JP2007182419A - Proline derivative and optically active anti-selection promoting catalyst - Google Patents

Proline derivative and optically active anti-selection promoting catalyst Download PDF

Info

Publication number
JP2007182419A
JP2007182419A JP2006148905A JP2006148905A JP2007182419A JP 2007182419 A JP2007182419 A JP 2007182419A JP 2006148905 A JP2006148905 A JP 2006148905A JP 2006148905 A JP2006148905 A JP 2006148905A JP 2007182419 A JP2007182419 A JP 2007182419A
Authority
JP
Japan
Prior art keywords
group
substituent
optically active
active anti
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148905A
Other languages
Japanese (ja)
Inventor
Yujiro Hayashi
雄二郎 林
Mitsuru Shoji
満 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2006148905A priority Critical patent/JP2007182419A/en
Publication of JP2007182419A publication Critical patent/JP2007182419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst having promoted anti-selectivity and a method for producing an optically active anti-form aldol compound by using the catalyst. <P>SOLUTION: The optically active anti-selection promoting catalyst is composed of a combination of proline and a substance or functional group to increase the lipid solubility of proline. The substance to increase the lipid solubility is a carboxylic acid, tetrazole, a carboxamide or a carboxamide having aryl group, heterocyclic group or alkyl group on nitrogen atom, and the functional group is aryl group, heterocyclic group, alkyl group, acyl group or silyl group which may have a substituent. Exclusively water or a non-polar solvent can be used as the solvent by carrying out the reaction in the presence of the catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルドール反応の触媒として有用であるプロリン誘導体に関し、更に、医薬品、農薬などの基本骨格として重要であるβ−ヒドロキシカルボニル化合物の光学活性体の製造方法に関する。   The present invention relates to a proline derivative useful as a catalyst for aldol reaction, and further relates to a method for producing an optically active form of a β-hydroxycarbonyl compound which is important as a basic skeleton of pharmaceuticals, agricultural chemicals and the like.

アルドール反応はβ−ヒドロキシカルボニル化合物を製造する優れた反応である。β−ヒドロキシカルボニル化合物は、多くの有用な生物活性化合物、医薬品、農薬などの基本骨格に見られる重要な光学活性合成中間体である。   The aldol reaction is an excellent reaction for producing a β-hydroxycarbonyl compound. β-hydroxycarbonyl compounds are important optically active synthetic intermediates found in the basic skeletons of many useful biologically active compounds, pharmaceuticals, agricultural chemicals and the like.

光学活性アルドール体の優れた製造方法として、不斉触媒アルドール反応がある。これまでの方法として、下記の非特許文献1、2には、ケトンあるいはエステルを一旦シリルエノールエーテル、あるいは、ケテンシリルアセタールに導き、光学活性なルイス酸触媒を作用させる方法が開示されている。   As an excellent method for producing an optically active aldol compound, there is an asymmetric catalytic aldol reaction. Non-Patent Documents 1 and 2 listed below disclose a method in which a ketone or ester is once led to silyl enol ether or ketene silyl acetal and an optically active Lewis acid catalyst is allowed to act.

下記の非特許文献3にはプロリンのカルボン酸部位をスルホンアミドで置換した誘導体がアセトンとニトロベンズアルデヒドのアルドール反応において98%eeと非常に高い不斉収率を得ることできることが開示されている。また、アミド部位を改変した触媒について、Wu等は、ジフェニルアミノエタノール部位を有するプロリンアミドを用いたときに非常に高い不斉収率を与えることが、下記の非特許文献4に開示されている。   Non-Patent Document 3 below discloses that a derivative obtained by substituting the carboxylic acid moiety of proline with sulfonamide can obtain a very high asymmetric yield of 98% ee in the aldol reaction of acetone and nitrobenzaldehyde. Non-Patent Document 4 below discloses that Wu et al. Give a very high asymmetric yield when a proline amide having a diphenylaminoethanol moiety is used for a catalyst having a modified amide moiety. .

非特許文献5には、水と有機溶媒の混合系で行う反応として、シリルエノールエーテルを用い、光学活性なルイス酸触媒を活性化剤にする反応において、高い光学収率で付加体が得られることが開示されている。   In Non-Patent Document 5, an adduct is obtained with a high optical yield in a reaction using a silyl enol ether and an optically active Lewis acid catalyst as an activator as a reaction performed in a mixed system of water and an organic solvent. It is disclosed.

非特許文献6には、4−チアノンと、非特許文献7には、2,2−ジメチル−1,3−ジオキサン−5−オンと、各種アルデヒドのアルドール反応が高アンチ選択的に、かつ高エナンチオ選択的に進行することが開示されている。   Non-Patent Document 6 includes 4-thianone, and Non-patent Document 7 includes 2,2-dimethyl-1,3-dioxane-5-one and aldol reactions of various aldehydes with high anti-selectivity and high levels. It is disclosed to proceed enantioselectively.

非特許文献8には、アルデヒド−アルデヒド間の不斉触媒アルドール反応が開示されている。これは、触媒としてプロリンを用いるもので、求電子的なアルデヒドを過剰量用い、求核的なアルデヒドを少量ずつ長い時間をかけて滴下する手法である。
Modern Aldol Reactions Vols 1,2;Mahrwald, R. Ed,; Wiley-VCH: Weinheim, 2004. Comprehensive Asymmetric Catalysis I-III; Jacobsen, E. N.; Pfaltz, A.;Yamamoto, H. Eds.; Springer: Berlin, 1999. A. Berkessel, B. Koch, . Lex, Adv. Synth. Catal., 346, 1141 (2004) Z. Tang, F. Jiang, X. Cui, L. Gong, A. Mi, Y. Jiang, Y. Wu, Proc. Natl. Acad. Sci. U.S.A., 101, 5755 (2004) Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989 A. I. Nyberg, A. Usano, P. M. Pihko, Synlett, 2004, 1891 D. Enders, C. Grondal, Angew. Chem. Int. Ed. 2005, 44, 1210 Northup, A. B.; MacMillan, D. W, C. J. Am. Chem. Soc. 2002, 124, 6798
Non-Patent Document 8 discloses an asymmetric catalytic aldol reaction between aldehyde and aldehyde. This is a technique in which proline is used as a catalyst, and an excessive amount of electrophilic aldehyde is used and a nucleophilic aldehyde is dropped little by little over a long period of time.
Modern Aldol Reactions Vols 1,2; Mahrwald, R. Ed ,; Wiley-VCH: Weinheim, 2004. Comprehensive Asymmetric Catalysis I-III; Jacobsen, EN; Pfaltz, A .; Yamamoto, H. Eds .; Springer: Berlin, 1999. A. Berkessel, B. Koch,. Lex, Adv. Synth. Catal., 346, 1141 (2004) Z. Tang, F. Jiang, X. Cui, L. Gong, A. Mi, Y. Jiang, Y. Wu, Proc. Natl. Acad. Sci. USA, 101, 5755 (2004) Hamada, T .; Manabe, K .; Ishikawa, S .; Nagayama, S .; Shiro, M .; Kobayashi, SJ Am. Chem. Soc. 2003, 125, 2989 AI Nyberg, A. Usano, PM Pihko, Synlett, 2004, 1891 D. Enders, C. Grondal, Angew. Chem. Int. Ed. 2005, 44, 1210 Northup, AB; MacMillan, D. W, CJ Am. Chem. Soc. 2002, 124, 6798

しかし、非特許文献1、2の方法では、カルボニル化合物を一旦シリルエノールエーテル、あるいは、ケテンシリルアセタールに導かなければならず、光学活性なルイス酸触媒の入手が容易でないといった問題点があった。   However, the methods of Non-Patent Documents 1 and 2 have the problem that the carbonyl compound must be once led to silyl enol ether or ketene silyl acetal, making it difficult to obtain an optically active Lewis acid catalyst.

また、プロリンのカルボン酸部位をスルホンアミドで置換した誘導体を用いたアルドール反応においては、非特許文献3の反応例の1例のみが開示されており、実用化の段階には、至っていない。   In addition, in the aldol reaction using a derivative in which the carboxylic acid moiety of proline is substituted with sulfonamide, only one example of the reaction example of Non-Patent Document 3 is disclosed, and it has not reached the stage of practical use.

非特許文献4の反応においては、反応基質であるアセトンを溶媒として用いているが、他の反応においては、用いることのできる溶媒は、DMSO(ジメチルスルホキシド),DMF(ジメチルホルムアミド)、NMP(1−メチル−2−ピロリドン)、CHCN(アセトニトリル)などの極性溶媒に限られている。これらの極性有機溶媒を用いると反応終了後に分液操作をしなくてはならなかった。また、水相に溶媒が混入するために水相の処理の問題が生じていた。 In the reaction of Non-Patent Document 4, acetone as a reaction substrate is used as a solvent, but in other reactions, solvents that can be used are DMSO (dimethyl sulfoxide), DMF (dimethylformamide), NMP (1 - methyl-2-pyrrolidone), is limited to a polar solvent such as CH 3 CN (acetonitrile). When these polar organic solvents were used, a liquid separation operation had to be performed after completion of the reaction. Further, since the solvent is mixed in the aqueous phase, there has been a problem in the treatment of the aqueous phase.

また、非特許文献5の反応においては、ケトンを一旦、シリルエノールエーテルに導く必要があり、直接的にアルドール反応において、水を溶媒としているわけではなかった。また、プロリンは、有機溶媒中で高い不斉収率を得ることができるが、水中において、反応は進行するものの、不斉収率は非常に低かった。   In the reaction of Non-Patent Document 5, it is necessary to once convert the ketone to silyl enol ether, and water is not directly used as a solvent in the aldol reaction. Proline can obtain a high asymmetric yield in an organic solvent, but the reaction proceeds in water, but the asymmetric yield is very low.

また、非特許文献6、7の反応においては、用いられているケトンは、4−チアノン、2,2−ジメチル−1,3−ジオキサン−5−オンであり、このように環状で環内にイオウ原子、あるいは2つの酸素原子が入ったケトンでのみ高いアンチ選択性が実現されていた。単純な環状ケトンであるシクロへキサノンと、ニトロベンズアルデヒドの反応においてプロリンを触媒として用いるとジアステレオ選択性は1.7:1.0と低い値であり、シクロペンタノンのアルドールの場合もジアステレオ選択性は1.7:1.0と低かった。   In the reactions of Non-Patent Documents 6 and 7, the ketones used are 4-thianone and 2,2-dimethyl-1,3-dioxan-5-one. High anti-selectivity was realized only with a sulfur atom or a ketone containing two oxygen atoms. When proline is used as a catalyst in the reaction of cyclohexanone, which is a simple cyclic ketone, with nitrobenzaldehyde, the diastereoselectivity is as low as 1.7: 1.0. The selectivity was as low as 1.7: 1.0.

また、アルデヒド−アルデヒド間の不斉触媒アルドール反応に関しては、非特許文献8に記載されている1例のみが開示されており、実用化の段階には、至っていなかった。   In addition, regarding the asymmetric catalytic aldol reaction between aldehyde and aldehyde, only one example described in Non-Patent Document 8 has been disclosed, and has not yet reached the stage of practical use.

本発明は、以上のような課題に鑑みてなされたものであり、光学活性アンチ選択性を増強した触媒及びその製造方法を提供すること、及び、その触媒を用いた光学活性アンチ型アルドール化合物及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above problems, and provides a catalyst having enhanced optically active antiselectivity and a method for producing the same, and an optically active anti-aldol compound using the catalyst, and It aims at providing the manufacturing method.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、プロリンと、脂溶性を増す置換基、又は、相間移動する置換基を組合せた触媒を用いることで、種々の有機溶媒で反応が進行すること、更に、基質を溶解させる有機溶媒を使用せず、水中でも反応が進行することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have reacted with various organic solvents by using a catalyst that combines proline and a substituent that increases fat solubility or a substituent that moves between phases. It has been found that the reaction proceeds in water without using an organic solvent that dissolves the substrate, and the present invention has been completed.

(1) 下記式(12)又は(14)から(28)で表される化合物、又は下記式(11)から(31)で表される化合物のエナンチオマーであるプロリン誘導体。   (1) A proline derivative which is an enantiomer of a compound represented by the following formula (12) or (14) to (28) or a compound represented by the following formula (11) to (31).

Figure 2007182419
Figure 2007182419

(2) 下記一般式(9−6)で表される化合物(但し、Rが、フェニル基、トリル基、p−ニトロフェニル基、2,4,6−トリイソプロピルフェニル基である場合を除く。)、又は下記一般式(9−6)で表される化合物のエナンチオマーであるプロリン誘導体。

Figure 2007182419
(式中Rは、炭素数2から15の直鎖状又は分岐状のアルキル基、又は置換基を有してもよいアリール基を示す。) (2) A compound represented by the following general formula (9-6) (except when R 6 is a phenyl group, a tolyl group, a p-nitrophenyl group, or a 2,4,6-triisopropylphenyl group) Or a proline derivative which is an enantiomer of a compound represented by the following general formula (9-6).
Figure 2007182419
(In the formula, R 6 represents a linear or branched alkyl group having 2 to 15 carbon atoms, or an aryl group which may have a substituent.)

(3) プロリンと、プロリンの脂溶性を増加させる物質又は官能基と、の組合せからなる、水を用いたアルドール反応における光学活性アンチ選択性増強触媒。   (3) An optically active anti-selectivity enhancing catalyst in an aldol reaction using water, comprising a combination of proline and a substance or functional group that increases the fat solubility of proline.

(4) 前記プロリンの脂溶性を増加させる物質が、カルボン酸、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基である(3)記載の光学活性アンチ選択性増強触媒。   (4) The substance that increases the liposolubility of proline is carboxylic acid, tetrazole, carboxamide, carboxamide having an aryl group, heterocycle, alkyl group in nitrogen, carboxamide having a sulfonyl group which may have a substituent, substitution An alkylhydroxyl group which may have a group, an alkylsilyloxy group which may have a substituent, an arylsilyloxy group which may have a substituent, or a silyloxy group which has both an alkyl group and an aryl group (3) The optically active anti-selectivity enhancing catalyst according to (3).

(5) 前記プロリンの脂溶性を増加させる官能基が、アリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基である(3)又は(4)記載の光学活性アンチ選択性増強触媒。   (5) The optical group according to (3) or (4), wherein the functional group that increases the lipid solubility of the proline is an aryl group, a heterocycle, an alkyl group, an acyl group, or a silyl group that may have a substituent. Active anti-selectivity enhancing catalyst.

(6) (3)から(5)いずれか記載の光学活性アンチ選択性増強触媒が、下記一般式(9−1)から(9−8)で表される化合物である光学活性アンチ選択性増強触媒。   (6) Optically active anti-selectivity enhancement wherein the optically active anti-selectivity enhancing catalyst according to any one of (3) to (5) is a compound represented by the following general formulas (9-1) to (9-8) catalyst.

Figure 2007182419
(式中Rは、アルキル基、又はアリール基を示す。なお、それぞれのRは同一又は異なっていてもよい。Rは、アルキル基、アリール基、又はアシル基を示す。Rは、水素、アルキル基、又はアリール基を示す。Rは、アルキル基、又はアリール基を示す。Rは、官能基を有してもよいアルキル基、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロアリール基を示す。)
Figure 2007182419
(In the formula, R 3 represents an alkyl group or an aryl group. Each R 3 may be the same or different. R 4 represents an alkyl group, an aryl group, or an acyl group. R 5 represents , Hydrogen, an alkyl group, or an aryl group, R 6 represents an alkyl group, or an aryl group, and R 7 represents an alkyl group that may have a functional group, or an aryl group that may have a substituent. Or a heteroaryl group which may have a substituent.

(7) (3)から(6)いずれか記載の光学活性アンチ選択性増強触媒が、下記式(11)から(34)で表される化合物、又は下記式(11)から(34)で表される化合物のエナンチオマーである光学活性アンチ選択性増強触媒。   (7) The optically active anti-selectivity enhancing catalyst according to any one of (3) to (6) is a compound represented by the following formulas (11) to (34), or represented by the following formulas (11) to (34): An optically active anti-selectivity enhancing catalyst which is an enantiomer of the compound obtained.

Figure 2007182419
Figure 2007182419

本発明の光学活性アンチ選択性増強触媒は、プロリンと、プロリンの脂溶性を増加させる物質又は官能基と、の組合せからなる。したがって、触媒を反応基質である有機相中に溶解させ、有機層内の反応に効率良く用いることができる。また、プロリンは、安価で入手しやすいため、触媒量を増加することができる。   The optically active anti-selectivity-enhancing catalyst of the present invention comprises a combination of proline and a substance or functional group that increases the fat solubility of proline. Therefore, the catalyst can be dissolved in the organic phase that is the reaction substrate and used efficiently for the reaction in the organic layer. Proline is inexpensive and easy to obtain, so the amount of catalyst can be increased.

(8) 下記式(12)で表されるプロリン誘導体を製造する方法であって、2位と4位に置換基を有するピロリジン誘導体と、シリル化剤と、を反応させてなるプロリン誘導体を製造する方法。   (8) A method for producing a proline derivative represented by the following formula (12), wherein a proline derivative is produced by reacting a pyrrolidine derivative having a substituent at the 2-position and 4-position with a silylating agent. how to.

Figure 2007182419
Figure 2007182419

(9) 下記式(12)又は(14)から(28)で表されるプロリン誘導体を製造する方法であって、2位と4位又は2位と3位に置換基を有するピロリジン誘導体の窒素原子をベンジルオキシカルボニル基、又は、t−ブトキシカルボニル基で保護し、シリル化剤又はアシル化剤と反応させた後、接触水素化又は酸によって脱保護することによりプロリン誘導体を製造する方法。   (9) A method for producing a proline derivative represented by the following formula (12) or (14) to (28), wherein nitrogen of a pyrrolidine derivative having substituents at the 2-position and 4-position or 2-position and 3-position A method for producing a proline derivative by protecting an atom with a benzyloxycarbonyl group or a t-butoxycarbonyl group, reacting with a silylating agent or acylating agent, and then deprotecting with catalytic hydrogenation or acid.

Figure 2007182419
Figure 2007182419

本発明の製造方法によれば、安価なヒドロキシプロリンから一工程又は数工程で大量に合成できる実用的な合成方法であり、経済的なメリットがある。   According to the production method of the present invention, it is a practical synthesis method capable of synthesizing a large amount from inexpensive hydroxyproline in one step or several steps, and has an economic merit.

(10) (3)から(7)いずれか記載の光学活性アンチ選択性増強触媒の存在下で反応させることにより得られた光学活性アンチ型アルドール化合物。   (10) An optically active anti-aldol compound obtained by reacting in the presence of the optically active anti-selectivity enhancing catalyst according to any one of (3) to (7).

本発明の光学活性アンチ型アルドール化合物は多くの医薬品の構成成分にみられる部位であり、これらの化合物の安価な合成法の開発で、経済的な効果がある。   The optically active anti-aldol compound of the present invention is a site found in many pharmaceutical components, and has an economical effect in the development of an inexpensive method for synthesizing these compounds.

(11) 下記一般式(1a)で表されるケトンと、下記一般式(2a)で表されるアルデヒドとを、溶媒中で反応させてなる、又は、溶媒を用いずに反応させてなる、下記一般式(3a)で表される光学活性アンチ型アルドール化合物の製造方法であって、下記一般式(10−1)から(10−5)で表されるアミノ酸誘導体及びそのエナンチオマーより選択される触媒の存在下で反応させてなる光学活性アンチ型アルドール化合物の製造方法。(但し、溶媒を用いずに反応させてなる場合において、一般式(1a)で表されるケトンが、アセトンである場合を除く。)   (11) A ketone represented by the following general formula (1a) and an aldehyde represented by the following general formula (2a) are reacted in a solvent or reacted without using a solvent. A method for producing an optically active anti-aldol compound represented by the following general formula (3a), which is selected from amino acid derivatives represented by the following general formulas (10-1) to (10-5) and enantiomers thereof: A method for producing an optically active anti-aldol compound obtained by reacting in the presence of a catalyst. (However, in the case where the reaction is carried out without using a solvent, the case where the ketone represented by the general formula (1a) is acetone is excluded.)

Figure 2007182419
Figure 2007182419
(式中、Rはアリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基を示す。Rはカルボキシル基、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基などの置換基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド又は置換基を有してもよいアルキルヒドロキシル基を示す。R10はカルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基を示す。)
Figure 2007182419
Figure 2007182419
(In the formula, R 8 represents an aryl group, a heterocycle, an alkyl group, an acyl group, or a silyl group which may have a substituent. R 9 represents a carboxyl group, tetrazole, carboxamide, an aryl group or a heterocycle on nitrogen. , A carboxamide having a substituent such as an alkyl group, a carboxamide having a sulfonyl group which may have a substituent or an alkylhydroxyl group which may have a substituent, R 10 represents a carboxamide, an aryl group on nitrogen, hetero A ring, a carboxamide having an alkyl group, a carboxamide having a sulfonyl group which may have a substituent, an alkyl hydroxyl group which may have a substituent, an alkylsilyloxy group which may have a substituent, and a substituent. An arylsilyloxy group which may have, or a silyloxy group having both an alkyl group and an aryl group )

(12) (11)記載の光学活性アンチ型アルドール化合物の製造方法であって、溶媒を用いて反応させる場合、前記溶媒が水である光学活性アンチ型アルドール化合物の製造方法。   (12) The method for producing an optically active anti-aldol compound according to (11), wherein, when the reaction is carried out using a solvent, the solvent is water.

(13) (11)記載の光学活性アンチ型アルドール化合物の製造方法であって、溶媒を用いて反応させる場合、前記溶媒が非極性溶媒である光学活性アンチ型アルドール化合物の製造方法。   (13) The method for producing an optically active anti-aldol compound according to (11), wherein when the solvent is used for the reaction, the solvent is a nonpolar solvent.

(14) 下記一般式(4a)で表されるアルデヒドと、下記一般式(5a)で表されるアルデヒドとを、溶媒中で反応させてなる、又は、溶媒を用いずに反応させてなる、下記一般式(6a)で表される光学活性アンチ型アルドール化合物の製造方法であって、下記一般式(10−1)から(10−5)で表されるアミノ酸誘導体及びそのエナンチオマーより選択される触媒の存在下で反応させてなる光学活性アンチ型アルドール化合物の製造方法。   (14) An aldehyde represented by the following general formula (4a) and an aldehyde represented by the following general formula (5a) are reacted in a solvent, or are reacted without using a solvent. A method for producing an optically active anti-aldol compound represented by the following general formula (6a), which is selected from amino acid derivatives represented by the following general formulas (10-1) to (10-5) and enantiomers thereof: A method for producing an optically active anti-aldol compound obtained by reacting in the presence of a catalyst.

Figure 2007182419
Figure 2007182419
(式中、Rはアリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基を示す。Rはカルボキシル基、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基などの置換基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド又は置換基を有してもよいアルキルヒドロキシル基を示す。R10はカルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基を示す。)
Figure 2007182419
Figure 2007182419
(In the formula, R 8 represents an aryl group, a heterocycle, an alkyl group, an acyl group, or a silyl group which may have a substituent. R 9 represents a carboxyl group, tetrazole, carboxamide, an aryl group or a heterocycle on nitrogen. , A carboxamide having a substituent such as an alkyl group, a carboxamide having a sulfonyl group which may have a substituent or an alkylhydroxyl group which may have a substituent, R 10 represents a carboxamide, an aryl group on nitrogen, hetero A ring, a carboxamide having an alkyl group, a carboxamide having a sulfonyl group which may have a substituent, an alkyl hydroxyl group which may have a substituent, an alkylsilyloxy group which may have a substituent, and a substituent. An arylsilyloxy group which may have, or a silyloxy group having both an alkyl group and an aryl group )

(15) (14)記載の光学活性アンチ型アルドール化合物の製造方法であって、溶媒を用いて反応させる場合、前記溶媒が水である光学活性アンチ型アルドール化合物の製造方法。   (15) The method for producing an optically active anti-aldol compound according to (14), wherein, when the reaction is performed using a solvent, the solvent is water.

(16) (14)記載の光学活性アンチ型アルドール化合物の製造方法であって、溶媒を用いて反応させる場合、前記溶媒が非極性溶媒である光学活性アンチ型アルドール化合物の製造方法。   (16) The method for producing an optically active anti-aldol compound according to (14), wherein when the solvent is used for the reaction, the solvent is a nonpolar solvent.

本発明の光学活性アンチ型アルドール化合物の製造方法によれば、(3)から(7)に記載されている光学活性アンチ選択性増強触媒を用いているため、ケトンとアルデヒドとのアルドール反応、アルデヒドとアルデヒドとのアルドール反応において、高い光学活性アンチ選択性、ジアステレオ選択性を得ることができる。また、反応溶媒として、水のみを用いることができるため、環境に良い反応系を提供することができる。また、非極性溶媒の場合には、沸点が低温であるため、極性溶媒を用いた場合に比べ低温で濃縮することができ、反応の効率化を図ることができる。   According to the method for producing an optically active anti-aldol compound of the present invention, since the optically active anti-selectivity enhancing catalyst described in (3) to (7) is used, an aldol reaction between a ketone and an aldehyde, an aldehyde In the aldol reaction of aldehyde with aldehyde, high optically active antiselectivity and diastereoselectivity can be obtained. In addition, since only water can be used as the reaction solvent, an environment-friendly reaction system can be provided. In the case of a nonpolar solvent, since the boiling point is low, it can be concentrated at a lower temperature than when a polar solvent is used, and the reaction can be made more efficient.

(17) 下記一般式(1b)で表されるケトンと、下記一般式(2b)で表されるアルデヒドと、を溶媒に水、触媒にプロリンを用いて反応させてなる下記一般式(3b)で表される光学活性アンチ型アルドール化合物の製造方法。   (17) The following general formula (3b) obtained by reacting a ketone represented by the following general formula (1b) with an aldehyde represented by the following general formula (2b) using water as a solvent and proline as a catalyst. The manufacturing method of the optically active anti-aldol compound represented by these.

Figure 2007182419
Figure 2007182419

(18) 下記一般式(4b)で表されるアルデヒドと、下記一般式(5b)で表されるアルデヒドと、を溶媒に水、触媒にプロリンを用いて反応させてなる下記一般式(6b)で表される光学活性アンチ型アルドール化合物の製造方法。   (18) The following general formula (6b) formed by reacting an aldehyde represented by the following general formula (4b) with an aldehyde represented by the following general formula (5b) using water as a solvent and proline as a catalyst. The manufacturing method of the optically active anti-aldol compound represented by these.

Figure 2007182419
Figure 2007182419

本発明の光学活性アンチ型アルドール化合物の製造方法によれば、触媒に、安価で入手しやすいプロリンを用いているため、触媒量を増加することができ、有用な合成中間体が簡単に製造することができる。また、溶媒に水を用いているため、環境に良い反応系を提供することができる。   According to the method for producing an optically active anti-aldol compound of the present invention, since a proline that is inexpensive and easily available is used as a catalyst, the amount of the catalyst can be increased, and a useful synthetic intermediate is easily produced. be able to. Moreover, since water is used as the solvent, a reaction system that is good for the environment can be provided.

本発明の光学活性アンチ選択性増強触媒によれば、アルドール反応の溶媒として、水のみを用いた環境調和型反応を提供することができる。また、溶媒として、極性溶媒を用いず、低沸点溶媒を用いることができるため、反応の効率化を図ることができる。   According to the optically active anti-selectivity enhancing catalyst of the present invention, it is possible to provide an environmentally conscious reaction using only water as a solvent for the aldol reaction. Further, since a low boiling point solvent can be used as the solvent without using a polar solvent, the efficiency of the reaction can be improved.

以下、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

<光学活性アンチ選択性増強触媒>
本発明の光学活性アンチ選択性増強触媒は、プロリンと、プロリンの脂溶性を増加させる物質又は官能基と、の組合せからなる。具体的には、下記一般式(10−1)から(10−5)で表される化合物及び、そのエナンチオマーを使用することができる。
<Optically active anti-selectivity enhancing catalyst>
The optically active anti-selectivity-enhancing catalyst of the present invention comprises a combination of proline and a substance or functional group that increases the fat solubility of proline. Specifically, compounds represented by the following general formulas (10-1) to (10-5) and enantiomers thereof can be used.

Figure 2007182419
Figure 2007182419

ここで、Rは脂溶性を増すための置換基であり、例えば、アリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基をあげることができる。また、R、R10は酸性プロトンを持った置換基であればよく、Rとしては、例えば、カルボキシル基、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基などの置換基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド又は置換基を有してもよいアルキルヒドロキシル基をあげることができる。また、R10としては、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基を示す。 Here, R 8 is a substituent for increasing fat solubility, and examples thereof include an aryl group, a heterocyclic ring, an alkyl group, an acyl group, and a silyl group which may have a substituent. R 9 and R 10 may be any substituent having an acidic proton, and R 9 has, for example, a carboxyl group, a tetrazole, a carboxamide, or a nitrogen-containing substituent such as an aryl group, a heterocyclic ring, or an alkyl group. Examples thereof include carboxamide, carboxamide having a sulfonyl group which may have a substituent, and alkylhydroxyl group which may have a substituent. R 10 includes carboxamide, a carboxamide having an aryl group, a heterocycle, and an alkyl group on the nitrogen, a carboxamide having a sulfonyl group that may have a substituent, an alkylhydroxyl group that may have a substituent, a substituted An alkylsilyloxy group which may have a group, an arylsilyloxy group which may have a substituent, or a silyloxy group having both an alkyl group and an aryl group are shown.

また、RとRの組合せとしては、置換基を有してもよいシリル基(R)とカルボキシル基(R)、アシル基(R)とカルボキシル基(R)、置換基を有してもよいシリル基(R)とテトラゾール(R)を有するプロリン誘導体を好ましく用いることができる。 Moreover, as a combination of R 8 and R 9, a silyl group (R 8 ) and a carboxyl group (R 9 ), an acyl group (R 8 ) and a carboxyl group (R 9 ), which may have a substituent, a substituent A proline derivative having a silyl group (R 8 ) and tetrazole (R 9 ), which may have benzene, may be preferably used.

更に、具体的には、下記式(9−1)から(9−8)で表される化合物を使用することができる。式(9−1)から(9−3)は、上記一般式(10−1)又は(10−2)のRをカルボキシル基とし、式(9−1)は、脂溶性を増加させるための置換基として、アルキル基又はアリール基を有するシリル基である。また、式(9−2)は、脂溶性を増加させるための置換基をアルキル基、アリール基、アシル基とし、置換基をプロリンの4位に有する化合物である。式(9−3)のように、脂溶性を増加させるための置換基は、プロリンの3位に有していても同様の効果を得ることができる。 More specifically, compounds represented by the following formulas (9-1) to (9-8) can be used. In the formulas (9-1) to (9-3), R 9 in the general formula (10-1) or (10-2) is a carboxyl group, and the formula (9-1) increases fat solubility. A silyl group having an alkyl group or an aryl group as a substituent. Formula (9-2) is a compound having an alkyl group, an aryl group, or an acyl group as a substituent for increasing fat solubility and a substituent at the 4-position of proline. As in formula (9-3), the same effect can be obtained even if the substituent for increasing fat solubility is present at the 3-position of proline.

式(9−4)から(9−6)は、酸性プロトンを持った官能基として、式(5-4)はテトラゾール、式(9−5)及び(9−6)は窒素に置換基を有してもよいカルボキサミド、式(9−7)は水酸基、式(9−8)はアルキルシロキシ基である。式(9−5)、(9−6)に示すように、カルボキサミドのアミド部位に、脂溶性を持たせることができるため、この場合、プロリンの3位、4位に脂溶性基を導入することなく、本発明の効果を得ることができる。   Formulas (9-4) to (9-6) are functional groups having acidic protons, Formula (5-4) is a tetrazole, Formulas (9-5) and (9-6) are nitrogen substituents. The carboxamide which may have, Formula (9-7) is a hydroxyl group, Formula (9-8) is an alkylsiloxy group. As shown in the formulas (9-5) and (9-6), the amide moiety of carboxamide can be given lipophilicity. In this case, a lipophilic group is introduced into the 3rd and 4th positions of proline. The effect of the present invention can be obtained without this.

Figure 2007182419
Figure 2007182419

式中、Rはアルキル基、又はアリール基を示す。アルキル基は、炭素数1から20の直鎖状又は分岐状のアルキル基であることが好ましく、アリール基は、フェニル基、又は炭素数1から20の直鎖状又は分岐状のアルキル基を有するアリール基であることが好ましい。また、それぞれのRは同一又は異なっていてもよい。 In the formula, R 3 represents an alkyl group or an aryl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and the aryl group has a phenyl group or a linear or branched alkyl group having 1 to 20 carbon atoms. An aryl group is preferred. Also, each R 3 may be the same or different.

はアルキル基、アリール基、又はアシル基を示す。アルキル基は、炭素数1から20の直鎖状又は分岐状のアルキル基であることが好ましく、アリール基は、フェニル基、又は炭素数1から20の直鎖状又は分岐状のアルキル基を有するアリール基であることが好ましい。また、アシル基の炭素数は、1から20であることが好ましい。 R 4 represents an alkyl group, an aryl group, or an acyl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and the aryl group has a phenyl group or a linear or branched alkyl group having 1 to 20 carbon atoms. An aryl group is preferred. In addition, the acyl group preferably has 1 to 20 carbon atoms.

は水素、アルキル基、又はアリール基を示す。アルキル基は、炭素数1から20の直鎖状又は分岐状のアルキル基であることが好ましく、アリール基は、フェニル基、又は炭素数1から20の直鎖状又は分岐状のアルキル基を有するアリール基であることが好ましい。 R 5 represents hydrogen, an alkyl group, or an aryl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and the aryl group has a phenyl group or a linear or branched alkyl group having 1 to 20 carbon atoms. An aryl group is preferred.

はアルキル基、又はアリール基を示す。アルキル基は、炭素数1から20の直鎖状又は分岐状のアルキル基であることが好ましく、アリール基は、フェニル基、又は炭素数1から20の直鎖状又は分岐状のアルキル基を有するアリール基であることが好ましい。 R 6 represents an alkyl group or an aryl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and the aryl group has a phenyl group or a linear or branched alkyl group having 1 to 20 carbon atoms. An aryl group is preferred.

は、官能基を有してもよいアルキル基、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロアリール基を示す。官能基としては、例えば、アルコキシ基又はアシル基を挙げることができる。また、置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、メトキシ基、又は、ハロゲン原子で置換されたアルキル基を挙げることができる。ハロゲン原子で置換されたアルキル基としては、例えば、トリフルオロメチル基を挙げることができる。また、アルキル基の炭素数は、1から20であることが好ましく、アリール基は、フェニル基、又は炭素数1から20のアルキル基を有するアリール基であることが好ましい。更に、Rは、フェニル基又は3,5−ビストリフルオロフェニルであることが好ましい。また、それぞれのRは同一又は異なっていてもよい。 R 7 represents an alkyl group that may have a functional group, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent. As a functional group, an alkoxy group or an acyl group can be mentioned, for example. Examples of the substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a methoxy group, or an alkyl group substituted with a halogen atom. Examples of the alkyl group substituted with a halogen atom include a trifluoromethyl group. The alkyl group preferably has 1 to 20 carbon atoms, and the aryl group is preferably a phenyl group or an aryl group having an alkyl group having 1 to 20 carbon atoms. Further, R 7 is preferably a phenyl group or 3,5-bistrifluorophenyl. Also, each R 7 may be the same or different.

更に、光学活性アンチ選択性増強触媒は水への溶解性及び、反応点であるアミンと酸性プロトン、脂溶性部位との立体的位置関係の観点から上記式(11)から(34)で表される触媒であることが好ましい。   Further, the optically active anti-selectivity enhancing catalyst is represented by the above formulas (11) to (34) from the viewpoint of solubility in water and the steric positional relationship between the amine, which is the reaction site, the acidic proton, and the fat-soluble site. It is preferable that it is a catalyst.

本発明の光学活性アンチ選択性増強触媒は、例えば、以下に示す方法で製造することができる。出発原料である3−ヒドロキシプロリンあるいは、4−ヒドロキシプロリンにシリル化剤と塩基を加え、アルコールのシリル化を行い、一段階で触媒(11)、(12)及び(13)を得ることができる。   The optically active anti-selectivity enhancing catalyst of the present invention can be produced, for example, by the method shown below. Addition of a silylating agent and a base to 3-hydroxyproline or 4-hydroxyproline which is a starting material, and silylation of alcohol can be performed to obtain catalysts (11), (12) and (13) in one step. .

触媒(11)から(13)及び(20)から(25)は、例えば、以下に示す方法で製造することができる。出発原料である3−ヒドロキシプロリンあるいは、4−ヒドロキシプロリンにベンジルオキシカルボニル化反応試剤、例えばベンジルオキシカルボニルクロリドを塩基性条件下作用させ、窒素原子をベンジルオキシカルボニル基(Z基、Cbz基)で保護する。ベンジル化剤、例えばベンジルクロリドと、塩基を加え、カルボン酸をベンジルエステルとする。アミン塩存在下、シリル化剤、例えばシリルクロリドを加え、水酸基をシリル化する。得られた化合物に接触水素化を行い脱保護することにより、触媒(11)から(13)及び(20)から(25)を得ることができる。   Catalysts (11) to (13) and (20) to (25) can be produced, for example, by the method shown below. The starting material 3-hydroxyproline or 4-hydroxyproline is reacted with a benzyloxycarbonylation reagent, for example, benzyloxycarbonyl chloride, under basic conditions, and the nitrogen atom is converted into a benzyloxycarbonyl group (Z group, Cbz group). Protect. A benzylating agent such as benzyl chloride and a base are added to make the carboxylic acid a benzyl ester. In the presence of an amine salt, a silylating agent such as silyl chloride is added to silylate the hydroxyl group. Catalysts (11) to (13) and (20) to (25) can be obtained by catalytic hydrogenation and deprotection of the obtained compound.

また、触媒(14)から(19)は、出発原料である4−ヒドロキシプロリンにベンジルオキシカルボニル化反応試剤、例えばベンジルオキシカルボニルクロリドを塩基性条件下作用させ、窒素原子をZ基で保護する。ベンジル化剤、例えばベンジルクロリドと、塩基を加え、カルボン酸をベンジルエステル化する。塩基存在下、アシル化剤、例えばアシルクロリドを作用させ、エステルを得る。得られた化合物に接触水素化を行い脱保護することにより、触媒(14)から(19)を得る。   Further, in the catalysts (14) to (19), a starting material, 4-hydroxyproline, is reacted with a benzyloxycarbonylation reaction reagent such as benzyloxycarbonyl chloride under basic conditions to protect the nitrogen atom with a Z group. A benzylating agent such as benzyl chloride and a base are added to benzylate the carboxylic acid. In the presence of a base, an acylating agent such as acyl chloride is allowed to act to give an ester. Catalysts (14) to (19) are obtained by catalytic hydrogenation and deprotection of the resulting compound.

触媒(26)から(28)は、出発原料である4−ヒドロキシプロリンにベンジルオキシカルボニル化反応試剤、例えばベンジルオキシカルボニルクロリドを塩基性条件下作用させ、窒素原子をZ基で保護する。カルボン酸に塩基存在下、例えば、クロロ蟻酸エステルを作用させた後、引き続きアンモニアを作用させ、アミドを得る。アミドを例えば、塩基存在下、ホスホラスオキシクロリドを作用させ、ニトリルを得る。ニトリルに例えば、アジ化ナトリウムを作用させ、テトラゾールに変換する。得られた化合物に接触水素化を行い、脱保護する事により、触媒(26)から(28)を得ることができる。   In the catalysts (26) to (28), a starting material, 4-hydroxyproline, is reacted with a benzyloxycarbonylation reaction reagent such as benzyloxycarbonyl chloride under basic conditions, and the nitrogen atom is protected with a Z group. For example, chloroformate is allowed to act on carboxylic acid in the presence of a base, and then ammonia is allowed to act to obtain an amide. The amide is reacted with, for example, phosphorous oxychloride in the presence of a base to obtain a nitrile. For example, sodium azide is allowed to act on the nitrile to convert it into tetrazole. Catalysts (26) to (28) can be obtained by subjecting the obtained compound to catalytic hydrogenation and deprotection.

一般式(9−6)で表される触媒は、プロリンにベンジルオキシカルボニル化反応試剤、例えばベンジルオキシカルボニルクロリドを塩基存在下作用させ、窒素原子をZ基で保護する。次に縮合剤と塩基存在下、p−ニトロフェノールを作用させ、カルボン酸をp−ニトロフェノールのエステルに導く。この際縮合剤としては例えば、DCC(1,3−ジシクロへキシルカルボジイミド)等を用い、塩基としてはピリジンを用いる。この活性エステルに塩基存在下、対応するスルホン酸アミドを作用させる。この際、塩基としては例えば、水素化ナトリウムを用いる。得られたスルホン酸アミドに接触水素化を行い、Z基を脱保護することにより、一般式(9−6)で表される触媒を得ることができる。   In the catalyst represented by the general formula (9-6), a benzyloxycarbonylation reaction reagent such as benzyloxycarbonyl chloride is allowed to act on proline in the presence of a base to protect a nitrogen atom with a Z group. Next, p-nitrophenol is allowed to act in the presence of a condensing agent and a base to lead the carboxylic acid to an ester of p-nitrophenol. In this case, for example, DCC (1,3-dicyclohexylcarbodiimide) or the like is used as the condensing agent, and pyridine is used as the base. The corresponding sulfonic acid amide is allowed to act on this active ester in the presence of a base. At this time, for example, sodium hydride is used as the base. The catalyst represented by the general formula (9-6) can be obtained by performing catalytic hydrogenation on the obtained sulfonic acid amide and deprotecting the Z group.

本発明の光学活性アンチ選択性増強触媒の製造に用いられるベンジルオキシカルボニル化反応試剤としては、ベンジルオキシカルボニルクロリドの他にベンジルシアノホルメイト、ジベンジルカーボナートなどを用いることができる。接触水素化にも用いられる触媒としては、パラジウム−カーボン触媒、水酸化パラジウム触媒などを用いることができる。   As the benzyloxycarbonylation reaction reagent used in the production of the optically active anti-selectivity enhancing catalyst of the present invention, benzylcyanoformate, dibenzyl carbonate, etc. can be used in addition to benzyloxycarbonyl chloride. As a catalyst used also for catalytic hydrogenation, a palladium-carbon catalyst, a palladium hydroxide catalyst, etc. can be used.

また、上記製造方法においては、窒素の保護にベンジルオキシカルボニル基(Z基)を用いているが、t−ブトキシカルボニル基(Boc基)を用いることができる。この場合の試剤としてはジ−t−ブチルジカーボナート等を用いることができる。Boc基を用いた場合は、接触水素化ではなく、酸による脱保護により製造することができる。   Moreover, in the said manufacturing method, although the benzyloxycarbonyl group (Z group) is used for protection of nitrogen, t-butoxycarbonyl group (Boc group) can be used. As a reagent in this case, di-t-butyl dicarbonate or the like can be used. When the Boc group is used, it can be produced not by catalytic hydrogenation but by deprotection with an acid.

<光学活性アンチ型アルドール化合物>
[ケトンとアルデヒドとのアルドール反応]
本発明の光学活性アンチ型アルドール化合物の製造方法は、下記一般式(1a)で表されるケトンと、下記一般式(2a)で表されるアルデヒドとを、プロリンとプロリンの脂溶性を増加させる物質又は官能基との組合せからなるプロリン誘導体及びそのエナンチオマーより選択される触媒(10)の存在化で反応させて製造される。
<Optically active anti-aldol compound>
[Aldol reaction between ketone and aldehyde]
In the method for producing an optically active anti-aldol compound of the present invention, the ketone represented by the following general formula (1a) and the aldehyde represented by the following general formula (2a) are increased in fat solubility of proline and proline. It is produced by reacting in the presence of a catalyst (10) selected from a proline derivative consisting of a combination with a substance or a functional group and its enantiomer.

Figure 2007182419
Figure 2007182419

一般式(1a)で表されるケトンは、特に限定されず、通常用いられるケトンを用いることができるが、R11及びR12は、置換基を有していてもよいアルキル基、アルケニル基、又はアルキニル基であることが好ましい。また、R11とR12が一緒になって環を形成していてもよい。また、一般式(2a)で表されるアルデヒドは、特に限定されず、通常用いられるアルデヒドを用いることができるが、R13は、置換基を有していてもよいアリール基、ヘテロ環、アルキル基、アルケニル基又はアルキニル基であることが好ましい。 The ketone represented by the general formula (1a) is not particularly limited, and a commonly used ketone can be used. R 11 and R 12 may be an alkyl group, an alkenyl group, an optionally substituted group, Or it is preferable that it is an alkynyl group. R 11 and R 12 may be combined to form a ring. In addition, the aldehyde represented by the general formula (2a) is not particularly limited, and a commonly used aldehyde can be used, but R 13 may be an aryl group, a heterocycle, an alkyl which may have a substituent. It is preferably a group, an alkenyl group or an alkynyl group.

また、反応に用いる触媒(10)としては、上述した光学活性アンチ選択性増強触媒を用いることができる。   Moreover, as a catalyst (10) used for reaction, the optically active anti-selectivity enhancement catalyst mentioned above can be used.

反応温度は−20℃から50℃、反応時間1時間から48時間で反応させ、溶媒として、水又は極性溶媒でない有機溶媒を用いる。極性溶媒でない有機溶媒としては、ヘキサン、CHCl(ジクロロメタン)、AcOEt(酢酸エチル)、THF(テトラヒドロフラン)、トルエン、ベンゼン、EtO(ジエチルエーテル)、CHCl(クロロホルム)、ジオキサン、DME(ジメトキシエタン)、アセトニトリル等を用いることができる。 The reaction temperature is −20 ° C. to 50 ° C., the reaction time is 1 hour to 48 hours, and water or an organic solvent that is not a polar solvent is used as the solvent. Organic solvents that are not polar solvents include hexane, CH 2 Cl 2 (dichloromethane), AcOEt (ethyl acetate), THF (tetrahydrofuran), toluene, benzene, Et 2 O (diethyl ether), CHCl 3 (chloroform), dioxane, DME. (Dimethoxyethane), acetonitrile and the like can be used.

また、本発明の光学活性アンチ型アルドール化合物の製造方法は、無溶媒で反応させることができる。無溶媒で反応させることにより、反応物のみで反応させることができ、環境に優しい、優れた反応条件である。   Moreover, the manufacturing method of the optically active anti-aldol compound of this invention can be made to react without a solvent. By reacting in the absence of a solvent, the reaction can be carried out only with the reactants, which are environmentally friendly and excellent reaction conditions.

[アルデヒドとアルデヒドとのアルドール反応]
本発明の光学活性アンチ選択性増強触媒は、下記一般式(4a)で表されるアルデヒドと下記一般式(5a)で表されるアルデヒドとのアルデヒド−アルデヒド間の不斉触媒アルドール反応に用いることができる。
[Aldol reaction between aldehyde and aldehyde]
The optically active anti-selectivity enhancing catalyst of the present invention is used for an asymmetric catalytic aldol reaction between an aldehyde and an aldehyde of an aldehyde represented by the following general formula (4a) and an aldehyde represented by the following general formula (5a). Can do.

Figure 2007182419
Figure 2007182419

一般式(4a)で表されるアルデヒドは、特に限定されず、通常用いられるアルデヒドを用いることができるが、R14は、置換基を有していてもよいアルキル基、アルケニル基、又はアルキニル基であることが好ましい。また、一般式(5a)で表されるアルデヒド、及び触媒(10)としては、上述したアルデヒド及び触媒を用いることができる。 The aldehyde represented by the general formula (4a) is not particularly limited, and a commonly used aldehyde can be used, but R 14 is an alkyl group, alkenyl group, or alkynyl group which may have a substituent. It is preferable that In addition, as the aldehyde represented by the general formula (5a) and the catalyst (10), the aldehyde and catalyst described above can be used.

また、反応温度は−20℃から50℃、反応時間1時間から48時間で反応させ、溶媒として、水又は極性溶媒でない有機溶媒を用いる。極性溶媒でない有機溶媒としては、ヘキサン、CHCl(ジクロロメタン)、AcOEt(酢酸エチル)、THF(テトラヒドロフラン)、トルエン、ベンゼン、EtO(ジエチルエーテル)、CHCl(クロロホルム)、ジオキサン、DME(ジメトキシエタン)、アセトニトリル等を用いることができる。また、無溶媒で反応することもできる。 The reaction temperature is -20 ° C to 50 ° C, the reaction time is 1 hour to 48 hours, and water or an organic solvent that is not a polar solvent is used as the solvent. Organic solvents that are not polar solvents include hexane, CH 2 Cl 2 (dichloromethane), AcOEt (ethyl acetate), THF (tetrahydrofuran), toluene, benzene, Et 2 O (diethyl ether), CHCl 3 (chloroform), dioxane, DME. (Dimethoxyethane), acetonitrile and the like can be used. Moreover, it can also react without a solvent.

[触媒にプロリン、溶媒に水を用いたアルドール反応]
また、触媒にプロリン、反応溶媒に水を用いて、下記一般式(1b)で表されるケトンと、下記一般式(2b)で表されるアルデヒドと、のアルドール反応、及び、下記一般式(4b)で表されるアルデヒドと、下記一般式(5b)で表されるアルデヒドと、のアルドール反応により、光学活性アンチ型アルドール化合物を製造することができる。
[Aldol reaction using proline as catalyst and water as solvent]
Further, using proline as a catalyst and water as a reaction solvent, an aldol reaction between a ketone represented by the following general formula (1b) and an aldehyde represented by the following general formula (2b), and the following general formula ( An optically active anti-aldol compound can be produced by an aldol reaction between the aldehyde represented by 4b) and the aldehyde represented by the following general formula (5b).

Figure 2007182419
Figure 2007182419

Figure 2007182419
Figure 2007182419

ケトンとアルデヒドとのアルドール反応に用いられる一般式(1b)で表されるケトンとしては、特に限定されず、一般式(1a)で表されるケトンと同様のケトンを用いることができる。式(1b)で表されるケトンとしては、例えば、シクロペンタノン、シクロヘキサノン、2,2−ジメチル−1,3−ジオキサン−5−オンを用いることができる。   It does not specifically limit as a ketone represented by general formula (1b) used for aldol reaction of a ketone and an aldehyde, The ketone similar to the ketone represented by general formula (1a) can be used. Examples of the ketone represented by the formula (1b) include cyclopentanone, cyclohexanone, and 2,2-dimethyl-1,3-dioxane-5-one.

また、一般式(2b)で表されるアルデヒドとしては、電子吸引性基を有するアルデヒドを用いることができる。電子吸引性基としては、カルボキシル基、シアノ基、アルコキシカルボニル基、ニトリル基、臭素、塩素、ヨウ素、フッ素等を挙げることができる。アルデヒドとしては、o−クロロベンズアルデヒド、p−フルオロベンズアルデヒド、p−ニトロベンズアルデヒド、p−トリフルオロメチルベンズアルデヒド等を挙げることができる。   Moreover, as the aldehyde represented by the general formula (2b), an aldehyde having an electron attractive group can be used. Examples of the electron withdrawing group include a carboxyl group, a cyano group, an alkoxycarbonyl group, a nitrile group, bromine, chlorine, iodine, and fluorine. Examples of the aldehyde include o-chlorobenzaldehyde, p-fluorobenzaldehyde, p-nitrobenzaldehyde, p-trifluoromethylbenzaldehyde and the like.

また、アルデヒドとアルデヒドとのアルドール反応に用いられる一般式(4b)で表されるアルデヒドとしては、特に限定されず、一般式(4a)で表されるアルデヒドと同様のアルデヒドを用いることができる。式(4b)で表されるアルデヒドとしては、例えば、プロピオンアルデヒド、3−フェニルプロパナール等を挙げることができる。   Moreover, it does not specifically limit as an aldehyde represented by General formula (4b) used for the aldol reaction of an aldehyde and an aldehyde, The aldehyde similar to the aldehyde represented by General formula (4a) can be used. Examples of the aldehyde represented by the formula (4b) include propionaldehyde and 3-phenylpropanal.

また、一般式(5b)で表されるアルデヒドとしては、電子吸引性基を有するアルデヒドを用いることができる。例えば、上記一般式(2b)と同様のアルデヒドを用いることができる。   Moreover, as the aldehyde represented by the general formula (5b), an aldehyde having an electron attractive group can be used. For example, an aldehyde similar to the above general formula (2b) can be used.

反応に用いるプロリンは、1mol%以上100mol%以下用いることが好ましく、より好ましくは、10mol%以上40mol%以下である。上記範囲内で、反応を行うことにより、触媒量と反応時間とのバランスがとれ、効率良く反応させることができる。   The proline used for the reaction is preferably used in an amount of 1 mol% to 100 mol%, more preferably 10 mol% to 40 mol%. By performing the reaction within the above range, the catalyst amount and the reaction time are balanced, and the reaction can be carried out efficiently.

反応温度は、−20℃から50℃、反応時間1時間から48時間で反応させることができる。   The reaction can be performed at a reaction temperature of −20 ° C. to 50 ° C. for a reaction time of 1 hour to 48 hours.

以下、実施例によって本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1:触媒の合成
<(2S,4R)−4−トリイソプロピルシリルオキシ−ピロリジン−2−カルボン酸(12)の合成>
(2S,4R)−N−ベンジルオキシカルボニル−4−ヒドロキシピロリジン−2−カルボン酸ベンジルエステル(3.55g、10.0mmol)のジクロロメタン(CHCl)溶液(10mL)に、2,6−ルチジン(1.90mL、13.0mmol)とTIPSOTf(2.96mL、13.0mmol)を0℃にて加えた。反応液を室温で30分間撹拌し、その後、リン酸緩衝液(pH7.0)を加え、冷却した。有機層を酢酸エチル(AcOEt)で3回抽出し、抽出液を硫酸ナトリウム(NaSO)で乾燥、濃縮し、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し、(2S,4R)−N−ベンジルオキシカルボニル−4−トリイソプロピルシリルオキシ−ピロリジン−2−カルボン酸ベンジルエステル(4.8g、9.54mmol、95%)の液体を得た。
Example 1: Synthesis of catalyst <Synthesis of (2S, 4R) -4-triisopropylsilyloxy-pyrrolidine-2-carboxylic acid (12)>
To a solution (10 mL) of (2S, 4R) -N-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester (3.55 g, 10.0 mmol) in dichloromethane (CH 2 Cl 2 ) was added 2,6- Lutidine (1.90 mL, 13.0 mmol) and TIPSOTf (2.96 mL, 13.0 mmol) were added at 0 ° C. The reaction solution was stirred at room temperature for 30 minutes, and then a phosphate buffer solution (pH 7.0) was added and cooled. The organic layer was extracted three times with ethyl acetate (AcOEt), and the extract was dried over sodium sulfate (Na 2 SO 4 ), concentrated and purified by column chromatography (ethyl acetate: hexane = 1: 5) (2S , 4R) -N-benzyloxycarbonyl-4-triisopropylsilyloxy-pyrrolidine-2-carboxylic acid benzyl ester (4.8 g, 9.54 mmol, 95%) was obtained.

(2S,4R)−N−ベンジルオキシカルボニル−4−トリイソプロピルシリルオキシ−ピロリジン−2−カルボン酸ベンジルエステル(4.8g、9.54mmol)のメタノール溶液(10mL)に室温で、Pd/C(パラジウムカーボン)(480mg、10wt%)を加え、室温で20時間撹拌した。無機物をろ過、濃縮し、(2S,4R)−4−トリイソプロピルシリルオキシ−ピロリジン−2−カルボン酸(12)の白色粉末を収率96%(2.8g)で得た。   (2S, 4R) -N-benzyloxycarbonyl-4-triisopropylsilyloxy-pyrrolidine-2-carboxylic acid benzyl ester (4.8 g, 9.54 mmol) in methanol solution (10 mL) at room temperature at Pd / C ( Palladium carbon) (480 mg, 10 wt%) was added, and the mixture was stirred at room temperature for 20 hours. The inorganic substance was filtered and concentrated to obtain a white powder of (2S, 4R) -4-triisopropylsilyloxy-pyrrolidine-2-carboxylic acid (12) in a yield of 96% (2.8 g).

(2S,4R)−N−ベンジルオキシカルボニル−4−トリイソプロピルシリルオキシ−ピロリジン−2−カルボン酸ベンジルエステルは、以下のNMR、IR、HRMSの結果によって同定した。   (2S, 4R) -N-benzyloxycarbonyl-4-triisopropylsilyloxy-pyrrolidine-2-carboxylic acid benzyl ester was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 1.01 (21H, d, J=4.5Hz), 2.00-2.12 (1H, m), 2.17-2.31 (1H, m), 3.42-3.59 (1H, m), 3.62-3.76 (1H, m), 4.45-4.60 (2H, m), 4.91-5.26 (4H, m), 7.17-7.37 (10H, m);
13C NMR (CDCl3): δ 12.4, 18.3, 39.5, 40.4, 55.3, 55.7, 58.5, 58.7, 67.1, 67.3, 67.5, 70.3, 71.0, 128.2, 128.3, 128.4, 128.55, 128.61, 128.65, 128.75, 128.8, 128.9, 129.0, 135.9, 136.1, 136.9, 137.1, 154.8, 155.5, 172.8, 173.0;
IR (neat): ν 2943, 2866, 1749, 1712, 1458, 1415, 1117, 1022, 883, 696cm-1;
HRMS (FAB): [M+H] calcd for [C29H42NO5Si]: 512.2832, found: 512.2809;
[α]D 22-35.1 (c=1.00, CHCl3).
1 H NMR (CDCl 3 ): δ 1.01 (21H, d, J = 4.5Hz), 2.00-2.12 (1H, m), 2.17-2.31 (1H, m), 3.42-3.59 (1H, m), 3.62- 3.76 (1H, m), 4.45-4.60 (2H, m), 4.91-5.26 (4H, m), 7.17-7.37 (10H, m);
13 C NMR (CDCl 3 ): δ 12.4, 18.3, 39.5, 40.4, 55.3, 55.7, 58.5, 58.7, 67.1, 67.3, 67.5, 70.3, 71.0, 128.2, 128.3, 128.4, 128.55, 128.61, 128.65, 128.75, 128.8 , 128.9, 129.0, 135.9, 136.1, 136.9, 137.1, 154.8, 155.5, 172.8, 173.0;
IR (neat): ν 2943, 2866, 1749, 1712, 1458, 1415, 1117, 1022, 883, 696cm -1 ;
HRMS (FAB): [M + H] calcd for [C 29 H 42 NO 5 Si]: 512.2832, found: 512.2809;
[α] D 22 -35.1 (c = 1.00, CHCl 3 ).

(2S,4R)−4−トリイソプロピルシリルオキシ−ピロリジン−2−カルボン酸(12)は、以下のNMR、IR、HRMSの結果によって同定した。   (2S, 4R) -4-triisopropylsilyloxy-pyrrolidine-2-carboxylic acid (12) was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3):δ 0.97-1.05 (21H, m), 2.13 (1H, ddd, J=12.9, 7.8, 5.4Hz), 2.27 (1H, ddd, J=12.9, 7.8, 4.1Hz), 3.20 (1H, br-d, J=9.0Hz), 3.46 (1H, br-s), 4.15(1H, t, J=7.8Hz), 4.51(1H, quintet, J=4.1Hz);
13C NMR (CDCl3): δ 11.9, 17.8, 39.2, 52.5, 59.8, 71.0, 173.7;
IR (KBr): ν 3438, 2942, 1624, 1464, 1400, 1389, 1101, 999, 883, 68cm-1;
HRMS (FAB): [M+H] calcd for [C14H29NO3Si]: 288.1995, found: 288.2010;
[α]D 22-15.9 (c=1.01, CHCl3).
1 H NMR (CDCl 3 ): δ 0.97-1.05 (21H, m), 2.13 (1H, ddd, J = 12.9, 7.8, 5.4Hz), 2.27 (1H, ddd, J = 12.9, 7.8, 4.1Hz), 3.20 (1H, br-d, J = 9.0Hz), 3.46 (1H, br-s), 4.15 (1H, t, J = 7.8Hz), 4.51 (1H, quintet, J = 4.1Hz);
13 C NMR (CDCl 3 ): δ 11.9, 17.8, 39.2, 52.5, 59.8, 71.0, 173.7;
IR (KBr): ν 3438, 2942, 1624, 1464, 1400, 1389, 1101, 999, 883, 68cm -1 ;
HRMS (FAB): [M + H] calcd for [C 14 H 29 NO 3 Si]: 288.1995, found: 288.2010;
[α] D 22 -15.9 (c = 1.01, CHCl 3 ).

<触媒(16)の合成>
(2S,4R)−ベンジル−N−ベンジルオキシカルボニル−4−ヒドロキシピロリジン−2−カルボン酸塩(2.34g、4.5mmol)をピリジン(9.0mL)に溶解させ、0℃でn−デカン酸クロリド(1.37mL、6.75mmol))、4−ジメチルアミノピリジンを触媒量加え10分攪拌した後、室温で18時間攪拌した。反応を飽和炭酸水素ナトリウム水溶液により停止させ、水相を酢酸エチルにより3回抽出した。有機層を飽和炭酸水素ナトリウム水溶液により3回洗浄した後、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧下溶媒を留去し濃縮した。カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:12)で精製することで目的物を2.06g(88%)得た。得られた(2S,4R)−ベンジル−N−ベンジルオキシカルボニル−4−ラウロイルオキシピロリジン−2−カルボン酸塩(2.06g、3.93mmol)を酢酸エチル(15.7mL)に溶解させ、水酸化パラジウム(200mg,10wt%)を加え室温、水素存在下で15時間攪拌した。セライトろ過し、減圧下溶媒を留去し濃縮することで触媒(16)を1.12g(100%)得た。
<Synthesis of catalyst (16)>
(2S, 4R) -Benzyl-N-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylate (2.34 g, 4.5 mmol) was dissolved in pyridine (9.0 mL) and n-decane at 0 ° C. A catalytic amount of acid chloride (1.37 mL, 6.75 mmol)) and 4-dimethylaminopyridine were added and stirred for 10 minutes, and then stirred at room temperature for 18 hours. The reaction was quenched with saturated aqueous sodium bicarbonate and the aqueous phase was extracted 3 times with ethyl acetate. The organic layer was washed 3 times with a saturated aqueous sodium hydrogen carbonate solution and then washed 3 times with a saturated saline solution. The organic layer was dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure and concentrated. Purification by column chromatography (ethyl acetate: hexane = 1: 12) gave 2.06 g (88%) of the desired product. The obtained (2S, 4R) -benzyl-N-benzyloxycarbonyl-4-lauroyloxypyrrolidine-2-carboxylate (2.06 g, 3.93 mmol) was dissolved in ethyl acetate (15.7 mL) and water was added. Palladium oxide (200 mg, 10 wt%) was added, and the mixture was stirred at room temperature in the presence of hydrogen for 15 hours. The mixture was filtered through celite, and the solvent was distilled off under reduced pressure and concentrated to obtain 1.12 g (100%) of the catalyst (16).

同様の方法で触媒(14)、(15)、(17)、(18)、(19)を合成し、以下のNMR、IR、HRMSの結果により同定した。   Catalysts (14), (15), (17), (18), and (19) were synthesized in the same manner and identified by the following NMR, IR, and HRMS results.

[触媒(14)のNMR、IR、HRMS]
1H NMR (CDCl3): δ 0.83 (3H, t, J=7.0Hz), 1.16-1.31 (4H, m), 1.55 (2H, quint, J=7.0Hz), 2.18-2.26 (1H, m), 2.26 (2H, t, J=7.5Hz), 2.41 (1H, dd, J=7.4, 13.9Hz), 3.32 (1H, d, J=13.1Hz), 3.59 (1H, dd, J=4.5, 13.1Hz), 4.10 (1H, bt, J=7.4Hz), 5.29 (1H, bs);
13C NMR (CDCl3): δ 13.8, 22.2, 24.2, 31.1, 33.9, 35.4, 50.4, 60.0, 72.7, 172.4, 173.2;
IR (KBr): ν2960, 1730, 1624, 1577, 1441, 1419, 1250, 1173, 1038, 640cm-1;
HRMS (FAB): [M+H] calcd for [C11H20O4N]: 230.1392, found: 230.1389;
[α]D 22-25.1 (c=0.11, MeOH).
[NMR, IR, HRMS of catalyst (14)]
1 H NMR (CDCl 3 ): δ 0.83 (3H, t, J = 7.0Hz), 1.16-1.31 (4H, m), 1.55 (2H, quint, J = 7.0Hz), 2.18-2.26 (1H, m) , 2.26 (2H, t, J = 7.5Hz), 2.41 (1H, dd, J = 7.4, 13.9Hz), 3.32 (1H, d, J = 13.1Hz), 3.59 (1H, dd, J = 4.5, 13.1 Hz), 4.10 (1H, bt, J = 7.4Hz), 5.29 (1H, bs);
13 C NMR (CDCl 3 ): δ 13.8, 22.2, 24.2, 31.1, 33.9, 35.4, 50.4, 60.0, 72.7, 172.4, 173.2;
IR (KBr): ν2960, 1730, 1624, 1577, 1441, 1419, 1250, 1173, 1038, 640cm -1 ;
HRMS (FAB): [M + H] calcd for [C 11 H 20 O 4 N]: 230.1392, found: 230.1389;
[α] D 22 -25.1 (c = 0.11, MeOH).

[触媒(15)のNMR、IR、HRMS]
1H NMR (CDCl3): δ 0.80-0.88 (3H, m), 1.25 (8H, bs), 1.56 (2H, bs), 2.20-2.31 (3H, m), 2.36-2.45 (1H, m), 3.28-3.41 (1H, m), 3.54-3.67 (1H, m), 4.12 (1H, bs), 5.27 (1H, bs);
13C NMR (CDCl3): δ 14.0, 22.5, 24.6, 28.8, 29.0, 31.5, 33.9, 35.4, 50.2, 59.9, 72.5, 172.7, 173.2;
IR (KBr): ν 2960, 2929, 1736, 1624, 1577, 1441, 1419, 1383, 1227, 1167cm-1;
HRMS (FAB): [M+H] calcd for [C13H24O4N]: 258.1705, found: 258.1711;
[α]D 22-37.0 (c=0.09, MeOH).
[NMR, IR, HRMS of catalyst (15)]
1 H NMR (CDCl 3 ): δ 0.80-0.88 (3H, m), 1.25 (8H, bs), 1.56 (2H, bs), 2.20-2.31 (3H, m), 2.36-2.45 (1H, m), 3.28-3.41 (1H, m), 3.54-3.67 (1H, m), 4.12 (1H, bs), 5.27 (1H, bs);
13 C NMR (CDCl 3 ): δ 14.0, 22.5, 24.6, 28.8, 29.0, 31.5, 33.9, 35.4, 50.2, 59.9, 72.5, 172.7, 173.2;
IR (KBr): ν 2960, 2929, 1736, 1624, 1577, 1441, 1419, 1383, 1227, 1167cm -1 ;
HRMS (FAB): [M + H] calcd for [C 13 H 24 O 4 N]: 258.1705, found: 258.1711;
[α] D 22 -37.0 (c = 0.09, MeOH).

[触媒(16)のNMR、IR、HRMS]
1H NMR (CD3OD): δ 0.93 (3H, t, J=6.8Hz), 1.28-1.42 (12H, m), 1.64 (2H, quint, J=7.0Hz), 2.31 (1H, ddd, J=4.9, 10.2, 14.5Hz), 2.40 (1H, dt, Jd=12.6Hz, Jt=7.5Hz), 2.41 (1H, dt, Jd=12.6Hz, Jt=7.5Hz), 2.54 (1H, dd, J=7.8, 14.5Hz), 3.42 (1H, d, J=13.0Hz), 3.64 (1H, dd, J=4.4, 13.0Hz), 4.19 (1H, dd, J=7.8, 10.2Hz), 5.43 (1H, bt, J=4.4Hz);
13C NMR (CD3OD): δ 15.3, 24.6, 26.7, 31.0, 31.3, 31.4, 33.9, 35.7, 37.5, 52.8, 62.4, 75.5, 173.8, 175.2;
IR (KBr): ν 2852, 1736, 1620, 1579, 1441, 1417, 1383, 1213, 1165, 640cm-1;
HRMS (FAB): [M+H] calcd for [C15H28O4N]: 286.2018, found: 286.2036;
[α]D 22-29.4 (c=0.13, MeOH).
[NMR, IR, HRMS of catalyst (16)]
1 H NMR (CD 3 OD): δ 0.93 (3H, t, J = 6.8Hz), 1.28-1.42 (12H, m), 1.64 (2H, quint, J = 7.0Hz), 2.31 (1H, ddd, J = 4.9, 10.2, 14.5Hz), 2.40 (1H, dt, Jd = 12.6Hz, Jt = 7.5Hz), 2.41 (1H, dt, Jd = 12.6Hz, Jt = 7.5Hz), 2.54 (1H, dd, J = 7.8, 14.5Hz), 3.42 (1H, d, J = 13.0Hz), 3.64 (1H, dd, J = 4.4, 13.0Hz), 4.19 (1H, dd, J = 7.8, 10.2Hz), 5.43 (1H , bt, J = 4.4Hz);
13 C NMR (CD 3 OD): δ 15.3, 24.6, 26.7, 31.0, 31.3, 31.4, 33.9, 35.7, 37.5, 52.8, 62.4, 75.5, 173.8, 175.2;
IR (KBr): ν 2852, 1736, 1620, 1579, 1441, 1417, 1383, 1213, 1165, 640cm -1 ;
HRMS (FAB): [M + H] calcd for [C 15 H 28 O 4 N]: 286.2018, found: 286.2036;
[α] D 22 -29.4 (c = 0.13, MeOH).

[触媒(17)のNMR、IR、HRMS]
1H NMR (CD3OD): δ 0.93 (3H, t, J=6.8Hz), 1.24-1.46 (16H,m), 1.66 (2H, J=6.9Hz), 2.31 (1H, ddd, J=4.6, 10.2, 14.4Hz), 2.37 (1H, dt, Jd=15.5Hz, Jt=7.3Hz), 2.41 (1H, dt, Jd=15.5Hz, Jt=7.3Hz), 2.54 (1H, dd, J=7.7, 14.4Hz), 3.41 (1H, d, J=13.1Hz), 3.63 (1H, dd, J=4.2, 13.1Hz), 4.18 (1H, t, J=7.7Hz), 5.42 (1H, bs);
13C NMR (CD3OD): δ 15.4, 24.7, 26.8, 31.0, 31.2, 31.4, 31.5, 31.6, 31.7, 34.1, 35.8, 37.6, 53.0, 62.6, 75.7, 174.0, 175.3;
IR (KBr): ν 2920, 2850, 1736, 1616, 1585, 1456, 1417, 1205, 1165, 636cm-1;
HRMS (FAB): [M+H] calcd for [C17H32O4N]: 314.2331, found: 314.2307;
[α]D 22-17.8 (c=0.09, MeOH).
[NMR, IR, HRMS of catalyst (17)]
1 H NMR (CD 3 OD): δ 0.93 (3H, t, J = 6.8Hz), 1.24-1.46 (16H, m), 1.66 (2H, J = 6.9Hz), 2.31 (1H, ddd, J = 4.6 , 10.2, 14.4Hz), 2.37 (1H, dt, J d = 15.5Hz, J t = 7.3Hz), 2.41 (1H, dt, J d = 15.5Hz, J t = 7.3Hz), 2.54 (1H, dd , J = 7.7, 14.4Hz), 3.41 (1H, d, J = 13.1Hz), 3.63 (1H, dd, J = 4.2, 13.1Hz), 4.18 (1H, t, J = 7.7Hz), 5.42 (1H , bs);
13 C NMR (CD 3 OD): δ 15.4, 24.7, 26.8, 31.0, 31.2, 31.4, 31.5, 31.6, 31.7, 34.1, 35.8, 37.6, 53.0, 62.6, 75.7, 174.0, 175.3;
IR (KBr): ν 2920, 2850, 1736, 1616, 1585, 1456, 1417, 1205, 1165, 636cm -1 ;
HRMS (FAB): [M + H] calcd for [C 17 H 32 O 4 N]: 314.2331, found: 314.2307;
[α] D 22 -17.8 (c = 0.09, MeOH).

[触媒(18)のNMR、IR、HRMS]
1H NMR (CD3OD): δ 0.89-0.99 (3H, m), 1.25-1.46 (20H, m), 1.58-1.70 (2H, m), 2.25-2.34 (1H, m), 2.37 (1H, dt, Jd=15.6Hz, Jt=7.4Hz), 2.41 (1H, dt, Jd=5.6Hz, Jt=7.4Hz), 2.53 (1H, ddd, J=1.6, 6.6, 14.4Hz), 3.42 (1H, d, J=13.1Hz), 3.64 (1H, dd, J=4.2, 13.1Hz), 4.18 (1H, dt, Jd=3.1Hz, Jt=8.4Hz), 5.40-5.45 (1H, m);
13C NMR (CD3OD): δ 15.4, 24.7, 26.8, 31.2, 31.3, 31.4, 31.5, 31.6, 31.72, 31.75, 31.8, 34.1, 35.8, 37.6, 53.0, 62.6, 75.7, 174.0, 175.3;
IR (KBr): ν 2918, 2850, 1736, 1614, 1587, 1456, 1415, 1220, 1165, 636cm-1;
HRMS (FAB): [M+H] calcd for [C19H36O4N]: 342.2644, found: 342.2619;
[α]D 22-20.8 (c=0.07, MeOH).
[NMR, IR, HRMS of catalyst (18)]
1 H NMR (CD 3 OD): δ 0.89-0.99 (3H, m), 1.25-1.46 (20H, m), 1.58-1.70 (2H, m), 2.25-2.34 (1H, m), 2.37 (1H, dt, J d = 15.6Hz, J t = 7.4Hz), 2.41 (1H, dt, J d = 5.6Hz, J t = 7.4Hz), 2.53 (1H, ddd, J = 1.6, 6.6, 14.4Hz), 3.42 (1H, d, J = 13.1Hz), 3.64 (1H, dd, J = 4.2, 13.1Hz), 4.18 (1H, dt, Jd = 3.1Hz, Jt = 8.4Hz), 5.40-5.45 (1H, m );
13 C NMR (CD 3 OD): δ 15.4, 24.7, 26.8, 31.2, 31.3, 31.4, 31.5, 31.6, 31.72, 31.75, 31.8, 34.1, 35.8, 37.6, 53.0, 62.6, 75.7, 174.0, 175.3;
IR (KBr): ν 2918, 2850, 1736, 1614, 1587, 1456, 1415, 1220, 1165, 636cm -1 ;
HRMS (FAB): [M + H] calcd for [C 19 H 36 O 4 N]: 342.2644, found: 342.2619;
[α] D 22 -20.8 (c = 0.07, MeOH).

[触媒(19)のNMR、IR、HRMS]
1H NMR (CDCl3): δ 0.89-0.97 (3H, m), 1.25-1.37 (24H, m), 1.66 (2H, bt, J=6.5Hz), 2.31 (1H, dddd, 1.8, 4.4, 10.3, 14.5), 2.34-2.44 (1H, m), 2.53 (1H, ddd, J=1.2, 7.7, 14.5Hz), 3.40 (1H, d, J=13.1Hz), 3.63 (1H, dd, J=4.2, 13.1Hz), 4.17 (1H, t, J=8.4Hz), 5.43 (1H, bs);
13C NMR (CD3OD): δ 15.4, 24.7, 26.8, 31.2, 31.4, 31.5, 31.6, 31.72, 31.75, 31.8, 34.1, 35.9, 37.7, 53.0, 62.6, 75.7, 174.0, 175.3;
IR (KBr): ν 2918, 2850, 1736, 1618, 1585, 1441, 1415, 1228, 1167, 721cm-1;
HRMS (FAB): [M+H] calcd for [C21H40O4N]: 370.2957, found: 370.2943;
[α]D 22-25.9 (c=0.05, MeOH).
[NMR, IR, HRMS of catalyst (19)]
1 H NMR (CDCl 3 ): δ 0.89-0.97 (3H, m), 1.25-1.37 (24H, m), 1.66 (2H, bt, J = 6.5Hz), 2.31 (1H, dddd, 1.8, 4.4, 10.3 , 14.5), 2.34-2.44 (1H, m), 2.53 (1H, ddd, J = 1.2, 7.7, 14.5Hz), 3.40 (1H, d, J = 13.1Hz), 3.63 (1H, dd, J = 4.2 , 13.1Hz), 4.17 (1H, t, J = 8.4Hz), 5.43 (1H, bs);
13 C NMR (CD 3 OD): δ 15.4, 24.7, 26.8, 31.2, 31.4, 31.5, 31.6, 31.72, 31.75, 31.8, 34.1, 35.9, 37.7, 53.0, 62.6, 75.7, 174.0, 175.3;
IR (KBr): ν 2918, 2850, 1736, 1618, 1585, 1441, 1415, 1228, 1167, 721cm -1 ;
HRMS (FAB): [M + H] calcd for [C 21 H 40 O 4 N]: 370.2957, found: 370.2943;
[α] D 22 -25.9 (c = 0.05, MeOH).

<(2S,4R)−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸(13)の合成>
(2S,4R)−N−ベンジルオキシカルボニル−4−ヒドロキシピロリジン−2−カルボン酸ベンジルエステル(3.0g、8.4mmol)のDMF溶液(18mL)に、2,6−イミダゾール(1.14g、16.8mmol)とtert−ブチルジフェニルシリルオキシクロリド(TBDPSCl)(3.3mL、12.6mmol)を0℃にて加えた。反応液を室温で2時間攪拌し、その後、リン酸緩衝液(pH7.0)を加え、冷却した。有機層を酢酸エチル(AcOEt)で3回抽出し、抽出液を硫酸ナトリウム(NaSO)で乾燥、濃縮し、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し、(2S,4R)−N−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸ベンジルエステル(5.3g、8.4mmol)の透明な粘着性油剤を得た。
<Synthesis of (2S, 4R) -4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid (13)>
To a DMF solution (18 mL) of (2S, 4R) -N-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester (3.0 g, 8.4 mmol), 2,6-imidazole (1.14 g, 16.8 mmol) and tert-butyldiphenylsilyloxychloride (TBDPSCl) (3.3 mL, 12.6 mmol) were added at 0 ° C. The reaction solution was stirred at room temperature for 2 hours, and then a phosphate buffer solution (pH 7.0) was added and cooled. The organic layer was extracted three times with ethyl acetate (AcOEt), and the extract was dried over sodium sulfate (Na 2 SO 4 ), concentrated and purified by column chromatography (ethyl acetate: hexane = 1: 5) (2S , 4R) -N-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid benzyl ester (5.3 g, 8.4 mmol) was obtained.

(2S,4R)−N−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸ベンジルエステル(5.3g、8.4mmol)のメタノール溶液(10mL)に室温で、Pd/C(530mg、10wt%)を加え、室温で20時間撹拌した。無機物をろ過、濃縮し、(2S,4R)−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸(13)の白色粉末を収量3.1gで得た。   (2S, 4R) -N-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid benzyl ester (5.3 g, 8.4 mmol) in methanol solution (10 mL) at room temperature, Pd / C (530 mg, 10 wt%) was added and stirred at room temperature for 20 hours. The inorganic substance was filtered and concentrated to obtain a white powder of (2S, 4R) -4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid (13) in a yield of 3.1 g.

触媒(20)((2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸)は触媒(13)と同様の方法により合成し、以下の物性、NMR、IR、HRMSの結果により同定した。
Colorless solid; mp: 145-146℃; 1H NMR (400MHz, CDCl3): 1.00 (9H, s), 2.17-2.29 (1H, m), 2.36 (1H, bd, J=13.0Hz), 3.21 (1H, d, J=11.6Hz), 3.24 (1H, dd, J=2.7 , 11.6Hz), 4.20 (1H, bd, J=5.3Hz), 4.39 (1H, bs), 7.32-7.43 (6H, m), 7.61 (4H, d, J=5.0Hz); 13C NMR (100MHz, CDCl3): 18.9, 26.6, 38.0, 53.0, 59.2, 71.7, 127.8, 127.9, 130.0, 132.6, 133.0, 135.6, 135.7, 173.2; IR (neat): 3437, 2931, 1589, 1427, 1392, 1319, 1113, 1092, 702, 507cm-1; HRMS (FAB): [M+H]+ calcd for C21H28NO3Si 370.1838, found 370.1858; [α]D 22 +9.2 (c 1.0, CHCl3).
Catalyst (20) ((2R, 4R) -4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid) was synthesized by the same method as for catalyst (13), and the following physical properties, NMR, IR, It identified by the result of HRMS.
Colorless solid; mp: 145-146 ° C; 1 H NMR (400MHz, CDCl 3 ): 1.00 (9H, s), 2.17-2.29 (1H, m), 2.36 (1H, bd, J = 13.0Hz), 3.21 ( 1H, d, J = 11.6Hz), 3.24 (1H, dd, J = 2.7, 11.6Hz), 4.20 (1H, bd, J = 5.3Hz), 4.39 (1H, bs), 7.32-7.43 (6H, m ), 7.61 (4H, d, J = 5.0 Hz); 13 C NMR (100 MHz, CDCl 3 ): 18.9, 26.6, 38.0, 53.0, 59.2, 71.7, 127.8, 127.9, 130.0, 132.6, 133.0, 135.6, 135.7, 173.2; IR (neat): 3437, 2931, 1589, 1427, 1392, 1319, 1113, 1092, 702, 507cm -1 ; HRMS (FAB): [M + H] + calcd for C 21 H 28 NO 3 Si 370.1838 , found 370.1858; [α] D 22 +9.2 (c 1.0, CHCl 3 ).

また、触媒(20)の中間体である(2R,4R)−4−ヒドロキシピロリジン−1,2−ジカルボン酸ジベンジルエステル、及び、(2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−1,2−ジカルボン酸ジベンジルエステルは、以下のNMR、IR、HRMSの結果によって同定した。   Further, (2R, 4R) -4-hydroxypyrrolidine-1,2-dicarboxylic acid dibenzyl ester, which is an intermediate of catalyst (20), and (2R, 4R) -4- (tert-butyldiphenylsilyloxy) -Pyrrolidine-1,2-dicarboxylic acid dibenzyl ester was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

[(2R,4R)−4−ヒドロキシピロリジン−1,2−ジカルボン酸ジベンジルエステルのNMR、IR、HRMS]
A mixture of two conformers; Colorless liquid; 1H NMR (400MHz, CDCl3): δ 2.06 (1H, t, J = 12.5Hz), 2.17-2.32 (1H, m), 3.16 and 3.20 (1H, d x2, J=7.9Hz, 8.4Hz), 3.51-3.69 (2H, m), 4.25-4.33 (1H, m), 4.37 and 4.43 (1H, d x2, J=9.0Hz, 8.7Hz), 4.94-5.25 (4H, m), 7.15-7.34 (10H, m); 13C NMR (100MHz, CDCl3): δ 37.8, 38.6, 55.5, 55.9, 57.8, 58.2, 67.2, 67.3, 67.4, 70.0, 70.9, 127.78, 127.82, 127.97, 128.0, 128.1, 128.2, 128.31, 128.37, 128.42, 128.5, 135.0, 135.2, 136.2, 136.3, 154.2, 154.9, 174.0, 174.1; IR (neat): 3442, 1749, 1705, 1456, 1417, 1352, 1194, 1088, 966, 698cm-1; HRMS (FAB): [M+H]+ calcd for C20H22NO5 356.1498, found 356.1470; [α]D 22 +15.9 (c 0.57, CHCl3).
[NMR, IR, HRMS of (2R, 4R) -4-hydroxypyrrolidine-1,2-dicarboxylic acid dibenzyl ester]
A mixture of two conformers; Colorless liquid; 1 H NMR (400MHz, CDCl 3 ): δ 2.06 (1H, t, J = 12.5Hz), 2.17-2.32 (1H, m), 3.16 and 3.20 (1H, d x2, J = 7.9Hz, 8.4Hz), 3.51-3.69 (2H, m), 4.25-4.33 (1H, m), 4.37 and 4.43 (1H, d x2, J = 9.0Hz, 8.7Hz), 4.94-5.25 (4H , m), 7.15-7.34 (10H, m); 13 C NMR (100 MHz, CDCl 3 ): δ 37.8, 38.6, 55.5, 55.9, 57.8, 58.2, 67.2, 67.3, 67.4, 70.0, 70.9, 127.78, 127.82, 127.97, 128.0, 128.1, 128.2, 128.31, 128.37, 128.42, 128.5, 135.0, 135.2, 136.2, 136.3, 154.2, 154.9, 174.0, 174.1; IR (neat): 3442, 1749, 1705, 1456, 1417, 1352, 1194 , 1088, 966, 698 cm -1 ; HRMS (FAB): [M + H] + calcd for C 20 H 22 NO 5 356.1498, found 356.1470; [α] D 22 +15.9 (c 0.57, CHCl 3 ).

Figure 2007182419
Figure 2007182419

[(2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−1,2−ジカルボン酸ジベンジルエステルのNMR、IR、HRMS]
A mixture of two conformers; Colorless liquid; 1H NMR (400MHz, CDCl3): δ 0.941 and 0.946 (9H, s), 2.02-2.22 (2H, m), 3.39 and 3.42 (1H, dd x2, J=11.3, 5.1Hz, 11.3, 3.2Hz), 3.46-3.52 (1H, m), 4.20-4.28 (1H, m), 4.32 and 4.41 (1H, dd x2, J=8.7, 4.1Hz, 8.7, 3.7Hz), 4.87-5.15 (4H, m), 7.13-7.38 (16H, m), 7.53 (4H, d, J=7.1Hz); 13C NMR (100MHz, CDCl3): 19.0, 26.7, 38.3, 39.2, 54.4, 54.8, 57.8, 58.0, 66.8, 66.9, 67.0, 67.1, 70.7, 71.6, 127.69, 127.75, 127.81, 127.87, 128.00, 128.04, 128.1, 128.2, 128.35, 128.40, 128.48, 128.50, 129.8, 135.66, 135.68, 154.4, 154.8, 171.3, 171.6; IR (neat): 2952, 2933, 1757, 1712, 1427, 1356, 1163, 1089, 1022, 700cm-1; HRMS (FAB): [M+H]+ calcd for C36H40NO5Si 594.2676, found 594.2650; [α]D 22 +25.8 (c 0.76, CHCl3).
[NMR, IR, HRMS of (2R, 4R) -4- (tert-butyldiphenylsilyloxy) -pyrrolidine-1,2-dicarboxylic acid dibenzyl ester]
A mixture of two conformers; Colorless liquid; 1 H NMR (400MHz, CDCl 3 ): δ 0.941 and 0.946 (9H, s), 2.02-2.22 (2H, m), 3.39 and 3.42 (1H, dd x2, J = 11.3 , 5.1Hz, 11.3, 3.2Hz), 3.46-3.52 (1H, m), 4.20-4.28 (1H, m), 4.32 and 4.41 (1H, dd x2, J = 8.7, 4.1Hz, 8.7, 3.7Hz), 4.87-5.15 (4H, m), 7.13-7.38 (16H, m), 7.53 (4H, d, J = 7.1Hz); 13 C NMR (100MHz, CDCl 3 ): 19.0, 26.7, 38.3, 39.2, 54.4, 54.8, 57.8, 58.0, 66.8, 66.9, 67.0, 67.1, 70.7, 71.6, 127.69, 127.75, 127.81, 127.87, 128.00, 128.04, 128.1, 128.2, 128.35, 128.40, 128.48, 128.50, 129.8, 135.66, 135.68, 154.4, 154.8, 171.3, 171.6; IR (neat): 2952, 2933, 1757, 1712, 1427, 1356, 1163, 1089, 1022, 700cm -1 ; HRMS (FAB): [M + H] + calcd for C 36 H 40 NO 5 Si 594.2676, found 594.2650; [α] D 22 +25.8 (c 0.76, CHCl 3 ).

触媒(21)((2S,3S)−3−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸)は触媒(13)と同様の方法により合成し、以下の物性、NMR、IR、HRMSの結果により同定した。
Colorless solid; mp: 164-165℃; 1H NMR (400MHz, CDCl3:CD3OD=10:1): 1.01 (9H, s), 1.56-1.71 (2H, m), 3.27-3.47 (2H, m), 3.95 (1H, s), 4.79 (1H, s), 7.26-7.42 (6H, m), 7.55 (2H, bd, J=7.6Hz) 7.60 (2H, bd, J=7.4Hz); 13C NMR (150MHz, CDCl3:CD3OD=10:1): 19.0, 26.7, 32.4, 44.0, 69.9, 76.2, 127.82, 127.87, 130.01, 130.03, 132.5, 133.2, 135.6, 135.7, 169.5; IR (neat): 3477, 2958, 2856, 1635, 1568, 1427, 1367, 1110, 704, 609cm-1; HRMS (FAB): [M+H]+ calcd for C21H28NO3Si 370.1838, found 370.1809; [α]D 23 +13.5 (c 1.0, MeOH).
Catalyst (21) ((2S, 3S) -3- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid) was synthesized by the same method as for catalyst (13), and the following physical properties, NMR, IR, It identified by the result of HRMS.
Colorless solid; mp: 164-165 ° C; 1 H NMR (400MHz, CDCl 3 : CD 3 OD = 10: 1): 1.01 (9H, s), 1.56-1.71 (2H, m), 3.27-3.47 (2H, m), 3.95 (1H, s), 4.79 (1H, s), 7.26-7.42 (6H, m), 7.55 (2H, bd, J = 7.6Hz) 7.60 (2H, bd, J = 7.4Hz); 13 C NMR (150MHz, CDCl 3 : CD 3 OD = 10: 1): 19.0, 26.7, 32.4, 44.0, 69.9, 76.2, 127.82, 127.87, 130.01, 130.03, 132.5, 133.2, 135.6, 135.7, 169.5; IR (neat ): 3477, 2958, 2856, 1635, 1568, 1427, 1367, 1110, 704, 609cm -1 ; HRMS (FAB): [M + H] + calcd for C 21 H 28 NO 3 Si 370.1838, found 370.1809; [ α] D 23 +13.5 (c 1.0, MeOH).

また、触媒(21)の中間体である(2S,3S)−3−ヒドロキシピロリジン−1,2−ジカルボン酸ジベンジルエステル、及び、(2S,3S)−3−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−1,2−ジカルボン酸ジベンジルエステルは、以下のNMR、IR、HRMSの結果によって同定した。   Further, (2S, 3S) -3-hydroxypyrrolidine-1,2-dicarboxylic acid dibenzyl ester which is an intermediate of catalyst (21), and (2S, 3S) -3- (tert-butyldiphenylsilyloxy) -Pyrrolidine-1,2-dicarboxylic acid dibenzyl ester was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

[(2S,3S)−3−ヒドロキシピロリジン−1,2−ジカルボン酸ジベンジルエステルのNMR、IR、HRMS]
A mixture of two conformers; Colorless liquid; 1H NMR (400MHz, CDCl3): dδ 1.84-1.96 (1H, m), 2.00-2.13 (2H, m), 3.55-3.76 (2H, m), 4.31 and 4.40 (1H, s), 4.43 (1H, bs), 4.95-5.23 (4H, m), 7.15-7.39 (10H, m); 13C NMR (150MHz, CDCl3): δ 32.0, 32.6, 44.4, 44.8, 67.0, 67.1, 67.18, 67.20, 67.9, 68.3, 74.1, 75.2, 127.7, 127.87, 127.93, 128.0, 128.1, 128.2, 128.4, 128.5, 128.6, 135.2, 135.3, 136.4, 136.5, 154.4, 155.1, 170.2, 170.4; IR (neat): 3435, 1747, 1712, 1456, 1417, 1352, 1167, 1095, 914, 698cm-1; HRMS (FAB): [M+H]+ calcd for C20H22NO5 356.1498, found 356.1506; [α]D 21 -26.7 (c 1.04, CHCl3).
[NMR, IR, HRMS of (2S, 3S) -3-hydroxypyrrolidine-1,2-dicarboxylic acid dibenzyl ester]
A mixture of two conformers; Colorless liquid; 1 H NMR (400MHz, CDCl 3 ): dδ 1.84-1.96 (1H, m), 2.00-2.13 (2H, m), 3.55-3.76 (2H, m), 4.31 and 4.40 (1H, s), 4.43 (1H, bs), 4.95-5.23 (4H, m), 7.15-7.39 (10H, m); 13 C NMR (150 MHz, CDCl 3 ): δ 32.0, 32.6, 44.4, 44.8, 67.0, 67.1, 67.18, 67.20, 67.9, 68.3, 74.1, 75.2, 127.7, 127.87, 127.93, 128.0, 128.1, 128.2, 128.4, 128.5, 128.6, 135.2, 135.3, 136.4, 136.5, 154.4, 155.1, 170.2, 170.4; IR (neat): 3435, 1747, 1712, 1456, 1417, 1352, 1167, 1095, 914, 698cm -1 ; HRMS (FAB): [M + H] + calcd for C 20 H 22 NO 5 356.1498, found 356.1506 ; [α] D 21 -26.7 (c 1.04, CHCl 3 ).

Figure 2007182419
Figure 2007182419

[(2S,3S)−3−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−1,2−ジカルボン酸ジベンジルエステルのNMR、IR、HRMS]
A mixture of two conformers; Colorless liquid; 1H NMR (400MHz, CDCl3): δ 0.95-1.09 (9H, m), 1.71-1.87 (2H, m), 3.61-3.79 (2H, m), 4.31-4.50 (2H, m), 4.81-5.23 (4H, m), 7.13-7.43 (16H, m), 7.53-7.63 (4H, m); 13C NMR (150MHz, CDCl3): 19.1, 26.77, 26.81, 32.5, 33.3, 44.8, 45.1, 66.8, 66.9, 67.0, 67.1, 68.0, 68.4, 75.5, 76.5, 127.6, 127.78, 127.80, 127.81, 127.85, 127.96, 128.00, 128.03, 128.1, 128.2, 128.4, 128.48, 128.50, 129.9, 130.0, 132.7, 132.9, 133.1, 133.3, 135.3, 135.4, 135.66, 135.69, 136.6, 136.7, 154.5, 155.1, 170.3, 170.4; IR (neat): 2956, 2858, 1747, 1714, 1417, 1348, 1165, 1059, 822, 700cm-1; HRMS (FAB): [M+H]+ calcd for C36H40NO5Si 594.2676, found 594.2715; [α]D 22 -6.4 (c 1.0, CHCl3).
[NMR, IR, HRMS of (2S, 3S) -3- (tert-butyldiphenylsilyloxy) -pyrrolidine-1,2-dicarboxylic acid dibenzyl ester]
A mixture of two conformers; Colorless liquid; 1 H NMR (400MHz, CDCl 3 ): δ 0.95-1.09 (9H, m), 1.71-1.87 (2H, m), 3.61-3.79 (2H, m), 4.31-4.50 (2H, m), 4.81-5.23 (4H, m), 7.13-7.43 (16H, m), 7.53-7.63 (4H, m); 13 C NMR (150MHz, CDCl 3 ): 19.1, 26.77, 26.81, 32.5 , 33.3, 44.8, 45.1, 66.8, 66.9, 67.0, 67.1, 68.0, 68.4, 75.5, 76.5, 127.6, 127.78, 127.80, 127.81, 127.85, 127.96, 128.00, 128.03, 128.1, 128.2, 128.4, 128.48, 128.50, 129.9 , 130.0, 132.7, 132.9, 133.1, 133.3, 135.3, 135.4, 135.66, 135.69, 136.6, 136.7, 154.5, 155.1, 170.3, 170.4; IR (neat): 2956, 2858, 1747, 1714, 1417, 1348, 1165, 1059, 822, 700cm -1 ; HRMS (FAB): [M + H] + calcd for C 36 H 40 NO 5 Si 594.2676, found 594.2715; [α] D 22 -6.4 (c 1.0, CHCl 3 ).

<(2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジン(28)の合成>
((2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボキサミドの合成)
(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸(6.87g、13.6mmol)をTHF(27.2ml)に溶解させ、−10℃でクロロギ酸メチル(1.04ml、13.2mmol)、トリエチルアミン(1.9ml、13.6mmol)を加え10分攪拌した後、液体アンモニアを加え−10℃で1時間攪拌した。反応をリン酸緩衝溶液により停止し、水相を酢酸エチルにより3回抽出する。有機層を1N−塩酸により1回洗浄した後、1N−炭酸水素ナトリウム溶液で1回洗浄した。その後、飽和食塩水で1回洗浄し、有機層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧下溶媒を留去し濃縮した。カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3)で精製することで(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボキサミドを4.87g(71%)得た。(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボキサミドは、以下のNMR、IRの結果によって同定した。
<Synthesis of (2R, 4R) -4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine (28)>
(Synthesis of (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxamide)
(2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid (6.87 g, 13.6 mmol) was dissolved in THF (27.2 ml), − After adding methyl chloroformate (1.04 ml, 13.2 mmol) and triethylamine (1.9 ml, 13.6 mmol) at 10 ° C. and stirring for 10 minutes, liquid ammonia was added and the mixture was stirred at −10 ° C. for 1 hour. The reaction is stopped with phosphate buffer solution and the aqueous phase is extracted three times with ethyl acetate. The organic layer was washed once with 1N-hydrochloric acid and then washed once with 1N-sodium bicarbonate solution. Thereafter, the extract was washed once with a saturated saline solution, and the organic layer was dried over anhydrous sodium sulfate and then filtered, and the solvent was distilled off under reduced pressure and concentrated. 4.87 g of (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxamide was purified by column chromatography (ethyl acetate: hexane = 1: 3). (71%) obtained. (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxamide was identified by the following NMR and IR results.

Figure 2007182419
Figure 2007182419

A mixture of comformers;1H NMR (CDCl3): δ 1.00 (9H, s), 2.06-2.20 (1H, m), 2.21-2.35 (1H, m), 3.24-3.42 (1H, m), 3.45-3.62 (1H, m), 4.32-4.55 (2H, m), 5.05-5.40 (3H, m), 7.26-7.44 (11H, m), 7.54-7.62 (4H, m);
IR (KBr): ν 2932, 2857, 1696, 1682, 1427, 1359, 1113, 1022, 702, 509 cm-1;
A mixture of comformers; 1 H NMR (CDCl 3 ): δ 1.00 (9H, s), 2.06-2.20 (1H, m), 2.21-2.35 (1H, m), 3.24-3.42 (1H, m), 3.45- 3.62 (1H, m), 4.32-4.55 (2H, m), 5.05-5.40 (3H, m), 7.26-7.44 (11H, m), 7.54-7.62 (4H, m);
IR (KBr): ν 2932, 2857, 1696, 1682, 1427, 1359, 1113, 1022, 702, 509 cm -1 ;

((2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−シアノピロリジンの合成)
(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−ピロリジン−2−カルボキサミド(3.7g、7.36mmol)をピリジン(4.1ml)に溶解させ、−10℃で塩化ホスホニル(0.82ml、8.83mmol)のジクロロメタン(3.3ml)溶液を、10分かけて滴下した。3時間攪拌した後,反応をリン酸緩衝溶液により停止し、水相を酢酸エチルにより3回抽出した。有機層を飽和硫酸銅水溶液で3回洗浄した後、飽和塩化アンモニウム水溶液で3回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧下溶媒を留去し濃縮した。カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:6)で精製することで(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−シアノピロリジンを2.2g(62%)得た。(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−シアノピロリジンは、以下のNMR、IRの結果によって同定した。
(Synthesis of (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2-cyanopyrrolidine)
(2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxamide (3.7 g, 7.36 mmol) was dissolved in pyridine (4.1 ml) and −10 A solution of phosphonyl chloride (0.82 ml, 8.83 mmol) in dichloromethane (3.3 ml) was added dropwise at 10 ° C. over 10 minutes. After stirring for 3 hours, the reaction was quenched with phosphate buffer solution and the aqueous phase was extracted three times with ethyl acetate. The organic layer was washed 3 times with a saturated aqueous copper sulfate solution and then washed 3 times with a saturated aqueous ammonium chloride solution. The organic layer was dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure and concentrated. 2.2 g (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2-cyanopyrrolidine was purified by column chromatography (ethyl acetate: hexane = 1: 6). 62%). (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2-cyanopyrrolidine was identified by the following NMR and IR results.

Figure 2007182419
Figure 2007182419

A mixture of comformers;1H NMR (CDCl3): δ 1.00 (9H, s), 2.09-2.20 (1H, m), 2.23-2.36 (1H, m), 3.32 and 3.39 (1H, ddx2, J=4.2, 11.2Hz), 3.44 and 3.57 (1H, dx2, J=10.8Hz), 4.44 (1H, bs), 4.62 and 4.70 (1H, tx2, J=7.3Hz), 5.09-5.28 (2H, m), 7.26-7.47 (11H, m), 7.57 (4H, dd, J=7.3, 14.5Hz);
IR (KBr): ν 2932, 2858, 1714, 1410, 1357, 1171, 1114, 1021, 702, 508 cm-1;
A mixture of comformers; 1 H NMR (CDCl 3 ): δ 1.00 (9H, s), 2.09-2.20 (1H, m), 2.23-2.36 (1H, m), 3.32 and 3.39 (1H, ddx2, J = 4.2 , 11.2Hz), 3.44 and 3.57 (1H, dx2, J = 10.8Hz), 4.44 (1H, bs), 4.62 and 4.70 (1H, tx2, J = 7.3Hz), 5.09-5.28 (2H, m), 7.26 -7.47 (11H, m), 7.57 (4H, dd, J = 7.3, 14.5Hz);
IR (KBr): ν 2932, 2858, 1714, 1410, 1357, 1171, 1114, 1021, 702, 508 cm -1 ;

((2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジン)
(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−シアノピロリジン(1.94g、4.0mmol)をDMF(2.4ml)に溶解させ、アジ化ナトリウム(273mg、4.2mmol)の塩化アンモニウム(236mg、4.4mmol)溶液を加え、92℃で12時間攪拌した。その後、反応をリン酸緩衝溶液により停止し、pHが2になるまで1N−塩酸を加えた。水相をクロロホルムにより3回抽出し、有機層を飽和食塩水で1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧下溶媒を留去し濃縮した。カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3)で精製することで(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジンを1.70g(81%)得た。(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジンは、以下のNMR、IRの結果によって同定した。
((2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine)
(2R, 4R) -1-Benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2-cyanopyrrolidine (1.94 g, 4.0 mmol) was dissolved in DMF (2.4 ml) and sodium azide. A solution of (273 mg, 4.2 mmol) in ammonium chloride (236 mg, 4.4 mmol) was added and stirred at 92 ° C. for 12 hours. Thereafter, the reaction was stopped with a phosphate buffer solution, and 1N hydrochloric acid was added until the pH reached 2. The aqueous phase was extracted three times with chloroform, and the organic layer was washed once with saturated brine. The organic layer was dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure and concentrated. By purification by column chromatography (ethyl acetate: hexane = 1: 3), (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazole-5- Yl) -pyrrolidine 1.70 g (81%) was obtained. (2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine was identified by the following NMR and IR results.

Figure 2007182419
Figure 2007182419

A mixture of comformers;1H NMR (CDCl3): δ 1.03 (9H, s), 2.43-2.55 (1H, m), 2.79 (1H, ddd, J=4.5, 8.1, 12.5Hz), 3.25 (1H, dd, J=3.7, 11.5Hz), 3.60 (1H, d, J=11.5Hz), 4.56 (1H, bs), 5.10 and 5.21 (1H, dx2, J=12.3Hz), 5.30 (1H, t, J=7.7Hz), 7.25-7.47 (11H, m), 7.59 (4H, dd, J=7.6, 12.6Hz);
IR (KBr): ν 2927, 2852, 2360, 1705, 1418, 1357, 1112, 1022, 701, 511 cm-1;
A mixture of comformers; 1 H NMR (CDCl 3 ): δ 1.03 (9H, s), 2.43-2.55 (1H, m), 2.79 (1H, ddd, J = 4.5, 8.1, 12.5Hz), 3.25 (1H, dd, J = 3.7, 11.5Hz), 3.60 (1H, d, J = 11.5Hz), 4.56 (1H, bs), 5.10 and 5.21 (1H, dx2, J = 12.3Hz), 5.30 (1H, t, J = 7.7Hz), 7.25-7.47 (11H, m), 7.59 (4H, dd, J = 7.6, 12.6Hz);
IR (KBr): ν 2927, 2852, 2360, 1705, 1418, 1357, 1112, 1022, 701, 511 cm -1 ;

((2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジン)
(2R,4R)−1−ベンジルオキシカルボニル−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジン(54.8mg、0.1mmol)を酢酸(0.9ml)、水(0.1ml)の混合溶媒に溶解させ、10%パラジウムカーボン(5.5mg、10wt%)を加え室温、水素存在下で8時間攪拌した。セライトろ過し、減圧下溶媒を留去し濃縮した。得られた残留物を薄層クロマトグラフィーで精製することにより(2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジンを17.1mg(43%)得た。(2R,4R)−4−(tert−ブチルジフェニルシリルオキシ)−2−(1H−テトラゾール−5−イル)−ピロリジンは、以下のNMR、IRの結果によって同定した。
((2R, 4R) -4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine)
(2R, 4R) -1-benzyloxycarbonyl-4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine (54.8 mg, 0.1 mmol) was added to acetic acid (0. 9 ml) and water (0.1 ml), 10% palladium carbon (5.5 mg, 10 wt%) was added, and the mixture was stirred at room temperature in the presence of hydrogen for 8 hours. The mixture was filtered through Celite, and the solvent was distilled off under reduced pressure and concentrated. The obtained residue was purified by thin layer chromatography to obtain 17.1 mg (2R, 4R) -4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine ( 43%). (2R, 4R) -4- (tert-butyldiphenylsilyloxy) -2- (1H-tetrazol-5-yl) -pyrrolidine was identified by the following NMR and IR results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 0.96 (9H, s), 2.24-2.52 (2H, m), 3.47 (2H, J=12,0Hz), 4.68 (1H, bs), 5.29 (1H, t, J=8.7Hz), 7.26-7.43 (6H, m), 7.57 (4H, d, J=6.9Hz);
13C NMR (CDCl3): δ 18.9, 26.7, 39.3, 53.1, 53.6, 71.9, 127.98, 127.99, 130.2, 132.6, 132.7, 135.6, 135.64, 156.6;
IR (KBr): ν 2932, 2858, 1710, 1427, 1357, 1112, 1008, 822, 703, 507 cm-1;
HRMS (FAB): [M+Na] calcd for [C21H27N5NaOSi]: 416.1877, found: 416.1881;
[α]D 22-8.2 (c = 1.00, MeOH).
1 H NMR (CDCl 3 ): δ 0.96 (9H, s), 2.24-2.52 (2H, m), 3.47 (2H, J = 12,0Hz), 4.68 (1H, bs), 5.29 (1H, t, J = 8.7Hz), 7.26-7.43 (6H, m), 7.57 (4H, d, J = 6.9Hz);
13 C NMR (CDCl 3 ): δ 18.9, 26.7, 39.3, 53.1, 53.6, 71.9, 127.98, 127.99, 130.2, 132.6, 132.7, 135.6, 135.64, 156.6;
IR (KBr): ν 2932, 2858, 1710, 1427, 1357, 1112, 1008, 822, 703, 507 cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 21 H 27 N 5 NaOSi]: 416.1877, found: 416.1881;
[α] D 22 -8.2 (c = 1.00, MeOH).

<(2R)−オクタン−1−スルホン酸(ピロリジン−2−カルボニル)アミド(33)の合成>
((2R)−(オクタン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステルの合成)
オクタン−1−スルホン酸アミド(650.7mg、3.37mmol)をジメチルホルムアミド(17ml)に溶解させ、水素化ナトリウム(403mg、60wt%)とピロリジン−1,2−ジカルボキシル酸−ベンジルエステル2−(4−ニトロ−フェニル)エステルを加え、室温で5時間攪拌した。水を加え反応を停止させた後pHが3になるまでクエン酸を加えた。水相を酢酸エチルにより3回抽出し、有機層を飽和食塩水で1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、ろ過し、減圧下溶媒を留去し濃縮した。カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3)で精製することで2R−(オクタン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステルを909mg(64%)得た。2R−(オクタン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステルは、以下のNMR、IR、HRMSの結果によって同定した。
<Synthesis of (2R) -octane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide (33)>
(Synthesis of (2R)-(octane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester)
Octane-1-sulfonic acid amide (650.7 mg, 3.37 mmol) is dissolved in dimethylformamide (17 ml), sodium hydride (403 mg, 60 wt%) and pyrrolidine-1,2-dicarboxylic acid-benzyl ester 2- (4-Nitro-phenyl) ester was added and stirred at room temperature for 5 hours. After stopping the reaction by adding water, citric acid was added until the pH reached 3. The aqueous phase was extracted three times with ethyl acetate, and the organic layer was washed once with saturated brine. The organic layer was dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure and concentrated. By purifying by column chromatography (ethyl acetate: hexane = 1: 3), 909 mg (64%) of 2R- (octane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester was obtained. 2R- (octane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 0.86 (3H, t, J=7.0Hz), 1.15-1.42 (11H, m), 1.58-2.03 (5H, m), 2.36 (1H, bs), 3.03-3.60 (4H, m), 4.31 (1H, bs), 5.14 (2H, q, J=12.0), 7.25-7.40 (5H, m);
13C NMR (CDCl3): δ 14.1, 22.6, 23.3, 24.4, 25.3, 28.2, 29.0, 29.1, 31.7, 34.7, 47.1, 53.2, 61.7, 67.9, 128.0, 128.2, 128.6, 136.0, 156.8;
IR (KBr): ν 2925, 1685, 1584, 1456, 1422, 1358, 1124, 1088, 767, 697 cm-1;
HRMS (FAB): [M+Na] calcd for [C21H32N2NaO5S]: 447.1924, found: 447.1917;
[α]D 22-132.4 (c=0.95, CHCl3).
1 H NMR (CDCl 3 ): δ 0.86 (3H, t, J = 7.0Hz), 1.15-1.42 (11H, m), 1.58-2.03 (5H, m), 2.36 (1H, bs), 3.03-3.60 ( 4H, m), 4.31 (1H, bs), 5.14 (2H, q, J = 12.0), 7.25-7.40 (5H, m);
13 C NMR (CDCl 3 ): δ 14.1, 22.6, 23.3, 24.4, 25.3, 28.2, 29.0, 29.1, 31.7, 34.7, 47.1, 53.2, 61.7, 67.9, 128.0, 128.2, 128.6, 136.0, 156.8;
IR (KBr): ν 2925, 1685, 1584, 1456, 1422, 1358, 1124, 1088, 767, 697 cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 21 H 32 N 2 NaO 5 S]: 447.1924, found: 447.1917;
[α] D 22 -132.4 (c = 0.95, CHCl 3 ).

((2R)−オクタン−1−スルホン酸(ピロリジン−2−カルボニル)アミドの合成)
得られた(2R)−(オクタン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステル(829mg、1.95mmol)をメタノール(3.9ml)に溶解させ、10%パラジウムカーボン(83mg,10wt%)を加え室温、水素存在下で20時間攪拌した。セライトろ過し、減圧下溶媒を留去し濃縮することにより(2R)−オクタン−1−スルホン酸(ピロリジン−2−カルボニル)アミドを504mg(89%)得た。(2R)−オクタン−1−スルホン酸(ピロリジン−2−カルボニル)アミドは、以下のNMR、IR、HRMSの結果によって同定した。
(Synthesis of (2R) -octane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide)
The obtained (2R)-(octane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester (829 mg, 1.95 mmol) was dissolved in methanol (3.9 ml), and 10% palladium carbon (83 mg, 83 mg, 10 wt%) and stirred at room temperature in the presence of hydrogen for 20 hours. The reaction mixture was filtered through Celite, and the solvent was distilled off under reduced pressure. (2R) -octane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 0.86 (3H, t, J=7.0Hz), 1.15-1.32 (8H, m), 1.36 (2H, t, J=6.4Hz), 1.68-1.82 (2H, m), 1.88-2.12 (3H, m), 2.35 (1H, dt, J=4.5, 8.1Hz), 3.03 (2H, J=3.2, 5.4Hz), 3.32 (1H, t, J=7.0, 14.1Hz), 3.51-3.68 (1H, m), 4.19 (1H, t, J=7.9Hz);
13C NMR (CDCl3): δ 14.1, 22.6, 23.7, 24.6, 28.5, 29.1, 29.2, 30.2, 31.8, 46.8, 52.9, 62.6, 173.9;
IR (KBr): ν 3122, 2923, 2853, 1616, 1597, 1564, 1389, 1277, 1125, 854 cm-1;
HRMS (FAB): [M+Na] calcd for [C13H26N2NaO3S]: 313.1556, found: 313.1545;
[α]D 22-32.2 (c=1.00, MeOH).
1 H NMR (CDCl 3 ): δ 0.86 (3H, t, J = 7.0Hz), 1.15-1.32 (8H, m), 1.36 (2H, t, J = 6.4Hz), 1.68-1.82 (2H, m) , 1.88-2.12 (3H, m), 2.35 (1H, dt, J = 4.5, 8.1Hz), 3.03 (2H, J = 3.2, 5.4Hz), 3.32 (1H, t, J = 7.0, 14.1Hz), 3.51-3.68 (1H, m), 4.19 (1H, t, J = 7.9Hz);
13 C NMR (CDCl 3 ): δ 14.1, 22.6, 23.7, 24.6, 28.5, 29.1, 29.2, 30.2, 31.8, 46.8, 52.9, 62.6, 173.9;
IR (KBr): ν 3122, 2923, 2853, 1616, 1597, 1564, 1389, 1277, 1125, 854 cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 13 H 26 N 2 NaO 3 S]: 313.1556, found: 313.1545;
[α] D 22 -32.2 (c = 1.00, MeOH).

<(2R)−ドデカン−1−スルホン酸(ピロリジン−2−カルボニル)アミド(34)の合成>
(2R)−(ドデカン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステルは、(2R)−(オクタン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステルと同様の方法により合成した。2R−(ドデカン−1−スルホニルアミノカルボニル)−ピロリジン−1−カルボン酸ベンジルエステルは、以下のNMR、IR、HRMSの結果によって同定した。
<Synthesis of (2R) -dodecane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide (34)>
(2R)-(Dodecane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester is the same method as (2R)-(octane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester Was synthesized. 2R- (dodecane-1-sulfonylaminocarbonyl) -pyrrolidine-1-carboxylic acid benzyl ester was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 0.86 (3H, t, J=6.8Hz), 1.18-1.42 (19H, m), 1.48-2.00 (5H, m), 2.43 (1H, bs), 3.00-3.62 (4H, m), 4.34 (1H, bs), 5.08-5.22 (2H, m), 7.27-7.42 (5H, m);
13C NMR (CDCl3): δ 14.1, 22.7, 23.0, 24.5, 27.0, 28.0, 29.0, 29.3, 29.33, 29.5, 29.6, 31.9, 47.3, 53.2, 60.9, 68.2, 128.2, 128.5, 128.7, 135.8, 157.1;
IR (KBr): ν 2923, 2852, 2360, 1699, 1457, 1422, 1357, 1338, 1125, 697 cm-1;
HRMS (FAB): [M+Na] calcd for [C25H40N2NaO5S]: 503.2550, found: 503.2542;
[α]D 22-83.4 (c=0.95, CHCl3).
1 H NMR (CDCl 3 ): δ 0.86 (3H, t, J = 6.8Hz), 1.18-1.42 (19H, m), 1.48-2.00 (5H, m), 2.43 (1H, bs), 3.00-3.62 ( 4H, m), 4.34 (1H, bs), 5.08-5.22 (2H, m), 7.27-7.42 (5H, m);
13 C NMR (CDCl 3 ): δ 14.1, 22.7, 23.0, 24.5, 27.0, 28.0, 29.0, 29.3, 29.33, 29.5, 29.6, 31.9, 47.3, 53.2, 60.9, 68.2, 128.2, 128.5, 128.7, 135.8, 157.1 ;
IR (KBr): ν 2923, 2852, 2360, 1699, 1457, 1422, 1357, 1338, 1125, 697 cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 25 H 40 N 2 NaO 5 S]: 503.2550, found: 503.2542;
[α] D 22 -83.4 (c = 0.95, CHCl 3 ).

また、(2R)−ドデカン−1−スルホン酸(ピロリジン−2−カルボニル)アミドは、(2R)−オクタン−1−スルホン酸(ピロリジン−2−カルボニル)アミドと同様の方法により合成した。(2R)−ドデカン−1−スルホン酸(ピロリジン−2−カルボニル)アミドは、以下のNMR、IR、HRMSの結果によって同定した。   (2R) -dodecane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide was synthesized by the same method as (2R) -octane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide. (2R) -dodecane-1-sulfonic acid (pyrrolidine-2-carbonyl) amide was identified by the following NMR, IR and HRMS results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 0.86 (3H, t, J=6.8Hz), 1.18-1.32 (16H, m), 1.32-1.37 (2H, m), 1.68-1.84 (2H, m), 1.88-2.12 (3H, m), 2.28-2.43 (1H, m), 2.94-3.15 (2H, m), 3.26-3.40 (1H, m), 3.48-3.63 (1H, m), 4.16 (1H, t, J=7.2Hz);
13C NMR (CDCl3): δ 14.1, 22.7, 23.7, 24.5, 28.5, 29.3, 29.31, 29.4, 29.55, 29.6, 30.1, 31.9, 46.5, 52.8, 62.6, 174.0;
IR (KBr): ν 3124, 2917, 2850, 1597, 1562, 1471, 1387, 1279, 1126, 534 cm-1;
HRMS (FAB): [M+Na] calcd for [C17H34N2NaO3S]: 369.2182, found: 369.2174;
[α]D 22-61.6 (c=1.00, CHCl3).
1 H NMR (CDCl 3 ): δ 0.86 (3H, t, J = 6.8Hz), 1.18-1.32 (16H, m), 1.32-1.37 (2H, m), 1.68-1.84 (2H, m), 1.88- 2.12 (3H, m), 2.28-2.43 (1H, m), 2.94-3.15 (2H, m), 3.26-3.40 (1H, m), 3.48-3.63 (1H, m), 4.16 (1H, t, J = 7.2Hz);
13 C NMR (CDCl 3 ): δ 14.1, 22.7, 23.7, 24.5, 28.5, 29.3, 29.31, 29.4, 29.55, 29.6, 30.1, 31.9, 46.5, 52.8, 62.6, 174.0;
IR (KBr): ν 3124, 2917, 2850, 1597, 1562, 1471, 1387, 1279, 1126, 534 cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 17 H 34 N 2 NaO 3 S]: 369.2182, found: 369.2174;
[α] D 22 -61.6 (c = 1.00, CHCl 3 ).

実施例2:光学活性アンチ型アルドール化合物の合成
<2−(ヒドロキシフェニルメチル)シクロヘキサン−1−オン(表1:entry7)の合成>
触媒(15)(14.8mg、0.04mmol)を、室温、水(0.13mL)中にて、ベンズアルデヒド(40.6μL、0.4mmol)とシクロヘキサノン(207μL、2.0mmol)の懸濁液に加えた。反応は室温にて18時間撹拌し、その後、リン酸緩衝液(pH7.0)を加え、冷却した。有機層を酢酸エチルで3回抽出し、抽出液を無水硫酸ナトリウム(NaSO)で乾燥させ、ろ過後、減圧下で濃縮した。シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10〜1:3)にて精製し、2−(ヒドロキシフェニルメチル)−シクロヘキサノン(63.7mg、78%)の液体を得た。
アンチ体:シン体=13:1(by 1H NMR spectroscopy of the crude mixture), >99%ee (by HPLC on a chiralcel OD-H column, λ=213nm, iPrOH/hexane=1/100, 1.0mlmin-1; tR=19.4min (major), 25.9min (minor)).
Example 2: Synthesis of optically active anti-aldol compound <Synthesis of 2- (hydroxyphenylmethyl) cyclohexane-1-one (Table 1: entry 7)>
Suspension of benzaldehyde (40.6 μL, 0.4 mmol) and cyclohexanone (207 μL, 2.0 mmol) in catalyst (15) (14.8 mg, 0.04 mmol) in water (0.13 mL) at room temperature Added to. The reaction was stirred at room temperature for 18 hours, after which a phosphate buffer (pH 7.0) was added and cooled. The organic layer was extracted three times with ethyl acetate, and the extract was dried over anhydrous sodium sulfate (Na 2 SO 4 ), filtered and concentrated under reduced pressure. Purification by silica gel column chromatography (ethyl acetate: hexane = 1: 10 to 1: 3) gave a liquid of 2- (hydroxyphenylmethyl) -cyclohexanone (63.7 mg, 78%).
Anti-form: Syn-form = 13: 1 (by 1 H NMR spectroscopy of the crude mixture),> 99% ee (by HPLC on a chiralcel OD-H column, λ = 213 nm, iPrOH / hexane = 1/100, 1.0 mlmin -1 ; t R = 19.4min (major), 25.9min (minor)).

(2S,1’R)−2−(ヒドロキシフェニルメチル)シクロヘキサン−1−オン(表2:entry1)   (2S, 1'R) -2- (hydroxyphenylmethyl) cyclohexane-1-one (Table 2: entry1)

Figure 2007182419
Figure 2007182419

[α]D 14+27.7 (c=0.85, CHCl3), >99% ee.
Lit. [α]D 24-24.2 (c=1.03, CHCl3). (93% ee, (2R, 1’S)-2-(Hydroxyphenylmethyl)-cyclohexanone).
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (100:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=19.4min, minor enantiomer tr=25.9min.
[α] D 14 +27.7 (c = 0.85, CHCl 3 ),> 99% ee.
Lit. [α] D 24 -24.2 (c = 1.03, CHCl 3 ). (93% ee, (2R, 1'S) -2- (Hydroxyphenylmethyl) -cyclohexanone).
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (100: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 19.4min, minor enantiomer tr = 25.9min.

(2S,1’R)−2−(ヒドロキシナフタレン−2−イルメチル)シクロヘキサン−1−オン(表2:entry5)は、以下のNMR、IR、HRMS、HPLCの結果によって同定した。   (2S, 1'R) -2- (hydroxynaphthalen-2-ylmethyl) cyclohexane-1-one (Table 2: entry 5) was identified by the following NMR, IR, HRMS and HPLC results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 1.23-1.40 (1H, m), 1.42-1.61 (2H, m), 1.62-1.79 (2H, m), 2.07 (1H, ddd, J=13.2, 6.6, 3.2Hz), 2.36 (1H, td, J=13.2, 5.8Hz), 2.49 (1H, br-d, J= 13.8Hz), 2.64-2.74 (1H, m), 4.02 (1H, br-s), 4.95 (1H, d, J=8.6Hz), 7.41-7.50 (3H, m), 7.73 (1H, s), 7.77-7.86 (3H, m);
13C NMR (CDCl3): δ 24.6, 27.7, 30.8, 42.6, 57.3, 74.8, 124.6, 125.9, 126.1, 126.2, 127.6, 127.9, 128.2, 133.0, 133.1, 138.2, 215.5;
IR (KBr): ν 3354, 3055, 2933, 2854, 1695, 1444, 1309, 1122, 1057, 833cm-1;
HRMS (FAB): calcd for [C17H18O2]: 254.1307, found: 254.1311;
[α]D 22+7.4 (c=1.07, CHCl3), (mixture of diastereomers, anti:syn=19:1, 97% ee for anti-isomer.)
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (50:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=17.6min, minor enantiomer tr=20.5min.
1 H NMR (CDCl 3 ): δ 1.23-1.40 (1H, m), 1.42-1.61 (2H, m), 1.62-1.79 (2H, m), 2.07 (1H, ddd, J = 13.2, 6.6, 3.2Hz ), 2.36 (1H, td, J = 13.2, 5.8Hz), 2.49 (1H, br-d, J = 13.8Hz), 2.64-2.74 (1H, m), 4.02 (1H, br-s), 4.95 ( 1H, d, J = 8.6Hz), 7.41-7.50 (3H, m), 7.73 (1H, s), 7.77-7.86 (3H, m);
13 C NMR (CDCl 3 ): δ 24.6, 27.7, 30.8, 42.6, 57.3, 74.8, 124.6, 125.9, 126.1, 126.2, 127.6, 127.9, 128.2, 133.0, 133.1, 138.2, 215.5;
IR (KBr): ν 3354, 3055, 2933, 2854, 1695, 1444, 1309, 1122, 1057, 833cm -1 ;
HRMS (FAB): calcd for [C 17 H 18 O 2 ]: 254.1307, found: 254.1311;
[α] D 22 +7.4 (c = 1.07, CHCl 3 ), (mixture of diastereomers, anti: syn = 19: 1, 97% ee for anti-isomer.)
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (50: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 17.6min, minor enantiomer tr = 20.5min.

(2S,1’R)−2−(ヒドロキシピリジン−4−イルメチル)シクロヘキサン−1−オン(表2:entry7)は、以下のNMR、IR、HRMS、HPLCの結果によって同定した。   (2S, 1'R) -2- (hydroxypyridin-4-ylmethyl) cyclohexane-1-one (Table 2: entry 7) was identified by the following NMR, IR, HRMS and HPLC results.

Figure 2007182419
Figure 2007182419

1H NMR (CDCl3): δ 1.38 (1H, qd, J=12.8, 3.8Hz), 1.47-1.73 (3H, m), 1.77-1.86 (1H, m), 2.04-2.14 (1H, m), 2.34 (1H, td, J=13.3, 6.2Hz), 2.42-2.50 (1H, m), 2.56 (1H, ddd, J=13.5, 8.2, 3.5Hz), 3.97 (1H, br-s), 4.75 (1H, d, J=8.2Hz), 7.23 (2H, d, J=5.7Hz), 8.56(2H, d, J=5.7Hz);
13C NMR (CDCl3): δ 24.6, 27.7, 30.7, 42.6, 56.8, 73.5, 122.0, 149.7, 149.8, 214.7;
IR (KBr): ν 3140, 2860, 2738, 1711, 1606, 1415, 1300, 1128, 1047, 835cm-1;
HRMS (FAB): [M+H] calcd for [C12H16NO2]: 206.1181, found: 206.1177;
[α]D 21+15.8 (c=1.02, CHCl3) (mixture of diastereomers, anti:syn=12:1, 95% ee for anti-isomer .)
Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (10:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=22.5min, minor enantiomer tr=20.7min.
1 H NMR (CDCl 3 ): δ 1.38 (1H, qd, J = 12.8, 3.8Hz), 1.47-1.73 (3H, m), 1.77-1.86 (1H, m), 2.04-2.14 (1H, m), 2.34 (1H, td, J = 13.3, 6.2Hz), 2.42-2.50 (1H, m), 2.56 (1H, ddd, J = 13.5, 8.2, 3.5Hz), 3.97 (1H, br-s), 4.75 ( 1H, d, J = 8.2Hz), 7.23 (2H, d, J = 5.7Hz), 8.56 (2H, d, J = 5.7Hz);
13 C NMR (CDCl 3 ): δ 24.6, 27.7, 30.7, 42.6, 56.8, 73.5, 122.0, 149.7, 149.8, 214.7;
IR (KBr): ν 3140, 2860, 2738, 1711, 1606, 1415, 1300, 1128, 1047, 835cm -1 ;
HRMS (FAB): [M + H] calcd for [C 12 H 16 NO 2 ]: 206.1181, found: 206.1177;
[α] D 21 +15.8 (c = 1.02, CHCl 3 ) (mixture of diastereomers, anti: syn = 12: 1, 95% ee for anti-isomer.)
Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (10: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 22.5min, minor enantiomer tr = 20.7min.

試験例1:水を反応溶媒とする不斉触媒アルドール反応   Test Example 1: Asymmetric catalytic aldol reaction using water as a reaction solvent

Figure 2007182419
Figure 2007182419

触媒(11)〜(16)、(18)及び(19)を用いてシクロへキサノンとベンズアルデヒドとの不斉アルドール反応を行った。結果を表1に示す。プロリンを触媒としたところ、反応は全く進行しなかった。触媒(11)〜(16)、(18)及び(19)を用いると、水を溶媒とする反応は進行し、60%以上の収率、高いアンチ選択性で、更に非常に高い不斉収率でアルドール生成物が得られた。触媒としては(11)〜(16)、(18)及び(19)のいずれにおいても、若干収率が異なるが、ほぼ同様に反応が進行し、非常に高い不斉収率が得られた。また、水の量は反応に影響はみられなかった。   Asymmetric aldol reaction between cyclohexanone and benzaldehyde was carried out using catalysts (11) to (16), (18) and (19). The results are shown in Table 1. When proline was used as a catalyst, the reaction did not proceed at all. When the catalysts (11) to (16), (18) and (19) are used, the reaction using water proceeds, the yield is 60% or more, high anti-selectivity, and extremely high asymmetric yield. The aldol product was obtained at a high rate. As the catalyst, in any of (11) to (16), (18) and (19), although the yield was slightly different, the reaction proceeded in substantially the same manner, and a very high asymmetric yield was obtained. The amount of water did not affect the reaction.

Figure 2007182419
Figure 2007182419

触媒(13)を用い、溶媒に水を用い、室温で種々のケトンとアルデヒドの反応を行った。結果を表2に示す。アンチ選択的に生成物が得られ、更に不斉収率も非常に高いことが確認できた。   Using the catalyst (13), water was used as a solvent, and various ketones and aldehydes were reacted at room temperature. The results are shown in Table 2. It was confirmed that the product was obtained anti-selectively and the asymmetric yield was very high.

Figure 2007182419
Figure 2007182419

Figure 2007182419
Figure 2007182419

試験例2:各種有機溶媒の検討   Test Example 2: Examination of various organic solvents

Figure 2007182419
Figure 2007182419

合成例として、溶媒に酢酸エチル(AcOEt)を用いた場合の合成方法を示す(entry9)。(2S, 4R)−4−(tーブチルジフェニルシリルオキシ)−ピロリジン−2−カルボン酸(13)(18.5mg,0.05mmol)を酢酸エチル(AcOEt)(0.4mL)と水(45μl、2.5mmol)の混合溶液に溶かした。この溶液にシクロヘキサノン(259μl、2.5mmol)とベンズアルデヒド(50.8μl、0.5mmol)を加え、室温で18時間撹拌した。その後、リン酸緩衝液(pH=7.0)を加え反応を停止させ、有機物を酢酸エチルで3回抽出し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し、溶媒を減圧留去した後、残査をカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/10−1/3)により分離精製し、2−(ヒドロキシフェニルメチル)シクロヘキサン−1−オン(49.9mg、0.244mmol)をジアステレオマー混合物(anti:syn=9.5:1)として収率49%で得た。   As a synthesis example, a synthesis method in the case of using ethyl acetate (AcOEt) as a solvent is shown (entry 9). (2S, 4R) -4- (tert-butyldiphenylsilyloxy) -pyrrolidine-2-carboxylic acid (13) (18.5 mg, 0.05 mmol) was added to ethyl acetate (AcOEt) (0.4 mL) and water (45 μl). , 2.5 mmol). To this solution were added cyclohexanone (259 μl, 2.5 mmol) and benzaldehyde (50.8 μl, 0.5 mmol), and the mixture was stirred at room temperature for 18 hours. Thereafter, a phosphate buffer (pH = 7.0) was added to stop the reaction, and the organic matter was extracted three times with ethyl acetate and dried over anhydrous sodium sulfate. After anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (ethyl acetate / hexane = 1 / 10-1 / 3) to give 2- (hydroxyphenylmethyl) cyclohexane-1 -On (49.9 mg, 0.244 mmol) was obtained as a diastereomeric mixture (anti: syn = 9.5: 1) in 49% yield.

他の溶媒については、上記合成方法において、溶媒を酢酸エチルから表3に示す溶媒に変更し、同様の方法により合成した。また、ジメチルスルホキシド(DMSO)、有機溶媒を使用しない系においては、水を加えない系についても合成を行った(entry3、11)。結果を表3に示す。   Other solvents were synthesized in the same manner as in the above synthesis method except that the solvent was changed from ethyl acetate to the solvent shown in Table 3. In addition, in a system that does not use dimethyl sulfoxide (DMSO) and an organic solvent, a system in which water was not added was also synthesized (entries 3, 11). The results are shown in Table 3.

Figure 2007182419
Figure 2007182419

水を加えないentry3、11においては、アンチ:シンの選択性は低かったが、水を加えることにより高い選択性で付加体が得られた。また、いずれの溶媒を用いても40%以上の収率で、高い不斉収率でアルドール体を得ることができた。   In entries 3 and 11 where water was not added, the selectivity of anti: cin was low, but adducts were obtained with high selectivity by adding water. Moreover, aldol body was able to be obtained with the high asymmetric yield with the yield of 40% or more using which solvent.

試験例3:水を反応溶媒とするアルデヒド−アルデヒド間の不斉触媒アルドール反応(触媒検討)   Test Example 3: Aldol-catalyzed aldol reaction between aldehyde and aldehyde using water as a reaction solvent (catalyst study)

Figure 2007182419
Figure 2007182419

合成例として、触媒(16)を用いた場合の合成方法を示す(表4:entry9)。(2S,4R)−4−デカノイルオキシピロリジン−2−カルボン酸(16)(11mg、0.04mmol)、水(130μL)及びo−クロロベンズアルデヒド(45μL、0.4mmol)の混合物に、0℃下、プロパナール(144μL、2.0mmol)を加えた。室温で24時間撹拌した後、反応液にメタノール(2mL)及び水酸化ホウ素ナトリウム(151mg、4mmol)を添加し、0℃下で1時間撹拌した。pH7.0のリン酸緩衝液で反応を停止させ、クロロホルムで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ過した後に溶媒を減圧留去した。残渣を薄層クロマトグラフィー(ジエチルエーテル:ベンゼン=2:1)を用いて精製することで、(1R,2R)−1−(o−クロロフェニル)−2−メチルプロパン−1,3−ジオール(47.8mg、0.24mmol)をジアステレオマー混合物(anti:syn=20:1)として収率60%で得た。   As a synthesis example, a synthesis method using the catalyst (16) is shown (Table 4: entry 9). To a mixture of (2S, 4R) -4-decanoyloxypyrrolidine-2-carboxylic acid (16) (11 mg, 0.04 mmol), water (130 μL) and o-chlorobenzaldehyde (45 μL, 0.4 mmol) was added at 0 ° C. Below, propanal (144 μL, 2.0 mmol) was added. After stirring at room temperature for 24 hours, methanol (2 mL) and sodium borohydride (151 mg, 4 mmol) were added to the reaction solution, and the mixture was stirred at 0 ° C. for 1 hour. The reaction was stopped with a phosphate buffer at pH 7.0, and extracted three times with chloroform. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The residue was purified by thin layer chromatography (diethyl ether: benzene = 2: 1) to give (1R, 2R) -1- (o-chlorophenyl) -2-methylpropane-1,3-diol (47 0.8 mg, 0.24 mmol) was obtained as a mixture of diastereomers (anti: syn = 20: 1) with a yield of 60%.

他の触媒については、上記合成方法において、触媒を表4に示す触媒に変更し、同様の方法により合成した。なお、entry14、15、16、20は、70時間反応を行った。結果を表4に示す。   Other catalysts were synthesized in the same manner as described above except that the catalyst was changed to the catalyst shown in Table 4. In addition, entries 14, 15, 16, and 20 reacted for 70 hours. The results are shown in Table 4.

Figure 2007182419
Figure 2007182419

Figure 2007182419
b:単離した収率。
c:H−NMRにより決定した。
d:アンチ体の光学収率を示す。ベンゾイルエステルに変換した後、キラルなカラムを用いたHPLC分析により決定した。
Figure 2007182419
b: Isolated yield.
c: Determined by 1 H-NMR.
d: Indicates the optical yield of the anti-isomer. After conversion to the benzoyl ester, it was determined by HPLC analysis using a chiral column.

プロリン、ヒドロキシプロリン(35)、テトラゾールを有するプロリン誘導体(36)では、反応が進行しなかったが、これに対して、シロキシプロリンである触媒(11)から(13)は活性を有していた。また、側鎖に長鎖脂肪酸部位を有する触媒(14)から(19)も活性を有していた。   In the proline derivative (36) having proline, hydroxyproline (35), and tetrazole, the reaction did not proceed. On the other hand, the catalysts (11) to (13), which were siloxyproline, had activity. . Further, the catalysts (14) to (19) having a long-chain fatty acid moiety in the side chain also had activity.

触媒(16)及び(30)を用い、溶媒に水を用い、0℃で種々のアルデヒドとアルデヒドとのアルドール反応を行った。触媒は、求電子剤として用いたアルデヒドの10mol%を添加した。なお、entry14、15については、室温にて反応を行った。結果を表5、表6に示す。アンチ選択的に生成物が得られ、更に不斉収率も非常に高いことが確認できた。   Catalysts (16) and (30) were used, water was used as a solvent, and aldol reactions of various aldehydes with aldehydes were performed at 0 ° C. As the catalyst, 10 mol% of the aldehyde used as an electrophile was added. In addition, about entries 14 and 15, it reacted at room temperature. The results are shown in Tables 5 and 6. It was confirmed that the product was obtained anti-selectively and the asymmetric yield was very high.

合成例として、以下の化合物の合成方法を示す。
((2R,3R)−1−(o−クロロフェニル)−2−メチルプロパン−1,3−ジオール(表5:entry1)の合成方法)
(2S,4R)−4−デカノイルオキシピロリジン−2−カルボン酸(16)(11.4mg、0.04mmol)、水(130μL)及びo−クロロベンズアルデヒド(45μL、0.4mmol)の混合物に、0℃下、プロパナール(144μL、2.0mmol)を加えた。室温で70時間撹拌した後、反応液にメタノール(2mL)及び水酸化ホウ素ナトリウム(151mg、4mmol)を添加し、0℃下で1時間撹拌した。pH7.0のリン酸緩衝液で反応を停止させ、クロロホルムで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ過した後に溶媒を減圧留去した。残渣を薄層クロマトグラフィー(酢酸エチル:ヘキサン=1:1)を用いて精製することで、(2R,3R)−1−(o−クロロフェニル)−2−メチルプロパン−1,3−ジオール(73.6mg、0.37mmol)をジアステレオマー混合物(anti:syn=18:1)として収率92%で得た。
As a synthesis example, the synthesis method of the following compounds is shown.
(Method for synthesizing (2R, 3R) -1- (o-chlorophenyl) -2-methylpropane-1,3-diol (Table 5: entry1))
To a mixture of (2S, 4R) -4-decanoyloxypyrrolidine-2-carboxylic acid (16) (11.4 mg, 0.04 mmol), water (130 μL) and o-chlorobenzaldehyde (45 μL, 0.4 mmol), Propanal (144 μL, 2.0 mmol) was added at 0 ° C. After stirring at room temperature for 70 hours, methanol (2 mL) and sodium borohydride (151 mg, 4 mmol) were added to the reaction solution, followed by stirring at 0 ° C. for 1 hour. The reaction was stopped with a phosphate buffer at pH 7.0, and extracted three times with chloroform. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The residue was purified by thin layer chromatography (ethyl acetate: hexane = 1: 1) to give (2R, 3R) -1- (o-chlorophenyl) -2-methylpropane-1,3-diol (73 .6 mg, 0.37 mmol) was obtained as a diastereomeric mixture (anti: syn = 18: 1) in 92% yield.

((1R,2R)−1−フェニル−2−メチルプロパン−1,3−ジオール(表5:entry6)の合成方法)
(2S,4R)−4−デカノイルオキシピロリジン−2−カルボン酸(16)(11mg、0.04mmol)、水(130μL)及びベンズアルデヒド(41μL、0.4mmol)の混合物に、0℃下、プロパナール(144μL、2.0mmol)を加えた。室温で72時間撹拌した後、反応液にメタノール(2mL)及び水酸化ホウ素ナトリウム(151mg、4mmol)を添加し、0℃下で1時間撹拌した。pH7.0のリン酸緩衝液で反応を停止させ、クロロホルムで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ過した後に溶媒を減圧留去した。残渣を薄層クロマトグラフィー(ジエチルエーテル:ベンゼン=2:1)を用いて精製することで、無色の油状物として(1R,2R)−1−フェニル−2−メチルプロパン−1,3−ジオール(59mg、0.35mmol)を収率88%で得た。
アンチ体:シン体=>20:1 (by 1H NMR spectroscopy of the crude mixture), >99%ee (by HPLC on a Chiralpak AD-H column, λ=254nm, iPrOH/hexane=1/80, 1.5mlmin-1; tR=63.8min (major), 74.3min (minor)).
(Method for synthesizing (1R, 2R) -1-phenyl-2-methylpropane-1,3-diol (Table 5: entry 6))
To a mixture of (2S, 4R) -4-decanoyloxypyrrolidine-2-carboxylic acid (16) (11 mg, 0.04 mmol), water (130 μL) and benzaldehyde (41 μL, 0.4 mmol) at 0 ° C. Panal (144 μL, 2.0 mmol) was added. After stirring at room temperature for 72 hours, methanol (2 mL) and sodium borohydride (151 mg, 4 mmol) were added to the reaction mixture, and the mixture was stirred at 0 ° C. for 1 hour. The reaction was stopped with a phosphate buffer at pH 7.0, and extracted three times with chloroform. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The residue was purified by thin-layer chromatography (diethyl ether: benzene = 2: 1) to give (1R, 2R) -1-phenyl-2-methylpropane-1,3-diol ( 59 mg, 0.35 mmol) was obtained in 88% yield.
Anti-form: Syn-form => 20: 1 (by 1 H NMR spectroscopy of the crude mixture),> 99% ee (by HPLC on a Chiralpak AD-H column, λ = 254 nm, iPrOH / hexane = 1/80, 1.5 mlmin -1 ; t R = 63.8min (major), 74.3min (minor)).

((1R,2R)−1−(4−ピリジル)−2−メチルプロパン−1,3−ジオール(表6:entry20)の合成方法)
4−ピリジンカルバルデヒド(69μL、0.70mmol)、(2S)−2−(ジ−[3,5−ビス(トリフルオロメチル)フェニル]ヒドロキシメチル)ピロリジン(30)(37mg、0.07mmol)及び水(0.23mL)の混合物に0℃下プロパナール(252μL、3.50mmol)を加えた。0℃下で72時間攪拌した後、反応液にメタノール(1mL)及び水素化ホウ素ナトリウム(132mg、3.50mmol)を添加し、0℃下で1時間攪拌した。pH7.0リン酸緩衝液で反応を停止させ酢酸エチルで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ過した後に溶媒を減圧留去した。残渣を薄層クロマトグラフィー(メタノール:クロロホルム=1:10)を用いて精製することで、(1R,2R)−1−(4−ピリジル)−2−メチルプロパン−1,3−ジオール(84mg、0.50mmol)をジアステレオマー混合物(anti:syn=6.9:1)として収率72%(anti/93%ee)で得た。
(Method for synthesizing (1R, 2R) -1- (4-pyridyl) -2-methylpropane-1,3-diol (Table 6: entry 20))
4-pyridinecarbaldehyde (69 μL, 0.70 mmol), (2S) -2- (di- [3,5-bis (trifluoromethyl) phenyl] hydroxymethyl) pyrrolidine (30) (37 mg, 0.07 mmol) and Propanal (252 μL, 3.50 mmol) was added to a mixture of water (0.23 mL) at 0 ° C. After stirring at 0 ° C. for 72 hours, methanol (1 mL) and sodium borohydride (132 mg, 3.50 mmol) were added to the reaction solution, and the mixture was stirred at 0 ° C. for 1 hour. The reaction was stopped with pH 7.0 phosphate buffer and extracted three times with ethyl acetate. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The residue was purified using thin layer chromatography (methanol: chloroform = 1: 10) to give (1R, 2R) -1- (4-pyridyl) -2-methylpropane-1,3-diol (84 mg, 0.50 mmol) was obtained as a diastereomeric mixture (anti: syn = 6.9: 1) in 72% yield (anti / 93% ee).

Figure 2007182419
Figure 2007182419

Figure 2007182419
b:単離した収率。
c:H−NMRにより決定した。
d:アンチ体の光学収率を示す。HPLCにより分析した。
e:触媒(16)を20mol%用いた。
Figure 2007182419
b: Isolated yield.
c: Determined by 1 H-NMR.
d: Indicates the optical yield of the anti-isomer. Analyzed by HPLC.
e: 20 mol% of the catalyst (16) was used.

Figure 2007182419
b:単離した収率。
c:H−NMRにより決定した。
d:アンチ体の光学収率を示す。HPLCにより分析した。
e:触媒(16)を20mol%用いた。
f:室温で反応を行った。
Figure 2007182419
b: Isolated yield.
c: Determined by 1 H-NMR.
d: Indicates the optical yield of the anti-isomer. Analyzed by HPLC.
e: 20 mol% of the catalyst (16) was used.
f: Reaction was performed at room temperature.

試験例4:水を反応溶媒、触媒をプロリンとした不斉触媒アルドール反応
触媒にプロリン、溶媒に水を用いて、室温で種々のケトンとアルデヒドを用いてアルドール反応を行った。反応は、2mmolの受容体アルデヒド、0.4mmolの供与体カルボニル化合物、0.12mmol(受容体アルデヒドに対して30mol%)のプロリン、溶媒として5当量の水を用いて、室温にて反応した。結果を表7に示す。
Test Example 4: Asymmetric Catalytic Aldol Reaction Using Water as Reaction Solvent and Catalyst as Proline Aldol reaction was carried out using various ketones and aldehydes at room temperature using proline as the catalyst and water as the solvent. The reaction was performed at room temperature using 2 mmol acceptor aldehyde, 0.4 mmol donor carbonyl compound, 0.12 mmol (30 mol% with respect to acceptor aldehyde) proline, and 5 equivalents of water as a solvent. The results are shown in Table 7.

合成例として、(1R,2R)−1−(o−クロロフェニル)−2−メチルプロパン−1,3−ジオール(表7:entry1)の合成方法を示す。o−クロロベンズアルデヒド(45μL、0.4mmol)、L−プロリン(14mg,0.12mmol)及び水(0.13mL)の混合物に室温下プロパナール(144μL、2.0mmol)を加えた。室温下で72時間攪拌した後、反応液にメタノール(1mL)及び水素化ホウ素ナトリウム(76mg、2.0mmol)を添加し、0℃下で1時間攪拌した。pH7.0リン酸緩衝液で反応を停止させ酢酸エチルで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ過した後に溶媒を減圧留去した。残渣を薄層クロマトグラフィー(酢酸エチル:ヘキサン=1:1)を用いて精製することで、(1R,2R)−1−(o−クロロフェニル)−2−メチルプロパン−1,3−ジオール(56mg、0.28mmol)をジアステレオマー混合物(anti/syn=4.3/1、90%ee(anti))として収率70%で得た。   As a synthesis example, a method for synthesizing (1R, 2R) -1- (o-chlorophenyl) -2-methylpropane-1,3-diol (Table 7: entry 1) is shown. To a mixture of o-chlorobenzaldehyde (45 μL, 0.4 mmol), L-proline (14 mg, 0.12 mmol) and water (0.13 mL), propanal (144 μL, 2.0 mmol) was added at room temperature. After stirring at room temperature for 72 hours, methanol (1 mL) and sodium borohydride (76 mg, 2.0 mmol) were added to the reaction solution, and the mixture was stirred at 0 ° C. for 1 hour. The reaction was stopped with pH 7.0 phosphate buffer and extracted three times with ethyl acetate. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The residue was purified by thin layer chromatography (ethyl acetate: hexane = 1: 1) to give (1R, 2R) -1- (o-chlorophenyl) -2-methylpropane-1,3-diol (56 mg 0.28 mmol) was obtained as a diastereomeric mixture (anti / syn = 4.3 / 1, 90% ee (anti)) with a yield of 70%.

Figure 2007182419
b:単離した収率。
c:H−NMRにより決定した。
d:アンチ体の光学収率について、HPLC分析により決定した。
e:水溶性のアルデヒドで、3.8当量の水を用いた。
f:3当量の水を用いた。
g:水無しで反応を行った。
Figure 2007182419
b: Isolated yield.
c: Determined by 1 H-NMR.
d: The optical yield of the anti isomer was determined by HPLC analysis.
e: Water-soluble aldehyde, using 3.8 equivalents of water.
f: 3 equivalents of water were used.
g: Reaction was carried out without water.

表7に示すように、プロリンを触媒として、水中にて反応が進行することが確認できた。また、アンチ選択的に生成物が得られ、不斉収率も非常に高いことが確認できた。   As shown in Table 7, it was confirmed that the reaction proceeds in water using proline as a catalyst. It was also confirmed that the product was obtained in an anti-selective manner and the asymmetric yield was very high.

試験例3及び4で合成した化合物は、NMR、IR、HRMS、HPLCの結果により同定した。例として、以下の化合物の同定結果を示す。   The compounds synthesized in Test Examples 3 and 4 were identified by the results of NMR, IR, HRMS, and HPLC. As an example, the identification results of the following compounds are shown.

[(2R,3R)−1−(o−クロロフェニル)−2−メチルプロパン−1,3−ジオール(表4、表5:entry1、表7:entry1)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.81 (3H, t, J=7.2Hz), 2.02-2.05 (1H, m), 2.80 (1H, br s), 3.30 (1H, br s), 3.61-3.70 (2H, m), 5.05 (1H, d, J=6.8Hz), 7.14 (1H, t, J=7.6Hz), 7.22-7.27 (2H, m), 7.50 (1H, d, J=7.6Hz);
13C NMR (100MHz, CDCl3): δ 13.7, 40.7, 67.1, 76.1, 127.2, 128.1, 128.7, 129.4, 132.5, 140.9;
IR (neat): ν 3357, 2966, 2932, 1572, 1471, 1438, 1034, 754, 703 cm-1;
HRMS (FAB): [M+Na] calcd for [C10H13ClO2 Na]: 223.0504, found: 223.0496;
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (100:1 hexane:2-propanol, λ=254nm), 1.2mL/min; major enantiomer tr=15.2min, minor enantiomer tr=17.2min, after conversion to the mono benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (o-chlorophenyl) -2-methylpropane-1,3-diol (Table 4, Table 5: entry 1, Table 7: entry 1)]
1 H NMR (400MHz, CDCl 3 ): δ 0.81 (3H, t, J = 7.2Hz), 2.02-2.05 (1H, m), 2.80 (1H, br s), 3.30 (1H, br s), 3.61- 3.70 (2H, m), 5.05 (1H, d, J = 6.8Hz), 7.14 (1H, t, J = 7.6Hz), 7.22-7.27 (2H, m), 7.50 (1H, d, J = 7.6Hz) );
13 C NMR (100 MHz, CDCl 3 ): δ 13.7, 40.7, 67.1, 76.1, 127.2, 128.1, 128.7, 129.4, 132.5, 140.9;
IR (neat): ν 3357, 2966, 2932, 1572, 1471, 1438, 1034, 754, 703 cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 10 H 13 ClO 2 Na]: 223.0504, found: 223.0496;
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (100: 1 hexane: 2-propanol, λ = 254nm), 1.2mL / min; major enantiomer tr = 15.2min, minor enantiomer tr = 17.2min, after conversion to the mono benzoyl ester.

[(2R,3R)−1−(p−クロロフェニル)−2−メチルプロパン−1,3−ジオール(表5:entry3)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.62 (3H, d, J=7.2Hz), 1.88-1.95 (1H, m), 2.79 (1H, br s), 3.29 (1H, br s), 3.58-3.70 (2H, m), 4.45 (1H, d, J=8.4 Hz), 7.12-7.21 (2H, m), 7.25-7.26 (2H, m);
13C NMR (100MHz, CDCl3): δ 13.7, 41.7, 67.8, 76.7, 128.1, 128.6, 133.5, 141.9;
IR (neat): ν 3342, 2927, 2359, 1490, 1456, 1089, 1013, 830 cm-1;
HRMS (FAB): [M+Na] calced for [C10H13ClO2Na]: 223.0496, found: 223.0487;
Enantiometric excess was determined by HPLC with a Chiralcel OD-H column (100:1 hexane:2-propanol, λ=254nm), 1.0mL/min; major enantiomer tr=9.6min, minor enantiomer tr=13.0min, after conversion to the di benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (p-chlorophenyl) -2-methylpropane-1,3-diol (Table 5: entry3)]
1 H NMR (400MHz, CDCl 3 ): δ 0.62 (3H, d, J = 7.2Hz), 1.88-1.95 (1H, m), 2.79 (1H, br s), 3.29 (1H, br s), 3.58- 3.70 (2H, m), 4.45 (1H, d, J = 8.4 Hz), 7.12-7.21 (2H, m), 7.25-7.26 (2H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 13.7, 41.7, 67.8, 76.7, 128.1, 128.6, 133.5, 141.9;
IR (neat): ν 3342, 2927, 2359, 1490, 1456, 1089, 1013, 830 cm -1 ;
HRMS (FAB): [M + Na] calced for [C 10 H 13 ClO 2 Na]: 223.0496, found: 223.0487;
Enantiometric excess was determined by HPLC with a Chiralcel OD-H column (100: 1 hexane: 2-propanol, λ = 254nm), 1.0mL / min; major enantiomer tr = 9.6min, minor enantiomer tr = 13.0min, after conversion to the di benzoyl ester.

[(2R,3R)−1−(p−フルオロフェニル)−2−メチルプロパン−1,3−ジオール(表5:entry5)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.65 (3H, d, J=4.0Hz), 1.94-2.01 (1H, m), 3.00 (1H, br s), 3.37 (1H, br s), 3.63-3.75 (2H, m), 4.49 (1H, d, J=8.0Hz), 6.98-7.03 (2H, m), 7.25-7.30 (2H, m);
13C NMR (100MHz, CDCl3): δ 13.7, 41.7, 67.9, 76.7, 115.3, 128.3, 139.1, 162.3;
IR (neat): ν 3341, 2925, 1604, 1510, 1224, 1025, 834 cm-1;
HRMS (FAB): [M+Na] calced for [C10H13FO2Na]: 207.0792, found: 207.0787;
Enantiometric excess was determined by HPLC with a Chiralpak AS-H column (100:1 hexane:2-propanol, λ=254nm), 1.0mL/min; major enantiomer tr=20.2min, minor enantiomer tr=26.9min, after conversion to the mono benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (p-fluorophenyl) -2-methylpropane-1,3-diol (Table 5: entry5)]
1 H NMR (400MHz, CDCl 3 ): δ 0.65 (3H, d, J = 4.0Hz), 1.94-2.01 (1H, m), 3.00 (1H, br s), 3.37 (1H, br s), 3.63- 3.75 (2H, m), 4.49 (1H, d, J = 8.0Hz), 6.98-7.03 (2H, m), 7.25-7.30 (2H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 13.7, 41.7, 67.9, 76.7, 115.3, 128.3, 139.1, 162.3;
IR (neat): ν 3341, 2925, 1604, 1510, 1224, 1025, 834 cm -1 ;
HRMS (FAB): [M + Na] calced for [C 10 H 13 FO 2 Na]: 207.0792, found: 207.0787;
Enantiometric excess was determined by HPLC with a Chiralpak AS-H column (100: 1 hexane: 2-propanol, λ = 254nm), 1.0mL / min; major enantiomer tr = 20.2min, minor enantiomer tr = 26.9min, after conversion to the mono benzoyl ester.

[(2R,3R)−1−フェニル−2−メチルプロパン−1,3−ジオール(表5:entry6、表7:entry3)のHPLC]
Enantiometric excess was determined by HPLC with a Chiralpak AD-H column (80:1 hexane:2-propanol, λ=254nm), 1.5mL/min; major enantiomer tr=63.8min, minor enantiomer tr=74.3min.
[HPLC of (2R, 3R) -1-phenyl-2-methylpropane-1,3-diol (Table 5: entry 6, Table 7: entry 3)]
Enantiometric excess was determined by HPLC with a Chiralpak AD-H column (80: 1 hexane: 2-propanol, λ = 254nm), 1.5mL / min; major enantiomer tr = 63.8min, minor enantiomer tr = 74.3min.

[(2R,3R)−1−(ナフタレン−2−イル)−2−メチルプロパン−1,3−ジオール(表5:entry8)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.72 (3H, d, J=7.2Hz), 2.22-2.10 (1H, m), 3.01 (1H, br d, J=2.4Hz), 3.46 (1H, br s), 3.66-3.84 (2H, m), 4.71 (1H, d, J=8.4Hz), 7.43-7.51 (3H, m), 7.76 (1H, s), 7.78-7.86 (3H, m);
13C NMR (100MHz, CDCl3): δ 13.9, 41.4, 68.0, 80.9, 124.5, 125.8, 126.0, 126.2, 127.7, 128.0, 128.3, 133.1, 133.2, 140.7;
IR (KBr): ν 3308, 2964, 2925, 2878, 1389, 1357, 1030, 867, 821, 750cm-1;
HRMS (FAB): [M+Na] calcd for [C14H16O2Na]: 239.1043, found: 239.1043;
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, (50:1 hexane:2-propanol), λ=254nm,1.0mL/min; major enantiomer tr=9.0min, minor enantiomer tr=10.3min after, conversion to the di benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (naphthalen-2-yl) -2-methylpropane-1,3-diol (Table 5: entry8)]
1 H NMR (400MHz, CDCl 3 ): δ 0.72 (3H, d, J = 7.2Hz), 2.22-2.10 (1H, m), 3.01 (1H, br d, J = 2.4Hz), 3.46 (1H, br s), 3.66-3.84 (2H, m), 4.71 (1H, d, J = 8.4Hz), 7.43-7.51 (3H, m), 7.76 (1H, s), 7.78-7.86 (3H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 13.9, 41.4, 68.0, 80.9, 124.5, 125.8, 126.0, 126.2, 127.7, 128.0, 128.3, 133.1, 133.2, 140.7;
IR (KBr): ν 3308, 2964, 2925, 2878, 1389, 1357, 1030, 867, 821, 750cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 14 H 16 O 2 Na]: 239.1043, found: 239.1043;
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, (50: 1 hexane: 2-propanol), λ = 254nm, 1.0mL / min; major enantiomer tr = 9.0min, minor enantiomer tr = 10.3min after, conversion to the di benzoyl ester.

[(2R,3R)−1−(ナフタレン−1−イル)−2−メチルプロパン−1,3−ジオール(表5:entry9)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.79 (3H, d, J=4.5Hz), 2.30-2.41 (1H, m), 3.04 (1H, br s), 3.15 (1H, br s), 3.67-3.84 (2H, m), 5.31 (1H, d, J=7.6Hz), 7.43-7.53 (3H, m), 7.59 (1H, d, J=7.2Hz), 7.78 (1H, d, J=8.0Hz), 7.83-7.89 (1H, m), 8.15-8.22 (1H, m);
13C NMR (100MHz, CDCl3): δ 14.4, 40.8, 67.6, 78.0, 123.6, 124.6, 125.3, 125.6, 126.0, 128.3, 128.9, 130.8, 134.0, 139.0;
IR (KBr): ν 3347, 2927, 2360, 1509, 1457, 1167, 1086, 1025, 799, 778cm-1;
HRMS (FAB): [M+H] calcd for [C14H16NaO2]: 239.1043, found: 203.1029;
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (100:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=15.5min, minor enantiomer tr=18.6min, after conversion to the di benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (naphthalen-1-yl) -2-methylpropane-1,3-diol (Table 5: entry 9)]
1 H NMR (400MHz, CDCl 3 ): δ 0.79 (3H, d, J = 4.5Hz), 2.30-2.41 (1H, m), 3.04 (1H, br s), 3.15 (1H, br s), 3.67- 3.84 (2H, m), 5.31 (1H, d, J = 7.6Hz), 7.43-7.53 (3H, m), 7.59 (1H, d, J = 7.2Hz), 7.78 (1H, d, J = 8.0Hz ), 7.83-7.89 (1H, m), 8.15-8.22 (1H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 14.4, 40.8, 67.6, 78.0, 123.6, 124.6, 125.3, 125.6, 126.0, 128.3, 128.9, 130.8, 134.0, 139.0;
IR (KBr): ν 3347, 2927, 2360, 1509, 1457, 1167, 1086, 1025, 799, 778cm -1 ;
HRMS (FAB): [M + H] calcd for [C 14 H 16 NaO 2 ]: 239.1043, found: 203.1029;
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (100: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 15.5min, minor enantiomer tr = 18.6min, after conversion to the di benzoyl ester .

[(2R,3R)−1−(p−トリル)−2−メチルプロパン−1,3−ジオール(表5:entry10)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.68 (3H, d, J=6.8Hz), 2.01-2.07 (1H, m), 2.33 (3H, s), 2.60 (1H, br s), 2.77 (1H, br s), 3.68-3.80 (2H, m), 4.50 (1H, d, J=8.4Hz), 7.15 (2H, d, J=8.0Hz), 7.21 (2H, d, J=8.0Hz);
13C NMR (150MHz, CDCl3): δ 11.0, 13.9, 21.2, 29.7, 41.7, 68.2, 80.9, 126.6, 129.2, 137.7, 140.4;
IR (neat): ν 3358, 2924, 2386, 1558, 1541, 1508, 1457, 1027, 812, 560cm-1;
HRMS (FAB): [M+Na] calcd for [C11H16NaO2]: 203.1043, found: 203.1046;
Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (30:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=19.2min, minor enantiomer tr=28.3min, after conversion to the di benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (p-tolyl) -2-methylpropane-1,3-diol (Table 5: entry 10)]
1 H NMR (400MHz, CDCl 3 ): δ 0.68 (3H, d, J = 6.8Hz), 2.01-2.07 (1H, m), 2.33 (3H, s), 2.60 (1H, br s), 2.77 (1H , br s), 3.68-3.80 (2H, m), 4.50 (1H, d, J = 8.4Hz), 7.15 (2H, d, J = 8.0Hz), 7.21 (2H, d, J = 8.0Hz);
13 C NMR (150 MHz, CDCl 3 ): δ 11.0, 13.9, 21.2, 29.7, 41.7, 68.2, 80.9, 126.6, 129.2, 137.7, 140.4;
IR (neat): ν 3358, 2924, 2386, 1558, 1541, 1508, 1457, 1027, 812, 560cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 11 H 16 NaO 2 ]: 203.1043, found: 203.1046;
Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (30: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 19.2min, minor enantiomer tr = 28.3min, after conversion to the di benzoyl ester .

[(2R,3R)−1−(o−メトキシフェニル)−2−メチルプロパン−1,3−ジオール(表6:entry11)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.72(1H, d, J=6.8Hz), 2.15-2.27 (1H, m), 3.65-3.76 (2H, m), 3.84 (3H, s), 4.80 (1H, d, J=8.4Hz), 6.9 (1H, d, J=8.0Hz), 6.96 (1H, t, J=7.6Hz), 7.22-7.31 (2H, m);
13C NMR (100MHz, CDCl3): δ 13.8, 40.4, 55.3, 67.9, 76.2, 110.6, 120.8, 128.1, 128.6, 130,9, 156.6;
IR (KBr): ν 3367, 2931, 2360, 1602, 1491, 1458, 1287, 1241, 1028, 934, 75, 418cm-1;
HRMS (FAB): [M+Na] calcd for [C11H16O3]: 219.0992, found: 219.1015;
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (10:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=6.8min, minor enantiomer tr=7.2min, after conversion to the di benzoyl ester.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (o-methoxyphenyl) -2-methylpropane-1,3-diol (Table 6: entry 11)]
1 H NMR (400MHz, CDCl 3 ): δ 0.72 (1H, d, J = 6.8Hz), 2.15-2.27 (1H, m), 3.65-3.76 (2H, m), 3.84 (3H, s), 4.80 ( 1H, d, J = 8.4Hz), 6.9 (1H, d, J = 8.0Hz), 6.96 (1H, t, J = 7.6Hz), 7.22-7.31 (2H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 13.8, 40.4, 55.3, 67.9, 76.2, 110.6, 120.8, 128.1, 128.6, 130,9, 156.6;
IR (KBr): ν 3367, 2931, 2360, 1602, 1491, 1458, 1287, 1241, 1028, 934, 75, 418cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 11 H 16 O 3 ]: 219.0992, found: 219.1015;
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (10: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 6.8min, minor enantiomer tr = 7.2min, after conversion to the di benzoyl ester .

[(2R,3R)−1−(p−メトキシフェニル)−2−メチルプロパン−1,3−ジオール(表6:entry12)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.66 (3H, d, J=7.2Hz), 1.98-2.09 (1H, m), 2.66 (1H, br s), 2.87 (1H, br s), 3.61-3.77 (2H, m), 3.79 (3H, s), 4.48 (1H, d, J=8.6Hz), 6.87(2H, br d, J=8.7Hz), 7.25-7.27 (2H, m);
13C NMR (100MHz, CDCl3): δ 13.8, 41.7, 55.3, 68.1, 80.6, 113.8, 127.9, 135.7, 159.2;
IR (neat): ν 3336, 2959, 1613, 1513, 1247, 1033, 833cm-1;
HRMS (FAB): [M+Na] calced for [C11H16O3Na]: 219.0992, found: 219.0992;
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (100:1 hexane:2-propanol), 1.2mL/min; minor enantiomer tr=145.1min, major enantiomer tr=149.4min
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (p-methoxyphenyl) -2-methylpropane-1,3-diol (Table 6: entry12)]
1 H NMR (400MHz, CDCl 3 ): δ 0.66 (3H, d, J = 7.2Hz), 1.98-2.09 (1H, m), 2.66 (1H, br s), 2.87 (1H, br s), 3.61- 3.77 (2H, m), 3.79 (3H, s), 4.48 (1H, d, J = 8.6Hz), 6.87 (2H, br d, J = 8.7Hz), 7.25-7.27 (2H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 13.8, 41.7, 55.3, 68.1, 80.6, 113.8, 127.9, 135.7, 159.2;
IR (neat): ν 3336, 2959, 1613, 1513, 1247, 1033, 833 cm -1 ;
HRMS (FAB): [M + Na] calced for [C 11 H 16 O 3 Na]: 219.0992, found: 219.0992;
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (100: 1 hexane: 2-propanol), 1.2mL / min; minor enantiomer tr = 145.1min, major enantiomer tr = 149.4min

[(2R,3R)−1−シクロへキシル−2−メチルプロパン−1,3−ジオール(表6:entry13)のHPLC]
Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (100:1 hexane:2-propanol), 0.5mL/min; major enantiomer tr=11.8min, minor enantiomer tr=13.6min.
[HPLC of (2R, 3R) -1-cyclohexyl-2-methylpropane-1,3-diol (Table 6: entry 13)]
Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (100: 1 hexane: 2-propanol), 0.5mL / min; major enantiomer tr = 11.8min, minor enantiomer tr = 13.6min.

[(2R,3R)−2−メチルペンタン−1,3−ジオール(表6:entry14)のHPLC]
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (100:1 hexane:2-propanol λ=254nm), 1.0mL/min; major enantiomer(syn) tr=24.6min, minor enantiomer(syn) tr=29.9min, major enantiomer(anti) tr=31.5min, minor enantiomer(anti) tr=34.4min, after conversion to the mono benzoyl ester.
[HPLC of (2R, 3R) -2-methylpentane-1,3-diol (Table 6: entry 14)]
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (100: 1 hexane: 2-propanol λ = 254nm), 1.0mL / min; major enantiomer (syn) tr = 24.6min, minor enantiomer (syn) tr = 29.9min, major enantiomer (anti) tr = 31.5min, minor enantiomer (anti) tr = 34.4min, after conversion to the mono benzoyl ester.

[(2R,3R)−1−(フランー2−イル)−2−メチルプロパン−1,3−ジオール(表7:entry4)のHPLC]
Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (100:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=43.8min, minor enantiomer tr=48.7min, after conversion to the di benzoyl ester.
[HPLC of (2R, 3R) -1- (furan-2-yl) -2-methylpropane-1,3-diol (Table 7: entry4)]
Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (100: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 43.8min, minor enantiomer tr = 48.7min, after conversion to the di benzoyl ester .

[(2R,3R)−1−(o−クロロフェニル)−2−イソプロピルプロパン−1,3−ジオール(表6:entry16)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 1.01 (3H, dd, J=1.2, 6.8Hz), 1.13 (3H, dd, J=1.2, 6.8Hz), 1.97-2.08 (1H, m), 2.41-2.47 (1H, m), 3.20-3.27 (1H, m), 3.66-3.82 (2H, m), 5.45 (1H, t, J=4.9Hz), 7.17-7.27 (1H, m), 7.28-7.36 (2H, m), 7.61-7.66 (1H, m);
13C NMR (100MHz, CDCl3): δ 20.0, 21.1, 25.8, 49.6, 61.2, 62.7, 73.4, 126.9, 128.0, 128.4, 129.5, 131.8, 141.4;
IR (neat): ν 3324, 2960, 1469, 1439, 1194, 1048, 1036, 998, 757, 705cm-1;
HRMS (FAB): [M+Na] calcd for [C12H17ClNaO2]: 251.0809, found: 251.0815;
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (150:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=21.9min, minor enantiomer tr=25.2min.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (o-chlorophenyl) -2-isopropylpropane-1,3-diol (Table 6: entry 16)]
1 H NMR (400MHz, CDCl 3 ): δ 1.01 (3H, dd, J = 1.2, 6.8Hz), 1.13 (3H, dd, J = 1.2, 6.8Hz), 1.97-2.08 (1H, m), 2.41- 2.47 (1H, m), 3.20-3.27 (1H, m), 3.66-3.82 (2H, m), 5.45 (1H, t, J = 4.9Hz), 7.17-7.27 (1H, m), 7.28-7.36 ( 2H, m), 7.61-7.66 (1H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 20.0, 21.1, 25.8, 49.6, 61.2, 62.7, 73.4, 126.9, 128.0, 128.4, 129.5, 131.8, 141.4;
IR (neat): ν 3324, 2960, 1469, 1439, 1194, 1048, 1036, 998, 757, 705cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 12 H 17 ClNaO 2 ]: 251.0809, found: 251.0815;
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (150: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 21.9min, minor enantiomer tr = 25.2min.

[(3R)−1−(o−クロロフェニル)−2,2−ジメチルプロパン−1,3−ジオール(表6:entry17)のNMR、IR、HRMS、HPLC]
13C NMR (100MHz, CDCl3): δ 18.8, 22.4, 29.7, 40.3, 72.4, 126.6, 128.6, 129.3, 129.5, 133.4, 139.2;
IR (neat): ν 3335, 2919, 2852, 2360, 1653, 1472, 1438, 1031, 751, 710cm-1;
HRMS (FAB): [M+Na] calcd for [C11H15ClNaO2]: 237.0653, found: 237.0635;
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (30:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=11.7min, minor enantiomer tr=12.9min.
[NMR, IR, HRMS, HPLC of (3R) -1- (o-chlorophenyl) -2,2-dimethylpropane-1,3-diol (Table 6: entry 17)]
13 C NMR (100 MHz, CDCl 3 ): δ 18.8, 22.4, 29.7, 40.3, 72.4, 126.6, 128.6, 129.3, 129.5, 133.4, 139.2;
IR (neat): ν 3335, 2919, 2852, 2360, 1653, 1472, 1438, 1031, 751, 710cm-1;
HRMS (FAB): [M + Na] calcd for [C 11 H 15 ClNaO 2 ]: 237.0653, found: 237.0635;
Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (30: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 11.7min, minor enantiomer tr = 12.9min.

[(2R,3R)−1−(o−クロロフェニル)−2−ベンジルプロパン−1,3−ジオール(表6:entry18)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 2.15-2.23 (1H, m), 2.82-2.96 (2H, m), 3.53 (1H, ddd, J=5.2, 5.2, 10.8Hz), 3.70 (1H, ddd, J=2.4, 4.0, 10.8Hz), 5.21 (1H, t, J=4.8Hz), 7.15-7.38 (8H, m), 7.65 (1H, dd, J=1.2, 7.6Hz);
13C NMR (100MHz, CDCl3): δ 34.9, 45.8, 62.4, 74.5, 126.2, 127.0, 127.8, 128.4, 128.6, 128.8, 129.0, 129.2, 129.5, 131.9, 140.0, 140.9;
IR (neat): ν 3336, 2924, 1440, 1192, 1127, 1073, 1031, 911, 753, 701cm-1;
HRMS (FAB): [M+Na] calcd for [C16H17ClNaO2]: 299.0809, found: 299.0810;
Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (30:1 hexane:2-propanol), 1.0mL/min; major enantiomer tr=17.6min, minor enantiomer tr=22.5min.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (o-chlorophenyl) -2-benzylpropane-1,3-diol (Table 6: entry 18)]
1 H NMR (400MHz, CDCl 3 ): δ 2.15-2.23 (1H, m), 2.82-2.96 (2H, m), 3.53 (1H, ddd, J = 5.2, 5.2, 10.8Hz), 3.70 (1H, ddd , J = 2.4, 4.0, 10.8Hz), 5.21 (1H, t, J = 4.8Hz), 7.15-7.38 (8H, m), 7.65 (1H, dd, J = 1.2, 7.6Hz);
13 C NMR (100 MHz, CDCl 3 ): δ 34.9, 45.8, 62.4, 74.5, 126.2, 127.0, 127.8, 128.4, 128.6, 128.8, 129.0, 129.2, 129.5, 131.9, 140.0, 140.9;
IR (neat): ν 3336, 2924, 1440, 1192, 1127, 1073, 1031, 911, 753, 701cm -1 ;
HRMS (FAB): [M + Na] calcd for [C 16 H 17 ClNaO 2 ]: 299.0809, found: 299.0810;
Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (30: 1 hexane: 2-propanol), 1.0mL / min; major enantiomer tr = 17.6min, minor enantiomer tr = 22.5min.

[(2R,3R)−1−(ピロリジンー4−イル)−2−メチルプロパン−1,3−ジオール(表6:entry19,20)のNMR、IR、HRMS、HPLC]
1H NMR (400MHz, CDCl3): δ 0.83 (3H, t, J=6.8Hz), 1.97-2.03 (1H, m), 3.01 (1H, br s), 3.65-3.80 (2H, m), 4.14 (1H, br s), 4.61 (1H, d, J=6.8Hz), 7.28-7.29 (2H, m), 8.52-8.54 (2H, m);
13C NMR (100MHz, CDCl3): δ 12.8, 40.1, 65.9, 77.6, 121.0, 148.2, 152.2;
IR (neat): ν 3363, 2963, 2924, 1605, 1559, 1456, 1416, 1261, 1033, 801cm-1;
HRMS (FAB): [M+H] calced for [C9H14NO2]: 168.1019, found: 168.1012;
Enantiometric excess was determined by HPLC with a Chiralpak AS-H column (20:1 hexane:2-propanol, λ=254nm), 1.0mL/min; major enantiomer tr=30.8min, minor enantiomer tr=45.8min.
[NMR, IR, HRMS, HPLC of (2R, 3R) -1- (pyrrolidin-4-yl) -2-methylpropane-1,3-diol (Table 6: entry 19, 20)]
1 H NMR (400MHz, CDCl 3 ): δ 0.83 (3H, t, J = 6.8Hz), 1.97-2.03 (1H, m), 3.01 (1H, br s), 3.65-3.80 (2H, m), 4.14 (1H, br s), 4.61 (1H, d, J = 6.8Hz), 7.28-7.29 (2H, m), 8.52-8.54 (2H, m);
13 C NMR (100 MHz, CDCl 3 ): δ 12.8, 40.1, 65.9, 77.6, 121.0, 148.2, 152.2;
IR (neat): ν 3363, 2963, 2924, 1605, 1559, 1456, 1416, 1261, 1033, 801cm -1 ;
HRMS (FAB): [M + H] calced for [C 9 H 14 NO 2 ]: 168.1019, found: 168.1012;
Enantiometric excess was determined by HPLC with a Chiralpak AS-H column (20: 1 hexane: 2-propanol, λ = 254nm), 1.0mL / min; major enantiomer tr = 30.8min, minor enantiomer tr = 45.8min.

Claims (18)

下記式(12)又は(14)から(28)で表される化合物、又は下記式(11)から(31)で表される化合物のエナンチオマーであるプロリン誘導体。
Figure 2007182419
A proline derivative which is an enantiomer of a compound represented by the following formula (12) or (14) to (28) or a compound represented by the following formula (11) to (31).
Figure 2007182419
下記一般式(9−6)で表される化合物(但し、Rが、フェニル基、トリル基、p−ニトロフェニル基、2,4,6−トリイソプロピルフェニル基である場合を除く。)、又は下記一般式(9−6)で表される化合物のエナンチオマーであるプロリン誘導体。
Figure 2007182419
(式中Rは、炭素数2から15の直鎖状又は分岐状のアルキル基、又は置換基を有してもよいアリール基を示す。)
A compound represented by the following general formula (9-6) (except that R 6 is a phenyl group, a tolyl group, a p-nitrophenyl group, or a 2,4,6-triisopropylphenyl group); Or the proline derivative which is an enantiomer of the compound represented by the following general formula (9-6).
Figure 2007182419
(In the formula, R 6 represents a linear or branched alkyl group having 2 to 15 carbon atoms, or an aryl group which may have a substituent.)
プロリンと、プロリンの脂溶性を増加させる物質又は官能基と、の組合せからなる、水を用いたアルドール反応における光学活性アンチ選択性増強触媒。   A catalyst for enhancing optically active anti-selectivity in an aldol reaction using water, comprising a combination of proline and a substance or functional group that increases the fat solubility of proline. 前記プロリンの脂溶性を増加させる物質が、カルボン酸、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基である請求項3記載の光学活性アンチ選択性増強触媒。   Substances that increase the fat solubility of proline include carboxylic acid, tetrazole, carboxamide, carboxamide having an aryl group, a heterocycle, an alkyl group on the nitrogen, a carboxamide having a sulfonyl group which may have a substituent, and a substituent. 4. An alkylhydroxyl group which may be substituted, an alkylsilyloxy group which may have a substituent, an arylsilyloxy group which may have a substituent, or a silyloxy group having both an alkyl group and an aryl group. The optically active anti-selectivity enhancing catalyst as described. 前記プロリンの脂溶性を増加させる官能基が、アリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基である請求項3又は4記載の光学活性アンチ選択性増強触媒。   The optically active anti-selectivity enhancement according to claim 3 or 4, wherein the functional group that increases the liposolubility of proline is an aryl group, a heterocycle, an alkyl group, an acyl group, or a silyl group which may have a substituent. catalyst. 請求項3から5いずれか記載の光学活性アンチ選択性増強触媒が、下記一般式(9−1)から(9−8)で表される化合物である光学活性アンチ選択性増強触媒。
Figure 2007182419
(式中Rは、アルキル基、又はアリール基を示す。なお、それぞれのRは同一又は異なっていてもよい。Rは、アルキル基、アリール基、又はアシル基を示す。Rは、水素、アルキル基、又はアリール基を示す。Rは、アルキル基、又はアリール基を示す。Rは、官能基を有してもよいアルキル基、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロアリール基を示す。)
An optically active anti-selectivity enhancing catalyst, wherein the optically active anti-selectivity enhancing catalyst according to any one of claims 3 to 5 is a compound represented by the following general formulas (9-1) to (9-8).
Figure 2007182419
(In the formula, R 3 represents an alkyl group or an aryl group. Each R 3 may be the same or different. R 4 represents an alkyl group, an aryl group, or an acyl group. R 5 represents , Hydrogen, an alkyl group, or an aryl group, R 6 represents an alkyl group, or an aryl group, and R 7 represents an alkyl group that may have a functional group, or an aryl group that may have a substituent. Or a heteroaryl group which may have a substituent.
請求項3から6いずれか記載の光学活性アンチ選択性増強触媒が、下記式(11)から(34)で表される化合物、又は下記式(11)から(34)で表される化合物のエナンチオマーである光学活性アンチ選択性増強触媒。
Figure 2007182419
The optically active anti-selectivity enhancing catalyst according to any one of claims 3 to 6 is a compound represented by the following formulas (11) to (34), or an enantiomer of a compound represented by the following formulas (11) to (34) An optically active anti-selectivity enhancing catalyst.
Figure 2007182419
下記式(12)で表されるプロリン誘導体を製造する方法であって、
2位と4位に置換基を有するピロリジン誘導体と、シリル化剤と、を反応させてなるプロリン誘導体を製造する方法。
Figure 2007182419
A method for producing a proline derivative represented by the following formula (12):
A method for producing a proline derivative obtained by reacting a pyrrolidine derivative having a substituent at the 2-position and the 4-position with a silylating agent.
Figure 2007182419
下記式(12)又は(14)から(28)で表されるプロリン誘導体を製造する方法であって、
2位と4位又は2位と3位に置換基を有するピロリジン誘導体の窒素原子をベンジルオキシカルボニル基、又は、t−ブトキシカルボニル基で保護し、
シリル化剤又はアシル化剤と反応させた後、
接触水素化又は酸によって脱保護することによりプロリン誘導体を製造する方法。
Figure 2007182419
A method for producing a proline derivative represented by the following formula (12) or (14) (28),
Protecting the nitrogen atom of the pyrrolidine derivative having a substituent at the 2-position and 4-position or 2-position and 3-position with a benzyloxycarbonyl group or a t-butoxycarbonyl group;
After reacting with a silylating agent or acylating agent,
A method for producing a proline derivative by catalytic hydrogenation or deprotection with an acid.
Figure 2007182419
請求項3から7いずれか記載の光学活性アンチ選択性増強触媒の存在下で反応させることにより得られた光学活性アンチ型アルドール化合物。   An optically active anti-aldol compound obtained by reacting in the presence of the optically active anti-selectivity enhancing catalyst according to any one of claims 3 to 7. 下記一般式(1a)で表されるケトンと、下記一般式(2a)で表されるアルデヒドとを、溶媒中で反応させてなる、又は、溶媒を用いずに反応させてなる、下記一般式(3a)で表される光学活性アンチ型アルドール化合物の製造方法であって、
下記一般式(10−1)から(10−5)で表されるアミノ酸誘導体及びそのエナンチオマーより選択される触媒の存在下で反応させてなる光学活性アンチ型アルドール化合物の製造方法。(但し、溶媒を用いずに反応させてなる場合において、一般式(1a)で表されるケトンが、アセトンである場合を除く。)
Figure 2007182419
Figure 2007182419
(式中、Rはアリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基を示す。Rはカルボキシル基、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基などの置換基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド又は置換基を有してもよいアルキルヒドロキシル基を示す。R10はカルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基を示す。)
A ketone represented by the following general formula (1a) and an aldehyde represented by the following general formula (2a) are reacted in a solvent or reacted without using a solvent. A method for producing an optically active anti-aldol compound represented by (3a),
The manufacturing method of the optically active anti-aldol compound formed by making it react in the presence of the catalyst selected from the amino acid derivative represented by the following general formula (10-1) to (10-5), and its enantiomer. (However, in the case where the reaction is carried out without using a solvent, the case where the ketone represented by the general formula (1a) is acetone is excluded.)
Figure 2007182419
Figure 2007182419
(In the formula, R 8 represents an aryl group, a heterocycle, an alkyl group, an acyl group, or a silyl group which may have a substituent. R 9 represents a carboxyl group, tetrazole, carboxamide, an aryl group or a heterocycle on nitrogen. , A carboxamide having a substituent such as an alkyl group, a carboxamide having a sulfonyl group which may have a substituent or an alkylhydroxyl group which may have a substituent, R 10 represents a carboxamide, an aryl group on nitrogen, hetero A ring, a carboxamide having an alkyl group, a carboxamide having a sulfonyl group which may have a substituent, an alkyl hydroxyl group which may have a substituent, an alkylsilyloxy group which may have a substituent, and a substituent. An arylsilyloxy group which may have, or a silyloxy group having both an alkyl group and an aryl group )
請求項11記載の光学活性アンチ型アルドール化合物の製造方法であって、
溶媒を用いて反応させる場合、前記溶媒が水である光学活性アンチ型アルドール化合物の製造方法。
A method for producing an optically active anti-aldol compound according to claim 11,
A method for producing an optically active anti-aldol compound, wherein the solvent is water when the reaction is carried out using a solvent.
請求項11記載の光学活性アンチ型アルドール化合物の製造方法であって、
溶媒を用いて反応させる場合、前記溶媒が非極性溶媒である光学活性アンチ型アルドール化合物の製造方法。
A method for producing an optically active anti-aldol compound according to claim 11,
When making it react using a solvent, the manufacturing method of the optically active anti-aldol compound whose said solvent is a nonpolar solvent.
下記一般式(4a)で表されるアルデヒドと、下記一般式(5a)で表されるアルデヒドとを、溶媒中で反応させてなる、又は、溶媒を用いずに反応させてなる、下記一般式(6a)で表される光学活性アンチ型アルドール化合物の製造方法であって、
下記一般式(10−1)から(10−5)で表されるアミノ酸誘導体及びそのエナンチオマーより選択される触媒の存在下で反応させてなる光学活性アンチ型アルドール化合物の製造方法。
Figure 2007182419
Figure 2007182419
(式中、Rはアリール基、ヘテロ環、アルキル基、アシル基、又は置換基を有してもよいシリル基を示す。Rはカルボキシル基、テトラゾール、カルボキサミド、窒素にアリール基、ヘテロ環、アルキル基などの置換基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド又は置換基を有してもよいアルキルヒドロキシル基を示す。R10はカルボキサミド、窒素にアリール基、ヘテロ環、アルキル基を有するカルボキサミド、置換基を有してもよいスルホニル基を有するカルボキサミド、置換基を有してもよいアルキルヒドロキシル基、置換基を有してもよいアルキルシリルオキシ基、置換基を有してもよいアリールシリルオキシ基、又はアルキル基とアリール基を合わせ持つシリルオキシ基を示す。)
An aldehyde represented by the following general formula (4a) and an aldehyde represented by the following general formula (5a) are reacted in a solvent or reacted without using a solvent, and the following general formula A method for producing an optically active anti-aldol compound represented by (6a),
The manufacturing method of the optically active anti-aldol compound formed by making it react in the presence of the catalyst selected from the amino acid derivative represented by the following general formula (10-1) to (10-5), and its enantiomer.
Figure 2007182419
Figure 2007182419
(In the formula, R 8 represents an aryl group, a heterocycle, an alkyl group, an acyl group, or a silyl group which may have a substituent. R 9 represents a carboxyl group, tetrazole, carboxamide, an aryl group or a heterocycle on nitrogen. , A carboxamide having a substituent such as an alkyl group, a carboxamide having a sulfonyl group which may have a substituent or an alkylhydroxyl group which may have a substituent, R 10 represents a carboxamide, an aryl group on nitrogen, hetero A ring, a carboxamide having an alkyl group, a carboxamide having a sulfonyl group which may have a substituent, an alkyl hydroxyl group which may have a substituent, an alkylsilyloxy group which may have a substituent, and a substituent. An arylsilyloxy group which may have, or a silyloxy group having both an alkyl group and an aryl group )
請求項14記載の光学活性アンチ型アルドール化合物の製造方法であって、
溶媒を用いて反応させる場合、前記溶媒が水である光学活性アンチ型アルドール化合物の製造方法。
A method for producing the optically active anti-aldol compound according to claim 14,
A method for producing an optically active anti-aldol compound, wherein the solvent is water when the reaction is carried out using a solvent.
請求項14記載の光学活性アンチ型アルドール化合物の製造方法であって、
溶媒を用いて反応させる場合、前記溶媒が非極性溶媒である光学活性アンチ型アルドール化合物の製造方法。
A method for producing the optically active anti-aldol compound according to claim 14,
When making it react using a solvent, the manufacturing method of the optically active anti-aldol compound whose said solvent is a nonpolar solvent.
下記一般式(1b)で表されるケトンと、下記一般式(2b)で表されるアルデヒドと、を溶媒に水、触媒にプロリンを用いて反応させてなる下記一般式(3b)で表される光学活性アンチ型アルドール化合物の製造方法。
Figure 2007182419
It is represented by the following general formula (3b) obtained by reacting a ketone represented by the following general formula (1b) with an aldehyde represented by the following general formula (2b) using water as a solvent and proline as a catalyst. A method for producing an optically active anti-aldol compound.
Figure 2007182419
下記一般式(4b)で表されるアルデヒドと、下記一般式(5b)で表されるアルデヒドと、を溶媒に水、触媒にプロリンを用いて反応させてなる下記一般式(6b)で表される光学活性アンチ型アルドール化合物の製造方法。
Figure 2007182419
The aldehyde represented by the following general formula (4b) and the aldehyde represented by the following general formula (5b) are reacted by using water as a solvent and proline as a catalyst. A method for producing an optically active anti-aldol compound.
Figure 2007182419
JP2006148905A 2005-12-07 2006-05-29 Proline derivative and optically active anti-selection promoting catalyst Pending JP2007182419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148905A JP2007182419A (en) 2005-12-07 2006-05-29 Proline derivative and optically active anti-selection promoting catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005354134 2005-12-07
JP2006148905A JP2007182419A (en) 2005-12-07 2006-05-29 Proline derivative and optically active anti-selection promoting catalyst

Publications (1)

Publication Number Publication Date
JP2007182419A true JP2007182419A (en) 2007-07-19

Family

ID=38338798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148905A Pending JP2007182419A (en) 2005-12-07 2006-05-29 Proline derivative and optically active anti-selection promoting catalyst

Country Status (1)

Country Link
JP (1) JP2007182419A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114135A (en) * 2007-11-07 2009-05-28 Tokyo Univ Of Science Method for producing asymmetric catalyzed aldol reaction product
JP2009155233A (en) * 2007-12-25 2009-07-16 Kao Corp Method for producing mixture of 2-(1-hydroxyalkyl)cycloalkanone and dehydrated material of the same
JP2009263233A (en) * 2008-04-21 2009-11-12 Tokyo Univ Of Science Method for producing asymmetrically catalyzed michael reaction product, and method for producing pharmaceutical compound
CN101891668A (en) * 2010-06-18 2010-11-24 西南大学 L-prolinamide derivative, preparation method and application of same
CN102153456A (en) * 2011-02-24 2011-08-17 烟台万华聚氨酯股份有限公司 Method for preparing 2,2-dimethyl-3-hydroxy propanal
WO2011152329A1 (en) * 2010-06-01 2011-12-08 住友化学株式会社 Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
WO2012053565A1 (en) * 2010-10-20 2012-04-26 学校法人東京理科大学 PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINO ALDEHYDE COMPOUND
JP2013035809A (en) * 2011-08-10 2013-02-21 Tokyo Univ Of Science OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME
CN113307978A (en) * 2021-05-07 2021-08-27 昆明理工大学 Inorganic microsphere modified by cyclodextrin grafted chiral proline metal complex and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951248A (en) * 1982-07-19 1984-03-24 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Amide derivative, manufacture and pharmaceutical compositionfor treating hypertensive or congestive cardioplegia
FR2579979A1 (en) * 1985-04-05 1986-10-10 Pf Cosmetique
FR2682039A1 (en) * 1991-10-08 1993-04-09 Patrinove Medicational compositions intended to promote regeneration of the extracellular matrix
JPH06263713A (en) * 1993-03-12 1994-09-20 Fujisawa Pharmaceut Co Ltd Production of nitron compound
WO2002010101A1 (en) * 2000-08-01 2002-02-07 Shionogi & Co., Ltd. Process for producing alcohol with transition metal complex having amide compound as ligand
JP2002518298A (en) * 1998-06-18 2002-06-25 ノバルテイス・アクチエンゲゼルシヤフト Composition for keeping pests away
JP2002275118A (en) * 2001-03-15 2002-09-25 Central Glass Co Ltd Method for producing aldol reaction product
WO2003089396A1 (en) * 2002-04-19 2003-10-30 California Institute Of Technology Direct, enantioselective aldol coupling of aldehydes using chiral organic catalysts
JP2004018377A (en) * 2002-06-12 2004-01-22 Kissei Pharmaceut Co Ltd Optically-active amino alcohol salt which is easy to recover and reuse, and method for manufacturing optically-active alcohol using the salt
JP2005035978A (en) * 2003-07-02 2005-02-10 Tokyo Univ Of Science METHOD FOR PRODUCING OPTICALLY ACTIVE SYN-alpha-ALKYL-beta-AMINOCARBONYL COMPOUND
JP2005232006A (en) * 2001-07-27 2005-09-02 Eisai Co Ltd Pyrrolidine derivative and method for synthesizing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951248A (en) * 1982-07-19 1984-03-24 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Amide derivative, manufacture and pharmaceutical compositionfor treating hypertensive or congestive cardioplegia
FR2579979A1 (en) * 1985-04-05 1986-10-10 Pf Cosmetique
FR2682039A1 (en) * 1991-10-08 1993-04-09 Patrinove Medicational compositions intended to promote regeneration of the extracellular matrix
JPH06263713A (en) * 1993-03-12 1994-09-20 Fujisawa Pharmaceut Co Ltd Production of nitron compound
JP2002518298A (en) * 1998-06-18 2002-06-25 ノバルテイス・アクチエンゲゼルシヤフト Composition for keeping pests away
WO2002010101A1 (en) * 2000-08-01 2002-02-07 Shionogi & Co., Ltd. Process for producing alcohol with transition metal complex having amide compound as ligand
JP2002275118A (en) * 2001-03-15 2002-09-25 Central Glass Co Ltd Method for producing aldol reaction product
JP2005232006A (en) * 2001-07-27 2005-09-02 Eisai Co Ltd Pyrrolidine derivative and method for synthesizing the same
WO2003089396A1 (en) * 2002-04-19 2003-10-30 California Institute Of Technology Direct, enantioselective aldol coupling of aldehydes using chiral organic catalysts
JP2004018377A (en) * 2002-06-12 2004-01-22 Kissei Pharmaceut Co Ltd Optically-active amino alcohol salt which is easy to recover and reuse, and method for manufacturing optically-active alcohol using the salt
JP2005035978A (en) * 2003-07-02 2005-02-10 Tokyo Univ Of Science METHOD FOR PRODUCING OPTICALLY ACTIVE SYN-alpha-ALKYL-beta-AMINOCARBONYL COMPOUND

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114135A (en) * 2007-11-07 2009-05-28 Tokyo Univ Of Science Method for producing asymmetric catalyzed aldol reaction product
JP2009155233A (en) * 2007-12-25 2009-07-16 Kao Corp Method for producing mixture of 2-(1-hydroxyalkyl)cycloalkanone and dehydrated material of the same
JP2009263233A (en) * 2008-04-21 2009-11-12 Tokyo Univ Of Science Method for producing asymmetrically catalyzed michael reaction product, and method for producing pharmaceutical compound
CN102985400A (en) * 2010-06-01 2013-03-20 住友化学株式会社 Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
EP2578566A4 (en) * 2010-06-01 2015-11-04 Sumitomo Chemical Co Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
WO2011152329A1 (en) * 2010-06-01 2011-12-08 住友化学株式会社 Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
JP2011251924A (en) * 2010-06-01 2011-12-15 Sumitomo Chemical Co Ltd Method of producing optically-active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
CN102985400B (en) * 2010-06-01 2014-11-26 住友化学株式会社 Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
US8729294B2 (en) 2010-06-01 2014-05-20 Sumitomo Chemical Company, Limited Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
CN101891668A (en) * 2010-06-18 2010-11-24 西南大学 L-prolinamide derivative, preparation method and application of same
JP2012106998A (en) * 2010-10-20 2012-06-07 Tokyo Univ Of Science PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINO ALDEHYDE COMPOUND
WO2012053565A1 (en) * 2010-10-20 2012-04-26 学校法人東京理科大学 PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINO ALDEHYDE COMPOUND
US8962889B2 (en) 2010-10-20 2015-02-24 Sumitomo Chemical Company, Limited Process for producing optically active β-amino aldehyde compound
CN102153456B (en) * 2011-02-24 2013-06-05 烟台万华聚氨酯股份有限公司 Method for preparing 2,2-dimethyl-3-hydroxy propanal
CN102153456A (en) * 2011-02-24 2011-08-17 烟台万华聚氨酯股份有限公司 Method for preparing 2,2-dimethyl-3-hydroxy propanal
JP2013035809A (en) * 2011-08-10 2013-02-21 Tokyo Univ Of Science OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME
CN113307978A (en) * 2021-05-07 2021-08-27 昆明理工大学 Inorganic microsphere modified by cyclodextrin grafted chiral proline metal complex and preparation method and application thereof
CN113307978B (en) * 2021-05-07 2022-09-27 昆明理工大学 Inorganic microsphere modified by cyclodextrin grafted chiral proline metal complex and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2007182419A (en) Proline derivative and optically active anti-selection promoting catalyst
CN103080072B (en) Preparation can be used for the novel method of the intermediate producing nep inhibitor
EP2802554B1 (en) PREPARATION OF OPTICALLY PURE ß-AMINO ACID TYPE ACTIVE PHARMACEUTICAL INGREDIENTS AND INTERMEDIATES THEREOF
Fox et al. Asymmetric synthesis via electrophile-mediated cyclisations
Gnamm et al. A Configurational Switch Based on Iridium‐Catalyzed Allylic Cyclization: Application in Asymmetric Total Syntheses of Prosopis, Dendrobate, and Spruce Alkaloids
Avenoza et al. Enantioselective synthesis of (S)-and (R)-α-methylserines: application to the synthesis of (S)-and (R)-N-Boc-N, O-isopropylidene-α-methylserinals
Lygo et al. An enantioselective approach to bis-α-amino acids
EP3063154B1 (en) Cross-coupling of unactivated secondary boronic acids
KR101130818B1 (en) Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts
Sikriwal et al. Aza variant of intramolecular nucleophile-catalyzed aldol lactonization (NCAL): formal synthesis of (3S, 4R) and (3R, 4S) 4-(hydroxymethyl) pyrrolidin-3-ol
Tozawa et al. Enantioselective synthesis of 3, 4-dihydropyran-2-ones by chiral quaternary ammonium phenoxide-catalyzed tandem Michael addition and lactonization
Caddick et al. A new dynamic resolution strategy for asymmetric synthesis
Zhang et al. Application of asymmetric aminohydroxylation to heteroaromatic acrylates
Valle et al. Rhodium-Catalyzed Intramolecular Formation of N-Sulfamoyl 2, 3-Aziridino-γ-lactones and Their Use for the Enantiospecific Synthesis of α, β-Diamino Acid Derivatives
JP4649645B2 (en) Process for producing optically active alcohol compounds
US11465135B2 (en) Bifunctional chiral organocatalytic compound having excellent enantioselectivity, preparation method therefor, and method for producing non-natural gamma-amino acid from nitro compound by using same
Liang et al. Total Syntheses of (+)-α-Allokainic Acid and (−)-2-epi-α-Allokainic Acid Employing Ketopinic Amide as a Chiral Auxiliary
JP2008007457A (en) POST-TREATMENT METHOD OF beta-HYDROXYCARBONYL COMPOUND
Chacko et al. Chelation controlled reduction of N-protected β-amino ketones toward the synthesis of HPA-12 and analogues
Burtoloso et al. Asymmetric synthesis of cis-2, 4-disubstituted azetidin-3-ones from metal carbene chemistry
Wang et al. Enantioselective Michael addition of cyclic ketones to nitroolefins catalyzed by a novel fluorine-insertion organocatalyst
JP2007523098A (en) Catalytic asymmetric synthesis of optically active α-halo-carbonyl compounds
JP5004138B2 (en) Process for producing β-hydroxycarbonyl compound
WO2021002407A1 (en) Fluoroalkyl group-containing compound and production method therefor
Tayama et al. Resolution of nitrogen-centered chiral tetraalkylammonium salts: application to [1, 2] Stevens rearrangements with N-to-C chirality transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508