JP2007183077A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2007183077A
JP2007183077A JP2006002977A JP2006002977A JP2007183077A JP 2007183077 A JP2007183077 A JP 2007183077A JP 2006002977 A JP2006002977 A JP 2006002977A JP 2006002977 A JP2006002977 A JP 2006002977A JP 2007183077 A JP2007183077 A JP 2007183077A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerators
evaporators
refrigerator
refrigeration apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002977A
Other languages
Japanese (ja)
Other versions
JP5096678B2 (en
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006002977A priority Critical patent/JP5096678B2/en
Priority to CN2007800022390A priority patent/CN101371082B/en
Priority to PCT/JP2007/050372 priority patent/WO2007080994A1/en
Publication of JP2007183077A publication Critical patent/JP2007183077A/en
Application granted granted Critical
Publication of JP5096678B2 publication Critical patent/JP5096678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device capable of improving efficiency in full load, and also keeping high efficiency in partial load, with respect to a refrigerating device using a plurality of refrigerating machines. <P>SOLUTION: This refrigerating device comprises the plurality of refrigerating machines 20-1, 20-2 having evaporators 21-1, 21-2 exerting refrigerating effect by retrieving heat from cold water and evaporating a refrigerant, compressors 23-1, 23-2 compressing refrigerant vapor to achieve high-pressure vapor, and condensers 25-1, 25-2 cooling the high-pressure steam by cooling water and condensing it. The cold water is connected with the evaporators 21-1, 21-2 of the plurality of refrigerating machines 20-1, 20-2 in series, and successively cooled by evaporation heat of the refrigerant of the plurality of evaporators 21-1, 21-2. The cooling water is connected with the condensers 25-1, 25-2 of the plurality of refrigerating machines 20-1, 20-2 in series, and successively cool the refrigerant of the plurality of condensers 25-1, 25-2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷却流体(冷却水、冷却用空気等の冷却源)に顕熱変化をする流体を用い、被冷却流体に冷水あるいはブライン等の顕熱変化をする流体を用いる冷凍装置に関し、特に複数の冷凍機を有する冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus that uses a fluid that changes sensible heat as a cooling fluid (cooling source such as cooling water or cooling air) and uses a fluid that changes sensible heat such as cold water or brine as a cooled fluid. The present invention relates to a refrigeration apparatus having a plurality of refrigerators.

従来、蒸発器、圧縮機、凝縮器等から構成される冷凍機を複数設置して構成される冷凍装置がある。図19はこの種の冷凍装置の1例を示す構成図、図20はこの冷凍装置における冷水と冷却水の供給状態を示す図である。両図に示す冷凍装置は2つの冷凍機200−1,200−2を具備しており、それぞれ蒸発器201−1,201−2と、圧縮機203−1,203−2と、凝縮器205−1,205−2と、膨張弁207−1,207−2とを、冷媒配管209−1,209−2によって連結してそれぞれ閉回路内で冷媒を循環させるクローズドシステムを構成している。   Conventionally, there is a refrigeration apparatus configured by installing a plurality of refrigerators including an evaporator, a compressor, a condenser, and the like. FIG. 19 is a block diagram illustrating an example of this type of refrigeration apparatus, and FIG. 20 is a diagram illustrating a supply state of cold water and cooling water in the refrigeration apparatus. The refrigeration apparatus shown in both figures includes two refrigerators 200-1 and 200-2, and evaporators 201-1 and 201-2, compressors 203-1 and 203-2, and a condenser 205, respectively. -1, 205-2 and expansion valves 207-1 and 207-2 are connected by refrigerant pipes 209-1 and 209-2 to constitute a closed system in which the refrigerant is circulated in a closed circuit.

そして従来、各蒸発器201−1,201−2には、これらに並列に冷水(被冷却流体)が供給され、また各凝縮器205−1,205−2には、これらに並列に冷却水(冷却流体)が供給されていた。この冷水と冷却水の供給方式によれば、冷凍容量が少ない場合に、運転する冷凍機200−1,200−2の台数を減らす台数制御が可能となり、また冷水、冷却水も容量に合わせて増減することができ、部分負荷対応ができるという特徴がある。   Conventionally, cold water (cooled fluid) is supplied in parallel to each of the evaporators 201-1 and 201-2, and cooling water is supplied in parallel to each of the condensers 205-1 and 205-2. (Cooling fluid) was being supplied. According to this cooling water and cooling water supply method, when the refrigerating capacity is small, it is possible to control the number of the refrigerators 200-1 and 200-2 to be operated, and the cooling water and the cooling water are also adapted to the capacity. It has the feature that it can be increased or decreased and can handle partial loads.

しかしながら一方で上記従来の冷凍装置においては、部分負荷時(台数制御時)に、停止した冷凍機200−1,200−2の蒸発器201−1,201−2や凝縮器205−1,205−2が休止してしまうので、これらが伝熱に寄与できず、冷凍装置の部分負荷時の効率向上が図れないという問題点があった。
特開2003−130428
However, on the other hand, in the conventional refrigeration apparatus, the evaporators 201-1 and 201-2 and the condensers 205-1 and 205 of the stopped refrigerators 200-1 and 200-2 at the time of partial load (unit number control). Since -2 is suspended, there is a problem in that these cannot contribute to heat transfer and efficiency cannot be improved at the time of partial load of the refrigeration apparatus.
JP2003-130428

本発明は上述の点に鑑みてなされたものでありその目的は、複数の冷凍機を用いてなる冷凍装置にあって、全負荷時の効率を高めると共に、部分負荷の場合でも複数の蒸発器、凝縮器を常に利用しながら部分負荷効率を高く維持できる冷凍装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is a refrigeration apparatus using a plurality of refrigerators, which improves efficiency at the time of full load and a plurality of evaporators even in the case of partial load. An object of the present invention is to provide a refrigeration apparatus capable of maintaining high partial load efficiency while always using a condenser.

本願請求項1に記載の発明は、少なくとも、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機と、高圧蒸気を冷却流体で冷却して凝縮させる凝縮器とを有する冷凍機を複数具備し、前記被冷却流体は前記複数の冷凍機の蒸発器に直列に接続され、順次複数の蒸発器の冷媒の蒸発熱で冷却され、前記冷却流体は前記複数の冷凍機の凝縮器に直列に接続され、順次複数の凝縮器の冷媒を冷却することを特徴とする冷凍装置にある。   The invention described in claim 1 includes at least an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a compressor that compresses the refrigerant vapor into high-pressure steam, and high-pressure steam A plurality of refrigerators each having a condenser for cooling and condensing with a cooling fluid, wherein the fluid to be cooled is connected in series to the evaporators of the plurality of refrigerators, and sequentially the heat of evaporation of the refrigerant of the plurality of evaporators The cooling fluid is connected in series to the condensers of the plurality of refrigerators, and sequentially cools the refrigerant of the plurality of condensers.

本願請求項2に記載の発明は、前記複数の冷凍機の複数の圧縮機を、同一の電動機で駆動することを特徴とする請求項1に記載の冷凍装置にある。   The invention according to claim 2 of the present application is the refrigeration apparatus according to claim 1, wherein the plurality of compressors of the plurality of refrigerators are driven by the same electric motor.

本願請求項3に記載の発明は、少なくとも、前記複数の冷凍機の蒸発器を、1つの缶胴を区画したそれぞれの区画に設置するか、或いは前記複数の冷凍機の凝縮器を、1つの缶胴を区画したそれぞれの区画に設置することを特徴とする請求項1又は2に記載の冷凍装置にある。   In the invention according to claim 3 of the present application, at least the evaporators of the plurality of refrigerators are installed in respective sections dividing one can body, or the condensers of the plurality of refrigerators are installed in one unit. The refrigeration apparatus according to claim 1 or 2, wherein the refrigeration apparatus is installed in each section into which the can body is partitioned.

本願請求項4に記載の発明は、前記複数の冷凍機の各凝縮器と蒸発器間をつなぐ冷媒配管には、凝縮器から蒸発器への冷媒の流れが持つエネルギーを回収する動力回収膨張機が設けられていることを特徴とする請求項1又は2又は3に記載の冷凍装置にある。   The invention according to claim 4 of the present application is the power recovery expander that recovers the energy of the refrigerant flow from the condenser to the evaporator in the refrigerant pipe connecting the condensers and the evaporators of the plurality of refrigerators. Is provided in the refrigeration apparatus according to claim 1, 2, or 3.

本願請求項5に記載の発明は、前記動力回収膨張機は、冷媒の流れが持つエネルギーによって発電機を駆動することで動力を回収することを特徴とする請求項4に記載の冷凍装置にある。   The invention according to claim 5 of the present application is the refrigeration apparatus according to claim 4, wherein the power recovery expander recovers power by driving a generator with energy of a refrigerant flow. .

被冷却流体を複数の冷凍機の蒸発器に直列に接続し、且つ冷却流体を複数の冷凍機の凝縮器に直列に接続したので、冷却流体の顕熱変化と、被冷却流体の顕熱変化とを利用して全負荷時の効率と部分負荷時の効率とを何れも高く維持でき、これらのことから冷凍装置全体の効率向上が図れる。   Because the fluid to be cooled is connected in series to the evaporators of multiple refrigerators and the cooling fluid is connected in series to the condenser of multiple refrigerators, the sensible heat change of the cooling fluid and the sensible heat change of the cooled fluid Thus, both the efficiency at the full load and the efficiency at the partial load can be maintained high, and these can improve the efficiency of the entire refrigeration apparatus.

請求項2に記載の発明によれば、圧縮機構造の簡易化が図れる。   According to the second aspect of the present invention, the compressor structure can be simplified.

請求項3に記載の発明によれば、蒸発器構造及び/又は凝縮器構造の簡易化が図れる。   According to the invention described in claim 3, the evaporator structure and / or the condenser structure can be simplified.

請求項4に記載の発明によれば、冷媒の膨張の際に動力(凝縮器から蒸発器への冷媒の流れが持つエネルギー)を回収でき、同時に冷凍効果を増大することができる。   According to the fourth aspect of the present invention, power (energy of the refrigerant flow from the condenser to the evaporator) can be recovered during expansion of the refrigerant, and at the same time, the refrigeration effect can be increased.

請求項5に記載の発明によれば、動力回収膨張機に発電機を用いたので、電気の取出量により動力回収膨張機の回転速度を変えることができ、容易に動力回収膨張機の回転速度制御が行なえる。   According to the fifth aspect of the present invention, since the generator is used for the power recovery expander, the rotational speed of the power recovery expander can be changed depending on the amount of electricity taken out, and the rotational speed of the power recovery expander can be easily set. Control is possible.

以下、本発明の実施形態を図面を参照して詳細に説明する。
本発明にかかる冷凍機は、複数の冷凍機(蒸気圧縮式の冷凍サイクルを行なう圧縮冷凍機)によって構成されるので、予め本発明に使用する冷凍機単体の具体例について説明する。図2,図4,図6は、何れも本発明の冷凍装置に用いることができる冷凍機20,20A,20Bを示す構成図、図1,図3,図5はそれぞれ冷凍機20,20A,20Bの冷凍サイクルを示す図である。図2に示す冷凍機20は、冷媒を封入したクローズドシステムで構成され、具体的に言えば冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器21と、前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機23と、高圧蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器25と、前記凝縮した冷媒を減圧して膨張させる膨張弁27とを、冷媒配管29によって連結して構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Since the refrigerator according to the present invention is composed of a plurality of refrigerators (compression refrigerators that perform a vapor compression refrigeration cycle), a specific example of a refrigerator alone used in the present invention will be described in advance. 2, 4, and 6 are configuration diagrams showing refrigerators 20, 20 </ b> A, and 20 </ b> B that can be used in the refrigeration apparatus of the present invention, and FIGS. 1, 3, and 5 are respectively refrigerators 20, 20 </ b> A, It is a figure which shows the refrigerating cycle of 20B. The refrigerator 20 shown in FIG. 2 is configured by a closed system in which a refrigerant is enclosed. Specifically, an evaporator 21 that takes heat from cold water (a fluid to be cooled) and evaporates the refrigerant to exert a refrigeration effect; A compressor 23 that compresses the refrigerant vapor into high-pressure steam; a condenser 25 that cools and condenses the high-pressure steam with cooling water (cooling fluid); and an expansion valve 27 that decompresses and expands the condensed refrigerant. Are connected by a refrigerant pipe 29.

図4に示す冷凍機20Aも冷媒を封入したクローズドシステムで構成されており、図2に示す冷凍機20と相違する点は、冷凍機20に比べて高効率化を図るために、凝縮器25と蒸発器21の間に複数台(2台)のエコノマイザー(気液分離器)31,31´を設置し、さらに圧縮機23,23´,23”を多段(3段)にして各圧縮段の中間にエコノマイザー31,31´からの冷媒蒸気を吸引させた点である。これによって図3に示すような2段エコノマイザーサイクルが形成される。凝縮器25とエコノマイザー31の間、エコノマイザー31とエコノマイザー31´の間、エコノマイザー31´と蒸発器21の間には、それぞれ膨張弁が設けられるのが一般的である。なお、図4ではエコノマイザー31´と蒸発器21の間にのみ、膨張弁27を示している。   The refrigerator 20A shown in FIG. 4 is also configured by a closed system in which a refrigerant is enclosed. The difference from the refrigerator 20 shown in FIG. 2 is that the condenser 25 is more efficient than the refrigerator 20 in order to achieve higher efficiency. A plurality of (two) economizers (gas-liquid separators) 31 and 31 ′ are installed between the evaporator 21 and the evaporator 21, and the compressors 23, 23 ′ and 23 ″ are multistage (three stages) to perform compression. This is the point where refrigerant vapor from the economizers 31 and 31 'is sucked in the middle of the stage, thereby forming a two-stage economizer cycle as shown in Fig. 3. Between the condenser 25 and the economizer 31, In general, an expansion valve is provided between the economizer 31 and the economizer 31 ', and between the economizer 31' and the evaporator 21. In addition, the economizer 31 'and the evaporator 21 are provided in FIG. Only during It shows the valve 27.

エコノマイザーサイクルは、圧縮機2段と1台のエコノマイザーを組み合わせた単段エコノマイザーあるいは、圧縮機(N+1)段とN台のエコノマイザーを組み合わせたN段エコノマイザーサイクル等があり、通常、段数が増加するほど効率が向上する。本発明の適用には図4に示す2段エコノマイザーの代りに、単段あるいはN段エコノマイザーとしても差し支えない。   The economizer cycle includes a single-stage economizer that combines two stages of compressors and one economizer, or an N-stage economizer cycle that combines compressors (N + 1) and N economizers. Efficiency increases as the number of stages increases. For application of the present invention, a single-stage or N-stage economizer may be used instead of the two-stage economizer shown in FIG.

また図6に示す冷凍機20Bも冷媒を封入したクローズドシステムで構成されており、図2に示す冷凍機20と相違する点は、膨張弁27の代わりに、動力回収膨張機28を取り付けた点である。動力回収膨張機28とは、凝縮液を膨張させて蒸発器21に送ると共に動力回収機(発電機)281によって動力を回収するものである。このように構成すれば、図5に示す線分a1のように、膨張の際にエンタルピーが下がり、動力(凝縮器25から蒸発器21への冷媒の流れが持つエネルギー)を回収でき、同時にその分だけ冷凍効果が増大する。この冷凍機20Bの場合、図4に示す冷凍機20Aの場合と同程度の高効率化が図れる上に、圧縮機23を多段に設置するなどの必要がないので、構造が簡単になる。この実施形態のように、回収動力は電気として回収するのが望ましく、回収した動力は、圧縮機23の駆動動力の一部に利用したり、或いは冷水ポンプや冷却水ポンプ、冷却塔等の冷凍装置の補機駆動動力の一部に利用したり、その他電力系統に連係して冷凍装置とは関係のない各種機器駆動動力等として利用したりする。またこの実施形態のように動力回収膨張機28に発電機281を用いた場合は、電気の取出量により動力回収膨張機28の回転速度を変えることができ、動力回収膨張機28の回転速度制御が容易になる。   Further, the refrigerator 20B shown in FIG. 6 is also configured by a closed system in which a refrigerant is sealed. The difference from the refrigerator 20 shown in FIG. 2 is that a power recovery expander 28 is attached instead of the expansion valve 27. It is. The power recovery expander 28 expands the condensate and sends it to the evaporator 21 and recovers the power by the power recovery machine (generator) 281. If comprised in this way, like the line segment a1 shown in FIG. 5, an enthalpy will fall at the time of expansion | swelling, and power (energy which the flow of the refrigerant | coolant from the condenser 25 to the evaporator 21) can be collect | recovered, At the same time The freezing effect increases by the amount. In the case of this refrigerator 20B, the efficiency can be improved to the same extent as in the case of the refrigerator 20A shown in FIG. 4, and the structure is simplified because it is not necessary to install the compressors 23 in multiple stages. As in this embodiment, it is desirable that the recovered power is recovered as electricity, and the recovered power is used as a part of the driving power of the compressor 23, or a refrigeration such as a cold water pump, a cooling water pump, a cooling tower, etc. It is used as a part of auxiliary drive power of the apparatus, or used as various equipment drive power unrelated to the refrigeration apparatus in conjunction with other power systems. Further, when the generator 281 is used for the power recovery expander 28 as in this embodiment, the rotational speed of the power recovery expander 28 can be changed depending on the amount of electricity extracted, and the rotational speed control of the power recovery expander 28 is controlled. Becomes easier.

図6の動力回収サイクルは、図2の膨張弁27の代わりに動力回収膨張機28を設けたものであるが、例えば、単段エコノマイザーサイクルで、凝縮器25とエコノマイザー31との間及びエコノマイザー31と蒸発器21の間に、それぞれ動力回収膨張機28を設けた動力回収サイクルとして効率を向上させ、本発明を適用しても差し支えない。   The power recovery cycle of FIG. 6 is provided with a power recovery expander 28 instead of the expansion valve 27 of FIG. 2. For example, in the single stage economizer cycle, between the condenser 25 and the economizer 31 and Efficiency may be improved as a power recovery cycle in which a power recovery expander 28 is provided between the economizer 31 and the evaporator 21, and the present invention may be applied.

図7は本発明の第1実施形態にかかる冷凍装置を示す構成図、図8はこの冷凍装置における冷水と冷却水の供給状態を示す図である。両図に示す冷凍装置は前記図2に示す冷凍機20と同じ構成の冷凍機20−1,20−2を2台具備しており、上述のように各冷凍機20−1,20−2は何れも冷媒を封入したクローズドシステムから構成され、蒸発器21−1,21−2と、圧縮機23−1,23−2と、凝縮器25−1,25−2と、膨張弁27−1,27−2とを、冷媒配管29−1,29−2によって連結して構成されている。   FIG. 7 is a configuration diagram showing the refrigeration apparatus according to the first embodiment of the present invention, and FIG. 8 is a diagram showing a supply state of cold water and cooling water in the refrigeration apparatus. The refrigeration apparatus shown in both figures includes two refrigeration machines 20-1 and 20-2 having the same configuration as the refrigeration machine 20 shown in FIG. 2, and each of the refrigeration machines 20-1 and 20-2 as described above. Are each composed of a closed system filled with a refrigerant, evaporators 21-1, 21-2, compressors 23-1, 23-2, condensers 25-1, 25-2, and expansion valve 27-. 1 and 27-2 are connected by refrigerant pipes 29-1 and 29-2.

そしてこの冷凍装置に供給される冷水(被冷却流体)は、配管41によって各冷凍機20−1,20−2の各蒸発器21−1,21−2に対して直列に接続され、またこの冷凍装置に供給される冷却水(冷却流体)も、配管43によって各凝縮器25−1,25−2に対して直列に接続される。従って冷水は各蒸発器21−1,21−2における冷媒の蒸発熱で順次冷却され、また冷却水は各凝縮器25−1,25−2における冷媒蒸気を順次冷却することになる。この実施形態の場合、冷水と冷却水の流れを、何れも冷凍機20−1から冷凍機20−2に向けて同一方向に流す並行流としている。   And the cold water (cooled fluid) supplied to this refrigeration apparatus is connected in series to each evaporator 21-1, 21-2 of each refrigerator 20-1, 20-2 by piping 41, and this Cooling water (cooling fluid) supplied to the refrigeration apparatus is also connected in series to the condensers 25-1 and 25-2 by the pipe 43. Accordingly, the cold water is sequentially cooled by the evaporating heat of the refrigerant in each evaporator 21-1, 21-2, and the cooling water sequentially cools the refrigerant vapor in each condenser 25-1, 25-2. In the case of this embodiment, the flow of cold water and cooling water is a parallel flow that flows in the same direction from the refrigerator 20-1 toward the refrigerator 20-2.

このように冷水と冷却水とを複数の冷凍機20−1,20−2に直列に供給したので、平均蒸発温度を高く、平均凝縮温度を低くすることができる。つまり圧縮で必要とするヘッドを低くすることができ、効率が上昇する。以下その作用を具体的に説明する。図9はこの実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷凍サイクルを示す図であり、図10は前記図19に示す従来の冷凍装置の各冷凍機200−1,200−2の冷凍サイクルを示す図である。また図11はこの実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷水温度に対する蒸発温度と、冷却水温度に対する凝縮温度を示す図であり、図12は前記図19に示す従来の冷凍装置の各冷凍機200−1,200−2の冷水温度に対する蒸発温度と、冷却水温度に対する凝縮温度を示す図である。   Thus, since cold water and cooling water were supplied to the some refrigerator 20-1, 20-2 in series, average evaporation temperature can be made high and average condensation temperature can be made low. That is, the head required for compression can be lowered, and the efficiency increases. The operation will be specifically described below. FIG. 9 is a diagram showing a refrigeration cycle of each of the refrigerators 20-1 and 20-2 of the refrigeration apparatus according to this embodiment, and FIG. 10 is a diagram of each refrigerator 200-1 of the conventional refrigeration apparatus shown in FIG. It is a figure which shows the refrigerating cycle of 200-2. Moreover, FIG. 11 is a figure which shows the evaporating temperature with respect to the cold water temperature of each refrigerator 20-1, 20-2 of the freezing apparatus concerning this embodiment, and the condensation temperature with respect to cooling water temperature, FIG. 12 is shown in the said FIG. It is a figure which shows the evaporating temperature with respect to the cold water temperature of each refrigerator 200-1, 200-2 of the conventional freezing apparatus, and the condensation temperature with respect to a cooling water temperature.

蒸発器21−1,21−2では冷水出口温度と蒸発温度とでピンチ温度ができ、一方凝縮器25−1,25−2では凝縮温度と冷却水出口温度とでピンチ温度が構成される。そして従来の冷凍装置の場合、各冷凍機200−1,200−2に冷水と冷却水を並列供給しているので、図10に示すように、冷凍機200−1,200−2の冷凍サイクルは同一となり、また図12に示すように、各蒸発器201−1,201−2と各凝縮器205−1,205−2におけるピンチ温度は同一で、各蒸発器201−1,201−2を通過する冷水の温度と各凝縮器205−1,205−2を通過する冷却水の温度は同等の温度となる。   In the evaporators 21-1 and 21-2, a pinch temperature is formed by the cold water outlet temperature and the evaporation temperature, while in the condensers 25-1 and 25-2, the pinch temperature is configured by the condensation temperature and the cooling water outlet temperature. And in the case of the conventional freezing apparatus, since cold water and cooling water are supplied in parallel to each freezer 200-1 and 200-2, as shown in FIG. 10, the freezing cycle of freezer 200-1 and 200-2 As shown in FIG. 12, the pinch temperatures of the evaporators 201-1 and 201-2 and the condensers 205-1 and 205-2 are the same, and the evaporators 201-1 and 201-2 are the same. The temperature of the cold water passing through the condenser and the temperature of the cooling water passing through the condensers 205-1 and 205-2 are equivalent.

これに対して上記実施形態の場合、各冷凍機20−1,20−2に冷水と冷却水とを直列(且つ並行流)に供給しているので、冷水と冷却水の顕熱変化を利用して、冷凍サイクルの効率を上げることができる。即ち図11に示すように各蒸発器21−1,21−2に直列に冷水を供給し、且つ各凝縮器25−1,25−2に直列に冷却水を供給することで、両蒸発器21−1,21−2及び両凝縮器25−1,25−2におけるピンチ温度を異ならせて分散化し、平均的な蒸発温度を上げ、平均的な凝縮温度を低下させている。このとき図12に示す凝縮温度と蒸発温度の温度差は、図11に示す凝縮器25−2側の凝縮温度と蒸発器21−2側の蒸発温度の温度差と同等なので、図11に示す凝縮器25−1の凝縮温度と蒸発器21−1の蒸発温度の温度差を図12に示す従来の場合と比較して小さくでき、その分圧縮に必要とされる圧縮ヘッド(温度ヘッド)を減少でき、圧縮機23−1の必要動力を低下でき、冷凍装置の効率を上げることができる。   On the other hand, in the case of the above embodiment, cold water and cooling water are supplied in series (and parallel flow) to each of the refrigerators 20-1 and 20-2. Thus, the efficiency of the refrigeration cycle can be increased. That is, as shown in FIG. 11, by supplying cold water in series to each of the evaporators 21-1, 21-2 and supplying cooling water in series to each of the condensers 25-1, 25-2, both evaporators 21-1 and 21-2 and the condensers 25-1 and 25-2 are distributed with different pinch temperatures to raise the average evaporation temperature and lower the average condensation temperature. At this time, the temperature difference between the condensation temperature and the evaporation temperature shown in FIG. 12 is equivalent to the temperature difference between the condensation temperature on the condenser 25-2 side and the evaporation temperature on the evaporator 21-2 side shown in FIG. The temperature difference between the condensing temperature of the condenser 25-1 and the evaporating temperature of the evaporator 21-1 can be reduced as compared with the conventional case shown in FIG. 12, and the compression head (temperature head) required for the compression can be reduced accordingly. The required power of the compressor 23-1 can be reduced, and the efficiency of the refrigeration apparatus can be increased.

以上は全負荷時の場合であるが、圧縮機23−1,23−2の部分負荷効率を維持する(即ち、圧縮機23−1,23−2の回転速度制御を用いると共に、図7に示すように圧縮機23−1,23−2の入口部に吸込ガイドベーン23a−1,23a−2を設ける)ことで、全ての圧縮機23−1,23−2を部分負荷時でも高効率で運転可能とし、部分負荷になっても、全ての蒸発器21−1,21−2及び凝縮器25−1,25−2の伝熱面を休止させることなく、役立てるようにしている。その際、冷水の流量と冷却水の流量とを、これらを循環させるポンプの回転速度制御により、容量に合わせた流量に制御しても良い。即ち蒸発器21−1,21−2及び凝縮器25−1,25−2の全伝熱面を有効にしておくことで、平均的な蒸発温度は上昇し、また平均的な凝縮温度は低下し、この点からも、圧縮に必要とされる圧縮ヘッド(温度ヘッド)は減少し、必要動力が低下して効率が上昇する。   The above is the case of full load, but the partial load efficiency of the compressors 23-1, 23-2 is maintained (that is, the rotational speed control of the compressors 23-1, 23-2 is used and FIG. As shown, by providing suction guide vanes 23a-1 and 23a-2 at the inlets of the compressors 23-1 and 23-2, all the compressors 23-1 and 23-2 are highly efficient even at partial loads. Even if a partial load is reached, the heat transfer surfaces of all the evaporators 21-1, 21-2 and the condensers 25-1, 25-2 are used without being stopped. At that time, the flow rate of the cooling water and the flow rate of the cooling water may be controlled to a flow rate that matches the capacity by controlling the rotational speed of a pump that circulates these. That is, by making all the heat transfer surfaces of the evaporators 21-1, 21-2 and the condensers 25-1, 25-2 effective, the average evaporation temperature rises and the average condensation temperature decreases. However, also from this point, the number of compression heads (temperature heads) required for compression is reduced, the required power is reduced, and the efficiency is increased.

図13は本発明の第2実施形態にかかる冷凍装置における冷水と冷却水の供給状態を示す図である。同図に示す冷凍装置において、前記図7,図8に示す第1実施形態の冷凍装置と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、第1実施形態と同じである。この実施形態において、第1実施形態と相違する点は、冷水と冷却水の供給の方向を異ならせた点のみである。即ちこの実施形態にかかる冷凍装置においても、供給される冷水(被冷却流体)は、配管41によって各冷凍機20−1,20−2の各蒸発器21−1,21−2に対して直列に接続され、またこの冷凍装置に供給される冷却水(冷却流体)も、配管43によって各凝縮器25−1,25−2に対して直列に接続され、従って冷水は各蒸発器21−1,21−2における冷媒の蒸発熱で順次冷却され、また冷却水は各凝縮器25−2,25−1における冷媒蒸気を順次冷却することとなるが、この実施形態の場合、冷水を蒸発器21−1から蒸発器21−2に向けて流し、一方冷却水を凝縮器25−2から凝縮器25−1に向けて逆方向に流す対向流としている。   FIG. 13: is a figure which shows the supply state of the cold water and cooling water in the freezing apparatus concerning 2nd Embodiment of this invention. In the refrigeration apparatus shown in the figure, the same or corresponding parts as those in the refrigeration apparatus of the first embodiment shown in FIGS. Items other than those described below are the same as those in the first embodiment. In this embodiment, the difference from the first embodiment is only that the direction of supply of cold water and cooling water is different. That is, also in the refrigeration apparatus according to this embodiment, the supplied cold water (cooled fluid) is serially connected to the evaporators 21-1 and 21-2 of the refrigerators 20-1 and 20-2 by the pipe 41. The cooling water (cooling fluid) supplied to the refrigeration apparatus is also connected in series to the condensers 25-1 and 25-2 by the pipe 43, so that the cold water is supplied to each evaporator 21-1. , 21-2 are sequentially cooled by the heat of evaporation of the refrigerant in the refrigerant, and the cooling water sequentially cools the refrigerant vapor in the condensers 25-2 and 25-1. In this embodiment, the cold water is removed from the evaporator. The counter flow flows from 21-1 toward the evaporator 21-2, while the cooling water flows in the opposite direction from the condenser 25-2 toward the condenser 25-1.

このように構成しても、冷水と冷却水とを複数の冷凍機20−1,20−2に直列に供給することには変わりないので、平均蒸発温度を高く、平均凝縮温度を低くすることができる。つまり圧縮で必要とされる圧縮ヘッド(温度ヘッド)を低くすることができ、効率が上昇する。以下その作用を具体的に説明する。図14はこの実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷凍サイクルを示す図である。また図15はこの実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷水温度に対する蒸発温度と、冷却水温度に対する凝縮温度を示す図である。   Even if it comprises in this way, since it does not change in supplying cold water and cooling water to the some refrigerator 20-1, 20-2 in series, an average evaporation temperature is made high and an average condensation temperature is made low. Can do. That is, the compression head (temperature head) required for compression can be lowered, and the efficiency increases. The operation will be specifically described below. FIG. 14 is a diagram showing a refrigeration cycle of each of the refrigerators 20-1 and 20-2 of the refrigeration apparatus according to this embodiment. Moreover, FIG. 15 is a figure which shows the evaporating temperature with respect to the cold water temperature of each refrigerator 20-1, 20-2 of the freezing apparatus concerning this embodiment, and the condensation temperature with respect to cooling water temperature.

上述のように蒸発器21−1,21−2では冷水出口温度と蒸発温度とでピンチ温度ができ、一方凝縮器25−1,25−2では凝縮温度と冷却水出口温度とでピンチ温度が構成されるが、この実施形態の場合、各冷凍機20−1,20−2に冷水と冷却水を直列に且つ対向流で供給しているので、冷水と冷却水の顕熱変化を利用して、冷凍サイクルの効率を上げることができる。即ち図15に示すように各蒸発器21−1,21−2に直列に冷水を供給することで、両蒸発器21−1,21−2及び両凝縮器25−1,25−2におけるピンチ温度を異ならせて分散化し、平均的な蒸発温度を上げ、平均的な凝縮温度を低下させている。このとき図12に示す従来例の凝縮温度は図15に示す凝縮器25−2の凝縮温度と同等であり、また図12に示す従来例の蒸発温度は図15に示す蒸発器25−1の蒸発温度と同等である。つまり図15に示す凝縮器25−1の凝縮温度は低下し、また図15に示す蒸発器25−2の蒸発温度は上昇する。つまり図15に示す凝縮器25−1の凝縮温度と蒸発器21−1の蒸発温度の温度差と、凝縮器25−2の凝縮温度と蒸発器21−2の蒸発温度の温度差とは、何れも図12に示す従来例の場合に比較して小さくでき、その分両圧縮機23−1,23−2において圧縮に必要とされる圧縮ヘッド(温度ヘッド)を減少でき、両圧縮機23−1,23−2の必要動力を低下でき、冷凍装置の効率を上げることができる。   As described above, in the evaporators 21-1, 21-2, a pinch temperature is generated by the cold water outlet temperature and the evaporation temperature, while in the condensers 25-1, 25-2, the pinch temperature is determined by the condensation temperature and the cooling water outlet temperature. In the case of this embodiment, cold water and cooling water are supplied to each of the refrigerators 20-1 and 20-2 in series and in a counterflow, so that the sensible heat change of cold water and cooling water is used. Thus, the efficiency of the refrigeration cycle can be increased. That is, as shown in FIG. 15, by supplying cold water in series to each of the evaporators 21-1, 21-2, the pinches in both the evaporators 21-1, 21-2 and the condensers 25-1, 25-2 are pinched. It is dispersed at different temperatures, raising the average evaporation temperature and lowering the average condensation temperature. At this time, the condensation temperature of the conventional example shown in FIG. 12 is equivalent to the condensation temperature of the condenser 25-2 shown in FIG. 15, and the evaporation temperature of the conventional example shown in FIG. 12 is the same as that of the evaporator 25-1 shown in FIG. Equivalent to the evaporation temperature. That is, the condensation temperature of the condenser 25-1 shown in FIG. 15 decreases, and the evaporation temperature of the evaporator 25-2 shown in FIG. 15 increases. That is, the temperature difference between the condensation temperature of the condenser 25-1 and the evaporation temperature of the evaporator 21-1 and the temperature difference between the condensation temperature of the condenser 25-2 and the evaporation temperature of the evaporator 21-2 shown in FIG. Both can be made smaller than in the case of the conventional example shown in FIG. 12, and the compression heads (temperature heads) required for compression can be reduced in both compressors 23-1, 23-2. The required power of -1,23-2 can be reduced, and the efficiency of the refrigeration apparatus can be increased.

図16は本発明の第3実施形態にかかる冷凍装置の構成図、図17はこの冷凍装置における冷水と冷却水の供給状態を示す図である。両図に示す冷凍装置は前記図6に示す冷凍機20Bと同じ構成の冷凍機20B−1,20B−2を2台具備しており、上述のように各冷凍機20B−1,20B−2は何れも冷媒を封入したクローズドシステムから構成され、蒸発器21−1,21−2と、圧縮機23−1,23−2と、凝縮器25−1,25−2と、動力回収膨張機28−1,28−2とを、冷媒配管29−1,29−2によって連結して構成されている。この実施形態の場合、2台の圧縮機23−1,23−2を駆動する電動機Mを共用とし、電気計装関係の簡略化を図っている。また電動機Mは密閉型とし、冷媒雰囲気中で動かし、また電動機Mと両圧縮機23−1,23−2との間は、ラビリンスシールを行なっている。ところでこの実施形態のように1台の電動機Mに2台の圧縮機23−1,23−2を接続すると、一方の冷凍機20B−1又は20B−2から他方の冷凍機20B−2又は20B−1に向けて冷媒が漏れる場合があり、この冷凍装置を長時間運転すると、冷媒が何れかの冷凍機20B−1又は20B−2内に偏ってくることがある。そこでこの実施形態においては、一方の冷凍機20B−1の凝縮器25−1と他方の冷凍機20B−2の蒸発器21−2及び他方の冷凍機20B−2の凝縮器25−2と一方の冷凍機20B−1の蒸発器21−1とをそれぞれ開閉弁35を有する配管33で結び、前記偏りを解消するようにしている。具体的には、凝縮器25−1又は25−2の液面上昇を測定して冷媒過剰を検出し、この凝縮器25−1又は25−2に接続されている側の配管33の開閉弁35を開いて他方の蒸発器21−2又は21−1に過剰な分の冷媒液を送る。凝縮器25−1又は25−2の方が蒸発器21−2又は21−1よりも圧力が高いので、冷媒液の移動は容易に行なえる。なお冷凍装置に充填されている全体の冷媒量は一定なので、初期充填量が適正であれば、過剰となった側の冷凍機20B−1又は20B−2の冷媒を他方の冷凍機20B−2又は20B−1に送って冷媒の偏りを解消すれば、他方の冷凍機20B−2又は20B−1の冷媒の量も修正されたことになる。   FIG. 16 is a configuration diagram of a refrigeration apparatus according to a third embodiment of the present invention, and FIG. 17 is a diagram illustrating a supply state of cold water and cooling water in the refrigeration apparatus. The refrigeration apparatus shown in both figures includes two refrigerators 20B-1 and 20B-2 having the same configuration as the refrigerator 20B shown in FIG. 6, and each of the refrigerators 20B-1 and 20B-2 as described above. Are each composed of a closed system filled with a refrigerant, evaporators 21-1, 21-2, compressors 23-1, 23-2, condensers 25-1, 25-2, and a power recovery expander. 28-1 and 28-2 are connected by refrigerant pipes 29-1 and 29-2. In the case of this embodiment, the electric motor M that drives the two compressors 23-1 and 23-2 is shared to simplify the electrical instrumentation. The motor M is a hermetically sealed type, moves in a refrigerant atmosphere, and a labyrinth seal is provided between the motor M and the compressors 23-1 and 23-2. By the way, when two compressors 23-1, 23-2 are connected to one electric motor M as in this embodiment, one refrigerator 20B-1 or 20B-2 to the other refrigerator 20B-2 or 20B. The refrigerant may leak toward -1, and when this refrigeration apparatus is operated for a long time, the refrigerant may be biased into any of the refrigerators 20B-1 or 20B-2. Therefore, in this embodiment, the condenser 25-1 of one refrigerator 20B-1 and the evaporator 21-2 of the other refrigerator 20B-2 and the condenser 25-2 of the other refrigerator 20B-2 and one of them. The evaporator 21-1 of the refrigerator 20 </ b> B- 1 is connected by a pipe 33 having an open / close valve 35 so as to eliminate the bias. Specifically, the liquid level rise of the condenser 25-1 or 25-2 is measured to detect excess refrigerant, and the on-off valve of the pipe 33 on the side connected to the condenser 25-1 or 25-2 35 is opened and an excessive amount of refrigerant liquid is sent to the other evaporator 21-2 or 21-1. Since the pressure of the condenser 25-1 or 25-2 is higher than that of the evaporator 21-2 or 21-1, the refrigerant liquid can be easily moved. In addition, since the whole refrigerant | coolant amount with which the freezing apparatus is filled is constant, if the initial filling amount is appropriate, the refrigerant | coolant of the refrigerator 20B-1 or 20B-2 of the excess side will be used as the other freezer 20B-2. Or if it sends to 20B-1 and the bias of a refrigerant | coolant is eliminated, the quantity of the refrigerant | coolant of the other refrigerator 20B-2 or 20B-1 will also be corrected.

またこの実施形態においては、冷凍装置を構成する2台の冷凍機20B−1,20B−2のそれぞれの蒸発器21−1,21−2を、1つの缶胴37を複数(2つ)に区画し、区画された部分にそれぞれ伝熱面(伝熱管)を設置して構成し、同時にそれぞれの凝縮器25−1,25−2を、1つの缶胴39を複数(2つ)に区画し、区画された部分にそれぞれ伝熱面(伝熱管)を設置して構成した。このように構成すれば、冷凍装置のコンパクト化を図ることができる。なお上記缶胴は、蒸発器21−1,21−2又は凝縮器25−1,25−2の何れか一方のみに適用しても良い。   In this embodiment, the evaporators 21-1 and 21-2 of the two refrigerators 20 </ b> B- 1 and 20 </ b> B- 2 constituting the refrigeration apparatus include a plurality of (two) one can bodies 37. Compartment, each heat transfer surface (heat transfer tube) is installed in the partitioned part, and at the same time, each of the condensers 25-1 and 25-2 is divided into a plurality of (two) one can body 39 And each heat transfer surface (heat transfer tube) was installed in the divided part. If comprised in this way, size reduction of a freezing apparatus can be achieved. The can body may be applied to only one of the evaporators 21-1, 21-2 or the condensers 25-1, 25-2.

なお上記第3実施形態では複数(2台)の冷凍機20B−1,20B−2に対してそれぞれ設置した動力回収膨張機28−1,28−2にそれぞれの別の発電機(図6に示す動力回収機281)を接続しているが、1つの発電機(動力回収機)を複数の動力回収膨張機28−1,28−2に対して接続して発電機を共用するように構成しても良い。   In the third embodiment, each of the power recovery expanders 28-1 and 28-2 installed for a plurality of (two) refrigerators 20B-1 and 20B-2 has a separate generator (see FIG. 6). The power recovery machine 281) shown is connected, but a generator (power recovery machine) is connected to a plurality of power recovery expanders 28-1 and 28-2 to share the generator. You may do it.

図18は上記第3実施形態にかかる冷凍装置の変形例の構成図である。同図に示す冷凍装置において、上記第3実施形態の冷凍装置と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、第3実施形態と同じである。同図に示す冷凍装置において上記第3実施形態にかかる冷凍装置と相違する点は、1台の電動機Mの両側にそれぞれ2段の圧縮機23−1,23−2を設け、冷凍装置を構成する2台の冷凍機20B−1,20B−2それぞれにエコノマイザー31−1,31−2を設け、凝縮器25−1,25−2とエコノマイザー31−1,31−2との間、及び、エコノマイザー31−1,31−2と蒸発器21−1,21−2との間にそれぞれ動力回収膨張機28−1,28−2を設けた構成とした点である。このように動力回収膨張機28−1,28−2を複数段設けて、動力回収サイクルを多段に構成しても良い。なお前記第3実施形態の図16、図17で示した開閉弁35を有する配管33に相当する冷媒量調整回路は、図18ではその記載を省略している。   FIG. 18 is a configuration diagram of a modified example of the refrigeration apparatus according to the third embodiment. In the refrigeration apparatus shown in the figure, the same or corresponding parts as those of the refrigeration apparatus of the third embodiment are denoted by the same reference numerals. Items other than those described below are the same as those in the third embodiment. The refrigeration apparatus shown in the figure is different from the refrigeration apparatus according to the third embodiment in that two stages of compressors 23-1 and 23-2 are provided on both sides of one electric motor M to constitute the refrigeration apparatus. The two refrigerators 20B-1 and 20B-2 are provided with economizers 31-1 and 31-2, respectively, between the condensers 25-1 and 25-2 and the economizers 31-1 and 31-2, And it is the point which set it as the structure which provided the motive power collection | recovery expanders 28-1 and 28-2 between the economizers 31-1 and 31-2 and the evaporators 21-1 and 21-2, respectively. In this way, the power recovery expanders 28-1 and 28-2 may be provided in a plurality of stages, and the power recovery cycle may be configured in multiple stages. Note that the refrigerant amount adjustment circuit corresponding to the pipe 33 having the on-off valve 35 shown in FIGS. 16 and 17 of the third embodiment is omitted in FIG.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、上記実施形態では2台の冷凍機で1台の冷凍装置を構成したが、3台以上の複数台の冷凍機で1台の冷凍装置を構成しても良い。その場合、これら複数台の冷凍機の各蒸発器に冷水(被冷却流体)を直列に接続して流し、前記複数台の冷凍機の各凝縮器に冷却水(冷却流体)を直列に接続して流す。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, in the above embodiment, one refrigeration apparatus is configured by two refrigerators, but one refrigeration apparatus may be configured by three or more refrigerators. In that case, cold water (cooled fluid) is connected in series to each evaporator of the plurality of refrigerators, and cooling water (cooling fluid) is connected in series to each condenser of the plurality of refrigerators. Shed.

また上記実施形態では2台の冷凍機の2台の圧縮機を1基の電動機で駆動するように構成したが、3台以上の冷凍機で一台の冷凍装置を構成する場合、各冷凍機の圧縮機を、1基或いは2基以上の電動機で駆動するようにしても良い。また上記各実施形態では冷凍装置に用いる冷凍機として図2に示す冷凍機20と図6に示す冷凍機20Bを用いた例を説明したが、もちろん図4に示す冷凍機20Aを用いても良い。さらにこれら冷凍機20,20A,20B以外の構成を有する冷凍機を用いても良い。   Further, in the above embodiment, the two compressors of the two refrigerators are configured to be driven by one electric motor. However, when one refrigerator is configured by three or more refrigerators, each refrigerator The compressor may be driven by one or two or more electric motors. In each of the above embodiments, the example in which the refrigerator 20 shown in FIG. 2 and the refrigerator 20B shown in FIG. 6 are used as the refrigerator used in the refrigeration apparatus has been described. Of course, the refrigerator 20A shown in FIG. 4 may be used. . Furthermore, you may use the refrigerator which has structures other than these refrigerator 20,20A, 20B.

また上記実施形態では2台の冷凍機の2台の圧縮機を1基の電動機で駆動するように構成したが、図7のように、各圧縮機に電動機を設け、負荷が極端に減った場合あるいはサージングの生じるような場合は、圧縮機の台数制御をしても差し支えない。即ち、一般的には、蒸発器、凝縮器の伝熱面積を全て利用する方が効率が良くなるが、負荷が極端に少なく、圧縮機の効率低下が著しい場合、伝熱面積が少なくとも、圧縮機1台あたりの冷媒流量を多くした方が良い場合もある。演算による効率比較で台数制御をすることもできる。   In the above embodiment, two compressors of two refrigerators are configured to be driven by one electric motor. However, as shown in FIG. 7, an electric motor is provided in each compressor, and the load is extremely reduced. In some cases or when surging occurs, the number of compressors may be controlled. That is, in general, it is more efficient to use the entire heat transfer area of the evaporator and condenser, but when the load is extremely small and the efficiency of the compressor is significantly reduced, the heat transfer area is at least compressed. In some cases, it may be better to increase the refrigerant flow rate per machine. It is also possible to control the number of units by comparing the efficiency by calculation.

冷凍機20の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the refrigerator. 冷凍機20の構成図である。FIG. 3 is a configuration diagram of a refrigerator 20. 冷凍機20Aの冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of 20 A of refrigerators. 冷凍機20Aの構成図である。It is a block diagram of refrigerator 20A. 冷凍機20Bの冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of refrigerator 20B. 冷凍機20Bの構成図である。It is a block diagram of refrigerator 20B. 本発明の第1実施形態にかかる冷凍装置を示す構成図である。It is a block diagram which shows the freezing apparatus concerning 1st Embodiment of this invention. 第1実施形態にかかる冷凍装置の冷水と冷却水の供給状態を示す図である。It is a figure which shows the supply state of the cold water and cooling water of the freezing apparatus concerning 1st Embodiment. 第1実施形態にかかる各冷凍機20−1,20−2の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of each refrigerator 20-1, 20-2 concerning 1st Embodiment. 図19に示す従来の冷凍装置の各冷凍機200−1,200−2の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of each refrigerator 200-1, 200-2 of the conventional freezing apparatus shown in FIG. 第1実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷水温度に対する蒸発温度と、冷却水温度に対する凝縮温度を示す図である。It is a figure which shows the evaporation temperature with respect to the chilled water temperature of each refrigerator 20-1, 20-2 of the freezing apparatus concerning 1st Embodiment, and the condensation temperature with respect to a cooling water temperature. 図19に示す従来の冷凍装置の各冷凍機200−1,200−2の冷水温度に対する蒸発温度と、冷却水温度に対する凝縮温度を示す図である。It is a figure which shows the evaporating temperature with respect to the cold water temperature of each refrigerator 200-1, 200-2 of the conventional freezing apparatus shown in FIG. 19, and the condensation temperature with respect to cooling water temperature. 第2実施形態にかかる冷凍装置の冷水と冷却水の供給状態を示す図である。It is a figure which shows the supply state of the cold water and cooling water of the freezing apparatus concerning 2nd Embodiment. 第2実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of each freezer 20-1 and 20-2 of the freezing apparatus concerning 2nd Embodiment. 第2実施形態にかかる冷凍装置の各冷凍機20−1,20−2の冷水温度に対する蒸発温度と、冷却水温度に対する凝縮温度を示す図である。It is a figure which shows the evaporation temperature with respect to the chilled water temperature of each refrigerator 20-1, 20-2 of the freezing apparatus concerning 2nd Embodiment, and the condensation temperature with respect to a cooling water temperature. 本発明の第3実施形態にかかる冷凍装置の構成図である。It is a block diagram of the freezing apparatus concerning 3rd Embodiment of this invention. 第3実施形態にかかる冷凍装置の冷水と冷却水の供給状態を示す図である。It is a figure which shows the supply state of the cold water and cooling water of the freezing apparatus concerning 3rd Embodiment. 本発明の第3実施形態にかかる冷凍装置の変形例の構成図である。It is a block diagram of the modification of the freezing apparatus concerning 3rd Embodiment of this invention. 従来の冷凍装置の1例を示す構成図である。It is a block diagram which shows an example of the conventional freezing apparatus. 図19に示す冷凍装置の冷水と冷却水の供給状態を示す図である。It is a figure which shows the supply state of the cold water and cooling water of the freezing apparatus shown in FIG.

符号の説明Explanation of symbols

20(20−1,20−2) 冷凍機
20A 冷凍機
20B(20B−1,20B−2) 冷凍機
21(21−1,21−2) 蒸発器
23(23−1,23−2) 圧縮機
25(25−1,25−2) 凝縮器
27(27−1,27−2) 膨張弁
28(28−1,28−2) 動力回収膨張機
281 発電機(動力回収機)
29(29−1,29−2) 冷媒配管
M 電動機
31 エコノマイザー
31´ エコノマイザー
37 缶胴
39 缶胴
20 (20-1, 20-2) refrigerator 20A refrigerator 20B (20B-1, 20B-2) refrigerator 21 (21-1, 21-2) evaporator 23 (23-1, 23-2) compression Machine 25 (25-1, 25-2) Condenser 27 (27-1, 27-2) Expansion valve 28 (28-1, 28-2) Power recovery expander 281 Generator (power recovery machine)
29 (29-1, 29-2) Refrigerant piping M Electric motor 31 Economizer 31 'Economizer 37 Can body 39 Can body

Claims (5)

少なくとも、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機と、高圧蒸気を冷却流体で冷却して凝縮させる凝縮器とを有する冷凍機を複数具備し、
前記被冷却流体は前記複数の冷凍機の蒸発器に直列に接続され、順次複数の蒸発器の冷媒の蒸発熱で冷却され、
前記冷却流体は前記複数の冷凍機の凝縮器に直列に接続され、順次複数の凝縮器の冷媒を冷却することを特徴とする冷凍装置。
At least an evaporator that removes heat from the fluid to be cooled to evaporate the refrigerant and exerts a refrigeration effect, a compressor that compresses the refrigerant vapor into high-pressure vapor, and a condensation that cools and condenses the high-pressure vapor with the cooling fluid A plurality of refrigerators having a refrigerator,
The fluid to be cooled is connected in series to the evaporators of the plurality of refrigerators, and sequentially cooled by the evaporation heat of the refrigerant of the plurality of evaporators,
The cooling fluid is connected in series to the condensers of the plurality of refrigerators, and sequentially cools the refrigerant of the plurality of condensers.
前記複数の冷凍機の複数の圧縮機を、同一の電動機で駆動することを特徴とする請求項1に記載の冷凍装置。   The refrigeration apparatus according to claim 1, wherein a plurality of compressors of the plurality of refrigerators are driven by the same electric motor. 少なくとも、前記複数の冷凍機の蒸発器を、1つの缶胴を区画したそれぞれの区画に設置するか、
或いは前記複数の冷凍機の凝縮器を、1つの缶胴を区画したそれぞれの区画に設置することを特徴とする請求項1又は2に記載の冷凍装置。
At least the evaporators of the plurality of refrigerators are installed in respective sections that define one can body,
Or the condenser of these several refrigerators is installed in each division which divided one can body, The refrigeration apparatus of Claim 1 or 2 characterized by the above-mentioned.
前記複数の冷凍機の各凝縮器と蒸発器間をつなぐ冷媒配管には、凝縮器から蒸発器への冷媒の流れが持つエネルギーを回収する動力回収膨張機が設けられていることを特徴とする請求項1又は2又は3に記載の冷凍装置。   The refrigerant pipe connecting between the condensers and the evaporators of the plurality of refrigerators is provided with a power recovery expander that recovers the energy of the refrigerant flow from the condenser to the evaporator. The refrigeration apparatus according to claim 1, 2 or 3. 前記動力回収膨張機は、冷媒の流れが持つエネルギーによって発電機を駆動することで動力を回収することを特徴とする請求項4に記載の冷凍装置。

The refrigeration apparatus according to claim 4, wherein the power recovery expander recovers power by driving a generator with energy of a refrigerant flow.

JP2006002977A 2006-01-10 2006-01-10 Refrigeration equipment Expired - Fee Related JP5096678B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006002977A JP5096678B2 (en) 2006-01-10 2006-01-10 Refrigeration equipment
CN2007800022390A CN101371082B (en) 2006-01-10 2007-01-09 Refrigeration apparatus
PCT/JP2007/050372 WO2007080994A1 (en) 2006-01-10 2007-01-09 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002977A JP5096678B2 (en) 2006-01-10 2006-01-10 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007183077A true JP2007183077A (en) 2007-07-19
JP5096678B2 JP5096678B2 (en) 2012-12-12

Family

ID=38256397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002977A Expired - Fee Related JP5096678B2 (en) 2006-01-10 2006-01-10 Refrigeration equipment

Country Status (3)

Country Link
JP (1) JP5096678B2 (en)
CN (1) CN101371082B (en)
WO (1) WO2007080994A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019541A (en) * 2008-06-09 2010-01-28 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and its operating method
JP2011038742A (en) * 2009-08-17 2011-02-24 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and method of operating the same
JP2011069556A (en) * 2009-09-25 2011-04-07 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2011069557A (en) * 2009-09-25 2011-04-07 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2011518308A (en) * 2008-04-25 2011-06-23 エルエス エムトロン リミテッド Dual refrigerator
JP2012137202A (en) * 2010-12-24 2012-07-19 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2013231591A (en) * 2009-06-29 2013-11-14 Johnson Controls Technology Co System for limiting pressure difference in dual compressor chiller
JP2014055707A (en) * 2012-09-12 2014-03-27 Mitsubishi Heavy Ind Ltd Device, method, and program for controlling parallel refrigerator
WO2014185525A1 (en) * 2013-05-16 2014-11-20 国立大学法人佐賀大学 Energy conversion system
WO2015121992A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
WO2015121993A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
JP2015212616A (en) * 2010-02-08 2015-11-26 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat exchanger having stacked coil section
WO2015189948A1 (en) * 2014-06-12 2015-12-17 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039326A1 (en) * 2009-08-31 2011-03-10 Karsten Uitz heat pump
JP5713570B2 (en) * 2010-02-19 2015-05-07 三菱重工業株式会社 Refrigerator unit and control method thereof
GB2480861B (en) * 2010-06-04 2012-05-30 M F Refrigeration Ltd Refrigeration Plant
CN105890226B (en) * 2015-07-09 2018-07-20 广东申菱环境系统股份有限公司 A kind of water source cold-heat alliance grade hot type water chiller-heater unit and its control method
CN110701839B (en) 2018-07-09 2023-04-21 开利公司 Cold station management device and method, computer storage medium, and cold station

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183428U (en) * 1982-05-28 1983-12-07 小型ガス冷房技術研究組合 air conditioner
JPS6038561A (en) * 1983-08-11 1985-02-28 ダイキン工業株式会社 Heater for composite heat pump
JPS6387560A (en) * 1986-09-30 1988-04-18 アイシン精機株式会社 Operation controller for air conditioner
JPS63311055A (en) * 1987-06-15 1988-12-19 セイコ−精機株式会社 Air conditioner
JPH03148566A (en) * 1989-11-06 1991-06-25 Hitachi Ltd Refrigerating plant
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JPH0593550A (en) * 1991-04-11 1993-04-16 Ebara Corp Freezing system
JPH07174422A (en) * 1993-12-20 1995-07-14 Mitsubishi Electric Corp Heat accumulation air-conditioning device
JP2003130428A (en) * 2001-08-17 2003-05-08 Ebara Corp Connection type cold/hot water device
JP2004138333A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183428U (en) * 1982-05-28 1983-12-07 小型ガス冷房技術研究組合 air conditioner
JPS6038561A (en) * 1983-08-11 1985-02-28 ダイキン工業株式会社 Heater for composite heat pump
JPS6387560A (en) * 1986-09-30 1988-04-18 アイシン精機株式会社 Operation controller for air conditioner
JPS63311055A (en) * 1987-06-15 1988-12-19 セイコ−精機株式会社 Air conditioner
JPH03148566A (en) * 1989-11-06 1991-06-25 Hitachi Ltd Refrigerating plant
JPH0593550A (en) * 1991-04-11 1993-04-16 Ebara Corp Freezing system
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JPH07174422A (en) * 1993-12-20 1995-07-14 Mitsubishi Electric Corp Heat accumulation air-conditioning device
JP2003130428A (en) * 2001-08-17 2003-05-08 Ebara Corp Connection type cold/hot water device
JP2004138333A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518308A (en) * 2008-04-25 2011-06-23 エルエス エムトロン リミテッド Dual refrigerator
JP2010019541A (en) * 2008-06-09 2010-01-28 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and its operating method
JP2013231591A (en) * 2009-06-29 2013-11-14 Johnson Controls Technology Co System for limiting pressure difference in dual compressor chiller
JP2011038742A (en) * 2009-08-17 2011-02-24 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and method of operating the same
JP2011069556A (en) * 2009-09-25 2011-04-07 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2011069557A (en) * 2009-09-25 2011-04-07 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2015212616A (en) * 2010-02-08 2015-11-26 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat exchanger having stacked coil section
JP2020038054A (en) * 2010-02-08 2020-03-12 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat exchanger having stacked coil sections
JP2017207274A (en) * 2010-02-08 2017-11-24 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat exchanger having stacked coil sections
US10215444B2 (en) 2010-02-08 2019-02-26 Johnson Controls Technology Company Heat exchanger having stacked coil sections
US9869487B2 (en) 2010-02-08 2018-01-16 Johnson Controls Technology Company Heat exchanger having stacked coil sections
JP2012137202A (en) * 2010-12-24 2012-07-19 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
CN105066495A (en) * 2010-12-24 2015-11-18 荏原冷热系统株式会社 Compressed refrigerator
JP2014055707A (en) * 2012-09-12 2014-03-27 Mitsubishi Heavy Ind Ltd Device, method, and program for controlling parallel refrigerator
US9453670B2 (en) 2012-09-12 2016-09-27 Mitsubishi Heavy Industries, Ltd. Control apparatus and method for parallel-type chiller, and computer-readable recording medium in which program for parallel-type chiller is stored
WO2014185525A1 (en) * 2013-05-16 2014-11-20 国立大学法人佐賀大学 Energy conversion system
WO2015121993A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
JPWO2015121992A1 (en) * 2014-02-14 2017-03-30 三菱電機株式会社 Refrigeration cycle equipment
JPWO2015121993A1 (en) * 2014-02-14 2017-03-30 三菱電機株式会社 Refrigeration cycle equipment
WO2015121992A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
WO2015189948A1 (en) * 2014-06-12 2015-12-17 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
CN101371082B (en) 2011-06-15
WO2007080994A1 (en) 2007-07-19
CN101371082A (en) 2009-02-18
JP5096678B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5096678B2 (en) Refrigeration equipment
US10451326B2 (en) Method for operating a chiller
JP2009270745A (en) Refrigerating system
JP4617958B2 (en) Air conditioner
US6647742B1 (en) Expander driven motor for auxiliary machinery
JP2011017455A (en) Turbo refrigerator
JP2006017427A (en) Cooling system
KR20100059176A (en) Storage system
JP2015218911A (en) Refrigeration device
JP5048059B2 (en) Natural gas liquefaction equipment
JP2007183078A (en) Refrigerating machine and refrigerating device
CN104024766B (en) Refrigerating plant
JP2007051788A (en) Refrigerating device
JP2004212019A (en) Refrigeration system
JP5754935B2 (en) Compression refrigerator
KR20100005735U (en) storage system
JP2013210158A (en) Refrigerating device
CN102997527A (en) Gas-liquid heat exchange type refrigeration device
KR100863992B1 (en) Freezing and refrigerating apparatus
KR102294499B1 (en) Multistage compression type frozen apparatus
JP6613404B2 (en) Refrigeration system
KR100208079B1 (en) Cooling cycle
KR102417161B1 (en) Vapor compression cycle apparatus and water treatment system having the same
KR102297905B1 (en) Multiple refrigeration cycle system
JP2012007781A (en) Refrigerator/freezer and cooling device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees