光電面と対向するように設けられ、光電面から放出された電子を電気信号に変換する電子検出素子と、外囲器の内壁に沿って光電面と電子検出素子との間で所定の間隔を空けて、前記光電面と電気的に独立して配設され、電子を通過させる開口部をもった複数の電極とを備え、複数の電極のうち光電面に最も近い位置に配置された第1の電極には、光電面に対して正の電圧が印加され、複数の電極のうち第1の電極と電子検出素子との間に配置された第2の電極には、第1の電極に印加される電圧以下の電圧が印加されることを特徴とする。   In order to solve the above problems, an electron tube according to the present invention includes an envelope whose interior is maintained in a vacuum, a photocathode formed on the vacuum side of an incident window of the envelope, and a photocathode within the envelope. And an electron detection element that converts electrons emitted from the photocathode into an electric signal, and a predetermined distance between the photocathode and the electron detection element along the inner wall of the envelope. A plurality of electrodes that are electrically independent of the photocathode and have openings that allow electrons to pass therethrough, and are arranged at positions closest to the photocathode among the plurality of electrodes. The positive voltage is applied to the photocathode, and the second electrode disposed between the first electrode and the electron detection element among the plurality of electrodes is applied to the first electrode. A voltage equal to or lower than the voltage is applied.

このような電子管によれば、入射窓に入射した光に応じて光電面から電子が放出され、この電子は、第1及び第2の電極の開口部を通過する際に、第1の電極及び第2の電極によって形成された電界により電子検出素子に向けて加速されるとともに電子検出素子に向けて集束される。その後、電子検出素子に入射した電子は、電気信号に変換されて出力される。ここで、第1の電極には光電面に対して正の電圧が印加されているので電子を十分に加速することができるとともに、第2の電極には第1の電極の電圧以下の電圧が印加されているので電子を狭いエリア内の電子検出素子に効率よく集束させることができる。従って、光電面の大面積化を図り、かつ、必要な応答速度を確保するために電子検出素子の小型化を図った場合であっても、入射する光に対する検出感度を十分に向上させることができる。その結果、光の入力面として極力広い有効面積を確保すること、及び高い光検出感度を有すること、特にシングルフォトンを検出できることといった要求をも満たすことができる。   According to such an electron tube, electrons are emitted from the photocathode in response to the light incident on the incident window, and the electrons pass through the openings of the first and second electrodes and pass through the first electrode and the second electrode. The electric field formed by the second electrode is accelerated toward the electron detection element and focused toward the electron detection element. Thereafter, the electrons incident on the electron detection element are converted into electrical signals and output. Here, since a positive voltage with respect to the photocathode is applied to the first electrode, electrons can be sufficiently accelerated, and a voltage equal to or lower than the voltage of the first electrode is applied to the second electrode. Since the voltage is applied, the electrons can be efficiently focused on the electron detection element in a narrow area. Therefore, the detection sensitivity for incident light can be sufficiently improved even when the area of the photocathode is increased and the size of the electron detection element is reduced in order to ensure the required response speed. it can. As a result, it is possible to satisfy the demands of ensuring a wide effective area as a light input surface and having a high light detection sensitivity, in particular, capable of detecting single photons.

第2の電極には、光電面の電圧以下の電圧が印加されることが好ましい。このような第2の電極を備えることで、光電面から電子検出素子に向けて電子をより効果的に集束させることができる。   It is preferable that a voltage equal to or lower than the voltage on the photocathode is applied to the second electrode. By providing such a second electrode, electrons can be more effectively focused from the photocathode toward the electron detection element.

また、複数の電極は、第2の電極と電子検出素子との間に設けられ、光電面に向けて延びて電子を通過させる開口を形成する先端部を有する第3の電極を更に有することも好ましい。この場合、電子検出素子側への電界の侵入を最小限にして、イオンフィードバックの発生を抑制するとともに、電子の集束効果を向上させることができる。   The plurality of electrodes may further include a third electrode provided between the second electrode and the electron detection element and having a tip portion that forms an opening that extends toward the photocathode and allows electrons to pass therethrough. preferable. In this case, it is possible to minimize the penetration of the electric field to the electron detection element side, suppress the generation of ion feedback, and improve the electron focusing effect.

さらに、複数の電極は、第2の電極と電子検出素子との間に設けられ、第1の電極に印加される電圧以上の電圧が印加される第4の電極を更に有することも好ましい。このような構成により、電子検出素子に入射する電子に対する集束効果及び加速効果を更に大きくすることができる。   Furthermore, it is preferable that the plurality of electrodes further include a fourth electrode that is provided between the second electrode and the electron detection element and to which a voltage equal to or higher than a voltage applied to the first electrode is applied. With such a configuration, it is possible to further increase the focusing effect and the acceleration effect on the electrons incident on the electron detection element.

また、前記光電面と前記第1の電極との間に前記光電面と電気的に導通して設けられた陰極を更に備えることも好ましい。かかる陰極を備えると、光電面の前面(光電面と第1の電極の間の空間)における電子の収束効果をより一層向上させることができる。   It is also preferable to further include a cathode provided in electrical communication with the photocathode between the photocathode and the first electrode. When such a cathode is provided, the electron convergence effect on the front surface of the photocathode (the space between the photocathode and the first electrode) can be further improved.

本発明による電子管によれば、応答速度を確保しつつ光検出感度の向上を図ることができる。   According to the electron tube of the present invention, it is possible to improve the light detection sensitivity while ensuring the response speed.

以下、図面を参照しつつ本発明に係る電子管の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of an electron tube according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の電子管の一実施形態である電子管1の縦断面図である。電子管1は光の入射に応じて光電面より放出した電子を加速し、半導体素子中で高いゲインを得ることで微弱光の検出を可能とする、いわゆる、電子打ち込み増倍型光センサ(HPD:Hybrid Photo-Detector)である。   FIG. 1 is a longitudinal sectional view of an electron tube 1 which is an embodiment of the electron tube of the present invention. The electron tube 1 accelerates the electrons emitted from the photocathode in response to the incidence of light, and obtains a high gain in the semiconductor element, thereby enabling detection of weak light. Hybrid Photo-Detector).

同図に示すように、電子管1は、内部が真空に保持された外囲器2を有し、この外囲器2は、ガラス製の円板状の入力面板(入射窓)3と、筒状のカソード電極(陰極)4と、セラミック等の絶縁性材料からなる円筒状の側板5と、側板5を4分割することで形成された第1側板5aと第2側板5bとの間で挟むようにして固定されたリング状の中間電極(第1の電極)6aと、第2側板5bと第3側板5cとの間で挟むように固定されたリング状の中間電極(第2の電極)6bと、第3側板5cと第4側板5dとの間で挟むように固定されたリング状の中間電極(第4の電極)6cと、金属フランジ7と、金属フランジ7に気密に接続された円板状のステム8とから構成され、これら部材3,4,5,6,7,8は互いに同心状に積層配置されている。   As shown in the figure, the electron tube 1 has an envelope 2 whose inside is kept in a vacuum, and this envelope 2 includes a glass disk-shaped input face plate (incident window) 3, a cylinder Between the first side plate 5a and the second side plate 5b formed by dividing the side plate 5 into four parts, and a cylindrical side plate 5 made of an insulating material such as ceramic. A ring-shaped intermediate electrode (first electrode) 6a fixed in such a way as to be fixed, and a ring-shaped intermediate electrode (second electrode) 6b fixed so as to be sandwiched between the second side plate 5b and the third side plate 5c, , A ring-shaped intermediate electrode (fourth electrode) 6c fixed so as to be sandwiched between the third side plate 5c and the fourth side plate 5d, a metal flange 7, and a disc hermetically connected to the metal flange 7. These members 3, 4, 5, 6, 7, and 8 are stacked concentrically with each other. It has been.

ここで、中間電極6をもった側板5は、カソード電極4と金属フランジ7との間に設けられ、側板5の一端は、カソード電極4の端面にろう付け等で気密に接合されており、側板5の他端は、ステム8の外周に設けられた金属フランジ7にろう付け等で気密に接合されている。また、これらの中間電極6a,6b,6cは、外囲器2の中心軸線Zを中心とする開口部を有するリング状をなし、側板5の内壁に沿って所定の間隔を空けて、後述する光電面10と電気的に独立して配置されている。ここで、カソード電極4、側板5及び金属フランジ7の筒状部の外径は略同じとされ、カソード電極4の内径は側板5の内径より小さくされている。従って、中心軸線Zに沿ってカソード電極4の一端から他端に亘って、カソード電極4の内壁面は側板5の内壁面より内側に位置する。これに対し、中間電極6a,6b,6cの開口部の内径は、電子軌道に干渉しない範囲内、すなわち、後述する光電面10の径に比較して極端に小さくならない範囲で極力小さくされ、中間電極6a,6b,6cは、筒状の側板5の内壁面からカソード電極4よりも更に内方に突出している。これにより、光電面10より放出した電子の軌道を制御する際の迷走電子による側板5の帯電やこれに起因する電子軌道への影響をなくすことができる。中間電極6a,6b,6cは、側板5に挟んだ状態でろう付け等により固定されることにより、側板5との一体化が図られている。   Here, the side plate 5 having the intermediate electrode 6 is provided between the cathode electrode 4 and the metal flange 7, and one end of the side plate 5 is airtightly joined to the end surface of the cathode electrode 4 by brazing or the like. The other end of the side plate 5 is airtightly joined to a metal flange 7 provided on the outer periphery of the stem 8 by brazing or the like. Further, these intermediate electrodes 6a, 6b, 6c form a ring shape having an opening centered on the central axis Z of the envelope 2, and will be described later with a predetermined interval along the inner wall of the side plate 5. The photocathode 10 is disposed electrically independently. Here, the outer diameters of the cylindrical portions of the cathode electrode 4, the side plate 5, and the metal flange 7 are substantially the same, and the inner diameter of the cathode electrode 4 is smaller than the inner diameter of the side plate 5. Therefore, the inner wall surface of the cathode electrode 4 is located inside the inner wall surface of the side plate 5 from one end to the other end of the cathode electrode 4 along the central axis Z. On the other hand, the inner diameters of the openings of the intermediate electrodes 6a, 6b, 6c are made as small as possible within the range where they do not interfere with the electron trajectory, that is, within the range where they are not extremely small compared with the diameter of the photocathode 10 described later. The electrodes 6 a, 6 b, 6 c protrude further inward than the cathode electrode 4 from the inner wall surface of the cylindrical side plate 5. Thereby, the charging of the side plate 5 by stray electrons when controlling the trajectory of the electrons emitted from the photocathode 10 and the influence on the electron trajectory due to this can be eliminated. The intermediate electrodes 6a, 6b, 6c are integrated with the side plate 5 by being fixed by brazing or the like while being sandwiched between the side plates 5.

また、外囲器2の金属フランジ7の中心軸線Z側には、リング状の立ち上がり電極(第3の電極)9が固定されている。この立ち上がり電極9は、金属フランジ7と同心状に配置され、中間電極6a,6b,6cに比して径の小さい開口を有し、その開口は、入力面板3に向けて側板5の内壁に沿って延びる略円柱形状の先端部9aを形成している。   Further, a ring-shaped rising electrode (third electrode) 9 is fixed to the central axis Z side of the metal flange 7 of the envelope 2. The rising electrode 9 is arranged concentrically with the metal flange 7 and has an opening having a smaller diameter than the intermediate electrodes 6 a, 6 b, 6 c, and the opening is formed on the inner wall of the side plate 5 toward the input face plate 3. A substantially columnar tip portion 9a extending along the axis is formed.

入力面板3は、真空側の内面に光電面10を有している。この入力面板3は、GaAsP等からなる光電面10を作成した後、低融点金属(例えば、インジウム)を介してカソード電極4に一体化されている。   The input face plate 3 has a photocathode 10 on the inner surface on the vacuum side. The input face plate 3 is integrated with the cathode electrode 4 through a low melting point metal (for example, indium) after the photocathode 10 made of GaAsP or the like is formed.

ステム8における真空側の面上には、光電面10に対向するようにAPD(アバランシェ・フォト・ダイオード)を含む半導体素子(電子検出素子)11が固定されている。APDは、濃度の高いP領域とN領域とを接合し、そこでアバランシェ増幅に十分な高い電界を形成する半導体素子である。この半導体素子11は、光電面10から放出された電子がその表面である電子入射面に照射されると、その電子を増倍して電気信号に変換し、ステム8を貫通して設けられたピン12を介して外部に出力する。   On the vacuum side surface of the stem 8, a semiconductor element (electron detection element) 11 including an APD (avalanche photo diode) is fixed so as to face the photocathode 10. An APD is a semiconductor element that joins a high-concentration P region and an N region and forms an electric field high enough for avalanche amplification there. The semiconductor element 11 is provided so as to penetrate through the stem 8 when the electrons emitted from the photocathode 10 irradiate the electron incident surface, which is the surface, to multiply the electrons and convert them into an electrical signal. Output to the outside via the pin 12.

次に、図2を参照して、このような電子管1に接続される駆動回路の構成の一例について説明する。同図に示すように、電子管1は筐体20内に収容され、光電面10、各中間電極6a,6b,6c及び立ち上がり電極9は、筐体20の外部のDC電源21と接続されている。ここで、光電面10、各中間電極6a,6b,6c、及び立ち上がり電極9は、それぞれの電圧が所定の電圧値となるように、抵抗素子22,23,24によって分圧された電圧が印加されている。ここで、カソード電極4は光電面10と電気的に導通され、カソード電極4には光電面10と同じ電圧が与えられている。また、半導体素子11は、筐体20の外部においてカソードに接続されたバイアス電源25によってバイアス電圧が印加されるとともに、アノードに接続された同軸ケーブル26を経由して外部に光検出用の電気信号を出力する。   Next, an example of the configuration of the drive circuit connected to the electron tube 1 will be described with reference to FIG. As shown in the figure, the electron tube 1 is housed in a housing 20, and the photocathode 10, the intermediate electrodes 6 a, 6 b, 6 c and the rising electrode 9 are connected to a DC power source 21 outside the housing 20. . Here, the voltage divided by the resistance elements 22, 23, and 24 is applied to the photocathode 10, the intermediate electrodes 6a, 6b, and 6c, and the rising electrode 9 so that each voltage has a predetermined voltage value. Has been. Here, the cathode electrode 4 is electrically connected to the photocathode 10, and the same voltage as that of the photocathode 10 is applied to the cathode electrode 4. In addition, a bias voltage is applied to the semiconductor element 11 by a bias power supply 25 connected to the cathode outside the housing 20, and an electric signal for light detection is externally transmitted via a coaxial cable 26 connected to the anode. Is output.

このような駆動回路によって、光電面10に最も近い位置にある中間電極6aには、光電面10に対して正の電圧が印加されるように、抵抗素子22,23,24が選択され、中間電極6aの後段にある中間電極6bには、光電面10に印加される電圧と同じ電圧が印加される。ここでは、中間電極6bには、光電面10と同じ電圧が印加されているが、抵抗素子を追加することによって中間電極6bに中間電極6aの電圧以下の電圧が印加されてもよい。また、電子を効率良く収束させるためには、中間電極6bには、光電面10の電圧と中間電極6aの電圧との中間値以下の電圧が印加されることが好ましく、さらには、駆動回路の構成の単純化の点で、光電面10の電圧と等しい電圧が印加されることがより好ましい。一方、中間電極6cには、光電面10から放出された電子の収束及び加速を効率化するために、中間電極6aの電圧以上の電圧が印加されている。   By such a drive circuit, the resistance elements 22, 23, and 24 are selected so that a positive voltage is applied to the photocathode 10 to the intermediate electrode 6a that is closest to the photocathode 10. The same voltage as that applied to the photocathode 10 is applied to the intermediate electrode 6b in the subsequent stage of the electrode 6a. Here, the same voltage as that of the photocathode 10 is applied to the intermediate electrode 6b, but a voltage equal to or lower than the voltage of the intermediate electrode 6a may be applied to the intermediate electrode 6b by adding a resistance element. In order to efficiently converge the electrons, it is preferable to apply a voltage equal to or lower than the intermediate value between the voltage on the photocathode 10 and the voltage on the intermediate electrode 6a to the intermediate electrode 6b. It is more preferable to apply a voltage equal to the voltage of the photocathode 10 in terms of simplification of the configuration. On the other hand, a voltage higher than the voltage of the intermediate electrode 6a is applied to the intermediate electrode 6c in order to make the convergence and acceleration of the electrons emitted from the photocathode 10 more efficient.

以下、図3〜図6には、中間電極6bに印加する電圧を変えた場合の電子管1の内部の中心軸線Zに沿った断面における電子軌道及び電位分布のシミュレーション結果を示す。この場合、電子管1として、直径約23.9mmの入力面板3の真空側の面に形成された直径18mmの光電面10と、電子入射面の直径が約3mmの半導体素子11とを有し、中間電極6aが入力面板3から7mm、中間電極6a,6b,6cが間隔3.5mmで配置され、金属フランジ7と中間電極6cとの距離が6.5mmであるものを用いた。また、駆動回路によって印加される電圧としては、光電面10、中間電極6a、中間電極6c、及び立ち上がり電極9への印加電圧を、それぞれ、-8.5kV、-7.5kV、-5.0kV、及び0Vとし、半導体素子11へのバイアス電圧を-100Vと設定した。   3 to 6 show the simulation results of the electron trajectory and potential distribution in the cross section along the central axis Z inside the electron tube 1 when the voltage applied to the intermediate electrode 6b is changed. In this case, the electron tube 1 has a photocathode 10 having a diameter of 18 mm formed on the vacuum side surface of the input face plate 3 having a diameter of about 23.9 mm, and a semiconductor element 11 having a diameter of an electron incident surface of about 3 mm. The electrode 6a is 7 mm from the input face plate 3, the intermediate electrodes 6a, 6b, 6c are arranged at a distance of 3.5 mm, and the distance between the metal flange 7 and the intermediate electrode 6c is 6.5 mm. In addition, as voltages applied by the drive circuit, voltages applied to the photocathode 10, the intermediate electrode 6a, the intermediate electrode 6c, and the rising electrode 9 are -8.5 kV, -7.5 kV, -5.0 kV, and 0 V, respectively. The bias voltage to the semiconductor element 11 was set to -100V.

図3は、中間電極6bに光電面10より低い電圧-9.0kVを印加した場合の等電位線E1及び電子軌道P1を示している。これにより、中間電極6a,6b,6c、及び立ち上がり電極9の効果により、電子を光電面10から半導体素子11に向けて加速する電界が形成されるとともに、特に中間電極6aと立ち上がり電極9の開口付近との間で中心軸線Z方向に電子を収束させる電界が形成されていることが分かる。さらに、図4,図5,図6には、それぞれ、中間電極6bに電圧-8.5kV、-8.0kV、-7.5kVと段階的に電圧を高くした場合の等電位線E2,E3,E4及び電子軌道P2,P3,P4を示している。これらの結果より、中間電極6bに中間電極6aの電圧以下の電圧を印加することによって、光電面10から半導体素子11にかけて効率的に加速電界及び収束電界が形成され、特に、図4のように中間電極6bに光電面10と同じ電圧が印加されている場合が半導体素子11の表面における収束効率が最も高いことが分かる。   FIG. 3 shows an equipotential line E1 and an electron trajectory P1 when a voltage -9.0 kV lower than that of the photocathode 10 is applied to the intermediate electrode 6b. Thereby, an electric field for accelerating electrons from the photocathode 10 toward the semiconductor element 11 is formed by the effects of the intermediate electrodes 6a, 6b, 6c and the rising electrode 9, and in particular, the openings of the intermediate electrode 6a and the rising electrode 9 are formed. It can be seen that an electric field for converging electrons in the central axis Z direction is formed between the vicinity. Further, FIGS. 4, 5 and 6 respectively show equipotential lines E2, E3, E4 when the voltage is increased stepwise to the intermediate electrode 6b as -8.5 kV, -8.0 kV, -7.5 kV, respectively. Electron trajectories P2, P3, and P4 are shown. From these results, by applying a voltage equal to or lower than the voltage of the intermediate electrode 6a to the intermediate electrode 6b, an acceleration electric field and a convergence electric field are efficiently formed from the photocathode 10 to the semiconductor element 11, and particularly as shown in FIG. It can be seen that the convergence efficiency on the surface of the semiconductor element 11 is highest when the same voltage as that of the photocathode 10 is applied to the intermediate electrode 6b.

以上説明した電子管1の作用効果について説明する。入力面板3に入射した光に応じて光電面10から電子が放出され、この電子は、中間電極6a,6b,6cの開口部を通過する際に、これらの中間電極によって形成された電界により半導体素子11に向けて加速されるとともに半導体素子11の電子入射面の中心部に向けて集束される。その後、半導体素子11の表面に入射した電子は、光検出用の電気信号に変換されて出力される。   The operational effects of the electron tube 1 described above will be described. Electrons are emitted from the photocathode 10 in response to the light incident on the input faceplate 3, and these electrons pass through the openings of the intermediate electrodes 6 a, 6 b, 6 c, and the semiconductor is generated by the electric field formed by these intermediate electrodes. It is accelerated toward the element 11 and focused toward the center of the electron incident surface of the semiconductor element 11. Thereafter, the electrons incident on the surface of the semiconductor element 11 are converted into electrical signals for light detection and output.

ここで、中間電極6aには光電面10に対して正の電圧が印加され、中間電極6cには中間電極6aより高い電圧が印加されているので中心軸線Zに沿った方向に電子を十分に加速することができるとともに、中間電極6bには中間電極6aの電圧以下の電圧が印加されているので電子を狭いエリア内の半導体素子11に効率よく集束させることができる。さらに、中間電極6bに光電面10の電圧以下の電圧が印加される場合は、光電面10から半導体素子11に向けて電子をより効果的に集束させることができる。また、中間電極6cと半導体素子11との間に立ち上がり電極9を設けることで、半導体素子11側への電界の侵入を最小限にして、イオンフィードバックの発生を抑制することによって検出感度の劣化を防止するとともに、電子の集束効果を一層向上させることができる。   Here, since a positive voltage is applied to the intermediate electrode 6a with respect to the photocathode 10, and a voltage higher than that of the intermediate electrode 6a is applied to the intermediate electrode 6c, electrons are sufficiently supplied in the direction along the central axis Z. While being able to accelerate, since the voltage below the voltage of the intermediate electrode 6a is applied to the intermediate electrode 6b, an electron can be efficiently focused on the semiconductor element 11 in a narrow area. Furthermore, when a voltage equal to or lower than the voltage of the photocathode 10 is applied to the intermediate electrode 6 b, electrons can be more effectively focused from the photocathode 10 toward the semiconductor element 11. Further, by providing the rising electrode 9 between the intermediate electrode 6c and the semiconductor element 11, the penetration of the electric field to the semiconductor element 11 side is minimized, and the occurrence of ion feedback is suppressed, thereby degrading the detection sensitivity. In addition to preventing, the electron focusing effect can be further improved.

従って、このような中間電極6及び立ち上がり電極9の存在により、光検出感度の改善を図るために光電面の大面積化を図り、かつ、必要な応答速度を確保するために半導体素子の小型化を図った場合であっても、入射光に対する検出感度を十分に向上させることができる。その結果、光の入力面として極力広い有効面積を確保すること、及び高い光検出感度を有すること、特にシングルフォトンを検出できることといった要求をも満たすことができる。   Therefore, the presence of the intermediate electrode 6 and the rising electrode 9 makes it possible to increase the area of the photocathode in order to improve the photodetection sensitivity, and to reduce the size of the semiconductor element in order to ensure the required response speed. Even in this case, the detection sensitivity for incident light can be sufficiently improved. As a result, it is possible to satisfy the demands of ensuring a wide effective area as a light input surface and having a high light detection sensitivity, in particular, capable of detecting single photons.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、電子管1の金属フランジ7の内側に設けられた立ち上がり電極9は省略されても良い。図7は、このような場合の電子管の変形例を示す縦断面図である。また、図8には、図7の電子管101における中心軸線Zに沿った断面における電子軌道及び電位分布のシミュレーション結果を示す。ここでは、光電面10、中間電極6a、及び中間電極6cへの印加電圧と、半導体素子11へのバイアス電圧とを図3〜図6と同様に設定し、中間電極6bへの印加電圧を光電面10と同じ電圧に設定した。このような電子管101においても、中間電極6a,6b,6cの存在により、中心軸線Zに沿った方向に電子を十分に加速することができるとともに、中間電極6bには中間電極6aの電圧以下の電圧が印加されているので電子を狭いエリア内の半導体素子11に効率よく集束させることができる。   In addition, this invention is not limited to embodiment mentioned above. For example, the rising electrode 9 provided inside the metal flange 7 of the electron tube 1 may be omitted. FIG. 7 is a longitudinal sectional view showing a modification of the electron tube in such a case. FIG. 8 shows the simulation result of the electron trajectory and potential distribution in the cross section along the central axis Z in the electron tube 101 of FIG. Here, the applied voltage to the photocathode 10, the intermediate electrode 6a and the intermediate electrode 6c and the bias voltage to the semiconductor element 11 are set in the same manner as in FIGS. 3 to 6, and the applied voltage to the intermediate electrode 6b is photoelectrically set. The same voltage as that of the surface 10 was set. Also in such an electron tube 101, the presence of the intermediate electrodes 6a, 6b, 6c can sufficiently accelerate electrons in the direction along the central axis Z, and the intermediate electrode 6b has a voltage equal to or lower than the voltage of the intermediate electrode 6a. Since a voltage is applied, electrons can be efficiently focused on the semiconductor element 11 in a narrow area.

また、半導体素子11としては、APDの代わりに、CCD等の他の電子検出用素子を用いても良い。   Further, as the semiconductor element 11, other electron detection elements such as a CCD may be used instead of the APD.

本発明の電子管の一実施形態である電子管の縦断面図である。It is a longitudinal cross-sectional view of the electron tube which is one Embodiment of the electron tube of this invention. 図1の電子管に接続される駆動回路の一例を示す回路図である。It is a circuit diagram which shows an example of the drive circuit connected to the electron tube of FIG. 図1の電子管の内部の中心軸線に沿った断面における電子軌道及び電位分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the electron orbit and electric potential distribution in the cross section along the center axis line inside the electron tube of FIG. 図1の電子管の内部の中心軸線に沿った断面における電子軌道及び電位分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the electron orbit and electric potential distribution in the cross section along the center axis line inside the electron tube of FIG. 図1の電子管の内部の中心軸線に沿った断面における電子軌道及び電位分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the electron orbit and electric potential distribution in the cross section along the center axis line inside the electron tube of FIG. 図1の電子管の内部の中心軸線に沿った断面における電子軌道及び電位分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the electron orbit and electric potential distribution in the cross section along the center axis line inside the electron tube of FIG. 本発明の変形例である電子管の縦断面図である。It is a longitudinal cross-sectional view of the electron tube which is a modification of this invention. 図7の電子管の内部の中心軸線に沿った断面における電子軌道及び電位分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the electron orbit and electric potential distribution in the cross section along the center axis line inside the electron tube of FIG.

符号の説明Explanation of symbols

1,101…電子管、2…外囲器、3…入力面板(入射窓)、4…カソード電極(陰極)、5…側板、6…中間電極、6a…中間電極(第1の電極)、6b…中間電極(第2の電極)、6c…中間電極(第4の電極)、9…立ち上がり電極(第3の電極)、9a…先端部、10…光電面、11…半導体素子(電子検出素子)。   DESCRIPTION OF SYMBOLS 1,101 ... Electron tube, 2 ... Envelope, 3 ... Input face plate (incident window), 4 ... Cathode electrode (cathode), 5 ... Side plate, 6 ... Intermediate electrode, 6a ... Intermediate electrode (1st electrode), 6b ... Intermediate electrode (second electrode), 6c ... Intermediate electrode (fourth electrode), 9 ... Rising electrode (third electrode), 9a ... Tip, 10 ... Photocathode, 11 ... Semiconductor element (electron detection element) ).

Claims (5)

内部が真空に保持された外囲器と、
前記外囲器の入射窓の真空側に形成された光電面と、
前記外囲器の内部において前記光電面と対向するように設けられ、前記光電面から放出された電子を電気信号に変換する電子検出素子と、
前記外囲器の内壁に沿って前記光電面と前記電子検出素子との間で所定の間隔を空けて、前記光電面と電気的に独立して配設され、電子を通過させる開口部をもった複数の電極とを備え、
前記複数の電極のうち前記光電面に最も近い位置に配置された第1の電極には、前記光電面に対して正の電圧が印加され、
前記複数の電極のうち前記第1の電極と前記電子検出素子との間に配置された第2の電極には、前記第1の電極に印加される電圧以下の電圧が印加される、
ことを特徴とする電子管。
An envelope whose interior is maintained in a vacuum;
A photocathode formed on the vacuum side of the entrance window of the envelope;
An electron detection element that is provided so as to face the photocathode inside the envelope and that converts electrons emitted from the photocathode into an electric signal;
A predetermined distance is provided between the photocathode and the electron detection element along the inner wall of the envelope, and is provided electrically independently from the photocathode and has an opening through which electrons pass. A plurality of electrodes,
A positive voltage with respect to the photocathode is applied to the first electrode disposed at a position closest to the photocathode among the plurality of electrodes,
A voltage equal to or lower than the voltage applied to the first electrode is applied to the second electrode disposed between the first electrode and the electron detection element among the plurality of electrodes.
An electron tube characterized by that.
前記第2の電極には、前記光電面の電圧以下の電圧が印加される、
ことを特徴とする請求項1記載の電子管。
A voltage equal to or lower than the voltage of the photocathode is applied to the second electrode.
The electron tube according to claim 1, wherein:
前記複数の電極は、前記第2の電極と前記電子検出素子との間に設けられ、前記光電面に向けて延びて電子を通過させる開口を形成する先端部を有する第3の電極を更に有する、
ことを特徴とする請求項1又は2記載の電子管。
The plurality of electrodes further includes a third electrode provided between the second electrode and the electron detection element, and having a tip portion that extends toward the photocathode and forms an opening through which electrons pass. ,
The electron tube according to claim 1 or 2, wherein
前記複数の電極は、前記第2の電極と前記電子検出素子との間に設けられ、前記第1の電極に印加される電圧以上の電圧が印加される第4の電極を更に有する、
ことを特徴とする請求項1〜3のいずれか一項に記載の電子管。
The plurality of electrodes further includes a fourth electrode provided between the second electrode and the electron detection element, to which a voltage equal to or higher than a voltage applied to the first electrode is applied.
The electron tube according to any one of claims 1 to 3, wherein:
前記光電面と前記第1の電極との間に前記光電面と電気的に導通して設けられた陰極を更に備える、
ことを特徴とする請求項1〜4のいずれか一項に記載の電子管。
A cathode provided in electrical communication with the photocathode between the photocathode and the first electrode;
The electron tube according to any one of claims 1 to 4, wherein:
JP2006000252A 2006-01-04 2006-01-04 Electron tube Active JP4832898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000252A JP4832898B2 (en) 2006-01-04 2006-01-04 Electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000252A JP4832898B2 (en) 2006-01-04 2006-01-04 Electron tube

Publications (2)

Publication Number Publication Date
JP2007184119A true JP2007184119A (en) 2007-07-19
JP4832898B2 JP4832898B2 (en) 2011-12-07

Family

ID=38340030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000252A Active JP4832898B2 (en) 2006-01-04 2006-01-04 Electron tube

Country Status (1)

Country Link
JP (1) JP4832898B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876514A (en) * 2016-12-19 2017-06-20 中国电子科技集团公司第五十五研究所 Vacuum semiconductor hybrid optical electric explorer
WO2022014111A1 (en) * 2020-07-17 2022-01-20 浜松ホトニクス株式会社 Electron tube, electron tube module, and optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431574B1 (en) 2017-07-12 2018-11-28 浜松ホトニクス株式会社 Electron tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749152A (en) * 1980-07-11 1982-03-20 Thomson Csf Video amplifier tube
JPH1031971A (en) * 1996-07-16 1998-02-03 Hamamatsu Photonics Kk Electronic tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749152A (en) * 1980-07-11 1982-03-20 Thomson Csf Video amplifier tube
JPH1031971A (en) * 1996-07-16 1998-02-03 Hamamatsu Photonics Kk Electronic tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876514A (en) * 2016-12-19 2017-06-20 中国电子科技集团公司第五十五研究所 Vacuum semiconductor hybrid optical electric explorer
WO2022014111A1 (en) * 2020-07-17 2022-01-20 浜松ホトニクス株式会社 Electron tube, electron tube module, and optical device
JP7369675B2 (en) 2020-07-17 2023-10-26 浜松ホトニクス株式会社 Electron tubes, electron tube modules, and optical devices

Also Published As

Publication number Publication date
JP4832898B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
EP2603926B1 (en) Charged particle detector
EP0602983B1 (en) Hybrid photomultiplier tube with high sensitivity
US10312068B2 (en) Charged particle detector
JP6047301B2 (en) In-cylinder detector for particle optical column
US4810882A (en) Mass spectrometer for positive and negative ions
JP5345784B2 (en) Photomultiplier tube with reduced transition time.
EP0820089B1 (en) Electron tube
US6297489B1 (en) Electron tube having a photoelectron confining mechanism
JP4832898B2 (en) Electron tube
JPH09297055A (en) Electron tube
US20060061273A1 (en) Streak tube
US7687992B2 (en) Gating large area hybrid photomultiplier tube
JP5739763B2 (en) Photoconductive element and imaging device
US6198221B1 (en) Electron tube
US6024618A (en) Method of operating electron tube
US8237125B2 (en) Particle detection system
US7667399B2 (en) Large area hybrid photomultiplier tube
JPH09312145A (en) Electron tube
JPH07320681A (en) High sensitivity hybrid photomultiplier tube
WO1994007258A3 (en) Electron energy spectrometer
US20230015584A1 (en) Instruments including an electron multiplier
JP2005085681A (en) Electron beam detection apparatus and electron tube
JP5000254B2 (en) Imaging device
RU2622397C2 (en) High-voltage hybrid photosensitive device for detecting low-intensity radiation
TWI441230B (en) Particle detection system and electron beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Ref document number: 4832898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3