JP2007181849A - Method for linearly heating steel sheet - Google Patents

Method for linearly heating steel sheet Download PDF

Info

Publication number
JP2007181849A
JP2007181849A JP2006000782A JP2006000782A JP2007181849A JP 2007181849 A JP2007181849 A JP 2007181849A JP 2006000782 A JP2006000782 A JP 2006000782A JP 2006000782 A JP2006000782 A JP 2006000782A JP 2007181849 A JP2007181849 A JP 2007181849A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
heating
iys
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006000782A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shirahata
浩幸 白幡
Tadashi Kasuya
正 糟谷
Akira Shishibori
明 獅々堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006000782A priority Critical patent/JP2007181849A/en
Publication of JP2007181849A publication Critical patent/JP2007181849A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for linearly heating a steel sheet, which method can stably achieve a large deformation angle. <P>SOLUTION: The method for linearly heating the steel sheet is used for heating the steel sheet so as to simultaneously satisfy both of the following conditions: 700≤Ts≤1,000; and 27×(IYS/1,000)<SP>0.7</SP>×t<SP>-0.32</SP>-30≤Tr≤27×(IYS/1,000)<SP>0.7</SP>×t<SP>-0.32</SP>+30, where Ts(°C) shows a maximum arrival temperature on the right side surface of the steel sheet in the linear heating; Tr(°C) shows a maximum arrival temperature on the back surface of the steel sheet in the linear heating; IYS(K N/mm<SP>2</SP>) shows an integrated value of the yield strength of the steel sheet with respect to temperature from an ordinary temperature to 600°C; and t(mm) shows the thickness of the steel sheet. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼板を線状加熱して所定の形状に変形させる線状加熱方法に関するものである。   The present invention relates to a linear heating method in which a steel plate is linearly heated to be deformed into a predetermined shape.

平らな鋼板を変形させて最終目的形状の鋼板にする場合、ガスバーナーなどを用いて鋼板を線状加熱し、所定の形状に変形させる方法が用いられている。プレスなどによる機械的な加工と比較して、線状加熱は高価な設備を必要としないため、現在でも多く使用されている。   When a flat steel plate is deformed to form a steel plate having a final target shape, a method is used in which the steel plate is linearly heated using a gas burner or the like to be deformed into a predetermined shape. Compared to mechanical processing using a press or the like, linear heating does not require expensive equipment, and is still widely used today.

鋼板を加熱したときに熱膨脹により塑性変形が生じた場合、これが冷却後室温に戻っても残留すると鋼板が変形する。温度上昇により生じた熱応力がその温度における鋼板の降伏強度より大きい場合、塑性変形を起こす。ある部分における熱応力は、他の部分からの拘束により生じるが、もし加熱部分がまわりから拘束を受けない場合は、自由熱膨脹となり熱応力は発生しない。すなわち塑性変形は生じない。逆に、まわりからの拘束が大きい場合には、それだけ大きな塑性変形が導入されることにより、最終変形量は大きくなる。   When plastic deformation occurs due to thermal expansion when the steel plate is heated, the steel plate is deformed if it remains even if it returns to room temperature after cooling. If the thermal stress caused by the temperature rise is greater than the yield strength of the steel plate at that temperature, plastic deformation occurs. Thermal stress in one part is generated by restraint from other parts, but if the heated part is not restrained from the surroundings, it becomes free thermal expansion and no thermal stress is generated. That is, plastic deformation does not occur. On the other hand, when the constraints from the surroundings are large, the amount of final deformation becomes large by introducing a large plastic deformation.

線状加熱の場合、溶接と比較すると、バーナーで比較的ゆっくりと加熱されるため、熱が加熱部分以外にもかなり広く伝わってゆく。すなわち、加熱部分から見て、拘束する部分もまた、かなりの温度上昇を伴うのが普通である。そのため、より大きい変形を得るためには、まわりの拘束を大きくする、すなわち温度が上昇しても降伏強度があまり低くならない鋼材を使用することが効果的とされる。   In the case of linear heating, as compared with welding, heating is performed relatively slowly by a burner, so that heat is transmitted to a wide area other than the heated portion. That is, as viewed from the heated portion, the constrained portion is also usually accompanied by a significant temperature rise. For this reason, in order to obtain a larger deformation, it is effective to use a steel material in which the surrounding constraints are increased, that is, the yield strength does not become so low even if the temperature rises.

例えば、特許文献1に記載の線状加熱方法に関する発明においては、室温から600℃までの温度範囲で温度上昇に伴う降伏強度の低下が少ない鋼板を使用している。温度が上昇しても降伏強度があまり低くならないので、拘束する部分の温度が上昇しても最高温度部分を十分に拘束することができ、大きな変形を得ることができるからである。特許文献1に記載の発明では、さらに、加熱を行う側の鋼板表面最高温度を600℃以上として鋼板内部の温度勾配を大きくし、水冷を行うことで温度勾配を大きくして塑性歪みを導入させ、表面温度200℃以下で水冷を停止する。これにより、鋼板を線状加熱するときに生じる角変形を大きくすることができるとしている。   For example, in the invention relating to the linear heating method described in Patent Document 1, a steel plate is used in which the decrease in yield strength accompanying temperature rise is small in the temperature range from room temperature to 600 ° C. This is because even if the temperature rises, the yield strength does not decrease so much, and even if the temperature of the restraining portion rises, the maximum temperature portion can be restrained sufficiently and a large deformation can be obtained. In the invention described in Patent Document 1, the steel plate surface maximum temperature on the heating side is set to 600 ° C. or higher, the temperature gradient inside the steel plate is increased, and water cooling is performed to increase the temperature gradient and introduce plastic strain. The water cooling is stopped at a surface temperature of 200 ° C. or lower. Thereby, the angular deformation that occurs when the steel plate is linearly heated can be increased.

温度上昇に伴う降伏強度の低下が少ない鋼板とするため、Nb及びMoを含有する成分とし、熱間圧延時の加熱温度を1100℃以上としてNbとMoの固溶量を十分に確保して線状加熱の熱履歴中の析出強化を可能とし、圧延の下限温度を850℃として圧延中の析出を抑制している。
特開平08−103824号公報
In order to obtain a steel sheet with a low decrease in yield strength due to temperature rise, it is a component containing Nb and Mo, the heating temperature during hot rolling is set to 1100 ° C. or more, and a solid solution amount of Nb and Mo is sufficiently secured. Precipitation strengthening in the heat history of the shape heating is made possible, and the lower limit temperature of rolling is set to 850 ° C. to suppress precipitation during rolling.
Japanese Patent Laid-Open No. 08-103824

特許文献1に記載の発明を用いることにより、線状加熱における角変形を大きくすることが可能となった。しかし、加熱時の表面温度の制御だけでは角変形量が一定せず、場合によっては十分な変形量が得られないことがあり、安定的に作業時問を短縮させることが困難であった。   By using the invention described in Patent Document 1, it becomes possible to increase angular deformation in linear heating. However, the amount of angular deformation is not constant only by controlling the surface temperature during heating, and in some cases, a sufficient amount of deformation cannot be obtained, and it has been difficult to stably shorten the work time.

そこで、本発明は、大きな角変形量が得られると同時に、目標とする角変形量を安定して得ることができる鋼板の線状加熱方法を提供することを目的とする。   Then, an object of this invention is to provide the linear heating method of the steel plate which can obtain the target amount of angular deformation stably while obtaining a large amount of angular deformation.

特許文献1に記載の線状加熱方法に関する発明においては、室温から600℃までの温度範囲で温度上昇に伴う降伏強度の低下が少ない鋼板を使用し、加熱及び冷却後の鋼板表面温度を所定の範囲に制御することによって曲げ変形量を高めていた。しかし、線状加熱による曲げ変形は、鋼板板厚方向の温度分布と鋼板の高温強度特性によって複雑に変化することが分かった。   In the invention relating to the linear heating method described in Patent Document 1, a steel plate having a small decrease in yield strength accompanying temperature rise in a temperature range from room temperature to 600 ° C. is used, and the steel plate surface temperature after heating and cooling is set to a predetermined value. The amount of bending deformation was increased by controlling the range. However, it has been found that the bending deformation due to linear heating changes in a complex manner depending on the temperature distribution in the thickness direction of the steel sheet and the high temperature strength characteristics of the steel sheet.

そのため、本発明者らは種々の実験、解析を行い、鋼板の強度特性に応じた最適な加熱条件を適用することにより、大きな角変形量が安定的に得られることを見出した。   Therefore, the present inventors have conducted various experiments and analyzes, and found that a large amount of angular deformation can be stably obtained by applying optimum heating conditions according to the strength characteristics of the steel sheet.

本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)線状加熱時の鋼板表面最高到達温度をTs(℃)、裏面最高到達温度をTr(℃)、鋼板の常温から600℃までの降伏強度の温度積分値をIYS(K・N/mm)、板厚をt(mm)としたとき、下式を同時に満たす条件で加熱することを特徴とする、鋼板の線状加熱方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) Ts (° C.) is the maximum temperature reached on the steel sheet surface during linear heating, Tr (° C.) is the maximum temperature on the back surface, and IYS (K · N / mm 2 ), and the thickness of the plate is t (mm), and heating is performed under the conditions that satisfy the following formulas at the same time.

700≦Ts≦1000
27×(IYS/1000)0.7×t−0.32−30≦Tr≦27×(IYS/1000)0.7×t−0.32+30
(2)常温と600℃における降伏強度の差をΔYS(N/mm)としたとき、ΔYS≧230、かつ、IYS≦200000を満たす鋼板を用いることを特徴とする、前記(1)に記載の鋼板の線状加熱方法。
700 ≦ Ts ≦ 1000
27 × (IYS / 1000) 0.7 × t −0.32 −30 ≦ Tr ≦ 27 × (IYS / 1000) 0.7 × t −0.32 +30
(2) When the difference in yield strength between normal temperature and 600 ° C. is ΔYS (N / mm 2 ), a steel plate satisfying ΔYS ≧ 230 and IYS ≦ 200000 is used. Method for linear heating of steel plates.

本発明の線状加熱方法においては、使用する鋼板の強度特性に応じて、加熱時の表裏面温度を適切な範囲に制御することにより、大きな角変形量を安定して得ることが可能となる。   In the linear heating method of the present invention, a large amount of angular deformation can be stably obtained by controlling the front and back surface temperatures during heating to an appropriate range according to the strength characteristics of the steel sheet used. .

本発明において、鋼板の表面側とは、線状加熱で加熱を行う側をいう。また、鋼板の裏面側とは、前記表面側と反対の側をいう。図1に示すように、鋼板1の表面側からバーナー2等で加熱を行い、加熱位置を矢印で示す加熱方向4の方向に順次移動して線状に加熱する。バーナー2による加熱の後に加熱部位に冷却水ノズル3を用いて冷却水を供給することによって冷却を行う。バーナー2と冷却水ノズル3との間隔を一定に保持するように冷却水ノズル3も順次移動する。その結果、図2に示すように鋼板が板厚方向に角変形する。図2に示すδが角変形量である。ここで、角変形量δは、鋼板1の加熱直交水平方向の寸法をw、上下方向の変形量dとしたときに、δ=(1/2)×sin-1(2d/w)なる計算式を用いて求めることができる。 In the present invention, the surface side of the steel sheet refers to the side that is heated by linear heating. Moreover, the back surface side of a steel plate means the opposite side to the said surface side. As shown in FIG. 1, heating is performed from the surface side of the steel plate 1 with a burner 2 or the like, and the heating position is sequentially moved in the direction of the heating direction 4 indicated by an arrow to be heated linearly. After the heating by the burner 2, cooling is performed by supplying cooling water to the heating part using the cooling water nozzle 3. The cooling water nozzle 3 also moves sequentially so as to keep a constant distance between the burner 2 and the cooling water nozzle 3. As a result, as shown in FIG. 2, the steel plate is angularly deformed in the plate thickness direction. Δ shown in FIG. 2 is an angular deformation amount. Here, the angular deformation amount δ is calculated as follows: δ = (1/2) × sin −1 (2d / w) where w is the dimension in the horizontal direction of heating of the steel sheet 1 and w is the deformation amount d in the vertical direction. It can be obtained using an equation.

線状加熱方法において鋼板を加熱したときに、最高温度に到達した鋼板表面側において圧縮塑性歪が生じ、その後の冷却過程で表面側が収縮するときに生じる引張応力によって、角変形を起こすことができる。   When a steel sheet is heated in the linear heating method, compressive plastic strain occurs on the steel sheet surface side that has reached the maximum temperature, and angular deformation can occur due to tensile stress generated when the surface side contracts during the subsequent cooling process. .

角変形量を大きくするためには、加熱時の圧縮塑性歪をできるだけ大きくする必要がある。通常、線状加熱時の鋼板表面における降伏強度は、どのような鋼板を用いても常温の1/3程度以下に低下してしまう。そのため、圧縮塑性歪を大きくするには、鋼板の裏面温度の制御によって、裏面側の降伏強度を適切な範囲に制御する必要がある。   In order to increase the amount of angular deformation, it is necessary to increase the compressive plastic strain during heating as much as possible. Usually, the yield strength on the surface of a steel sheet during linear heating is reduced to about 1/3 or less of the normal temperature regardless of the steel sheet used. Therefore, in order to increase the compressive plastic strain, it is necessary to control the yield strength on the back surface side within an appropriate range by controlling the back surface temperature of the steel sheet.

加熱時の最適な鋼板裏面温度は、使用する鋼板の常温から高温までの強度に大きく依存し、一般に高強度鋼ほど高温にする必要がある。しかしながら、高温にし過ぎると逆に圧縮塑性歪は小さくなり、角変形量も小さくなってしまう。鋼板の強度特性を特徴付ける指標としては、特定の温度における降伏強度ではなく、常温から600℃までの降伏強度の温度積分値(IYS)が適している。このIYSが大きいほど、最適な裏面温度(Trc)は高くなる。また、板厚が厚くなるとTrcは低くなる。上記の傾向を踏まえ、重回帰分析により下式を導いた。   The optimum steel plate back surface temperature at the time of heating largely depends on the strength of the steel plate to be used from room temperature to high temperature, and generally requires higher temperature for higher strength steel. However, if the temperature is too high, the compressive plastic strain is reduced, and the amount of angular deformation is also reduced. As an index for characterizing the strength characteristics of the steel sheet, not the yield strength at a specific temperature, but the temperature integrated value (IYS) of the yield strength from room temperature to 600 ° C. is suitable. The larger the IYS, the higher the optimum back surface temperature (Trc). Further, as the plate thickness increases, Trc decreases. Based on the above trend, the following equation was derived by multiple regression analysis.

Trc=27×(IYS/1000)0.7×t−0.32
なお、常温とは、線状加熱前の鋼板の温度のことをいい冬期の極寒冷地から夏期の高温時である−10〜+80℃の範囲である。
Trc = 27 × (IYS / 1000) 0.7 × t −0.32
In addition, normal temperature means the temperature of the steel plate before linear heating, and is the range of −10 to + 80 ° C. from the extremely cold region in winter to the high temperature in summer.

実用上は、加熱時の裏面最高到達温度(Tr)をTrc±30℃の範囲で制御すれば、図3に示すように、大きな角変形量が得られる。表面温度に関しては、前記のように裏面温度を制御した上で、材質への悪影響が生じない範囲でできるだけ高温にすることが有効である。本発明では、加熱時の表面最高到達温度(Ts)は700〜1000℃の範囲に制限している。Tsが700℃未満であると、鋼板全体としては十分な剛性を有しているため、変形量が大きくならない。一方、1000℃超であると、その後の水冷によって表面側に過度の焼きが入り、延性、靭性が低下してしまう。   Practically, if the back surface maximum temperature (Tr) during heating is controlled within the range of Trc ± 30 ° C., a large amount of angular deformation can be obtained as shown in FIG. With respect to the surface temperature, it is effective to control the back surface temperature as described above and to make it as high as possible within a range that does not adversely affect the material. In the present invention, the maximum surface temperature (Ts) during heating is limited to a range of 700 to 1000 ° C. If Ts is less than 700 ° C., the steel sheet as a whole has sufficient rigidity so that the amount of deformation does not increase. On the other hand, when it exceeds 1000 ° C., excessive baking occurs on the surface side by subsequent water cooling, and ductility and toughness are deteriorated.

線状加熱後は、速やかに次の工程に移れるように通常は水冷を行うが、大きな角変形量を確保する上で必須ではないため、本発明においては限定しない。   After linear heating, water cooling is usually performed so that the next process can be quickly performed, but it is not essential in securing a large amount of angular deformation, and is not limited in the present invention.

本発明において使用される鋼板は、一般的な厚鋼板であるため、成分および製造方法を限定する必要はない。どのような鋼板でも、前記のように加熱温度を制御すれば、ある程度大きな角変形量を得ることはできる。しかし、できるだけ大きな角変形量を得ることが目的であれば、常温と600℃における降伏強度の差(ΔYS)が大きく、かつ、IYSが小さい鋼板を用いることが好ましい。その目安は、ΔYS≧230N/mm、IYS≦200000K・N/mmである。 Since the steel plate used in the present invention is a general thick steel plate, it is not necessary to limit the components and the production method. For any steel sheet, a certain amount of angular deformation can be obtained by controlling the heating temperature as described above. However, if the purpose is to obtain as much angular deformation as possible, it is preferable to use a steel sheet having a large difference in yield strength (ΔYS) between normal temperature and 600 ° C. and a small IYS. The standard is ΔYS ≧ 230 N / mm 2 and IYS ≦ 200000 K · N / mm 2 .

以上のように、鋼板の強度特性に応じて表裏面温度を制御した線状加熱を行うことにより、大きな角変形量を安定的に得ることが可能となる。
(実施例)
表1に示す成分を有する鋼片から鋼板を製造し、図1に示す要領で本発明の線状加熱方法を適用した。角変形量δの算出方法は図2に示すとおりである。表2に鋼板の板厚、母材の機械的性質、線状加熱条件、角変形量、加熱部の靭性を示す。No.1〜8が本発明例、No.9〜16が比較例である。線状加熱試験の要領を表3に示す。
As described above, a large amount of angular deformation can be stably obtained by performing linear heating in which the front and back surface temperatures are controlled according to the strength characteristics of the steel sheet.
(Example)
A steel plate was produced from a steel piece having the components shown in Table 1, and the linear heating method of the present invention was applied in the manner shown in FIG. The calculation method of the angular deformation amount δ is as shown in FIG. Table 2 shows the plate thickness of the steel plate, the mechanical properties of the base material, the linear heating conditions, the amount of angular deformation, and the toughness of the heated portion. No. 1-8 are examples of the present invention, No.1. 9 to 16 are comparative examples. Table 3 shows the outline of the linear heating test.

Figure 2007181849
Figure 2007181849

Figure 2007181849
Figure 2007181849

Figure 2007181849
Figure 2007181849

表2から明らかなように、本発明例No.1〜8は、線状加熱時の表裏面最高到達温度が本発明の所定の条件を満たしているために、線状加熱による角変形量は4×10−2radian以上と極めて大きくなっている。 As is apparent from Table 2, Example No. of the present invention. In Nos. 1 to 8, the maximum temperature at the front and back surfaces at the time of linear heating satisfies the predetermined condition of the present invention, so that the amount of angular deformation due to linear heating is as extremely high as 4 × 10 −2 radian or more. .

一方、比較例No.9〜16は、表面温度、裏面温度のいずれかが所定の範囲から逸脱しているために、角変形量が小さくなっている。   On the other hand, Comparative Example No. In Nos. 9 to 16, since either the surface temperature or the back surface temperature deviates from the predetermined range, the angular deformation amount is small.

比較例No.9は、加熱時の表面最高到達温度が本発明下限の700℃より低かったため、鋼板が十分な剛性を有し、圧縮塑性歪を十分に与えることができず、角変形量が小さくなった。比較例No.10、12は、裏面最高到達温度が高かったため角変形量が小さかった。比較例No.11は、裏面温度が低かったために角変形量が小さくなった。   Comparative Example No. In No. 9, since the maximum surface temperature at the time of heating was lower than the lower limit of 700 ° C. of the present invention, the steel sheet had sufficient rigidity, could not give sufficient compressive plastic strain, and the amount of angular deformation was small. Comparative Example No. Nos. 10 and 12 had small amounts of angular deformation because the highest temperature reached on the back surface was high. Comparative Example No. No. 11 has a small amount of angular deformation because the back surface temperature was low.

比較例No.13、15は表裏面温度がともに低すぎたため角変形量が小さくなった。比較例No.14は、表裏面温度がともに高かったために角変形量が小さく、加熱部の靭性も低下してしまった。比較例No.16は、表面温度が高かったため、角変形量は大きかったものの、加熱部の靭性が低下してしまった。   Comparative Example No. Since the front and back surface temperatures of both 13 and 15 were too low, the amount of angular deformation was small. Comparative Example No. In No. 14, both the front and back surface temperatures were high, so the amount of angular deformation was small, and the toughness of the heated part was also lowered. Comparative Example No. In No. 16, since the surface temperature was high, the amount of angular deformation was large, but the toughness of the heated portion was lowered.

本発明に係る線状加熱方法の要領を示す図である。It is a figure which shows the point of the linear heating method which concerns on this invention. 角変形量δの算出方法を示す図である。It is a figure which shows the calculation method of angular deformation amount (delta). 裏面最高到達温度Trと角変形量δの関係を示す図である。It is a figure which shows the relationship between the back surface highest achieved temperature Tr and the angular deformation amount (delta).

符号の説明Explanation of symbols

1 鋼板
2 バーナー
3 冷却水ノズル
4 加熱方向
1 Steel plate 2 Burner 3 Cooling water nozzle 4 Heating direction

Claims (2)

線状加熱時の鋼板表面最高到達温度をTs(℃)、裏面最高到達温度をTr(℃)、鋼板の常温から600℃までの降伏強度の温度積分値をIYS(K・N/mm)、板厚をt(mm)としたとき、下式を同時に満たす条件で加熱することを特徴とする、鋼板の線状加熱方法。
700≦Ts≦1000
27×(IYS/1000)0.7×t−0.32−30≦Tr≦27×(IYS/1000)0.7×t−0.32+30
The maximum temperature reached on the steel sheet surface during linear heating is Ts (° C), the maximum temperature reached on the back surface is Tr (° C), and the temperature integrated value of the yield strength from room temperature to 600 ° C of the steel sheet is IYS (K · N / mm 2 ). A method for linear heating of a steel sheet, characterized in that heating is performed under conditions that simultaneously satisfy the following formula when the plate thickness is t (mm).
700 ≦ Ts ≦ 1000
27 × (IYS / 1000) 0.7 × t −0.32 −30 ≦ Tr ≦ 27 × (IYS / 1000) 0.7 × t −0.32 +30
常温と600℃における降伏強度の差をΔYS(N/mm)としたとき、ΔYS≧230、かつ、IYS≦200000を満たす鋼板を用いることを特徴とする、請求項1に記載の鋼板の線状加熱方法。 The steel sheet wire according to claim 1, wherein a steel sheet satisfying ΔYS ≧ 230 and IYS ≦ 200000 is used when a difference in yield strength between normal temperature and 600 ° C. is ΔYS (N / mm 2 ). Heating method.
JP2006000782A 2006-01-05 2006-01-05 Method for linearly heating steel sheet Withdrawn JP2007181849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000782A JP2007181849A (en) 2006-01-05 2006-01-05 Method for linearly heating steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000782A JP2007181849A (en) 2006-01-05 2006-01-05 Method for linearly heating steel sheet

Publications (1)

Publication Number Publication Date
JP2007181849A true JP2007181849A (en) 2007-07-19

Family

ID=38338341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000782A Withdrawn JP2007181849A (en) 2006-01-05 2006-01-05 Method for linearly heating steel sheet

Country Status (1)

Country Link
JP (1) JP2007181849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050045A (en) * 2013-09-02 2015-03-16 富士電子工業株式会社 Deformation method for steel plate
JP7364548B2 (en) 2020-10-28 2023-10-18 株式会社神戸製鋼所 Aluminum material processing method and processed products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050045A (en) * 2013-09-02 2015-03-16 富士電子工業株式会社 Deformation method for steel plate
JP7364548B2 (en) 2020-10-28 2023-10-18 株式会社神戸製鋼所 Aluminum material processing method and processed products

Similar Documents

Publication Publication Date Title
CN105307990A (en) Method for molding sheet glass, and mold
CN104169018A (en) Manufacturing method for hot press-molded steel member, and hot press-molded steel member
CN103934642B (en) A kind of steel cold-extrusion technology
CN104971959B (en) A kind of high intensity opening-closed sectional material hot roll bending forming technology
JP4041774B2 (en) Method for producing β-type titanium alloy material
CN102912100A (en) Micro deformation processing technique of OCr17Ni4Cu4Nb material thin-wall gear parts
KR100807393B1 (en) Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby
JP2007100114A (en) Method for producing high-tensile cold-rolled steel sheet
JP5699193B2 (en) Stainless steel foil warm working method and warm working mold
JP2007181849A (en) Method for linearly heating steel sheet
JP2008248342A (en) Respective manufacturing methods of aluminum-alloy sheet material, sheet and formed member
CN103993227A (en) Cold rolled steel plate and preparation method thereof
JP4846242B2 (en) Bending method of thick steel plate with excellent heat bending characteristics
JP2013013907A (en) Warm press forming method for metal plate
KR20160045177A (en) Method for warm forming of super high tensile strength steel sheet
JP2010253543A (en) Forming method and forming apparatus
KR101449108B1 (en) Hot-rolled steel sheet for steel pipe having excellent surface integrity and method for manufacturing the same
KR20110040021A (en) Local heat treatment system of the automatic borrowing body parts which uses diode laser and the heat treatment method
JP2010150580A (en) Steel sheet and method of manufacturing the same
CN101624695B (en) Heat treatment method of target blank
EP2620250A1 (en) Heat treatment method for branch pipe welded portion
JP6309259B2 (en) Phosphorus-deoxidized copper plate excellent in brazing and press workability and method for producing the same
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
CN103938136A (en) Titanium alloy quasi-recrystallization annealing process
JP4655684B2 (en) Heat treatment method for steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407