JP2007182624A - Continuous desiliconization method - Google Patents

Continuous desiliconization method Download PDF

Info

Publication number
JP2007182624A
JP2007182624A JP2006300643A JP2006300643A JP2007182624A JP 2007182624 A JP2007182624 A JP 2007182624A JP 2006300643 A JP2006300643 A JP 2006300643A JP 2006300643 A JP2006300643 A JP 2006300643A JP 2007182624 A JP2007182624 A JP 2007182624A
Authority
JP
Japan
Prior art keywords
hot metal
impeller
desiliconization
blade
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006300643A
Other languages
Japanese (ja)
Other versions
JP3996622B2 (en
Inventor
Seii Kimura
世意 木村
Takeshi Mimura
毅 三村
Kenji Ito
健児 伊藤
Kikuo Okada
紀久雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006300643A priority Critical patent/JP3996622B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2006/324512 priority patent/WO2007066748A1/en
Priority to CN2006800424445A priority patent/CN101310028B/en
Priority to CN201210204848.7A priority patent/CN102703636B/en
Priority to CN201410351304.2A priority patent/CN104141026B/en
Priority to CN201410350529.6A priority patent/CN104073585B/en
Priority to KR1020087012545A priority patent/KR101000652B1/en
Priority to BRPI0620031-1A priority patent/BRPI0620031A2/en
Priority to AU2006323664A priority patent/AU2006323664B2/en
Publication of JP2007182624A publication Critical patent/JP2007182624A/en
Application granted granted Critical
Publication of JP3996622B2 publication Critical patent/JP3996622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evenly and stably perform desiliconization and to improve efficiency of desiliconization. <P>SOLUTION: Desiliconization can be performed evenly and stably at an improved efficiency of desiliconization by controlling the relationship between the number of vanes 16 of an impeller 10, the relationship between the height b0 of the base of each impeller 16 and the height b1 of its top end, the relationship between the width d of each impeller 16 and the diameter or width of the passage of molten iron, the relationship between the depth Z of the molten iron flowing through the passage and the distance h1 from the top end of the impeller to the upper surface of the molten iron, and the relationship between the depth Z of the molten iron flowing the passage and the distance h2 from the lower end of the top end of the impeller to the bottom of the passage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶銑中の珪素を連続的に除去する連続脱珪方法に関する。   The present invention relates to a continuous desiliconization method for continuously removing silicon in molten iron.

高炉で還元されて出銑された溶銑は、通常0.3〜0.7%程度の珪素[Si]の他に、4.3〜4.6%程度の炭素[C],0.09〜0.13%程度のりん[P]を含んでいる。この溶銑を精錬して鋼とするには、炭素[C]やりん[P]を所定濃度まで低減する必要があるが精錬効率の観点から脱炭,脱りんに先立って珪素[Si]や硫黄[S]を極力低濃度(例えば、珪素[Si]0.25%)まで除去しておくことが望ましい。そこで、従来から、高炉から出銑した溶銑に対して脱珪,脱硫等の予備処理が行われている(例えば、特許文献1,特許文献2)。   The hot metal reduced and produced in the blast furnace is usually about 0.3 to 0.7% of silicon [Si], and about 4.3 to 4.6% of carbon [C], 0.09 to It contains about 0.13% phosphorus [P]. In order to refine this hot metal into steel, it is necessary to reduce carbon [C] and phosphorus [P] to a predetermined concentration. From the viewpoint of refining efficiency, however, silicon [Si] and sulfur are required prior to decarburization and dephosphorization. It is desirable to remove [S] to as low a concentration as possible (for example, silicon [Si] 0.25%). Therefore, conventionally, pretreatment such as desiliconization and desulfurization has been performed on the molten iron discharged from the blast furnace (for example, Patent Document 1 and Patent Document 2).

特許文献1には脱硫処理の方法が開示されており、取鍋内に収容された溶銑に脱硫剤を添加し、当該溶銑にインペラ(攪拌羽根)を浸漬してインペラを回転させることにより、脱硫を行う方法である。
一方で、特許文献2には脱珪処理の方法が開示されており、高炉鋳床の溶銑流路に脱珪反応槽を設けて、脱珪搬送槽内の溶銑中に脱珪剤を添加して当該溶銑をインペラで攪拌することにより脱珪を行う方法である。
特公昭45−31053号 特開昭54−137420号
Patent Document 1 discloses a method of desulfurization treatment. A desulfurization agent is added to hot metal contained in a ladle, an impeller (stirring blade) is immersed in the hot metal, and the impeller is rotated to desulfurize. It is a method to do.
On the other hand, Patent Document 2 discloses a method of desiliconization treatment. A desiliconization reaction tank is provided in a hot metal flow path of a blast furnace casting floor, and a desiliconizing agent is added to the hot metal in a desiliconization conveyance tank. This is a method of desiliconization by stirring the hot metal with an impeller.
Japanese Patent Publication No.45-31053 JP 54-137420 A

上述したように脱硫処理及び脱珪処理では、両処理ともに溶銑をインペラで攪拌して処理を行う方法であるが、脱硫処理では取鍋に溶銑を収容した状態で溶銑を攪拌するのに対し、脱珪処理においては、脱硫処理とは異なり、高炉鋳床の溶銑流路を連続的に流れる溶銑を攪拌している。
したがって、特許文献1の脱硫処理のように、滞留している溶銑を満遍なく攪拌して脱硫処理を行うことは比較的容易であるが、特許文献2のように、連続的に流れる溶銑を満遍なくインペラで攪拌して脱珪処理を行うことは未だ難しく、脱珪効率が低下すると共に、バラツキ無く安定的に脱珪を行うことができないという問題が現場から挙がってきている。
As described above, in the desulfurization process and the desiliconization process, both processes are performed by stirring the hot metal with an impeller, whereas in the desulfurization process, the hot metal is stirred in a state where the hot metal is contained in the ladle. In the desiliconization process, unlike the desulfurization process, the hot metal continuously flowing in the hot metal flow path of the blast furnace casting is stirred.
Therefore, it is relatively easy to perform the desulfurization treatment by uniformly stirring the hot metal staying as in the desulfurization treatment of Patent Document 1, but the impeller that flows continuously as in Patent Document 2 is imperative. It is still difficult to carry out the desiliconization process by stirring, and there are problems that the desiliconization efficiency is lowered and that the desiliconization cannot be performed stably without variation.

そこで、本発明は、上記問題点に鑑み、脱珪効率が向上すると共に、バラツキ無く安定的に脱珪を行うことができる連続脱珪方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a continuous desiliconization method capable of improving desiliconization efficiency and performing desiliconization stably without variation.

前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、前記溶銑に浸漬して回転させる前記インペラの羽根の枚数を3〜6枚し、且つ当該羽根を式(1),式(2)を満たすようにしておくと共に、当該インペラを、式(3),式(4)を満たすように溶銑に浸漬する点にある。
b0≧b1 ・・・(1)
0.2≦d/D≦0.8 ・・・(2)
0<h1/Z≦0.4 ・・・(3)
0<h2/Z≦0.4 ・・・(4)
ただし、
d:羽根の幅(m)
D:溶銑流路の直径又は幅(m)
b0:羽根の基部の高さ(m)
b1:羽根の先端部の高さ(m)
Z:溶銑流路内に流れる溶銑の深さ(m)
h1:羽根先端の上端から溶銑上面までの距離(m)
h2:羽根先端の下端から溶銑流路の底部までの距離(m)
発明者は、高炉鋳床の溶銑流路を流れる溶銑を満遍なく攪拌することで、脱珪処理時に脱珪効率が向上すると共に、バラツキ無く安定的に脱珪を行う方法について様々な角度から検証した。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problems in the present invention include 3 to 6 blades of the impeller to be immersed and rotated in the molten iron, and the blades are expressed by the equations (1) and (2). In addition, the impeller is immersed in the hot metal so as to satisfy the expressions (3) and (4).
b0 ≧ b1 (1)
0.2 ≦ d / D ≦ 0.8 (2)
0 <h1 / Z ≦ 0.4 (3)
0 <h2 / Z ≦ 0.4 (4)
However,
d: Blade width (m)
D: Diameter or width (m) of hot metal flow path
b0: Height of the base of the blade (m)
b1: Height of blade tip (m)
Z: Depth of hot metal flowing in hot metal flow path (m)
h1: Distance from the upper end of the blade tip to the hot metal upper surface (m)
h2: Distance from the lower end of the blade tip to the bottom of the hot metal flow path (m)
The inventor verified the method of performing desiliconization stably from various angles while improving the desiliconization efficiency during the desiliconization process by uniformly stirring the hot metal flowing through the hot metal flow path of the blast furnace casting floor. .

具体的には、インペラの枚数及び羽根の幅を変更した複数のインペラを製作し、当該インペラを用いて、溶銑に対するインペラの浸漬度合い(羽根先端の上端から溶銑上面までの距離h1,羽根先端の下端から溶銑流路の底部までの距離h2)を変更しながら、脱珪処理を行う実験を行った。
実験の結果、前記溶銑に浸漬して回転させる前記インペラの羽根の枚数を3〜6枚し、且つ当該羽根を式(1),式(2)を満たすようにしておくと共に、当該インペラを、式(3),式(4)を満たすようにすることで、溶銑流路を連続的に流れる場合であっても脱珪効率が向上し且つバラツキ無く安定的に脱珪を行うことができることを見出した。
Specifically, a plurality of impellers having different numbers of impellers and blade widths are manufactured, and the impeller is immersed in the hot metal using the impeller (the distance h1 from the top of the blade tip to the top surface of the hot metal, An experiment for desiliconization was performed while changing the distance h2) from the lower end to the bottom of the hot metal flow path.
As a result of the experiment, the number of blades of the impeller to be immersed and rotated in the hot metal is 3 to 6, and the blades satisfy the formulas (1) and (2). By satisfying the formulas (3) and (4), the desiliconization efficiency can be improved and the desiliconization can be stably performed even when the molten metal flow continuously. I found it.

本発明によれば、脱珪効率が向上すると共に、バラツキ無く安定的に脱珪を行うことができる。 According to the present invention, desiliconization efficiency can be improved and desiliconization can be performed stably without variation.

まず、本発明の連続脱珪方法を適用する高炉設備の一例について説明する。ただし、本発明の連続脱珪方法はこの設備のみに適用されるものではない。
図1〜3に示すように、高炉の周りには高炉鋳床1が設けられており、この高炉鋳床1は高炉2から出銑された溶銑が流れる出銑樋4(溶銑流路)を有している。
前記出銑樋4の中途部には排滓樋5が分岐形成されており、出銑樋4の分岐部分の下流近傍には、排滓樋5に溶銑のスラグ6が流れるように案内する潜り堰7が設けられている。
First, an example of blast furnace equipment to which the continuous desiliconization method of the present invention is applied will be described. However, the continuous desiliconization method of the present invention is not applied only to this equipment.
As shown in FIGS. 1 to 3, a blast furnace casting bed 1 is provided around the blast furnace, and this blast furnace casting bed 1 has a hot metal 4 (hot metal flow path) through which hot metal discharged from the blast furnace 2 flows. Have.
A drainage 5 is branched in the middle of the feed 4, and a dive for guiding the molten iron slag 6 to flow in the waste 5 near the downstream of the branch portion of the feed 4. A weir 7 is provided.

また、出銑樋4の分岐部分よりも下流側には、平面視略円形状の反応槽8が設けられている。出銑樋4には複数のインペラ10が配置されている。詳しくは、反応槽8に出銑樋4を流れる溶銑を攪拌するインペラ10a(攪拌羽根)が配置されるか、又は、前記分岐部分と反応槽8との間にインペラ10bが配置されている。インペラ10a又はインペラ10bの近傍に脱珪剤11を添加する添加装置12が設けられている。
したがって、高炉2から出銑した溶銑は出銑樋4を上流から下流に向かって流れ、溶銑上のスラグ6は潜り堰7で堰止められて排滓樋5に流れると共に、溶銑自体は反応槽8に向かって流れることとなる。そして、添加装置12で脱珪剤11を溶銑に添加しつつ溶銑に浸漬させたインペラ10a又はインペラ10bを回転させることによって連続的に流れる溶銑の脱珪処理を行うことができる。
In addition, a reaction tank 8 having a substantially circular shape in plan view is provided on the downstream side of the branch portion of the feed 4. A plurality of impellers 10 are arranged on the output 4. Specifically, an impeller 10 a (stirring blade) that stirs the hot metal flowing through the tap iron 4 is disposed in the reaction tank 8, or an impeller 10 b is disposed between the branched portion and the reaction tank 8. An addition device 12 for adding the desiliconizing agent 11 is provided in the vicinity of the impeller 10a or the impeller 10b.
Accordingly, the hot metal discharged from the blast furnace 2 flows from the upstream side to the downstream side of the hot metal 4, the slag 6 on the hot metal flows through the submergence weir 7 and flows to the exhaust 5, and the hot metal itself is a reaction tank. It will flow toward 8. And the desiliconization of the hot metal which flows continuously can be performed by rotating the impeller 10a or the impeller 10b immersed in the hot metal while adding the desiliconizing agent 11 to the hot metal with the addition device 12.

次に、連続脱珪方法で使用するインペラの構造について詳しく説明する。
図3,4に示すように、インペラ10a又はインペラ10bは耐火物などで構成されており、筒状又は棒状の回転軸15と、回転軸15の先端に設けられた複数の羽根16とを有している。各羽根16は回転軸15の先端から径外方向に突出した略矩形状のものである。各羽根16の基部(回転軸15との接合部)の高さb0は、羽根16の先端部(突出先端部)の高さb1よりも大きくなるように設定されている。
即ち、インペラ10a又はインペラ10bの各羽根16の高さb0,b1は式(1)を満たすように設定されている。
Next, the structure of the impeller used in the continuous desiliconization method will be described in detail.
As shown in FIGS. 3 and 4, the impeller 10 a or the impeller 10 b is made of a refractory or the like, and has a cylindrical or rod-shaped rotating shaft 15 and a plurality of blades 16 provided at the tip of the rotating shaft 15. is doing. Each blade 16 has a substantially rectangular shape projecting radially outward from the tip of the rotary shaft 15. The height b0 of the base part (joining part with the rotating shaft 15) of each blade | wing 16 is set so that it may become larger than the height b1 of the front-end | tip part (projection front-end | tip part) of the blade | wing 16. FIG.
That is, the heights b0 and b1 of the blades 16 of the impeller 10a or the impeller 10b are set so as to satisfy the formula (1).

b0≧b1 ・・・(1)
言い換えれば、図5(a)〜(c)に示すように、羽根16の先端部の縦壁17と羽根16の横壁18との角度θが90°以上となるように、インペラ10a又はインペラ10bの羽根16は構成されている。インペラ10a又はインペラ10bの羽根部16の形状は、図5に示すように、側面視で長方形状であっても、台形状であっても、円弧状(先端部の面取り状)であってもよい。
インペラ10a又はインペラ10bの枚数は3〜6枚に設定されている。具体的には、この実施例では、図1〜5及び図6(a)に示すように、羽根16の枚数は4枚とされている。各羽根16はその枚数に対応して回転軸15に対し均等な角度で回転軸15に取り付けられている。羽根16の枚数が4枚であるときは、各羽根16間の配置角度が略90°となるように各羽根16は回転軸15に取り付けられている。
b0 ≧ b1 (1)
In other words, as shown in FIGS. 5A to 5C, the impeller 10a or the impeller 10b is set so that the angle θ between the vertical wall 17 at the tip of the blade 16 and the horizontal wall 18 of the blade 16 is 90 ° or more. The blade 16 is configured. As shown in FIG. 5, the shape of the blade portion 16 of the impeller 10a or impeller 10b may be rectangular, trapezoidal, or arcuate (chamfered at the tip) as viewed from the side. Good.
The number of impellers 10a or 10b is set to 3-6. Specifically, in this embodiment, as shown in FIGS. 1 to 5 and FIG. 6A, the number of blades 16 is four. Each blade 16 is attached to the rotary shaft 15 at an equal angle with respect to the rotary shaft 15 corresponding to the number of blades 16. When the number of blades 16 is four, each blade 16 is attached to the rotary shaft 15 so that the arrangement angle between the blades 16 is approximately 90 °.

なお、図6(b)に示すように、羽根16の枚数が3枚であるときは、各羽根16間の配置角度が略120°となるように各羽根16は回転軸15に取り付けられている。
図6(c)に示すように、羽根16の枚数が6枚であるときは、各羽根16間の配置角度が略60°となるように各羽根16は回転軸15に取り付けられている。
さて、図4に示すように、羽根16の幅dを、最も離れている2枚の羽根16に着目し、それぞれの突出長さ(羽根16の基部から羽根16の先端部までの長さ)を合計したもの、言い換えれば、基準となる1つの羽根16の突出長さd1と、この羽根16より最も離れている他の羽根16の突出長さd2との合計としたとき、当該羽根16の幅dは式(2)を満たすように設定される。
As shown in FIG. 6B, when the number of blades 16 is three, each blade 16 is attached to the rotating shaft 15 so that the arrangement angle between the blades 16 is approximately 120 °. Yes.
As shown in FIG. 6C, when the number of blades 16 is 6, each blade 16 is attached to the rotating shaft 15 so that the arrangement angle between the blades 16 is approximately 60 °.
Now, as shown in FIG. 4, the width d of the blade 16 is focused on the two blades 16 that are farthest apart from each other, and the protruding lengths (the length from the base of the blade 16 to the tip of the blade 16). In other words, that is, the sum of the projection length d1 of one blade 16 serving as a reference and the projection length d2 of the other blade 16 farthest from the blade 16, The width d is set so as to satisfy the formula (2).

0.2≦d/D≦0.8 ・・・(2)
ただし、
D:溶銑流路の直径又は幅(m)
具体的には、図6(a)に示すように、羽根16の枚数が4枚であるときは、第1の羽根16aの突出長さd1と第2の羽根16bの突出長さd2との合計が羽根16の幅dとされる。
図6(b)に示すように、羽根16の枚数が3枚であるときは、第1の羽根16aの突出長さd1と第2の羽根16cの突出長さd2との合計が羽根16の幅dとされる。
0.2 ≦ d / D ≦ 0.8 (2)
However,
D: Diameter or width (m) of hot metal flow path
Specifically, as shown in FIG. 6A, when the number of blades 16 is four, the protrusion length d1 of the first blade 16a and the protrusion length d2 of the second blade 16b The total is the width d of the blade 16.
As shown in FIG. 6B, when the number of blades 16 is three, the total of the projection length d1 of the first blade 16a and the projection length d2 of the second blade 16c is The width is d.

図6(c)に示すように、羽根16の枚数が6枚であるときは、例えば、第1の羽根16aの突出長さd1と、第4の羽根16dの突出長さd2との合計が羽根16の幅dとされる。
式(2)のDは、反応槽8に配置するインペラ10aに対しては、溶銑流路(出銑樋4)の直径、即ち、反応槽8の直径が適用される。また、式(2)のDは、反応槽8と分岐部分との間に配置するインペラ10bに対しては、溶銑流路(出銑樋4)の幅(溶銑流路の直線部分における幅)が適用される。
As shown in FIG. 6C, when the number of blades 16 is six, for example, the sum of the protruding length d1 of the first blade 16a and the protruding length d2 of the fourth blade 16d is The width d of the blade 16 is set.
In formula (2), the diameter of the hot metal flow path (outlet 4), that is, the diameter of the reaction tank 8, is applied to the impeller 10a disposed in the reaction tank 8. Moreover, D of Formula (2) is the width | variety of the hot metal flow path (outlet 4) with respect to the impeller 10b arrange | positioned between the reaction tank 8 and a branch part (width in the linear part of a hot metal flow path). Applies.

ゆえに、インペラ10a又はインペラ10bの羽根16の幅dはそれぞれのインペラ10a,10bの配置場所に応じて変更されるようになっている。
インペラの構成は以上であるが、このように構成したインペラを下記のように用いることによって効率的な連続脱珪処理を行うことができる。以下、連続脱珪方法ついて説明する。
まず、高炉2の出銑口から出銑樋4に溶銑を出銑した際、出銑樋4を流れる溶銑に添加装置12を用いて脱珪剤11を添加する。このとき、上記のように構成したインペラ10a,10bを式(3),式(4)を満たすように溶銑内に浸漬して回転させ、溶銑と脱珪
剤とを混合する。
Therefore, the width d of the blade 16 of the impeller 10a or the impeller 10b is changed according to the location of the impellers 10a and 10b.
Although the configuration of the impeller is as described above, efficient continuous desiliconization treatment can be performed by using the impeller configured in this way as described below. Hereinafter, the continuous desiliconization method will be described.
First, when hot metal is fed from the brewing port of the blast furnace 2 to the hot metal 4, the desiliconizing agent 11 is added to the hot metal flowing through the hot metal 4 using the adding device 12. At this time, the impellers 10a and 10b configured as described above are immersed and rotated in the hot metal so as to satisfy the expressions (3) and (4), and the hot metal and the desiliconizing agent are mixed.

0<h1/Z≦0.4 ・・・(3)
0<h2/Z≦0.4 ・・・(4)
ただし、
Z:溶銑流路内に流れる溶銑の深さ(m)
h1:羽根16先端の上端から溶銑上面までの距離(m)
h2:羽根16先端の下端から溶銑流路の底部までの距離(m)
なお、インペラ10を溶銑に浸漬した際、h1/Z+h2/Z+b1/Z=1.0の関係式を満たしており、この式と式(3)及び式(4)とを満たすように、羽根16の高さb1を設定するようにしている。
0 <h1 / Z ≦ 0.4 (3)
0 <h2 / Z ≦ 0.4 (4)
However,
Z: Depth of hot metal flowing in hot metal flow path (m)
h1: Distance from the upper end of the tip of the blade 16 to the upper surface of the hot metal (m)
h2: Distance (m) from the lower end of the tip of the blade 16 to the bottom of the hot metal flow path
When impeller 10 is immersed in hot metal, the relational expression h1 / Z + h2 / Z + b1 / Z = 1.0 is satisfied, and blade 16 is set so as to satisfy this expression, Expression (3), and Expression (4). The height b1 is set.

脱珪処理が終了した溶銑は、下流に流れて溶銑を運搬する混銑車(トピートカー)に装入される。
このようにすることで、脱珪効率が向上すると共に、バラツキ無く安定的に脱珪を行うことができる。
The hot metal that has been subjected to the silicon removal treatment is charged into a chaotic car (topie car) that flows downstream and transports the hot metal.
By doing in this way, while desiliconization efficiency improves, desiliconization can be performed stably without variation.

以下、羽根16の枚数が3〜6枚で且つ式(1),式(2)を満たすようにインペラ10製作し、当該インペラ10を用いて脱珪処理を行った実施例と、式(1),式(2)を満たさないインペラ10製作し、当該インペラ10を用いて脱珪処理を行った比較例とを例示して説明する。なお、実施条件は表1の通りである。   Hereinafter, the impeller 10 was manufactured so that the number of blades 16 was 3 to 6 and the expressions (1) and (2) were satisfied, and the silicon removal treatment was performed using the impeller 10 and the expression (1 ), A comparative example in which an impeller 10 that does not satisfy the formula (2) is manufactured and desiliconization processing is performed using the impeller 10 will be described as an example. The implementation conditions are as shown in Table 1.

Figure 2007182624
Figure 2007182624

溶銑中の珪素[Si]は、脱珪剤11中の酸素[O]と反応して、Si+2O=SiO2の反応式にしたがって(SiO2)として溶銑から除去される。溶銑へ添加された脱珪剤11が効率的に脱珪反応に寄与したかを表す指標として、式(5)に示される脱珪酸素効率を用いた。
脱珪酸素効率は、脱珪剤11中の酸素分に対して溶銑中のSiの酸化に使用された酸素分の割合を示したものである。
Silicon [Si] in the hot metal reacts with oxygen [O] in the desiliconizing agent 11 and is removed from the hot metal as (SiO 2 ) according to the reaction formula of Si + 2O = SiO 2 . The desiliconization oxygen efficiency shown by Formula (5) was used as an index showing whether the desiliconization agent 11 added to the hot metal contributed to the desiliconization reaction efficiently.
The desiliconization oxygen efficiency indicates the ratio of the oxygen content used for the oxidation of Si in the hot metal to the oxygen content in the desiliconization agent 11.

Figure 2007182624
Figure 2007182624

表2,図7〜10は複数のインペラ10を用いて脱珪処理を行った際の脱珪酸素効率についてまとめたものである。以下、表2,図7〜10に示した結果について説明をする。
なお、表2の攪拌位置の欄での「樋」とは出銑樋4の直線部分であることを示し、「円形反応樋」とは反応槽8であることを示している。
実際の操業においては、溶銑通過速度と脱珪剤の投入速度との制約から投入できる脱珪剤の最大原単位は60kg/tonであり、脱珪酸素効率が60%未満の場合、出銑時の最大珪素[Si]が約0.7mass%と高濃度のときには、過半量の処理後の珪素[Si]
が0.25mass%を超えることになってしまう。ゆえに、脱珪酸素効率を60%以上確保
する必要がある。
Table 2 and FIGS. 7 to 10 summarize the desiliconization oxygen efficiency when the desiliconization process is performed using a plurality of impellers 10. Hereinafter, the results shown in Table 2 and FIGS. 7 to 10 will be described.
In addition, “樋” in the column of the stirring position in Table 2 indicates a straight portion of the output 4, and “circular reaction vessel” indicates that the reaction vessel 8 is used.
In actual operation, the maximum basic unit of the desiliconizing agent that can be charged is 60 kg / ton due to the restrictions of the molten iron passing speed and the desiliconizing agent charging speed, and when the desiliconizing oxygen efficiency is less than 60%, When the maximum silicon [Si] is as high as about 0.7 mass%, the silicon [Si] after the majority treatment
Will exceed 0.25 mass%. Therefore, it is necessary to ensure the desiliconization oxygen efficiency of 60% or more.

Figure 2007182624
Figure 2007182624

[インペラの羽根の枚数について]
表2や図7に示すように、羽根16の枚数が3枚未満であり羽根16の枚数が少ないと、脱珪酸素効率が60%未満となった(比較例12,13)。これは羽根16の枚数が少ないのでインペラ10を回転させたときに脱珪剤11を溶銑に巻き込ませる能力(攪拌能力)が低くなったことが原因と考えられる。
一方で、羽根16の枚数を6枚よりも多くすると脱珪酸素効率が60%未満となった(比較例14)。これは、羽根16の枚数が多すぎるため、インペラ10を回転させたときに脱珪反応で生じるスラグ6が羽根16に付着し易くなってスラグ6が当該羽根16にまとわり着いて団子状に固まってしまうことが原因と考えられる。団子状のスラグ6が付着したままインペラ10を回転しても攪拌力は弱く、そのため反応効率が悪くなる。
[Number of impeller blades]
As shown in Table 2 and FIG. 7, when the number of blades 16 was less than 3 and the number of blades 16 was small, the desiliconization oxygen efficiency was less than 60% (Comparative Examples 12 and 13). This is presumably because the number of blades 16 is small, and thus the ability (stirring ability) to entrain the desiliconizing agent 11 in the hot metal when the impeller 10 is rotated is lowered.
On the other hand, when the number of blades 16 is more than 6, the desiliconization oxygen efficiency is less than 60% (Comparative Example 14). This is because the number of blades 16 is too large, so that when the impeller 10 is rotated, the slag 6 generated by the desiliconization reaction easily adheres to the blades 16 and the slag 6 clings to the blades 16 to form a dumpling. It is thought that the cause is that it hardens. Even if the impeller 10 is rotated with the dumpling-like slag 6 attached, the stirring force is weak, and therefore the reaction efficiency is deteriorated.

したがって、羽根16の枚数は、攪拌能力を高くできると共に、スラグ6がまとわりつき難い3枚〜6枚にするのがよく、このようにすることで、脱珪酸素効率を60%以上にすることができた。
[羽根の幅と溶銑流路の直径又は幅の関係について]
表2や図8に示すように、羽根16の幅と溶銑流路の直径又は幅との関係がd/D<0.2であるとき、脱珪酸素効率が60%未満となった(比較例19,20)。
これはインペラ10を浸漬したときに溶銑流路の直径や幅に対してインペラ10の浸漬幅(幅d)が小さいことを意味しており、インペラ10を回転させても、インペラ10の近傍を流れる一部の溶銑にしか攪拌力を与えることができず、インペラ10から離れて流れる溶銑に対して十分な攪拌力を与えることができないことが原因と考えられる。
Therefore, the number of blades 16 is preferably 3 to 6 so that the stirring ability can be increased and the slag 6 is difficult to cling, and in this way, the desiliconization oxygen efficiency can be 60% or more. did it.
[Relationship between blade width and hot metal diameter or width]
As shown in Table 2 and FIG. 8, when the relationship between the width of the blade 16 and the diameter or width of the hot metal flow path is d / D <0.2, the desiliconization oxygen efficiency was less than 60% (comparison) Examples 19, 20).
This means that when the impeller 10 is immersed, the immersion width (width d) of the impeller 10 is smaller than the diameter and width of the hot metal flow path. Even if the impeller 10 is rotated, the vicinity of the impeller 10 is not affected. It is considered that the stirring force can be given only to a part of the flowing hot metal, and the sufficient stirring force cannot be given to the hot metal flowing away from the impeller 10.

即ち、出銑樋4を形成する側壁4a側を流れる溶銑はインペラ10の羽根16から離れた所を通過するため、あまり攪拌されることがない。攪拌力を十分に与えられていない溶銑は、そのまま上流から下流に向けて流れてしまい脱珪剤11との混合が十分に行われない。
一方で、羽根16の幅と溶銑流路の直径又は幅との関係がd/D>0.8であるとき、脱珪酸素効率が60%未満となった(比較例15,16)。
これは、インペラ10を浸漬したときに溶銑流路の直径や幅に対してインペラ10の浸漬幅(幅d)が大きすぎることを意味しており、インペラ10を回転させても脱珪剤11を当該溶銑内に引き込ませるための渦を溶銑の表面に発生させることができず、反対に反応効率が悪くなった。
That is, the hot metal flowing on the side of the side wall 4a forming the feed 4 passes through a place away from the blades 16 of the impeller 10 and is therefore not stirred much. The hot metal which is not given sufficient stirring force flows from the upstream to the downstream as it is and is not sufficiently mixed with the desiliconizing agent 11.
On the other hand, when the relationship between the width of the blade 16 and the diameter or width of the hot metal channel is d / D> 0.8, the desiliconization oxygen efficiency was less than 60% (Comparative Examples 15 and 16).
This means that when the impeller 10 is immersed, the immersion width (width d) of the impeller 10 is too large with respect to the diameter and width of the hot metal flow path. The vortex for drawing in the hot metal could not be generated on the surface of the hot metal, and the reaction efficiency was deteriorated.

したがって、羽根16の幅dと溶銑流路の直径又は幅の関係は、溶銑流路の直径又は幅に対して羽根16の幅dが大き過ぎず小さ過ぎない式(2)のようにするのがよく、このようにすることで、脱珪酸素効率を60%以上にすることができた。
[溶銑の深さと、羽根の先端の上端から溶銑上面までの距離について]
表2や図9に示すように、羽根16の先端の上端が溶銑上面と面一になっている、即ち、溶銑の深さと羽根16の先端の上端から溶銑上面までの距離との関係がh1/Z=0であるとき、脱珪酸素効率が60%未満となった(比較例14,15,21)。
Therefore, the relationship between the width d of the blade 16 and the diameter or width of the hot metal flow path is as shown in the expression (2) in which the width d of the blade 16 is not too large and too small with respect to the diameter or width of the hot metal flow path. In this way, the desiliconization oxygen efficiency was able to be 60% or more.
[About the depth of the hot metal and the distance from the upper end of the blade tip to the upper surface of the hot metal]
As shown in Table 2 and FIG. 9, the upper end of the tip of the blade 16 is flush with the hot metal upper surface, that is, the relationship between the depth of the hot metal and the distance from the upper end of the tip of the blade 16 to the upper surface of the hot metal is h1. When / Z = 0, the desiliconization oxygen efficiency was less than 60% (Comparative Examples 14, 15, and 21).

これはインペラ10を回転させても、羽根16の先端の上端が溶銑の上面(浴面)、即ち、脱珪剤11と溶銑の浴面との界面を回転しているだけになり、脱珪剤11を十分に溶銑内に巻き込ませることができないことが原因と考えられる。
一方で、溶銑の深さと羽根16の先端の上端から溶銑上面までの距離との関係がh1/Z>0.4であるとき、脱珪酸素効率が60%未満となった(比較例20)。
これは溶銑に対してインペラ10の羽根16を深く沈めてインペラ10を回転させても、インペラ10の近傍を流れる一部の溶銑にしか攪拌力を与えることができず、羽根16の上方を流れる溶銑に対しては十分な攪拌力を与えることができないことが原因と考えら
れる。羽根16の上方を流れる溶銑は、そのまま上流から下流に向けて流れてしまい脱珪剤11との混合が十分に行われることがない。
Even if the impeller 10 is rotated, the upper end of the tip of the blade 16 only rotates the upper surface (bath surface) of the hot metal, that is, the interface between the desiliconizing agent 11 and the hot metal bath surface. It is considered that the reason is that the agent 11 cannot be sufficiently entrained in the hot metal.
On the other hand, when the relationship between the depth of the hot metal and the distance from the upper end of the tip of the blade 16 to the upper surface of the hot metal is h1 / Z> 0.4, the desiliconization oxygen efficiency was less than 60% (Comparative Example 20). .
Even if the impeller 10 is deeply submerged with respect to the hot metal and the impeller 10 is rotated, only a part of the hot metal flowing in the vicinity of the impeller 10 can be agitated, and flows above the vane 16. It is thought that this is because sufficient stirring power cannot be applied to hot metal. The hot metal flowing above the blades 16 flows from the upstream to the downstream as it is, and is not sufficiently mixed with the desiliconizing agent 11.

したがって、溶銑の深さと羽根16の先端の上端から溶銑上面までの距離との関係は、インペラ10が溶銑に対して浮き過ぎず沈み過ぎない式(3)のようにするのがよく、このようにすることで、脱珪酸素効率を60%以上にすることができた。
[溶銑の深さと、羽根の先端の下端から溶銑流路の底部までの距離について]
表2や図10に示すように、羽根16の先端の下端が溶銑流路の底部に接触している状態になっている。即ち、h2/Z=0のときは、溶銑流路の底部と羽根16とが接触して操業自体が成り立たない。
Therefore, the relationship between the depth of the hot metal and the distance from the upper end of the tip of the blade 16 to the upper surface of the hot metal is preferably expressed by the equation (3) in which the impeller 10 does not float and sink too much with respect to the hot metal. By doing so, the desiliconization oxygen efficiency could be increased to 60% or more.
[About the depth of the hot metal and the distance from the lower end of the tip of the blade to the bottom of the hot metal flow path]
As shown in Table 2 and FIG. 10, the lower end of the tip of the blade 16 is in contact with the bottom of the hot metal flow path. That is, when h2 / Z = 0, the bottom of the hot metal flow path and the blades 16 are in contact with each other, and the operation itself is not realized.

一方で、インペラ10の羽根16を溶銑流路の底部から離し、溶銑の深さと羽根16の先端の下端から溶銑流路の底部までの距離との関係を、h2/Z>0.4にしたとき脱珪酸素効率が60%未満となった(比較例13,21,22)。
これは溶銑に対してインペラ10の羽根16をあまり沈めていないために、インペラ10の近傍を流れる一部の溶銑にしか攪拌力を与えることができず、羽根16の下方を流れる溶銑に対しては十分な攪拌力を与えることができないことが原因と考えられる。羽根16の下方を流れる溶銑は、そのまま上流から下流に向けて流れてしまい脱珪剤11との混合が十分に行われることがない。
On the other hand, the blade 16 of the impeller 10 is separated from the bottom of the hot metal flow path, and the relationship between the depth of the hot metal and the distance from the lower end of the tip of the blade 16 to the bottom of the hot metal flow path is set to h2 / Z> 0.4. In some cases, the silicon removal oxygen efficiency was less than 60% (Comparative Examples 13, 21, 22).
This is because the blades 16 of the impeller 10 are not submerged with respect to the hot metal, so that only a part of the hot metal flowing in the vicinity of the impeller 10 can be stirred. Is considered to be caused by the inability to provide sufficient stirring force. The hot metal flowing under the blades 16 flows from the upstream to the downstream as it is, and mixing with the desiliconizing agent 11 is not sufficiently performed.

したがって、溶銑の深さと羽根16の先端の下端から溶銑流路の底部までの距離との関係は、インペラ10が溶銑に対して浮き過ぎず沈み過ぎない式(4)のようにするのがよく、このようにすることで、脱珪酸素効率を60%以上にすることができた。
以上、インペラ10の羽根16の枚数を3〜6枚にすると共に、羽根を式(1),式(2)を満たすようにし、このインペラ10を、脱珪処理を行う際に、式(3),式(4)を満たすように溶銑に浸漬して回転させることによって、脱珪効率が向上すると共に、バラツキ無く安定的に脱珪を行うことができる。
Therefore, the relationship between the depth of the hot metal and the distance from the lower end of the tip of the blade 16 to the bottom of the hot metal flow path is preferably expressed by the equation (4) in which the impeller 10 does not float and sink too much with respect to the hot metal. In this way, the desiliconization oxygen efficiency could be increased to 60% or more.
As described above, the number of the blades 16 of the impeller 10 is set to 3 to 6, and the blades satisfy the expressions (1) and (2). When the impeller 10 is desiliconized, the expression (3 ), Soaking in the hot metal so as to satisfy the formula (4) and rotating, the desiliconization efficiency can be improved and the desiliconization can be performed stably without variation.

本発明は、上記の実施形態に限定されない。上記の実施形態では1つのインペラ10で溶銑を攪拌して脱珪処理を行っているが、インペラ10は樋4(出銑樋4の直線部分)或いは反応槽8内に複数設けても良い。   The present invention is not limited to the above embodiment. In the above embodiment, the hot metal is stirred with one impeller 10 to perform the desiliconization process. However, a plurality of impellers 10 may be provided in the tub 4 (the straight portion of the tub 4) or in the reaction tank 8.

本発明は、高炉から出銑した溶銑を連続的に精錬する方法に利用することができる。   The present invention can be used in a method for continuously refining hot metal discharged from a blast furnace.

図1は、高炉設備における高炉鋳床の概略平面図である。FIG. 1 is a schematic plan view of a blast furnace casting floor in a blast furnace facility. 図2は、高炉鋳床の概略側面図である。FIG. 2 is a schematic side view of a blast furnace casting floor. 図3は、溶銑供給路及びインペラの斜視図である。FIG. 3 is a perspective view of the hot metal supply path and the impeller. 図4は、インペラの浸漬状態を示す浸漬図である。FIG. 4 is an immersion diagram showing an impeller immersion state. 図5は、インペラの羽根の概略形状図である。FIG. 5 is a schematic diagram of impeller blades. 図6は、羽根の配置を説明する配置図である。FIG. 6 is a layout diagram for explaining the layout of the blades. 図7は、羽根の枚数と脱珪酸素効率との関係をまとめた図である。FIG. 7 is a diagram summarizing the relationship between the number of blades and the desiliconization oxygen efficiency. 図8は、d/Dと脱珪酸素効率との関係をまとめた図である。FIG. 8 is a graph summarizing the relationship between d / D and desiliconization oxygen efficiency. 図9は、h1/Zと脱珪酸素効率との関係をまとめた図である。FIG. 9 is a graph summarizing the relationship between h1 / Z and desiliconization oxygen efficiency. 図10は、h2/Zと脱珪酸素効率との関係をまとめた図である。FIG. 10 is a graph summarizing the relationship between h2 / Z and desiliconization oxygen efficiency.

符号の説明Explanation of symbols

1 高炉鋳床
2 高炉
4 出銑樋
5 排滓樋
8 反応槽
10 インペラ
12 添加装置
DESCRIPTION OF SYMBOLS 1 Blast furnace casting floor 2 Blast furnace 4 Outlet 5 Exhaust 8 Reaction tank 10 Impeller 12 Adder

Claims (1)

高炉鋳床の溶銑流路内を流れる溶銑に脱珪剤を添加し、インペラを溶銑に浸漬して回転させることにより溶銑と脱珪剤とを混合して溶銑中の珪素を連続的に除去する連続脱珪方法おいて、
前記溶銑に浸漬して回転させる前記インペラの羽根の枚数を3〜6枚にし、且つ当該羽根を式(1),式(2)を満たすようにしておくと共に、当該インペラを、式(3),式(4)を満たすように溶銑に浸漬することを特徴とする連続脱珪方法。
b0≧b1 ・・・(1)
0.2≦d/D≦0.8 ・・・(2)
0<h1/Z≦0.4 ・・・(3)
0<h2/Z≦0.4 ・・・(4)
ただし、
b0:羽根の基部の高さ(m)
b1:羽根の先端部の高さ(m)
d:羽根の幅(m)
D:溶銑流路の直径又は幅(m)
Z:溶銑流路内に流れる溶銑の深さ(m)
h1:羽根先端の上端から溶銑上面までの距離(m)
h2:羽根先端の下端から溶銑流路の底部までの距離(m)
Add desiliconizing agent to the hot metal flowing in the hot metal flow path of the blast furnace casting floor, mix the hot metal and desiliconizing agent by rotating the impeller immersed in the hot metal, and continuously remove the silicon in the hot metal In the continuous desiliconization method,
The number of blades of the impeller to be immersed and rotated in the hot metal is set to 3 to 6, and the blades satisfy the formulas (1) and (2). , A continuous desiliconization method characterized by immersing in hot metal so as to satisfy Equation (4).
b0 ≧ b1 (1)
0.2 ≦ d / D ≦ 0.8 (2)
0 <h1 / Z ≦ 0.4 (3)
0 <h2 / Z ≦ 0.4 (4)
However,
b0: Height of the base of the blade (m)
b1: Height of blade tip (m)
d: Blade width (m)
D: Diameter or width (m) of hot metal flow path
Z: Depth of hot metal flowing in hot metal flow path (m)
h1: Distance from the upper end of the blade tip to the hot metal upper surface (m)
h2: Distance from the lower end of the blade tip to the bottom of the hot metal flow path (m)
JP2006300643A 2005-12-08 2006-11-06 Continuous desiliconization method Expired - Fee Related JP3996622B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006300643A JP3996622B2 (en) 2005-12-08 2006-11-06 Continuous desiliconization method
CN2006800424445A CN101310028B (en) 2005-12-08 2006-12-08 Continuous refining method and continuous refining equipment
CN201210204848.7A CN102703636B (en) 2005-12-08 2006-12-08 Continuous refining method and continuous refining facility
CN201410351304.2A CN104141026B (en) 2005-12-08 2006-12-08 Continuous refining method and continuous refining equipment
PCT/JP2006/324512 WO2007066748A1 (en) 2005-12-08 2006-12-08 Continuous refining method and continuous refining facility
CN201410350529.6A CN104073585B (en) 2005-12-08 2006-12-08 Continuous refining method and continuous refining equipment
KR1020087012545A KR101000652B1 (en) 2005-12-08 2006-12-08 Continuous Refining Method at Blast Furnace Cast Floor and Equipment for blast furnace cast floor
BRPI0620031-1A BRPI0620031A2 (en) 2005-12-08 2006-12-08 continuous refinement method and continuous refinement mechanism
AU2006323664A AU2006323664B2 (en) 2005-12-08 2006-12-08 Continuous refining method and continuous refining equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005355342 2005-12-08
JP2006300643A JP3996622B2 (en) 2005-12-08 2006-11-06 Continuous desiliconization method

Publications (2)

Publication Number Publication Date
JP2007182624A true JP2007182624A (en) 2007-07-19
JP3996622B2 JP3996622B2 (en) 2007-10-24

Family

ID=38338952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300643A Expired - Fee Related JP3996622B2 (en) 2005-12-08 2006-11-06 Continuous desiliconization method

Country Status (1)

Country Link
JP (1) JP3996622B2 (en)

Also Published As

Publication number Publication date
JP3996622B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP5651283B2 (en) Process for converting copper
JP5691207B2 (en) Refining vessel for desulfurization treatment of hot metal and desulfurization treatment method
JP2007262501A (en) Method for stirring molten metal using impeller
JP5365241B2 (en) Molten steel refining equipment
JP4635672B2 (en) Method for refining molten metal
JP5078319B2 (en) Continuous refining method
JP3996622B2 (en) Continuous desiliconization method
JP2010070815A (en) Ladle for refining molten steel and method for refining molten steel
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP5085094B2 (en) Continuous refining method of blast furnace cast floor
JP5401938B2 (en) Hot metal desulfurization method
KR101423604B1 (en) Molten steel processing apparatus and the method thereof
JP2014177674A (en) Agitator for refinery and method of refining molten iron
KR101000652B1 (en) Continuous Refining Method at Blast Furnace Cast Floor and Equipment for blast furnace cast floor
JP5085096B2 (en) Continuous refining method of blast furnace cast floor and blast furnace cast floor equipment
JP5085095B2 (en) Blast furnace cast floor equipment
JP2006283090A (en) Method for refining bearing steel
JP6052436B2 (en) Method for preventing hot metal after desulphurization
JP5078318B2 (en) Continuous refining method of blast furnace cast floor
JP5439208B2 (en) Desiliconization method of hot metal in blast furnace casting
JP2005146335A (en) Method for dephosphorizing molten pig iron
JP6289204B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP2011117015A (en) Method for desulfurizing molten pig iron
JP5949637B2 (en) Method for preventing hot metal after desulphurization
JP5617195B2 (en) Hot metal desulfurization method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees