JP2007183336A - Diffraction optical element and diffraction optical system having the same - Google Patents

Diffraction optical element and diffraction optical system having the same Download PDF

Info

Publication number
JP2007183336A
JP2007183336A JP2006000575A JP2006000575A JP2007183336A JP 2007183336 A JP2007183336 A JP 2007183336A JP 2006000575 A JP2006000575 A JP 2006000575A JP 2006000575 A JP2006000575 A JP 2006000575A JP 2007183336 A JP2007183336 A JP 2007183336A
Authority
JP
Japan
Prior art keywords
optical element
diffractive
diffraction
diffractive optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000575A
Other languages
Japanese (ja)
Other versions
JP4725845B2 (en
Inventor
Madoka Nishiyama
円 西山
Naoki Fukutake
直樹 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006000575A priority Critical patent/JP4725845B2/en
Publication of JP2007183336A publication Critical patent/JP2007183336A/en
Application granted granted Critical
Publication of JP4725845B2 publication Critical patent/JP4725845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction optical element capable of obtaining a diffraction image different at every wavelength with respect to incident light having specified plural wavelengths made incident to a diffraction face. <P>SOLUTION: The diffraction optical element 1 comprises the diffraction face having diffraction grooves 5 such that the diffraction image different at every wavelength is formed with respect to incident light having specified plural wavelengths. The diffraction optical element 1 is composed of a binary optical element of which the incident face has a stepwise cross-section forming steps of a prescribed number and the diffraction image is formed by transmission light or reflection light. By using white color light as incident light, a full color image is formed as the diffraction image and, on the other hand, by using the incident light from an MEMS element 4 which selects light of a desired wavelength in white color light, the diffraction image different at every wavelength is formed. Therein, by designing the shape of the diffraction face by using a computer-generated hologram, the diffraction image different at every wavelength of the incident light can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回折光学素子およびこれを有する回折光学系に関する。   The present invention relates to a diffractive optical element and a diffractive optical system having the same.

従来から光学素子として、光の反射、屈折を利用したレンズやプリズムのほか、レンズ面に光の回折作用を有する回折光学素子(Diffractive Optical Element,DOE)を設けたものが知られている。   2. Description of the Related Art Conventionally known optical elements include lenses and prisms using light reflection and refraction, and a diffractive optical element (DOE) having a light diffractive action on the lens surface.

回折光学素子は、微小間隔(約1mm)当たり数百本程度の細い等間隔のスリット状もしくは溝状の格子構造を備えて作られた光学素子であり、光が入射されるとスリットや溝のピッチ(間隔)と光の波長とで定まる方向に回折光束を生じさせて回折パターン(回折像)が形成される性質を有している。このような回折光学素子は種々の光学系に用いられており、例えば、色収差を低減させるため、特定次数の回折光を一点に集めてレンズとして使用するものなどが知られている。   A diffractive optical element is an optical element having a slit-like or groove-like grating structure with a few hundreds per minute gap (about 1 mm). A diffraction pattern (diffraction image) is formed by generating a diffracted light beam in a direction determined by the pitch (interval) and the wavelength of light. Such a diffractive optical element is used in various optical systems. For example, in order to reduce chromatic aberration, one that collects diffracted light of a specific order at one point and uses it as a lens is known.

ところで回折光学素子には、鋸歯状の断面を持つレンズを階段形状に位相近似した構造を有するものがあり、このような回折光学素子は、電子集積回路と同様な方法で作製でき、基板のエッチングあるいは基板へのスパッタにより、基板表面に階段を形成するプロセスをN回繰り返すことで、2のN乗レベルの階段が形成される。例えば、リソグラフィーとエッチングを4回繰り返すことで、16段の階段を有する回折光学素子を作製することができる。このような回折光学素子は、階段の段数がエッチング等のプロセスを繰り返すことで2倍ずつ増加する構造となっているため、バイナリ光学素子(Binary Optical Element,BOE)と称される(例えば、非特許文献1を参照)。
「回折光学素子入門」 株式会社オプトニクス社 2002年
By the way, some diffractive optical elements have a structure in which a lens having a sawtooth cross-section is phase approximated in a staircase shape. Such a diffractive optical element can be manufactured by a method similar to that of an electronic integrated circuit, and etching of a substrate is possible. Alternatively, a process of forming a staircase on the surface of the substrate is repeated N times by sputtering on the substrate, thereby forming a step of 2 N level. For example, by repeating lithography and etching four times, a diffractive optical element having 16 steps can be manufactured. Such a diffractive optical element has a structure in which the number of steps is increased by a factor of 2 by repeating a process such as etching, and therefore is called a binary optical element (BOE) (for example, non-optical element). (See Patent Document 1).
"Introduction to diffractive optical elements" Optonics Corporation 2002

ところで、上記のようなバイナリ光学素子は、その階段状の回折面の形状(位相パターン)と光の波長とで定まる方向に回折光束を生じさせて回折パターンが形成される性質を有しているため、ある波長の光を入射させた場合には特定の方向に回折光を集光させて回折パターンを形成させることができるが、異なった波長の光を入射させた場合には集光させることができず回折パターンを形成させることができない(集光効率が低下する)といったように、集光させることのできる(集光効率が所定以上高い)回折光学素子の入射光としての使用波長が限定されていた。   By the way, the binary optical element as described above has a property that a diffraction pattern is formed by generating a diffracted light beam in a direction determined by the shape of the stepped diffraction surface (phase pattern) and the wavelength of light. Therefore, when light of a certain wavelength is incident, the diffracted light can be condensed in a specific direction to form a diffraction pattern. However, when light of a different wavelength is incident, it must be condensed. The diffraction wavelength cannot be formed and the diffraction pattern cannot be formed (the light collection efficiency is lowered), and the wavelength used as incident light of the diffractive optical element that can be condensed (the light collection efficiency is higher than a predetermined value) is limited. It had been.

以上のような課題に鑑みて、本発明では、回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させる回折光学素子およびこれを有する回折光学系を提供することを目的とする。   In view of the above problems, in the present invention, a diffractive optical element that forms a different diffraction image for each wavelength with respect to incident light of a plurality of wavelengths incident on the diffraction surface, and a diffractive optical system having the diffractive optical system are provided. The purpose is to provide.

前記課題を解決するために本発明に係る回折光学素子は、回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させるように回折面が構成されている。   In order to solve the above problems, the diffractive optical element according to the present invention has a diffractive surface configured to form different diffracted images for each wavelength with respect to incident light of a plurality of specific wavelengths incident on the diffractive surface. Yes.

また、上記構成の回折光学素子において、回折面が2段以上の段数からなる、もしくは4段以上の段数からなる階段を有して断面階段状に形成されたバイナリ光学素子で構成するのが好ましい。   Further, in the diffractive optical element having the above-described configuration, it is preferable that the diffractive surface is formed of a binary optical element having a stepped shape having two or more steps, or a step having four or more steps and having a stepped shape in cross section. .

さらに、上記構成の回折光学素子において、入射光の波長をλとしたとき、階段の少なくとも1段の高さがλ以下であるのが好ましい。   Furthermore, in the diffractive optical element having the above-described configuration, it is preferable that the height of at least one step is not more than λ when the wavelength of incident light is λ.

また、上記構成の回折光学素子において、回折面の回折溝の深さが2μm以上、もしくは4μm以上であるのが好ましい。   In the diffractive optical element having the above configuration, the depth of the diffraction groove on the diffractive surface is preferably 2 μm or more, or 4 μm or more.

また、上記構成の回折光学素子において、回折面の回折溝のピッチ幅が4μm以下もしくは2μm以下、または、入射光の波長をλとしたとき、回折面の回折溝のピッチ幅がλ以下もしくはλ×2/3以下であるバイナリ光学素子で構成するのが好ましい。   In the diffractive optical element having the above configuration, when the pitch width of the diffraction grooves on the diffraction surface is 4 μm or less or 2 μm or less, or the wavelength of incident light is λ, the pitch width of the diffraction grooves on the diffraction surface is λ or less or λ It is preferable to use a binary optical element that is × 2/3 or less.

また、上記構成の回折光学素子において、回折面を透過した透過光もしくは回折面で反射した反射光により回折像が形成されるようにするのが好ましい。   In the diffractive optical element having the above configuration, it is preferable that a diffracted image is formed by transmitted light transmitted through the diffractive surface or reflected light reflected by the diffractive surface.

一方、上記構成の回折光学素子において、回折面を透過した透過光および回折面で反射した反射光により回折像が形成されるようにしてもよい。   On the other hand, in the diffractive optical element having the above configuration, a diffracted image may be formed by transmitted light transmitted through the diffractive surface and reflected light reflected by the diffractive surface.

また、上記構成の回折光学素子において、回折面の形状が位相回復法を用いた計算機合成ホログラムにより設計されているのが好ましい。   In the diffractive optical element having the above configuration, the shape of the diffractive surface is preferably designed by a computer-generated hologram using a phase recovery method.

また、上記構成の回折光学素子において、入射光として白色光を用いることにより回折像としてフルカラー画像が形成されるようにしてもよい。   In the diffractive optical element having the above-described configuration, a full color image may be formed as a diffracted image by using white light as incident light.

さらに、本発明に係る回折光学系は、白色光のうち特定の波長の光を選択する選択手段と、選択手段により選択された入射光が回折面に入射するように配置された請求項1〜15のいずれかに記載の回折光学素子とを有して構成され、選択手段により選択された入射光の波長に対応する回折像を形成させるように構成される。   Furthermore, the diffractive optical system according to the present invention is a selection unit that selects light of a specific wavelength from white light, and the incident light selected by the selection unit is disposed so as to be incident on the diffraction surface. The diffractive optical element according to any one of 15 is configured to form a diffraction image corresponding to the wavelength of incident light selected by the selection unit.

本発明に関する回折光学素子およびこれを有する回折光学系によれば、回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を得ることが可能である。   According to the diffractive optical element and the diffractive optical system having the diffractive optical element according to the present invention, it is possible to obtain different diffracted images for each wavelength with respect to incident light having a plurality of specific wavelengths incident on the diffractive surface.

以下、本発明の好ましい実施の形態について図1乃至図5を参照して説明する。ここではまず、本発明に係る回折光学素子の回折面の1ピッチ内の位相分布を表す位相パターン(回折面の形状)の設計方法について説明する。本実施例においては、回折光学素子の回折面の形状の算出のために位相回復法による計算機合成ホログラム(CGH(Computer Generated Hologram))を用いるが、必ずしも位相回復法によるものに限られず、他の方法によるCGHを用いて設計を行ってもよい。   Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. First, a method for designing a phase pattern (diffractive surface shape) representing a phase distribution within one pitch of the diffractive surface of the diffractive optical element according to the present invention will be described. In this embodiment, a computer-generated hologram (CGH (Computer Generated Hologram)) based on the phase recovery method is used for calculating the shape of the diffractive surface of the diffractive optical element. You may design using CGH by a method.

従来においては位相回復法により単色光用の回折光学素子の回折面の形状の設計が行われており、以下のような位相回復アルゴリズムが用いられている(図1(a)参照)。まず、初期位相パターン(回折光学素子の初期回折面形状)を決定し(S11)、それをフーリエ変換して回折パターン(回折像として投影されるパターン)を取得する(S13)。このとき、初期位相パターンとして、ランダムパターンがよい。そして、得られた回折パターンの位相をそのまま維持し、その強度のみ所望のパターンに置換する(S14)。この置換された回折パターンを逆フーリエ変換することにより回折光学素子の位相パターン(回折面の形状)を取得できるが(S15)、これを離散化された位相パターンに強制的に合わせる(S12)。ここまでが一つのループとなる。そして、このようなループを繰り返すことで、すなわち、位相パターンのフーリエ変換による回折パターンの取得と、回折パターンの逆フーリエ変換による位相パターンの取得とを繰り返すことで、回折光学素子の回折面の形状がある所定の形状に収束する。   Conventionally, the shape of the diffractive surface of a diffractive optical element for monochromatic light has been designed by a phase recovery method, and the following phase recovery algorithm is used (see FIG. 1A). First, an initial phase pattern (initial diffractive surface shape of the diffractive optical element) is determined (S11), and Fourier transform is performed to obtain a diffraction pattern (pattern projected as a diffraction image) (S13). At this time, a random pattern is preferable as the initial phase pattern. Then, the phase of the obtained diffraction pattern is maintained as it is, and only the intensity is replaced with a desired pattern (S14). The phase pattern (diffractive surface shape) of the diffractive optical element can be obtained by performing inverse Fourier transform on the replaced diffraction pattern (S15), and this is forcibly matched with the discretized phase pattern (S12). This is one loop. Then, by repeating such a loop, that is, by repeating the acquisition of the diffraction pattern by the Fourier transform of the phase pattern and the acquisition of the phase pattern by the inverse Fourier transform of the diffraction pattern, the shape of the diffraction surface of the diffractive optical element Converge to a certain shape.

以上は、単色光用の位相回復アルゴリズムであるが、本実施例においては、この位相回復アルゴリズムを応用し、入射波長毎に回折パターンが変化する多色用回折光学素子の設計を行う(図1(b)参照)。本実施例では、上記の従来の場合と同様に、まず最初に回折光学素子の初期回折面形状を与える。そして、入射光の波長ごと(λ1〜λN)に、上記位相回復アルゴリズムを1ループ分だけ実行し(S21,S23,S25)、各波長ごとに回折光学素子の位相パターン(回折面の形状)を取得する(S22,S24,S26)。しかしながら、上記アルゴリズムにより取得された位相パターンは、波長ごとに相違しているため、本実施例では最小自乗法により波長による位相パターンの違いを考慮した一つの最適な位相パターンを求める(S27)。そして、当該最小自乗法に基づく位相パターンを次のループの初期位相パターンとして用い、各波長ごとに位相パターンを取得したのち、最小自乗法により最適な位相パターンを求める。このようなことを繰り返すことで、回折光学素子の回折面の形状は、ある所定の状態に収束していく。ここで、回折光学素子の予測される集光効率が例えば約80%になった場合に回折面の形状の算出を停止させ、すなわち位相回復アルゴリズムを停止させ、その時点で取得されている位相パターンを、入射光の波長の違いを考慮した回折光学素子の回折面の形状として決定する。 The above is the phase recovery algorithm for monochromatic light. In this embodiment, this phase recovery algorithm is applied to design a multicolor diffractive optical element whose diffraction pattern changes for each incident wavelength (FIG. 1). (See (b)). In the present embodiment, the initial diffractive surface shape of the diffractive optical element is first given as in the case of the conventional case. Then, for each wavelength (λ 1 to λ N ) of the incident light, the phase recovery algorithm is executed for one loop (S21, S23, S25), and the phase pattern of the diffractive optical element (the shape of the diffractive surface) for each wavelength. ) Is acquired (S22, S24, S26). However, since the phase pattern acquired by the above algorithm is different for each wavelength, in the present embodiment, one optimum phase pattern is obtained in consideration of the difference in the phase pattern depending on the wavelength by the least square method (S27). Then, using the phase pattern based on the least square method as the initial phase pattern of the next loop, after obtaining the phase pattern for each wavelength, an optimum phase pattern is obtained by the least square method. By repeating this, the shape of the diffractive surface of the diffractive optical element converges to a predetermined state. Here, when the predicted light collection efficiency of the diffractive optical element becomes, for example, about 80%, the calculation of the shape of the diffractive surface is stopped, that is, the phase recovery algorithm is stopped, and the phase pattern acquired at that time Is determined as the shape of the diffractive surface of the diffractive optical element in consideration of the difference in wavelength of incident light.

次に、上記のようにして回折面の形状が求められた多段の回折光学素子の実際の作製方法について、図2を参照して説明する。多段の回折光学素子は、以下のようにフォトリソグラフィーとエッチングとのプロセスを繰り返すことで作製される。まず、シリコン基板(シリコンに限らず、GaAsなどの半導体材料の基板であればよい)2上にレジスト膜3を塗布し、上記の計算により決定された回折面の形状に応じたレチクルマスクを通して露光を行う(図2(a)参照)。露光に使用する光線は、g線(436nm)やi線(365nm)、電子線のほか、X線等の放射線であってもよい。また、レーザ光を使用した直接描画による露光方法であってもよい。さらに、2光束干渉させて露光を行ってもよい。露光に続いて現像がなされ、続くエッチングのプロセスが行われる。   Next, an actual manufacturing method of the multi-stage diffractive optical element in which the shape of the diffractive surface is obtained as described above will be described with reference to FIG. A multi-stage diffractive optical element is manufactured by repeating the processes of photolithography and etching as follows. First, a resist film 3 is applied on a silicon substrate 2 (which is not limited to silicon but may be a substrate made of a semiconductor material such as GaAs) and exposed through a reticle mask corresponding to the shape of the diffraction surface determined by the above calculation. (See FIG. 2A). The light beam used for the exposure may be g-ray (436 nm), i-ray (365 nm), electron beam, or X-ray radiation. Moreover, the exposure method by direct drawing using a laser beam may be used. Further, the exposure may be performed with two light beam interference. Development is performed following the exposure, and a subsequent etching process is performed.

エッチングは、エッチング装置を用いることでドライエッチングにより行われる。このときにエッチングガスは、基板(シリコン、GaAs等)2の種類に応じて任意に選択するが、一例として四フッ化カーボンガスといったものが用いられる。このようにして、一回のフォトリソグラフィーおよびエッチングのプロセスが終了すると、図2(b)のように、所望の深さの回折溝を有し、所望のパターンに応じた2段レンズ(2BOE素子)が作製される。   Etching is performed by dry etching using an etching apparatus. At this time, the etching gas is arbitrarily selected according to the type of the substrate (silicon, GaAs, etc.) 2. As an example, a carbon tetrafluoride gas is used. In this way, when one photolithography and etching process is completed, as shown in FIG. 2B, a two-stage lens (2BOE element) having a diffraction groove of a desired depth and corresponding to a desired pattern is obtained. ) Is produced.

この2段レンズに、さらに、フォトリソグラフィーおよびエッチングのプロセスを繰り返すことで4段レンズが作製され(図2(c)および(d)参照)、この4段レンズに、さらにフォトリソグラフィーおよびエッチングのプロセスを繰り返すことで8段レンズが作製される(図2(e)および(f)参照)。この8段レンズから、16段レンズ、32段レンズ、…といったように、フォトリソグラフィーおよびエッチングのプロセスを複数繰り返すと、回折面の形状が多段のバイナリ形状からなる回折光学素子を得ることが可能である。   Further, a photolithography and etching process is repeated on the two-stage lens to produce a four-stage lens (see FIGS. 2C and 2D). The photolithography and etching process is further performed on the four-stage lens. Is repeated to produce an eight-stage lens (see FIGS. 2E and 2F). From this 8-stage lens, a diffractive optical element having a multi-stage binary shape can be obtained by repeating a plurality of photolithography and etching processes such as a 16-stage lens, a 32-stage lens, and so on. is there.

また、上記のようにして作製された多段の回折光学素子の回折面の形状を、電気鋳造法により電着を行って金型に転写することも可能である。そして、基板ガラス上に十分に加熱され可塑性を有した紫外線硬化樹脂を滴下する。この後、滴下した紫外線硬化樹脂に所望の表面の反転形状が形成された上記金型を押し当てる。さらに、基板ガラス側から紫外線を照射することで、紫外線硬化樹脂を硬化させ、硬化させた紫外線硬化樹脂を金型および基板ガラスから取り外す。これにより、金型に形成されていた表面の形状が紫外線硬化樹脂に転写され、この紫外線硬化樹脂を回折光学素子の複製物として使用できる。   It is also possible to transfer the shape of the diffractive surface of the multi-stage diffractive optical element manufactured as described above to a mold by electrodeposition by electroforming. Then, an ultraviolet curable resin that is sufficiently heated and has plasticity is dropped onto the substrate glass. Thereafter, the above-mentioned mold in which a desired surface reversal shape is formed is pressed against the dropped ultraviolet curable resin. Further, the ultraviolet curable resin is cured by irradiating ultraviolet rays from the substrate glass side, and the cured ultraviolet curable resin is removed from the mold and the substrate glass. Thereby, the shape of the surface formed in the mold is transferred to the ultraviolet curable resin, and this ultraviolet curable resin can be used as a replica of the diffractive optical element.

次に、上記の位相回復法によって設計された、回折光学素子の回折面の形状の一例を示す。図3に一例として示す回折光学素子1は所定の深さを有する複数の回折溝5が所定のピッチで形成されたいわゆるバイナリ光学素子であり、その入射面は所定の段数を有して階段状(いわゆるバイナリ形状)に形成されている。図3に示すように、この回折光学素子1は8段の階段を有する8段レンズで構成されているが、必ずしも8段レンズである必要はなく、4段レンズや2段レンズであってもよく、あるいは、8段よりも段数が多い16段レンズや32段レンズ等で構成してもよい。この回折光学素子1の階段の1段の高さHは、例えば入射光の波長λnm以下になるように設計されている。また、回折光学素子1の回折溝5の深さDは2μm以上もしくは4μm以上であるのが好ましい。さらに、回折溝5のピッチ幅Pは4μm以下であるのが好ましいが、2μm以下であってもよい。さらに、ピッチ幅Pは入射光の波長λnm以下であってもよく、また、入射光の波長λnmの2/3以下であってもよい。   Next, an example of the shape of the diffractive surface of the diffractive optical element designed by the above phase recovery method is shown. The diffractive optical element 1 shown as an example in FIG. 3 is a so-called binary optical element in which a plurality of diffraction grooves 5 having a predetermined depth are formed at a predetermined pitch, and its incident surface has a predetermined number of steps and is stepped. (So-called binary shape). As shown in FIG. 3, the diffractive optical element 1 is composed of an eight-stage lens having eight steps. However, the diffractive optical element 1 is not necessarily an eight-stage lens, and may be a four-stage lens or a two-stage lens. Alternatively, a 16-stage lens, a 32-stage lens, or the like having more stages than 8 stages may be used. The height H of one step of the diffractive optical element 1 is designed to be equal to or less than the wavelength λ nm of incident light, for example. The depth D of the diffraction groove 5 of the diffractive optical element 1 is preferably 2 μm or more or 4 μm or more. Further, the pitch width P of the diffraction grooves 5 is preferably 4 μm or less, but may be 2 μm or less. Further, the pitch width P may be equal to or less than the wavelength λ nm of the incident light, or may be equal to or less than 2/3 of the wavelength λ nm of the incident light.

次に、上記のようにして設計された回折光学素子に、所定の波長の光を照射した場合に投影される回折パターンのCGHによるシミュレーション結果を示す。図4(a)は16段レンズからなる回折光学素子の回折面の形状であり、16段の段差をグレースケールで表示している。このような、回折面の形状を有する回折光学素子に紙面垂直方向に光を照射した場合における回折パターンの投影図が図4(b)および図4(c)である。ここで、図4(b)は回折光学素子に赤色光(633nm)を照射した場合の回折パターンの投影図であり、この場合の集光効率を全回折光のうち矩形状のエリアA1に集光される回折光の割合とすると、集光効率は82%である。一方、図4(c)は回折光学素子に緑色光(532nm)を照射した場合の投影図で、この場合の集光効率を全回折光のうち円形状のエリアA2に集光される回折光の割合とすると、集光効率は78%である。このように、本発明に係る回折光学素子は、照射する光の波長に拘らず集光効率を高めることで、入射光の波長ごとに回折パターンを投影することが可能である。   Next, a simulation result by CGH of a diffraction pattern projected when light having a predetermined wavelength is irradiated on the diffractive optical element designed as described above will be shown. FIG. 4A shows the shape of the diffractive surface of a diffractive optical element composed of a 16-step lens, and the 16 steps are displayed in gray scale. FIGS. 4B and 4C are projection views of the diffraction pattern when such a diffractive optical element having a diffractive surface shape is irradiated with light in the direction perpendicular to the paper surface. Here, FIG. 4B is a projection view of the diffraction pattern when the diffractive optical element is irradiated with red light (633 nm), and the condensing efficiency in this case is collected in the rectangular area A1 of the total diffracted light. If the ratio of the diffracted light to be emitted is taken, the light collection efficiency is 82%. On the other hand, FIG. 4C is a projection view in the case where the diffractive optical element is irradiated with green light (532 nm). In this case, the light collection efficiency is diffracted light focused on the circular area A2 of the total diffracted light. In this case, the light collection efficiency is 78%. As described above, the diffractive optical element according to the present invention can project a diffraction pattern for each wavelength of incident light by increasing the light collection efficiency regardless of the wavelength of the irradiated light.

また、回折光学素子1への入射光の光源として白色光を用いることも可能であり、例えば、本発明に係る回折光学素子1を有する回折光学系6を用いて以下のようにして任意の回折パターンを投影することが可能である。図5に示すように、この回折光学系6は、回折光学素子1とMEMS(Micro-electro-mechanical System)フィルタ素子4(以下、「MEMS素子4」と称する)とを有して構成される。   Moreover, it is also possible to use white light as a light source of incident light to the diffractive optical element 1, and for example, arbitrary diffraction is performed as follows using the diffractive optical system 6 having the diffractive optical element 1 according to the present invention. It is possible to project a pattern. As shown in FIG. 5, the diffractive optical system 6 includes a diffractive optical element 1 and a MEMS (Micro-electro-mechanical System) filter element 4 (hereinafter referred to as “MEMS element 4”). .

このMEMS素子4は、例えば圧電駆動型であり、印加する電圧の大きさを制御することで、回折光学素子1の略法線方向に入射光が入射するような状態から回折光学素子1の略法線方向に対して傾いた角度から入射光が入射するように揺動させることが可能である。このようなMEMS素子4を光源(図示せず)と回折光学素子1との間に設置することで、光源から出射された白色光を所定の角度に揺動したMEMS素子4に入射させ、MEMS素子4に設けられ所定の波長の光のみを透過させるカラーフィルタによって赤色光、緑色光および青色光のうちいずれかを選択透過させ、これらを回折光学素子1に入射させることにより、入射光の波長毎に異なる回折パターンを投影させることが可能である。   The MEMS element 4 is, for example, a piezoelectric drive type, and controls the magnitude of a voltage to be applied, so that the incident light is incident in a substantially normal direction of the diffractive optical element 1 so that the diffractive optical element 1 is substantially omitted. It can be swung so that incident light enters from an angle inclined with respect to the normal direction. By installing such a MEMS element 4 between a light source (not shown) and the diffractive optical element 1, white light emitted from the light source is incident on the MEMS element 4 oscillated at a predetermined angle, and MEMS is used. By selectively transmitting one of red light, green light, and blue light by a color filter that is provided in the element 4 and transmits only light of a predetermined wavelength, and makes these incident on the diffractive optical element 1, the wavelength of the incident light It is possible to project a different diffraction pattern for each.

MEMS素子4による選択透過は、MEMS素子4を白色光の入射方向に対して傾斜させることで行われる。例えば、図5に示すように、赤色光を透過させる場合には、白色光がMEMS素子4に対して略法線方向に入射するようにMEMS素子4を配置させ、緑色光を透過させる場合にはMEMS素子4を赤色光を透過させる場合に対して所定の角度傾斜させ、青色光を透過させる場合にはMEMS素子4を緑色光を透過させる場合よりもさらに大きく傾斜させるようにする。   The selective transmission by the MEMS element 4 is performed by inclining the MEMS element 4 with respect to the incident direction of white light. For example, as shown in FIG. 5, when red light is transmitted, the MEMS element 4 is arranged so that white light is incident on the MEMS element 4 in a substantially normal direction and green light is transmitted. , The MEMS element 4 is inclined at a predetermined angle with respect to the case where red light is transmitted, and when the blue light is transmitted, the MEMS element 4 is inclined more largely than the case where green light is transmitted.

このようにして、回折光学素子1を透過した赤色光の回折光は、所定の投影面に回折パターンPAT1(模式的に矩形状で示す)として投影される。また、回折光学素子1を透過した緑色光の回折光は、当該投影面に回折パターンPAT2(模式的に円形状で示す)として投影され、回折光学素子1を透過した青色光の回折光は、当該投影面に回折パターンPAT3(模式的に三角形で示す)として投影される。このように、所定の波長の光を選択透過可能なMEMS素子と本発明に係る回折光学素子1とを組み合わせることで、所定の投影面に入射光の波長毎に異なる回折パターンを投影させることが可能である。   In this way, the red diffracted light transmitted through the diffractive optical element 1 is projected as a diffraction pattern PAT1 (schematically shown in a rectangular shape) on a predetermined projection surface. Further, the diffracted light of green light transmitted through the diffractive optical element 1 is projected as a diffraction pattern PAT2 (schematically shown in a circular shape) on the projection surface, and the diffracted light of blue light transmitted through the diffractive optical element 1 is It is projected on the projection surface as a diffraction pattern PAT3 (schematically shown by a triangle). Thus, by combining the MEMS element capable of selectively transmitting light of a predetermined wavelength and the diffractive optical element 1 according to the present invention, a different diffraction pattern can be projected on a predetermined projection surface for each wavelength of incident light. Is possible.

なお、上記のように入射光としてある特定の波長を選択するのではなく、白色光をそのまま回折光学素子1に入射した場合には、各波長の入射光がこの回折光学素子1によって波長によって決まった方向に集光され、各波長による回折パターンを重ね合わせた白色光の回折パターンがフルカラー画像として投影される。   When white light is directly incident on the diffractive optical element 1 instead of selecting a specific wavelength as incident light as described above, the incident light of each wavelength is determined by the diffractive optical element 1 depending on the wavelength. A diffraction pattern of white light, which is collected in a different direction and overlaid with diffraction patterns of respective wavelengths, is projected as a full-color image.

また、図5に基づく上記の説明では、回折光学素子1を透過した透過光により回折パターンPAT1〜PAT3が投影される構成を示したが、投影される回折パターンは透過光に限られるわけではなく、回折光学素子1で反射した反射光により入射光の波長毎に異なる回折パターンを投影させるように構成してもよい。あるいは、回折光学素子1の一部分を透過した透過光による回折パターンの投影と、回折光学素子1の残りの部分で反射した反射光による回折パターンの投影とを組み合わせてもよい。   In the above description based on FIG. 5, the diffraction patterns PAT <b> 1 to PAT <b> 3 are projected by the transmitted light transmitted through the diffractive optical element 1. However, the projected diffraction pattern is not limited to the transmitted light. The diffraction light reflected by the diffractive optical element 1 may be configured to project a different diffraction pattern for each wavelength of incident light. Alternatively, the projection of the diffraction pattern by the transmitted light transmitted through a part of the diffractive optical element 1 and the projection of the diffraction pattern by the reflected light reflected by the remaining part of the diffractive optical element 1 may be combined.

なお、これまで本発明の好ましい実施形態について説明してきたが、本発明の範囲は上述した実施形態に限定されるものではない。例えば、上記の実施例においては、上記のようにして設計された回折面を入射光の入射面として回折パターンを投影させたが、バイナリ形状が形成された回折面を入射光の出射面として、回折パターンを投影させるようにしてもよい。   Although the preferred embodiments of the present invention have been described so far, the scope of the present invention is not limited to the above-described embodiments. For example, in the above embodiment, the diffraction pattern is projected with the diffractive surface designed as described above as the incident light incident surface, but the diffractive surface on which the binary shape is formed is used as the incident light exit surface. A diffraction pattern may be projected.

本発明に係る回折光学素子の回折パターンを計算機合成ホログラムにより取得するためのアルゴリズムを示すブロック図で、(a)は従来から用いられている単色光用の位相回復アルゴリズムで、(b)は単色光用の位相回復アルゴリズムを応用して白色光を入射光とした場合の回折パターンを取得するためのアルゴリズムである。1 is a block diagram showing an algorithm for acquiring a diffraction pattern of a diffractive optical element according to the present invention by a computer-generated hologram, where (a) is a conventionally used phase recovery algorithm for monochromatic light, and (b) is monochromatic. This is an algorithm for acquiring a diffraction pattern when white light is used as incident light by applying a phase recovery algorithm for light. 本発明に係る回折光学素子の製造工程を(a)から(f)の順で示す図である。It is a figure which shows the manufacturing process of the diffractive optical element which concerns on this invention in order of (a) to (f). 本発明に係る回折光学素子の回折面の形状を示す模式断面図である。It is a schematic cross section which shows the shape of the diffraction surface of the diffractive optical element which concerns on this invention. (a)は本発明に係る回折光学素子(16段)の回折面の形状を示す、上記計算機合成ホログラムによるシミュレーション結果を示す図で、(b)は上記回折光学素子に回折面を透過した赤色光による回折パターンを示すシミュレーション結果を示す図で、(C)は上記回折光学素子の回折面を透過した緑色光による回折パターンを示すシミュレーション結果を示す図である。(A) is a figure which shows the simulation result by the said computer-generated hologram which shows the shape of the diffraction surface of the diffractive optical element (16 steps) which concerns on this invention, (b) is the red which permeate | transmitted the diffractive surface to the said diffractive optical element. It is a figure which shows the simulation result which shows the diffraction pattern by light, (C) is a figure which shows the simulation result which shows the diffraction pattern by the green light which permeate | transmitted the diffraction surface of the said diffractive optical element. 本発明に係る回折光学系による赤色光、緑色光および青色光の選択透過と、各透過光により投影される回折パターンの様子を示す模式図である。FIG. 4 is a schematic diagram showing selective transmission of red light, green light, and blue light by the diffractive optical system according to the present invention, and the state of a diffraction pattern projected by each transmitted light.

符号の説明Explanation of symbols

1 回折光学素子 2 基板 3 レジスト膜 4 MEMS素子(選択手段) 5 回折溝 6 回折光学系 DESCRIPTION OF SYMBOLS 1 Diffraction optical element 2 Substrate 3 Resist film 4 MEMS element (selection means) 5 Diffraction groove 6 Diffraction optical system

Claims (17)

回折面に入射する特定の複数の波長の入射光に対して各波長毎に異なる回折像を形成させるように前記回折面が構成されていることを特徴とする回折光学素子。   A diffractive optical element, wherein the diffractive surface is configured to form different diffraction images for each wavelength with respect to incident light having a plurality of specific wavelengths incident on the diffractive surface. 前記回折面が2段以上の段数からなる階段を有して断面階段状に形成されたバイナリ光学素子で構成されていることを特徴とする請求項1に記載の回折光学素子。   2. The diffractive optical element according to claim 1, wherein the diffractive surface includes a binary optical element having a staircase having two or more steps and having a stepped cross section. 前記回折面が4段以上の段数からなる階段を有して断面階段状に形成されたバイナリ光学素子で構成されていることを特徴とする請求項1に記載の回折光学素子。   2. The diffractive optical element according to claim 1, wherein the diffractive surface includes a binary optical element having a staircase having four or more steps and having a stepped cross section. 入射光の波長をλとしたとき、前記階段の少なくとも1段の高さがλ以下であることを特徴とする請求項2もしくは3に記載の回折光学素子。   4. The diffractive optical element according to claim 2, wherein the height of at least one of the steps is λ or less when the wavelength of incident light is λ. 5. 前記回折面の回折溝の深さが2μm以上であることを特徴とする請求項2〜4のいずれかに記載の回折光学素子。   The diffractive optical element according to any one of claims 2 to 4, wherein a depth of a diffraction groove on the diffractive surface is 2 µm or more. 前記回折面の回折溝の深さが4μm以上であることを特徴とする請求項2〜4のいずれかに記載の回折光学素子。   5. The diffractive optical element according to claim 2, wherein the depth of the diffraction groove of the diffractive surface is 4 μm or more. 前記回折面の回折溝のピッチ幅が4μm以下である前記バイナリ光学素子からなることを特徴とする請求項2〜6のいずれかに記載の回折光学素子。   The diffractive optical element according to any one of claims 2 to 6, wherein the diffractive optical element is composed of the binary optical element having a pitch width of 4 µm or less on the diffractive surface. 前記回折面の回折溝のピッチ幅が2μm以下である前記バイナリ光学素子からなることを特徴とする請求項2〜6のいずれかに記載の回折光学素子。   7. The diffractive optical element according to claim 2, wherein the diffractive optical element is formed of the binary optical element having a diffraction groove pitch width of 2 μm or less. 入射光の波長をλとしたとき、前記回折面の回折溝のピッチ幅がλ以下である前記バイナリ光学素子からなることを特徴とする請求項2〜6のいずれかに記載の回折光学素子。   7. The diffractive optical element according to claim 2, wherein the binary optical element has a pitch width of diffractive grooves on the diffractive surface of λ or less, where λ is the wavelength of incident light. 入射光の波長をλとしたとき、前記回折面の回折溝のピッチ幅がλ×2/3以下である前記バイナリ光学素子からなることを特徴とする請求項2〜6のいずれかに記載の回折光学素子。   It consists of the said binary optical element whose pitch width of the diffraction groove of the said diffraction surface is (lambda) x2 / 3 or less when the wavelength of incident light is set to (lambda). Diffractive optical element. 前記回折面を透過した透過光により前記回折像が形成されることを特徴とする請求項1〜10のいずれかに記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the diffraction image is formed by transmitted light transmitted through the diffractive surface. 前記回折面で反射した反射光により前記回折像が形成されることを特徴とする請求項1〜10のいずれかに記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the diffracted image is formed by reflected light reflected by the diffractive surface. 前記回折面を透過した透過光および前記回折面で反射した反射光により前記回折像が形成されることを特徴とする請求項1〜10のいずれかに記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the diffracted image is formed by transmitted light transmitted through the diffractive surface and reflected light reflected by the diffractive surface. 前記回折面の形状が計算機合成ホログラムにより設計されていることを特徴とする請求項1〜13のいずれかに記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the shape of the diffractive surface is designed by a computer-generated hologram. 前記計算機合成ホログラムが位相回復法を用いていることを特徴とする請求項14に記載の回折光学素子。   The diffractive optical element according to claim 14, wherein the computer-generated hologram uses a phase recovery method. 入射光として白色光を用いることにより前記回折像としてフルカラー画像が形成されることを特徴とする請求項1〜15のいずれかに記載の回折光学素子。   16. The diffractive optical element according to claim 1, wherein a full-color image is formed as the diffraction image by using white light as incident light. 白色光のうち特定の波長の光を選択する選択手段と、前記選択手段により選択された入射光が前記回折面に入射するように配置された請求項1〜15のいずれかに記載の前記回折光学素子とを有して構成され、前記選択手段により選択された入射光の波長に対応する回折像を形成させるように構成されたことを特徴とする回折光学系。   16. The diffraction according to any one of claims 1 to 15, wherein the diffraction unit is arranged so that light having a specific wavelength among white light is selected, and incident light selected by the selection unit is incident on the diffraction surface. And a diffractive optical system configured to form a diffracted image corresponding to the wavelength of incident light selected by the selecting means.
JP2006000575A 2006-01-05 2006-01-05 Method for manufacturing diffractive optical element Active JP4725845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000575A JP4725845B2 (en) 2006-01-05 2006-01-05 Method for manufacturing diffractive optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000575A JP4725845B2 (en) 2006-01-05 2006-01-05 Method for manufacturing diffractive optical element

Publications (2)

Publication Number Publication Date
JP2007183336A true JP2007183336A (en) 2007-07-19
JP4725845B2 JP4725845B2 (en) 2011-07-13

Family

ID=38339514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000575A Active JP4725845B2 (en) 2006-01-05 2006-01-05 Method for manufacturing diffractive optical element

Country Status (1)

Country Link
JP (1) JP4725845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031837A (en) * 2016-03-10 2022-02-22 シスメックス株式会社 Optical device and method for forming image
US11598952B2 (en) 2016-03-10 2023-03-07 Sysmex Corporation Optical device, phase plate, and image forming method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481620A (en) * 1990-07-24 1992-03-16 Kubota Corp Sorting apparatus of weight
JPH10319824A (en) * 1997-05-21 1998-12-04 Oki Electric Ind Co Ltd Optical filter device
JPH11194702A (en) * 1997-11-04 1999-07-21 Harness Syst Tech Res Ltd Display device and method of reproducing hologram therein
JP2001356673A (en) * 2000-06-09 2001-12-26 Dainippon Printing Co Ltd Computer hologram and manufacturing method for the same, light reflector using computer hologram, and reflection type liquid crystal display device using computer hologram
JP2002250808A (en) * 2001-02-23 2002-09-06 Victor Co Of Japan Ltd Cgh diffraction grating hybrid display body and computer program to be executed for manufacturing of the body
JP2003177655A (en) * 2001-12-12 2003-06-27 Toppan Printing Co Ltd Display consisting of computer hologram
JP2003295745A (en) * 2002-04-08 2003-10-15 Toppan Printing Co Ltd Display body using computer hologram
JP2004126536A (en) * 2002-08-02 2004-04-22 Dainippon Printing Co Ltd Hologram observation tool and computer hologram for the same
JP2004530166A (en) * 2001-06-08 2004-09-30 ハネウェル・インターナショナル・インコーポレーテッド Apparatus and method for processing light
JP2006003910A (en) * 2005-07-22 2006-01-05 Dainippon Printing Co Ltd Hologram recording medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481620A (en) * 1990-07-24 1992-03-16 Kubota Corp Sorting apparatus of weight
JPH10319824A (en) * 1997-05-21 1998-12-04 Oki Electric Ind Co Ltd Optical filter device
JPH11194702A (en) * 1997-11-04 1999-07-21 Harness Syst Tech Res Ltd Display device and method of reproducing hologram therein
JP2001356673A (en) * 2000-06-09 2001-12-26 Dainippon Printing Co Ltd Computer hologram and manufacturing method for the same, light reflector using computer hologram, and reflection type liquid crystal display device using computer hologram
JP2002250808A (en) * 2001-02-23 2002-09-06 Victor Co Of Japan Ltd Cgh diffraction grating hybrid display body and computer program to be executed for manufacturing of the body
JP2004530166A (en) * 2001-06-08 2004-09-30 ハネウェル・インターナショナル・インコーポレーテッド Apparatus and method for processing light
JP2003177655A (en) * 2001-12-12 2003-06-27 Toppan Printing Co Ltd Display consisting of computer hologram
JP2003295745A (en) * 2002-04-08 2003-10-15 Toppan Printing Co Ltd Display body using computer hologram
JP2004126536A (en) * 2002-08-02 2004-04-22 Dainippon Printing Co Ltd Hologram observation tool and computer hologram for the same
JP2006003910A (en) * 2005-07-22 2006-01-05 Dainippon Printing Co Ltd Hologram recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031837A (en) * 2016-03-10 2022-02-22 シスメックス株式会社 Optical device and method for forming image
US11598952B2 (en) 2016-03-10 2023-03-07 Sysmex Corporation Optical device, phase plate, and image forming method
JP7408615B2 (en) 2016-03-10 2024-01-05 シスメックス株式会社 Optical equipment and image formation methods

Also Published As

Publication number Publication date
JP4725845B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US7714988B2 (en) System and method for absorbance modulation lithography
JP3287236B2 (en) Manufacturing method of diffractive optical element
EP2499539B1 (en) Optimized mask design for fabricating periodic and quasi-periodic patterns
US20140092384A1 (en) Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method
TWI414900B (en) Exposure method and memory medium storing computer program
CN110235050B (en) Manufacturing method of diffraction optical element
JP2008089923A (en) Method of manufacturing optical element
JP2022527161A (en) Methods and equipment for printing periodic patterns with varying duty cycles
US20020042024A1 (en) Method of manufacturing an element with multiple-level surface, such as a diffractive optical element
JP2005055878A (en) Mask and manufacturing method therefor, and exposure method
JP4725845B2 (en) Method for manufacturing diffractive optical element
JP2007183338A (en) Diffraction optical system
JP4725846B2 (en) Method for manufacturing diffractive optical element
JP2006119601A (en) Light modulator and optical apparatus using the same
JP2007286499A (en) Diffraction optics and authentication apparatus
US20040179564A1 (en) Method for manufacturing an optical element having a structured surface, such optical element, and projection illumination system having such an optical element
JP2007264476A (en) Method for forming periodical structure pattern and interference exposure apparatus
EP1974243A1 (en) System and method for absorbance modulation lithography
JPH11174217A (en) Diffraction optical element and its production
JPH1114813A (en) Manufacture of diffraction optical element
JPH11307443A (en) Projection aligner and manufacture of device using the projection aligner
Srinivasan Design and fabrication of space variant micro optical elements
JP2007148214A (en) Grayscale mask, diffraction optical element, and projector
Voelkel Micro-Optics for Illumination Light Shaping in Photolithography
KR20230084239A (en) Diffractive optical element and manufacturing method of the diffractive optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Ref document number: 4725845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250