JP2007182505A - Production method for wholly aromatic thermotropic liquid crystal polyester and its use - Google Patents

Production method for wholly aromatic thermotropic liquid crystal polyester and its use Download PDF

Info

Publication number
JP2007182505A
JP2007182505A JP2006001675A JP2006001675A JP2007182505A JP 2007182505 A JP2007182505 A JP 2007182505A JP 2006001675 A JP2006001675 A JP 2006001675A JP 2006001675 A JP2006001675 A JP 2006001675A JP 2007182505 A JP2007182505 A JP 2007182505A
Authority
JP
Japan
Prior art keywords
cooling
thermotropic liquid
liquid crystal
wholly aromatic
crystal polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006001675A
Other languages
Japanese (ja)
Other versions
JP5507785B2 (en
Inventor
Satoshi Murouchi
聡士 室内
Toshio Nakayama
敏雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006001675A priority Critical patent/JP5507785B2/en
Publication of JP2007182505A publication Critical patent/JP2007182505A/en
Application granted granted Critical
Publication of JP5507785B2 publication Critical patent/JP5507785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve hue degradation of a wholly aromatic thermotropic liquid crystal polyester without deteriorating good moldability and heat resistance. <P>SOLUTION: The production method for the wholly aromatic thermotropic liquid crystal polyester is carried out by using raw materials including an aromatic hydroxycarboxylic acid, and involves an acetylation process, a melt polycondensation process, a cooling solidification process where the product by the melt polycondensation process is cooled and solidified, a process of pulverizing the solidified product and a solid-phase polycondensation process, in this order. The solidification process comprises the means of cooling with nitrogen stream, where the product is cooled to ≤50°C within 20 hours after being taken out from the melt polyconsensation process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色相に優れた全芳香族サーモトロピック液晶ポリエステルの製造方法、その製造方法によって得られた全芳香族サーモトロピック液晶ポリエステルおよびそのポリエステルを使用したLEDリフレクターに関する。   The present invention relates to a method for producing a wholly aromatic thermotropic liquid crystal polyester excellent in hue, a wholly aromatic thermotropic liquid crystal polyester obtained by the method, and an LED reflector using the polyester.

発光ダイオード(以下「LED」という。)装置として、基板上の回路パターンに導電性接着剤、ハンダ等でLED素子が実装されており、ワイヤボンディングで必要な結線がされ、LEDの光利用率を上げるためにLED素子の周囲にリフレクター(反射枠)が設けられ、リフレクター内に位置するLED素子は透光性樹脂で封止されているものが使用されている。リフレクターとしては、白色顔料等を充填した樹脂が使用されている。白色LEDは各種のものが知られているが、例えば一般的には、緑(G)、青(B)、赤(R)等の複数のLEDを組み合わせて白色を得るようにしたもの、封止樹脂中に蛍光物質を配合して波長変換の作用を利用しているものもある。波長変換をする場合は紫外線発光LEDも光源として使用できる。   As a light-emitting diode (hereinafter referred to as “LED”) device, an LED element is mounted on a circuit pattern on a substrate with a conductive adhesive, solder, etc., and necessary connection is made by wire bonding, and the light utilization rate of the LED is increased. In order to raise, a reflector (reflective frame) is provided around the LED element, and the LED element positioned in the reflector is sealed with a translucent resin. As the reflector, a resin filled with a white pigment or the like is used. Various types of white LEDs are known. For example, generally, a white LED is obtained by combining a plurality of LEDs such as green (G), blue (B), and red (R). There is also one that uses a wavelength conversion effect by blending a fluorescent material in a stop resin. In the case of wavelength conversion, an ultraviolet light emitting LED can also be used as a light source.

LED素子を基板に実装する際のハンダ等の加熱工程、封止樹脂の熱硬化時の発熱、LED装置を他の部材に結合する場合の加熱、LED装置を使用する環境における加熱等の各種の加熱履歴が避けられないので、耐熱性が要求される。さらに、白色LEDにおいては、反射面の反射率、白色性が製造時および使用期間中に維持されることが要求される。この点から、融点が320℃を超える全芳香族サーモトロピック液晶ポリエステルは、LEDリフレクター用の樹脂として適していると考えられる。しかし、全芳香族サーモトロピック液晶ポリエステルは、耐熱性、成形時の流動性に優れるが、LEDレフレクターとして使用するには色相劣化およびこれによる反射率の低下を改善することが求められている。   Various heating processes such as soldering when mounting the LED element on the substrate, heat generation during thermosetting of the sealing resin, heating when the LED device is bonded to other members, heating in the environment where the LED device is used, etc. Heating history is inevitable, so heat resistance is required. Furthermore, in white LED, it is requested | required that the reflectance of a reflective surface and whiteness should be maintained at the time of manufacture and use. From this point, it is considered that the wholly aromatic thermotropic liquid crystal polyester having a melting point exceeding 320 ° C. is suitable as a resin for an LED reflector. However, the wholly aromatic thermotropic liquid crystal polyester is excellent in heat resistance and fluidity at the time of molding. However, in order to use it as an LED reflector, it is required to improve hue deterioration and a decrease in reflectance due thereto.

融点が320℃を超える全芳香族サーモトロピック液晶ポリエステルは芳香族ヒドロキシカルボン酸を含むモノマーを原料として用いるが、溶融重縮合工程のみで所望の分子量のポリエステルを得ることは、溶融状態の重合反応生成物を長時間にわたり300℃以上の高温環境下におくことになるので当該重合反応生成物の熱劣化が避け難いので好ましくない。製造工程における熱履歴は製品の色相劣化の原因となる。そこで、比較的高温かつ比較的短時間の溶融重縮合工程によってある程度の重合度まで反応を進行させ、生成物を反応槽から排出し、冷却・固化・粉砕した後に固相重縮合工程で所望の分子量まで重合度を上げることが工業的に好ましい方法として採用されている。この場合、溶融重縮合工程で生成する副生分解物、低分子量生成物および未反応モノマー等の低分子量化合物が成形品の色相劣化の原因であると考えられており、これらが製品中に含まれることを避けなければならない。   Fully aromatic thermotropic liquid crystalline polyesters with a melting point of over 320 ° C use monomers containing aromatic hydroxycarboxylic acids as raw materials, but obtaining a polyester with the desired molecular weight only through the melt polycondensation step is the production of a polymerization reaction in the molten state. Since the product is kept in a high temperature environment of 300 ° C. or higher for a long time, it is difficult to avoid thermal degradation of the polymerization reaction product, which is not preferable. The thermal history in the manufacturing process causes the hue of the product to deteriorate. Therefore, the reaction is allowed to proceed to a certain degree of polymerization by a melt polycondensation process at a relatively high temperature and in a relatively short time, and the product is discharged from the reaction vessel, cooled, solidified and pulverized, and then desired in the solid phase polycondensation process. Increasing the degree of polymerization to the molecular weight has been adopted as an industrially preferred method. In this case, low molecular weight compounds such as by-product decomposition products, low molecular weight products and unreacted monomers generated in the melt polycondensation process are considered to cause hue deterioration of the molded product, and these are included in the product. Must be avoided.

モノマーをアセチル化して用いる方法は、溶融重縮合速度が大きいため溶融重縮合時の熱履歴の影響を低減できるので好ましいが、アセチル化工程で生成する酢酸系化合物が低分子量化合物として残存することがある。また、溶融重縮合工程の生産性を向上させるために、未アセチル化モノマーを溶融重縮合槽に仕込み、無水酢酸等を並存させて加熱下にエステル化反応によりアセチル化物を生成し、引き続いて溶融重縮合反応を実施する場合には、低分子量化合物の生成が増加する。   A method in which the monomer is acetylated and used is preferable because the melt polycondensation rate is high, so that the influence of the heat history during melt polycondensation can be reduced. However, the acetic acid compound produced in the acetylation process may remain as a low molecular weight compound. is there. In addition, in order to improve the productivity of the melt polycondensation process, unacetylated monomers are charged into the melt polycondensation tank, acetic anhydride, etc. coexist, and an acetylated product is generated by an esterification reaction under heating, followed by melting. When a polycondensation reaction is carried out, the production of low molecular weight compounds increases.

低分子量化合物の系外への除去方法は、溶融重縮合工程中、固相重縮合工程中については従来から検討されている。しかし、それだけではLEDリフレクターなどの精密部品の色相劣化を解消するには不十分である。一方、溶融重縮合工程と固相重縮合工程との間における冷却・固化・粉砕工程に関しては、これまで主として冷却・固化工程自体の効率化に関する検討が行われてきたが、これらの工程における低分子量化合物の除去について、色相劣化との点からの十分な検討がなされていなかった。   Methods for removing low molecular weight compounds out of the system have been conventionally studied during the melt polycondensation step and the solid phase polycondensation step. However, that alone is not sufficient to eliminate the hue deterioration of precision parts such as LED reflectors. On the other hand, with regard to the cooling / solidification / pulverization process between the melt polycondensation process and the solid-phase polycondensation process, studies have been made mainly on improving the efficiency of the cooling / solidification process itself. The removal of molecular weight compounds has not been sufficiently studied from the viewpoint of hue deterioration.

これまで、冷却・固化方法として、溶融重縮合槽から抜き出された重縮合反応途中の芳香族ポリエステルを、流路絞込みフィーダーを有する定量供給装置を通した後、二重式ベルト冷却機にて冷却固化する方法が提案されている(例えば、特許文献1)。しかし、この方法では冷却固化が実質的に密閉系で行われるため、冷却固化工程下での低分子量化合物の系外への除去が十分ではない。また、表面に複数の溝を有するロールにより冷却固化する方法(例えば、特許文献2)が提案されているが、同様の問題がある。   Until now, as a cooling and solidification method, after the aromatic polyester extracted from the melt polycondensation tank is passed through a quantitative supply device having a flow path narrowing feeder, a double belt cooler is used. A method of cooling and solidifying has been proposed (for example, Patent Document 1). However, in this method, the cooling and solidification is carried out substantially in a closed system, so that the removal of the low molecular weight compound outside the system under the cooling and solidification step is not sufficient. Moreover, although the method (for example, patent document 2) which cools and solidifies with the roll which has a some groove | channel on the surface is proposed, there exists a similar problem.

さらに、互いに平行な回転軸を有する一対の冷却ロールおよび、該一対の冷却ロール上に設けた一対の堰を有する冷却装置上に溶融物を供給し、該一対の冷却ロール上の該一対の堰とで形成された凹部に一時的に保持させつつ、その一部を回転する該一対の冷却ロール間を通過させて冷却固化する方法が提案されている(例えば、特許文献3)。この方法では冷却固化が開放系で行われるため、冷却固化工程下での低分子量化合物の系外への放出はある程度達成されるが、その効果は限定的であり、LEDリフレクター用樹脂に要求される性能を達成するとはいい難い。このように、冷却固化工程における低分子量化合物の除去に十分な効果を奏する具体的手段はいまだ提案されていない。   Further, the melt is supplied to a cooling device having a pair of cooling rolls having rotation axes parallel to each other and a pair of weirs provided on the pair of cooling rolls, and the pair of weirs on the pair of cooling rolls A method of cooling and solidifying by passing between a pair of cooling rolls rotating a part of the cooling roll while temporarily holding the recess formed in the above is proposed (for example, Patent Document 3). In this method, since cooling solidification is performed in an open system, the release of low molecular weight compounds to the outside of the system is achieved to some extent under the cooling solidification process, but the effect is limited, and is required for resin for LED reflectors. It is difficult to achieve the desired performance. As described above, there has not yet been proposed a specific means that has a sufficient effect for removing low molecular weight compounds in the cooling and solidifying step.

特開平6−256485号公報JP-A-6-256485 特開平2−86412号公報Japanese Patent Laid-Open No. 2-86412 特開2002−179779号公報JP 2002-179779 A

芳香族ヒドロキシカルボン酸を含むモノマーを原料とし、アセチル化工程、溶融重縮合工程、冷却固化工程、粉砕工程および固相重縮合工程によって得られる全芳香族サーモトロピック液晶ポリエステルの耐熱性、成形性を損なうことなく、成形品の色相劣化を防止することを課題とするものである。本発明者らは、色相劣化の主たる原因が、全芳香族サーモトロピック液晶ポリエステル成形品中に含まれる低分子量化合物であるとの知見を得た。したがって、該低分子量化合物を除去することが求められる。しかし、従来の溶融重縮合工程および固相重縮合工程における低分子量化合物の除去だけでは、色相劣化防止の要求に十分にこたえることができない。本発明は、溶融重縮合工程および固相重縮合工程に加えて、冷却・固化工程において低分子量化合物の除去を効率的に行う方法を提供すること、および色相劣化に優れ、LEDリフレクターに適するポリエステルを提供することを課題とするものである。   The heat resistance and moldability of wholly aromatic thermotropic liquid-crystalline polyesters obtained from monomers containing aromatic hydroxycarboxylic acids by the acetylation process, melt polycondensation process, cooling solidification process, grinding process and solid phase polycondensation process It is an object to prevent hue deterioration of a molded product without damaging it. The present inventors have found that the main cause of hue deterioration is a low molecular weight compound contained in a wholly aromatic thermotropic liquid crystal polyester molded product. Therefore, it is required to remove the low molecular weight compound. However, removal of low molecular weight compounds in the conventional melt polycondensation process and solid phase polycondensation process alone cannot sufficiently meet the demand for preventing hue deterioration. The present invention provides a method for efficiently removing a low molecular weight compound in a cooling / solidification step in addition to a melt polycondensation step and a solid phase polycondensation step, and a polyester excellent in hue deterioration and suitable for an LED reflector It is a problem to provide.

本発明の第1は、芳香族ヒドロキシカルボン酸を含む原料を用い、アセチル化工程、溶融重縮合工程、該溶融重合工程の生成物を冷却し固化する冷却固化工程、固化物を粉砕する工程および固相重縮合工程をこの順序で含む全芳香族サーモトロピック液晶ポリエステルを製造する方法であって、該冷却固化工程において窒素気流により冷却する手段を含み、かつ該溶融重縮合工程から生成物が抜出されてから20時間以内に50℃以下とすることを特徴とする全芳香族サーモトロピック液晶ポリエステルの製造方法である。   The first of the present invention uses a raw material containing an aromatic hydroxycarboxylic acid, an acetylation step, a melt polycondensation step, a cooling solidification step of cooling and solidifying the product of the melt polymerization step, a step of pulverizing the solidified product, and A method for producing a wholly aromatic thermotropic liquid crystalline polyester comprising solid phase polycondensation steps in this order, comprising means for cooling with a nitrogen stream in the cooling and solidifying step, and the product is removed from the melt polycondensation step. It is a method for producing a wholly aromatic thermotropic liquid crystal polyester, characterized in that the temperature is set to 50 ° C. or less within 20 hours after being released.

本発明の第2は、本発明の第1において、前記アセチル化工程と前記溶融重縮合工程とが同一の反応槽内で行われることを特徴とする全芳香族サーモトロピック液晶ポリエステルの製造方法である。   A second aspect of the present invention is a method for producing a wholly aromatic thermotropic liquid crystal polyester according to the first aspect of the present invention, wherein the acetylation step and the melt polycondensation step are performed in the same reaction vessel. is there.

本発明の第3は、本発明の第1あるいは第2のいずれかにおいて、前記冷却固化工程が、平行な回転軸を有する一対の冷却ロールおよび該冷却ロール上に一対の堰を有する装置を使用し、溶融状態にある溶融重縮合工程の反応物を、該冷却ロール上に溜まり部を形成しながら、該冷却ロール間を通過させる工程を含むことを特徴とする全芳香族サーモトロピック液晶ポリエステルの製造方法である。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the cooling and solidifying step uses a pair of cooling rolls having parallel rotation axes and a device having a pair of weirs on the cooling roll. And a step of allowing the reactant in the melt polycondensation step in a molten state to pass between the cooling rolls while forming a reservoir on the cooling roll. It is a manufacturing method.

本発明の第4は、本発明の第1〜第3のいずれかに記載の方法で得られた全芳香族サーモトロピック液晶ポリエステルである。   A fourth aspect of the present invention is a wholly aromatic thermotropic liquid crystal polyester obtained by the method according to any one of the first to third aspects of the present invention.

本発明の第5は、本発明の第4に係る全芳香族サーモトロピック液晶ポリエステルを含むLEDリフレクターである。   A fifth aspect of the present invention is an LED reflector including the wholly aromatic thermotropic liquid crystal polyester according to the fourth aspect of the present invention.

本発明の方法よれば、冷却固化工程における窒素気流による冷却手段および所定温度に達する時間を制御することにより、従来の製造工程に大きな改造または変更を加えることなく、色相劣化が改善された全芳香族サーモトロピック液晶ポリエステルを製造することができる。得られた全芳香族サーモトロピック液晶ポリエステルは耐熱性、色相劣化に関して条件が厳しいLEDリフレクターに特に適している。    According to the method of the present invention, by controlling the cooling means by the nitrogen stream in the cooling and solidifying process and the time to reach a predetermined temperature, the total fragrance improved in hue deterioration without major modification or change to the conventional manufacturing process. A group of thermotropic liquid crystal polyesters can be produced. The obtained wholly aromatic thermotropic liquid crystalline polyester is particularly suitable for LED reflectors having severe conditions regarding heat resistance and hue deterioration.

(全芳香族サーモトロピック液晶ポリエステル)
LEDリフレクターとして使用するためには、本発明における全芳香族サーモトロピック液晶ポリエステルは、融点が320℃以上のものであることが好ましい。融点が320℃以上の全芳香族サーモトロピック液晶ポリエステルを得るには、原料モノマーとしてp−ヒドロキシ安息香酸を40モル%以上使用するとよい。これ以外は、公知の芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジーオール、を任意に組み合わせて使用することができる。例えば、p−ヒドロキシ安息香酸や2−ヒドロキシ−6−ナフトエ酸などの芳香族ヒドロキシカルボン酸のみから得られるポリエステル、さらにこれらとテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸などの芳香族ジカルボン酸、および/またはハイドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニル、2,6−ジヒドロキシナフタレンなどの芳香族ジヒドロキシ化合物とから得られる液晶性ポリエステルなどが好ましいものとして挙げられる。
(Totally aromatic thermotropic liquid crystal polyester)
In order to use as an LED reflector, the wholly aromatic thermotropic liquid crystal polyester in the present invention preferably has a melting point of 320 ° C. or higher. In order to obtain a wholly aromatic thermotropic liquid crystalline polyester having a melting point of 320 ° C. or higher, p-hydroxybenzoic acid is preferably used in an amount of 40 mol% or more as a raw material monomer. Other than these, known aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic diols can be used in any combination. For example, polyesters obtained only from aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid. Preferable examples include acid and / or liquid crystalline polyester obtained from an aromatic dihydroxy compound such as hydroquinone, resorcin, 4,4′-dihydroxydiphenyl, and 2,6-dihydroxynaphthalene.

特に好ましくは、p−ヒドロキシ安息香酸(I)、テレフタル酸(II)、4,4’−ジヒドロキシビフェニル(III)(これらの誘導体を含む。)を80〜100モル%(但し、(I)と(II)の合計を60モル%以上とする。)、および、(I)(II)(III)のいずれかと脱縮合反応可能な他の芳香族化合物0〜20モル%を重縮合して得られる全芳香族サーモトロピック液晶ポリエステルである。   Particularly preferably, p-hydroxybenzoic acid (I), terephthalic acid (II), 4,4′-dihydroxybiphenyl (III) (including these derivatives) is contained in an amount of 80 to 100 mol% (provided that (I) and (II) is added to 60 mol% or more), and (I), (II), or (III) is condensed with any other aromatic compound capable of decondensation reaction in an amount of 0 to 20 mol%. A wholly aromatic thermotropic liquid crystal polyester.

(アセチル化工程)
上記のモノマーの水酸基を予めアセチル化した後に溶融重縮合を行う。アセチル化は反応槽中のモノマーに無水酢酸を供給して常法にて行うのが好ましい。このアセチル化工程を溶融重縮合工程と同じ反応槽を用いて行うのが好ましい。すなわち、反応槽中で原料モノマーと無水酢酸でアセチル化反応を行い、反応終了後昇温して重縮合反応に移行するのが好ましい。
(Acetylation process)
Melt polycondensation is performed after previously acetylating the hydroxyl groups of the above monomers. The acetylation is preferably carried out in a conventional manner by supplying acetic anhydride to the monomer in the reaction vessel. This acetylation step is preferably performed using the same reaction vessel as the melt polycondensation step. That is, it is preferable to carry out an acetylation reaction with a raw material monomer and acetic anhydride in a reaction vessel, and then proceed to a polycondensation reaction by raising the temperature after completion of the reaction.

(溶融重縮合工程)
本発明においては、アセチル化されたモノマーの脱酢酸反応を伴いながら溶融重縮合反応を行う。反応槽はモノマー供給手段、酢酸排出手段、溶融ポリエステル取り出し手段および攪拌手段を備えた反応槽を用いて行うのが好ましい。このような反応槽(重縮合装置)は公知のものから適宜選択することができる。重合温度は好ましくは150℃〜350℃である。アセチル化反応終了後、重合開始温度まで昇温して重縮合を開始し、0.1℃/分〜2℃/分の範囲で昇温して、最終温度として280〜350℃まで上昇させるのが好ましい。重縮合反応の触媒として、Ge,Sn,Ti、Sb、Co,Mn、Mg 等の化合物を使用することができる。重縮合の進行により生成重合体の溶融温度が上昇するのに対応して重縮合温度も上昇する。固相重縮合工程に供する溶融重縮合反応物は、低重合度の全芳香族サーモトロピック液晶ポリエステルであり、その流動点は、好ましくは200℃以上、さらに好ましくは220℃〜330℃である。
(Melt polycondensation process)
In the present invention, a melt polycondensation reaction is carried out with a deacetic acid reaction of the acetylated monomer. The reaction vessel is preferably used using a reaction vessel equipped with monomer supply means, acetic acid discharge means, molten polyester take-out means and stirring means. Such a reaction vessel (polycondensation apparatus) can be appropriately selected from known ones. The polymerization temperature is preferably 150 ° C to 350 ° C. After completion of the acetylation reaction, the temperature is raised to the polymerization start temperature to start polycondensation, the temperature is raised in the range of 0.1 ° C./min to 2 ° C./min, and the final temperature is raised to 280 to 350 ° C. Is preferred. As the catalyst for the polycondensation reaction, compounds such as Ge, Sn, Ti, Sb, Co, Mn, and Mg can be used. The polycondensation temperature rises as the melting temperature of the produced polymer rises as the polycondensation proceeds. The melt polycondensation reaction product subjected to the solid phase polycondensation step is a wholly aromatic thermotropic liquid crystal polyester having a low polymerization degree, and its pour point is preferably 200 ° C or higher, more preferably 220 ° C to 330 ° C.

(冷却固化工程)
上記流動点に相当する重合度に達したら、低重合度の全芳香族サーモトロピック液晶ポリエステルを溶融状態のまま重合槽から抜出し、スチールベルトやドラムクーラー等の冷却機へ供給し、冷却して固化させる。冷却固化工程の詳細については後記する。
(Cooling solidification process)
When the degree of polymerization corresponding to the pour point is reached, the fully aromatic thermotropic liquid crystalline polyester having a low degree of polymerization is withdrawn from the polymerization tank in a molten state, supplied to a cooler such as a steel belt or drum cooler, and cooled to solidify. Let Details of the cooling and solidifying step will be described later.

粉砕工程へ移行する前に、冷却効率を向上させるために、冷却途中の固化物を適宜の大きさに解砕することが好ましい。本発明においては、この解砕工程も冷却・固化工程の一部として含むものである。   Before shifting to the pulverization step, it is preferable to crush the solidified product during cooling to an appropriate size in order to improve the cooling efficiency. In this invention, this crushing process is also included as a part of cooling and solidification process.

(粉砕工程)
ついで、固化した低重合度の全芳香族サーモトロピック液晶ポリエステルを、後続の固相重縮合に適した大きさに粉砕する。粉砕方法は特に限定されないが、例えば、ホソカワミクロン社製のフェザーミル、ビクトミル、コロプレックス、パルベラーザー、コントラプレックス、スクロールミル、ACMパルベラ-ザー等の衝撃式粉砕機、マツボー社製の架砕式粉砕機であるロールグラニュレーター等が挙げられる。特に好ましくは、ホソカワミクロン社製のフェザーミルである。本発明においては、粉砕物の粒径に特に制限はないが、工業フルイ(タイラーメッシュ)で4メッシュ通過〜2000メッシュ不通の範囲が好ましく、5メッシュ〜2000メッシュ(0.01〜4mm)にあればさらに好ましく、9メッシュ〜1450メッシュ(0.02〜2mm)にあれば最も好ましい。
(Crushing process)
Next, the solidified wholly aromatic thermotropic liquid crystal polyester having a low polymerization degree is pulverized to a size suitable for the subsequent solid phase polycondensation. The crushing method is not particularly limited. For example, impact mills such as feather mill, Victor mill, Coroplex, Pulverizer, Contraplex, scroll mill, ACM pulverizer, etc. manufactured by Hosokawa Micron Co., Ltd. A roll granulator or the like. Particularly preferred is a feather mill manufactured by Hosokawa Micron. In the present invention, the particle size of the pulverized material is not particularly limited, but it is preferably in the range of 4 mesh to 2000 mesh not passing through an industrial sieve (Tyler mesh), preferably 5 mesh to 2000 mesh (0.01 to 4 mm). More preferably, it is most preferably 9 mesh to 1450 mesh (0.02 to 2 mm).

(固相重縮合工程)
ついで、粉砕工程で得られた粉砕物を固相重縮合工程に供して固相重縮合を行う。固相重縮合工程に使用する装置、運転条件には特に制限はなく、公知の装置および方法を用いることができる。LEDリフレクターとして使用するためには、融点が320℃以上のものが得られるまで固相重縮合反応を行う。
(Solid phase polycondensation process)
Next, the pulverized product obtained in the pulverization step is subjected to a solid phase polycondensation step to perform solid phase polycondensation. There is no restriction | limiting in particular in the apparatus used for a solid-phase polycondensation process, and operating conditions, A well-known apparatus and method can be used. For use as an LED reflector, a solid phase polycondensation reaction is performed until a melting point of 320 ° C. or higher is obtained.

(冷却固化工程の詳細)
本発明者らは、全芳香族サーモトロピック液晶ポリエステルの色相劣化の原因として、製造工程における熱履歴および/または製品ポリマー中の残存低分子化合物あるいはこれらの相互作用を考えている。特に、溶融重縮合反応槽から抜出された溶融状態にある重縮合反応物の初期温度が280℃〜350℃と高温であること、残存低分子化合物等が比較的多量に存在することから熱分解や酸化劣化反応等が生じやすい環境にあり、この段階での適切な対応が、後述する実施例および比較例に示した事実から明らかなように、最終的な全芳香族サーモトロピック液晶ポリエステルの色相劣化を抑制するものである。
(Details of cooling solidification process)
The present inventors consider the thermal history in the manufacturing process and / or the residual low molecular weight compound in the product polymer or their interaction as the cause of the hue deterioration of the wholly aromatic thermotropic liquid crystal polyester. In particular, since the initial temperature of the polycondensation reaction product in the molten state extracted from the melt polycondensation reaction tank is as high as 280 ° C. to 350 ° C., and there are a relatively large amount of residual low molecular weight compounds, etc. The environment is prone to degradation and oxidative degradation reactions. Appropriate responses at this stage are evident from the facts shown in the examples and comparative examples described below, and the final fully aromatic thermotropic liquid crystal polyester It suppresses hue deterioration.

本発明においては、溶融重縮合工程後に溶融重縮合反応槽から抜き出された低重合度の全芳香族サーモトロピック液晶ポリエステルを冷却固化する工程において、窒素気流を冷媒として用いて冷却する手段を含むことを特徴とする。この冷却手段は、自然冷却(放置)する以上の温度降下になるように窒素気流により強制冷却することに加えて、該低重合度の全芳香族液晶ポリエステルから放出される低分子量化合物等(特に酢酸系化合物)が窒素気流により移送されることが必要である。さらに、窒素の不活性性により酸化反応の抑制も達成される。ただし、必ずしも冷却固化工程の総ての段階が、窒素により完全に置換された密閉系で行われることを意味するものではない。窒素源としては、たとえば、化学工場内に常設されている窒素源からの窒素を用いることができる。   In the present invention, in the step of cooling and solidifying the wholly aromatic thermotropic liquid crystal polyester having a low polymerization degree extracted from the melt polycondensation reaction tank after the melt polycondensation step, a means for cooling using a nitrogen stream as a refrigerant is included. It is characterized by that. This cooling means includes a low molecular weight compound released from the wholly aromatic liquid crystal polyester having a low degree of polymerization (in particular, in addition to forced cooling with a nitrogen stream so that the temperature drops more than that of natural cooling (standing). It is necessary that the acetic acid compound) be transferred by a nitrogen stream. Furthermore, suppression of the oxidation reaction is also achieved by the inertness of nitrogen. However, it does not necessarily mean that all the stages of the cooling and solidification process are performed in a closed system that is completely replaced by nitrogen. As the nitrogen source, for example, nitrogen from a nitrogen source permanently installed in a chemical factory can be used.

本発明においては、溶融重縮合工程から生成物が抜出されてから、20時間以内に冷却固化物の温度を50℃以下にする。50℃以上の温度が20時間以上継続すると、リフレクター等に使用した場合に色相劣化問題を生じることがある。窒素気流の温度および流量は、被冷却物の量、形状あるいは装置の形状等により適宜選択できる。工場内の窒素源を用いる場合は、外気温または室温のものを用いることに支障はない。窒素気流の温度の上限は冷却効果があればよい。すなわち、被冷却物である溶融重縮合物、溶融重縮合固化物より低温であればよく、温度を逓減させて冷却してもよいが、最終的に50℃以下にすることから、50℃以下のものを用いることが好ましい。ただし、窒素気流中およびまたは環境中の水分が凝固する温度以下の窒素気流、特に、系内の水分を氷結させる0℃以下の窒素は好ましくない。   In the present invention, the temperature of the cooled solidified product is set to 50 ° C. or less within 20 hours after the product is extracted from the melt polycondensation step. If the temperature of 50 ° C. or more continues for 20 hours or more, a hue deterioration problem may occur when used in a reflector or the like. The temperature and flow rate of the nitrogen stream can be appropriately selected depending on the amount and shape of the object to be cooled, the shape of the apparatus, and the like. When using a nitrogen source in a factory, there is no problem in using one at an outside temperature or room temperature. The upper limit of the temperature of the nitrogen stream only needs to have a cooling effect. That is, it should be lower than the melt polycondensate or melt polycondensate that is to be cooled, and may be cooled by gradually decreasing the temperature. It is preferable to use those. However, a nitrogen stream below the temperature at which moisture in the nitrogen stream and / or the environment solidifies, particularly nitrogen at 0 ° C. or below which freezes the moisture in the system is not preferred.

本発明の冷却固化工程において、平行な回転軸を有する一対の冷却ロールおよび該冷却ロール上に一対の堰を有する装置を使用し、溶融状態にある溶融重縮合工程の反応物(低重合度の全芳香族サーモトロピック液晶ポリエステル)を、該冷却ロール上に溜まり部を形成しながら、該冷却ロール間を通過させる工程を含むことが好ましい。このような工程としては、本発明者らの発明に係る特開2002−179779号公報に開示されているものが好ましく使用できる。この工程によるときは、ロール上に保持される溶融状態にある溶融重縮合反応物と外気との界面の更新が継続して行われるため、当該部分における本発明に係る窒素気流使用の効果が大きい。また、解砕した固化物について、窒素気流による冷却を行い所定時間内に所定の温度に到達させることも好ましい方法である。   In the cooling and solidifying step of the present invention, a reaction product (low polymerization degree) having a molten polycondensation step in a molten state is used by using a pair of cooling rolls having parallel rotation axes and a device having a pair of weirs on the cooling roll. It is preferable to include a step of allowing the wholly aromatic thermotropic liquid crystal polyester) to pass between the cooling rolls while forming a pool portion on the cooling roll. As such a process, what is indicated by JP, 2002-179779, A concerning the present inventors' invention can be used preferably. When this step is performed, since the interface between the melt polycondensation reaction product in a molten state held on the roll and the outside air is continuously updated, the effect of using the nitrogen stream according to the present invention in the part is large. . Moreover, it is also a preferable method that the crushed solidified product is cooled with a nitrogen stream to reach a predetermined temperature within a predetermined time.

本発明の製造方法によって得られた全芳香族サーモトロピック液晶ポリエステルは、融点が320℃以上であって耐熱性に優れるだけでなく色相劣化が改良された新規なものである。   The wholly aromatic thermotropic liquid crystalline polyester obtained by the production method of the present invention has a melting point of 320 ° C. or higher and is excellent not only in heat resistance but also in improved hue deterioration.

本発明の全芳香族サーモトロピック液晶ポリエステルを含むLED用リフレクターは、周知の方法、たとえば、ルチル型酸化チタンを配合して組成物を得、これを射出成形等の成形手段によって成形することによって得られる。   The reflector for LED containing the wholly aromatic thermotropic liquid crystal polyester of the present invention is obtained by a well-known method, for example, by blending rutile type titanium oxide to obtain a composition, which is molded by molding means such as injection molding. It is done.

(溶融重縮合工程)
ダブルヘリカル型攪拌羽を有し、内容積が1.7m3の、SUS316L(ステンレス鋼)製の反応槽に、p−ヒドロキシ安息香酸(上野製薬株式会社製)298.3kg(2.16キロモル)、4,4’−ジヒドロキシジフェニル(本州化学工業株式会社製)134.1kg(0.72キロモル)、テレフタル酸(三井化学株式会社製)89.7kg(0.54キロモル)、イソフタル酸(エイジーインターナショナル社製)29.9kg(0.18キロモル)、触媒として酢酸マグネシウム(キシダ化学株式会社製)0.11kg、酢酸カリウム(キシダ化学株式会社製)0.04kgを仕込んだ。そして、重合槽の減圧−窒素注入を2回行って窒素置換した後、無水酢酸385.9kg(3.78キロモル)を添加し、攪拌翼の回転数45rpmで150℃まで1.5時間で昇温して還流状態で2時間アセチル化反応を行った。アセチル化終了後、酢酸留出状態にして0.5℃/分で昇温して310℃まで昇温し、発生する酢酸を除去しながら重合反応を5時間20分行った。
(Melt polycondensation process)
In a reaction vessel made of SUS316L (stainless steel) having a double helical stirring blade and an internal volume of 1.7 m 3 , 298.3 kg (2.16 kgol) of p-hydroxybenzoic acid (manufactured by Ueno Pharmaceutical Co., Ltd.) 4,4'-dihydroxydiphenyl (Honshu Chemical Co., Ltd.) 134.1 kg (0.72 kgmol), terephthalic acid (Mitsui Chemicals) 89.7 kg (0.54 kgmol), isophthalic acid (AG International) 29.9 kg (0.18 kgole), 0.11 kg of magnesium acetate (manufactured by Kishida Chemical Co., Ltd.), and 0.04 kg of potassium acetate (manufactured by Kishida Chemical Co., Ltd.) were charged as catalysts. Then, after depressurizing and injecting nitrogen into the polymerization tank twice to replace with nitrogen, 385.9 kg (3.78 kgol) of acetic anhydride was added, and the temperature was increased to 150 ° C. at a rotation speed of a stirring blade at 45 rpm in 1.5 hours. The acetylation reaction was carried out for 2 hours at warm and reflux. After the acetylation was completed, the reaction was carried out in acetic acid distillation, the temperature was raised at 0.5 ° C./min and the temperature was raised to 310 ° C., and the polymerization reaction was carried out for 5 hours and 20 minutes while removing the generated acetic acid.

ついで、反応槽系を密閉し、その系内を窒素で14.7N/cm2(1.5kgf/cm2)に加圧し、反応槽内の質量約480kgの溶融重縮合反応生成物である低重合度全芳香族サーモトロピック液晶ポリエステルを、反応槽の底部の抜出し口から抜出し後述の冷却固化装置に供給した。このときの溶融重縮合反応生成物の温度は310℃であった。 Next, the reaction vessel system was sealed, and the inside of the reaction vessel was pressurized to 14.7 N / cm 2 (1.5 kgf / cm 2 ) with nitrogen, and a low polycondensation reaction product having a mass of about 480 kg in the reaction vessel. A fully aromatic thermotropic liquid crystalline polyester having a degree of polymerization was extracted from the outlet at the bottom of the reaction vessel and supplied to a cooling and solidifying apparatus described later. The temperature of the melt polycondensation reaction product at this time was 310 ° C.

(冷却固化工程)
冷却固化装置として、特開2002−179979に従い、直径630mmの一対の冷却ロール、ロール間距離2mm、距離1800mmの一対の堰を有する装置を用いた。該一対の冷却ロールを18rpmの回転数で対向回転させ、該一対の冷却ロールと該一対の堰とで形成された凹部に、重縮合反応槽から抜出された流動状態の溶融重縮合反応生成物を徐々に供給し、該凹部内に保持させつつ、該一対の冷却ロール内の冷却水の流量を調整してロール表面温度を調整し、ロール間を通過直後に冷却固化した低重合度サーモトロピック液晶ポリエステルの表面温度は220℃であった。得られた厚み2mmのシート状の固化物を解砕機(日空工業株式会社製)により、おおよそ50mm角に解砕した。
(Cooling solidification process)
As a cooling and solidifying apparatus, an apparatus having a pair of cooling rolls having a diameter of 630 mm, a distance between rolls of 2 mm, and a pair of weirs having a distance of 1800 mm was used in accordance with Japanese Patent Application Laid-Open No. 2002-179979. The pair of cooling rolls are rotated opposite to each other at a rotation speed of 18 rpm, and a melt polycondensation reaction in a fluid state extracted from a polycondensation reaction tank is formed in a recess formed by the pair of cooling rolls and the pair of weirs. The low polymerization degree thermostat which is gradually solidified immediately after passing between the rolls by adjusting the flow rate of the cooling water in the pair of cooling rolls and adjusting the surface temperature of the rolls while gradually supplying the product and holding it in the recess. The surface temperature of the tropic liquid crystal polyester was 220 ° C. The obtained sheet-like solidified product having a thickness of 2 mm was crushed to approximately 50 mm square by a crusher (manufactured by Nisso Kogyo Co., Ltd.).

コンテナ2基に上記解砕機で処理した固化物を約80容量%まで充填した。コンテナは1100mm×1100mm×1100mmの直方体で、下部より700mm部分が45°角錐状に切り取られた形状で、下部に窒素流入口を設け、上部には窒素の抜き出し口を設け、導管を接続させて酢酸系化合物トラップに接続した物を用いた。コンテナ下部から窒素を流入させ、解砕物の隙間を通過し、上部の窒素排出口から排出するように、窒素を流した。実施例1〜3および比較例1は表1に示す流量を用いた。比較例2は、窒素気流の代わりに空気(エアー)を用いた。比較例3は、窒素気流も空気を流さず、放冷した。   Two containers were filled up to about 80% by volume with the solidified material processed by the above-mentioned crusher. The container is a 1100mm x 1100mm x 1100mm cuboid, with a 700mm portion cut from the bottom in a 45 ° pyramid shape, with a nitrogen inlet at the bottom, a nitrogen outlet at the top, and a conduit connected. The thing connected to the acetic acid type compound trap was used. Nitrogen was allowed to flow from the bottom of the container, passed through the gap between the crushed materials, and discharged from the upper nitrogen outlet. In Examples 1 to 3 and Comparative Example 1, the flow rates shown in Table 1 were used. In Comparative Example 2, air was used instead of the nitrogen stream. In Comparative Example 3, the nitrogen stream was also allowed to cool without flowing air.

コンテナ内に設置された、解砕物充填層の上部、中部、下部のそれぞれの温度を1時間毎に測定した。総ての温度が50℃以下になった時間を50℃到達時間とし、冷却固化工程を終了した。実施例、比較例の50℃到達時間を表1に示す。   Each temperature of the upper part, the middle part, and the lower part of the crushed material packed bed installed in the container was measured every hour. The time when all the temperatures were 50 ° C. or lower was defined as 50 ° C. arrival time, and the cooling and solidifying step was completed. Table 1 shows the arrival times at 50 ° C. in Examples and Comparative Examples.

(粉砕工程および固相重縮合工程)
この解砕物を、ホソカワミクロン株式会社製のフェザーミルを用いて1mmメッシュで粉砕した、固相重縮合用原料を得た。粉砕物は、目開き1mmのメッシュを通過するものであった。該粉砕物をロータリーキルンに収納し、窒素雰囲気中で、窒素流通下、室温から170℃まで3時間かけて昇温した後、280℃まで5時間かけて昇温し、さらに、300℃まで3時間かけて昇温して固相重縮合を行い、全芳香族サーモトロピック液晶ポリエステルを得た。
(Crushing process and solid phase polycondensation process)
This pulverized product was pulverized with a 1 mm mesh using a feather mill manufactured by Hosokawa Micron Corporation to obtain a raw material for solid phase polycondensation. The pulverized material passed through a mesh having an opening of 1 mm. The pulverized product is stored in a rotary kiln, heated in a nitrogen atmosphere from room temperature to 170 ° C. over 3 hours in a nitrogen stream, then heated up to 280 ° C. over 5 hours, and further up to 300 ° C. for 3 hours. The mixture was heated up and subjected to solid phase polycondensation to obtain a wholly aromatic thermotropic liquid crystal polyester.

(色相劣化の測定)
このようにして得られた全芳香族サーモトロピック液晶ポリエステル70質量部、旭ファイバーグラス株社製ガラスファイバーPX−1(平均長さ3mm、平均系10μ)30質量部をリボンブレンダーで混合し2軸押出機(池貝鉄工株式会社製、PCM−30)で最高バレル温度370℃で溶融混練し、ペレタイズした。これを成形材料として、射出成形機(日精樹脂工業株式会社製、UH−1000)を使用してバレル温度350℃、金型温度80℃の成形条件で、60mm×60mm×1mmのΔE評価用サンプルを得た。ΔEの評価はJISZ8729に準拠して実施した。結果を表1に示す。
(Measurement of hue deterioration)
Biaxially blended 70 parts by mass of the wholly aromatic thermotropic liquid crystal polyester thus obtained and 30 parts by mass of glass fiber PX-1 (average length 3 mm, average system 10 μm) manufactured by Asahi Fiber Glass Co., Ltd. with a ribbon blender. It was melt-kneaded at a maximum barrel temperature of 370 ° C. with an extruder (Ikegai Iron Works Co., Ltd., PCM-30) and pelletized. Using this as a molding material, a sample for ΔE evaluation of 60 mm × 60 mm × 1 mm under molding conditions of a barrel temperature of 350 ° C. and a mold temperature of 80 ° C. using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., UH-1000). Got. ΔE was evaluated according to JISZ8729. The results are shown in Table 1.

Figure 2007182505
Figure 2007182505

表1に示したように、冷却固化工程での窒素気流による冷却および50℃到達時間の両方の要件を満たした実施例1〜3は、これらの要件を満たさない比較例よりも色相劣化が改善されている。   As shown in Table 1, in Examples 1 to 3, which satisfy both requirements of cooling by a nitrogen stream in the cooling and solidifying step and 50 ° C. arrival time, the hue deterioration is improved as compared with the comparative example not satisfying these requirements. Has been.

本発明の全芳香族サーモトロピック液晶ポリエステルは従来の良好な成形性および耐熱性を損なうことなく、色相劣化が改善されたものであるので、これまで色相の問題で使用が限られていた光学部品の素材として利用可能性を拡大することができた。 The wholly aromatic thermotropic liquid crystal polyester of the present invention has improved hue deterioration without impairing the conventional good moldability and heat resistance, so that it has been limited to use due to hue problems so far. It was possible to expand the use possibility as a material of

Claims (5)

芳香族ヒドロキシカルボン酸を含む原料を用い、アセチル化工程、溶融重縮合工程、該溶融重合工程の生成物を冷却し固化する冷却固化工程、固化物を粉砕する工程および固相重縮合工程をこの順序で含む全芳香族サーモトロピック液晶ポリエステルを製造する方法であって、該冷却固化工程において窒素気流により冷却する手段を含み、かつ該溶融重縮合工程から生成物が抜出されてから20時間以内に50℃以下とすることを特徴とする全芳香族サーモトロピック液晶ポリエステルの製造方法。   Using raw materials containing an aromatic hydroxycarboxylic acid, this process includes an acetylation step, a melt polycondensation step, a cooling and solidification step for cooling and solidifying the product of the melt polymerization step, a step for pulverizing the solidified product, and a solid phase polycondensation step. A method for producing a wholly aromatic thermotropic liquid crystalline polyester comprising in order, comprising means for cooling with a nitrogen stream in the cooling and solidifying step, and within 20 hours after the product is withdrawn from the melt polycondensation step And a method for producing a wholly aromatic thermotropic liquid crystal polyester, wherein the temperature is 50 ° C. or lower. 前記アセチル化工程と前記溶融重縮合工程とが同一の反応槽内で行われることを特徴とする請求項1に記載の全芳香族サーモトロピック液晶ポリエステルの製造方法。   The method for producing a wholly aromatic thermotropic liquid crystal polyester according to claim 1, wherein the acetylation step and the melt polycondensation step are performed in the same reaction vessel. 前記冷却固化工程が、平行な回転軸を有する一対の冷却ロールおよび該冷却ロール上に一対の堰を有する装置を使用し、溶融状態にある溶融重縮合工程の反応物を、該冷却ロール上に溜まり部を形成しながら、該冷却ロール間を通過させる工程を含むことを特徴とする請求項1あるいは請求項2のいずれかに記載の全芳香族サーモトロピック液晶ポリエステルの製造方法。   The cooling and solidifying step uses a pair of cooling rolls having parallel rotation axes and a device having a pair of weirs on the cooling roll, and the reaction product in the melt polycondensation step in a molten state is placed on the cooling roll. The method for producing a wholly aromatic thermotropic liquid crystal polyester according to claim 1, further comprising a step of passing between the cooling rolls while forming a pool portion. 請求項1〜請求項3のいずれかに記載の方法で得られた全芳香族サーモトロピック液晶ポリエステル。   A wholly aromatic thermotropic liquid crystal polyester obtained by the method according to any one of claims 1 to 3. 請求項4記載の全芳香族サーモトロピック液晶ポリエステルを含むLEDリフレクター。   An LED reflector comprising the wholly aromatic thermotropic liquid crystal polyester according to claim 4.
JP2006001675A 2006-01-06 2006-01-06 Method for producing wholly aromatic thermotropic liquid crystal polyester and use thereof Expired - Fee Related JP5507785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001675A JP5507785B2 (en) 2006-01-06 2006-01-06 Method for producing wholly aromatic thermotropic liquid crystal polyester and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001675A JP5507785B2 (en) 2006-01-06 2006-01-06 Method for producing wholly aromatic thermotropic liquid crystal polyester and use thereof

Publications (2)

Publication Number Publication Date
JP2007182505A true JP2007182505A (en) 2007-07-19
JP5507785B2 JP5507785B2 (en) 2014-05-28

Family

ID=38338865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001675A Expired - Fee Related JP5507785B2 (en) 2006-01-06 2006-01-06 Method for producing wholly aromatic thermotropic liquid crystal polyester and use thereof

Country Status (1)

Country Link
JP (1) JP5507785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100139105A (en) 2008-03-28 2010-12-31 제이엑스 닛코닛세키에너지주식회사 Liquid-crystal polyester resin composition for camera modules
JP2011132512A (en) * 2009-11-30 2011-07-07 Sumitomo Chemical Co Ltd Method for manufacturing liquid crystalline polyester, liquid crystalline polyester composition, reflector plate, and light-emitting device
JP2011213802A (en) * 2010-03-31 2011-10-27 Sumitomo Chemical Co Ltd Method for producing liquid-crystalline polyester powder
CN102816308A (en) * 2012-08-09 2012-12-12 东华大学 Preparation method of thermotropic liquid crystal polyarylate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429421A (en) * 1987-07-06 1989-01-31 Hoechst Celanese Corp Melt processable polyester capable of forming anisotropic melt phase
JPH0255724A (en) * 1988-08-23 1990-02-26 Tosoh Corp Preparation of wholly aromatic copolyester
JPH02127424A (en) * 1988-11-04 1990-05-16 Sumitomo Chem Co Ltd Production of aromatic polyester
JPH03731A (en) * 1989-05-30 1991-01-07 Tosoh Corp Preparation of wholly aromatic copolyester
JP2002012778A (en) * 2000-04-12 2002-01-15 Sumitomo Chem Co Ltd Liquid crystal resin composition, film, and method of manufacturing therefor
JP2002179779A (en) * 2000-12-13 2002-06-26 Nippon Petrochem Co Ltd Method for cooling/solidifying of molten thermotropic liquid crystalline polymer and method for solid phase polymerization of thermotropic liquid crystalline polymer
JP2002201344A (en) * 2000-11-06 2002-07-19 Toray Ind Inc Liquid crystalline resin composition, method for producing the same and molded product
JP2004256673A (en) * 2003-02-26 2004-09-16 Sumitomo Chem Co Ltd Liquid crystalline polyester resin for reflector
JP2004256656A (en) * 2003-02-26 2004-09-16 Toray Ind Inc Liquid crystalline polyester and composition containing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429421A (en) * 1987-07-06 1989-01-31 Hoechst Celanese Corp Melt processable polyester capable of forming anisotropic melt phase
JPH0255724A (en) * 1988-08-23 1990-02-26 Tosoh Corp Preparation of wholly aromatic copolyester
JPH02127424A (en) * 1988-11-04 1990-05-16 Sumitomo Chem Co Ltd Production of aromatic polyester
JPH03731A (en) * 1989-05-30 1991-01-07 Tosoh Corp Preparation of wholly aromatic copolyester
JP2002012778A (en) * 2000-04-12 2002-01-15 Sumitomo Chem Co Ltd Liquid crystal resin composition, film, and method of manufacturing therefor
JP2002201344A (en) * 2000-11-06 2002-07-19 Toray Ind Inc Liquid crystalline resin composition, method for producing the same and molded product
JP2002179779A (en) * 2000-12-13 2002-06-26 Nippon Petrochem Co Ltd Method for cooling/solidifying of molten thermotropic liquid crystalline polymer and method for solid phase polymerization of thermotropic liquid crystalline polymer
JP2004256673A (en) * 2003-02-26 2004-09-16 Sumitomo Chem Co Ltd Liquid crystalline polyester resin for reflector
JP2004256656A (en) * 2003-02-26 2004-09-16 Toray Ind Inc Liquid crystalline polyester and composition containing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100139105A (en) 2008-03-28 2010-12-31 제이엑스 닛코닛세키에너지주식회사 Liquid-crystal polyester resin composition for camera modules
US8192645B2 (en) 2008-03-28 2012-06-05 Jx Nippon Oil & Energy Corporation Liquid crystal polyester resin composition for camera module
JP2011132512A (en) * 2009-11-30 2011-07-07 Sumitomo Chemical Co Ltd Method for manufacturing liquid crystalline polyester, liquid crystalline polyester composition, reflector plate, and light-emitting device
JP2011213802A (en) * 2010-03-31 2011-10-27 Sumitomo Chemical Co Ltd Method for producing liquid-crystalline polyester powder
CN102816308A (en) * 2012-08-09 2012-12-12 东华大学 Preparation method of thermotropic liquid crystal polyarylate

Also Published As

Publication number Publication date
JP5507785B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5201799B2 (en) Totally aromatic thermotropic liquid crystal polyester resin composition, injection molded body thereof, and optical device using the molded body
JP5939729B2 (en) Liquid crystal polyester resin composition, molded product thereof, and optical device
TWI431064B (en) Light reflectance and good strength of the liquid crystal polyester composition
TWI535781B (en) A liquid crystal polyester resin composition, a molded body, and an LED reflector
JP5681700B2 (en) Totally aromatic thermotropic liquid crystal polyester resin composition, molded article, and LED reflector
TWI495681B (en) A parenting thermotropic liquid crystal polyester resin composition, a molded body, and an LED reflector
JP5866423B2 (en) Liquid crystal polyester resin composition, molded article and LED reflector
JP2011063699A (en) Molding method for and molded article of liquid crystal polyester resin composition
TWI526468B (en) Liquid crystal polyester manufacturing method
JP2016041828A (en) Liquid crystal polyester resin composition, molded product, and led reflector
JP5507785B2 (en) Method for producing wholly aromatic thermotropic liquid crystal polyester and use thereof
CN102731751A (en) Method for producing liquid crystal polyester
CA2425357A1 (en) Wholly aromatic polyester carbonate and process for production of same
WO2015178500A1 (en) Wholly aromatic liquid crystalline polyester resin and injection molded body of said resin composition
JP2013075990A (en) Liquid crystalline polymer, molded product, and methods for manufacturing liquid crystalline polymer
JP2001151872A (en) Liquid crystalline aromatic polyester film and method for producing the same
JP2003301036A (en) Granular wholly aromatic polyester molding and process for producing wholly aromatic polyester by using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5507785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees