JP2007181798A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2007181798A
JP2007181798A JP2006002709A JP2006002709A JP2007181798A JP 2007181798 A JP2007181798 A JP 2007181798A JP 2006002709 A JP2006002709 A JP 2006002709A JP 2006002709 A JP2006002709 A JP 2006002709A JP 2007181798 A JP2007181798 A JP 2007181798A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
groove
catalyst layer
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006002709A
Other languages
Japanese (ja)
Inventor
Akemi Sato
あけみ 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006002709A priority Critical patent/JP2007181798A/en
Publication of JP2007181798A publication Critical patent/JP2007181798A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cleaning exhaust gas, which has such a new constitution that the cleaning efficiency can be increased even when the composition and amount of a catalyst component to be deposited on a carrier base material are the same as before. <P>SOLUTION: The catalyst for cleaning exhaust gas is composed of the carrier base material A having a plurality of cells 2 each of which is partitioned by partition walls 10 and penetrated to the predetermined direction and catalyst layers 3 deposited on wall surfaces 14 of partition walls 10. Each of catalyst layers 3 is deposited while leaving a gap 13 penetrated to the predetermined direction between the corresponding catalyst layer and the corresponding wall surface 14. Since the gap 13 penetrated to the predetermined direction is left between the corresponding wall surface 14 and the corresponding catalyst layer 3, the exhaust gas flowing through the catalyst for cleaning exhaust gas is made to flow into not only the conventional flow passage 31 surrounded by the catalyst layers 3 but also the gap 13. As a result, the surface area of each of catalyst layers 3 to be in contact with the exhaust gas can be increased and the cleaning efficiency of the catalyst for cleaning exhaust gas can also be increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車等の内燃機関から排出される排ガスを浄化する排ガス浄化用触媒に関するものである。   The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

内燃機関には、排出される排ガスを浄化するための排ガス浄化用触媒が搭載されている。たとえば、自動車などの排ガス中のNOx、CO、HCを浄化する触媒として、三元触媒が広く用いられている。三元触媒は、多孔質酸化物担体基材に貴金属を担持してなるものであり、HCおよびCOを酸化して浄化するとともに、NOxを還元して浄化する。そして、浄化効率を高めるために、貴金属の種類や担持量、担持位置、また、NOx吸蔵材などと組み合わせて用いるなど、様々な形態の排ガス浄化用触媒が提案されている。   An internal combustion engine is equipped with an exhaust gas purifying catalyst for purifying exhaust gas discharged. For example, a three-way catalyst is widely used as a catalyst for purifying NOx, CO, and HC in exhaust gas from automobiles and the like. The three-way catalyst is formed by supporting a noble metal on a porous oxide carrier base, and oxidizes and purifies HC and CO and reduces and purifies NOx. In order to increase the purification efficiency, various types of exhaust gas purification catalysts have been proposed, such as use in combination with the type, loading amount, loading position, and NOx occlusion material of noble metals.

また、特許文献1では、ハニカム担体に施されるウォッシュコートの付着量を増大させてウォッシュコート層を厚く形成することにより、浄化性能を向上させている。具体的には、貫通孔の内壁に複数の凸部(7)を有するハニカム担体(1)に、スラリーを用いてウォッシュコート2を施す。凸部(7)により形成された角部(3)には、スラリーの表面張力によりウォッシュコート2が厚く形成される(特許文献1の図1参照)。
特開平11−333305号公報
Moreover, in patent document 1, the purification performance is improved by increasing the adhesion amount of the washcoat applied to the honeycomb carrier to form a thick washcoat layer. Specifically, the washcoat 2 is applied to the honeycomb carrier (1) having a plurality of convex portions (7) on the inner wall of the through hole using a slurry. A thick washcoat 2 is formed on the corner (3) formed by the convex portion (7) by the surface tension of the slurry (see FIG. 1 of Patent Document 1).
JP-A-11-333305

排ガス浄化用触媒では、排ガスは、触媒成分を含むウォッシュコート層の表層部で多く浄化される。そのため、単にウォッシュコート層を厚く形成しても、コート層の深部にまで排ガスが拡散されず、コート層全域を有効に活用できないという問題がある。そこで、本発明者は、従来の構成では排ガスと接触しなかった部分を活用することで、排ガスと触媒成分との接触領域を増加させて、浄化性能を向上させることに想到した。   In the exhaust gas purifying catalyst, the exhaust gas is largely purified at the surface layer portion of the washcoat layer containing the catalyst component. Therefore, there is a problem that even if the wash coat layer is simply formed thick, the exhaust gas is not diffused to the deep part of the coat layer, and the entire coat layer cannot be effectively used. Accordingly, the present inventor has come up with the idea of improving the purification performance by increasing the contact area between the exhaust gas and the catalyst component by utilizing the portion that did not contact the exhaust gas in the conventional configuration.

本発明は、上記問題点に鑑み、担体基材に担持された触媒成分の組成や担持量が従来と同様であっても浄化効率を高めることができる新規な構成をもつ排ガス浄化用触媒を提供することを目的とする。   In view of the above problems, the present invention provides an exhaust gas purifying catalyst having a novel configuration capable of improving purification efficiency even when the composition and amount of the catalyst component supported on the carrier base material are the same as conventional ones. The purpose is to do.

本発明の排ガス浄化用触媒は、隔壁で区画され所定の方向に貫通する複数のセルを有する担体基材と、該隔壁の壁面に担持された触媒層と、からなり、前記触媒層は、前記壁面との間に前記所定の方向に貫通する空隙をもって担持されていることを特徴とする。   The exhaust gas purifying catalyst of the present invention comprises a carrier base material having a plurality of cells partitioned by partition walls and penetrating in a predetermined direction, and a catalyst layer supported on the wall surface of the partition wall, It is supported with a gap penetrating in a predetermined direction between the wall surface and the wall surface.

前記壁面は、前記隔壁に前記セルの内側に開口するとともに該セルの貫通する方向に延びる複数の溝が形成されてなる溝面を有し、前記空隙は、前記触媒層と該溝面との間に位置するのが好ましい。たとえば、前記溝は、隣接する前記壁面が交差してなる前記セルの角部に隣接する該壁面を跨ぐように形成されるとよい。   The wall surface has a groove surface in which a plurality of grooves that open to the inside of the cell and extend in a direction penetrating the cell are formed in the partition wall, and the void is formed between the catalyst layer and the groove surface. It is preferably located in between. For example, the groove may be formed so as to straddle the wall surface adjacent to the corner portion of the cell formed by intersecting the adjacent wall surfaces.

本発明の排ガス浄化用触媒では、担体基材の壁面と触媒層との間に所定の方向に貫通する空隙をもつため、本発明の排ガス浄化用触媒に流れ込む排ガスは、触媒層に取り囲まれた従来の流路だけでなく、空隙にも流れ込む。その結果、排ガスと接触する触媒層の表面積が増加し、浄化効率が向上する。   In the exhaust gas purifying catalyst of the present invention, the exhaust gas flowing into the exhaust gas purifying catalyst of the present invention is surrounded by the catalyst layer because there is a gap penetrating in a predetermined direction between the wall surface of the carrier substrate and the catalyst layer. It flows not only into the conventional flow path but also into the air gap. As a result, the surface area of the catalyst layer in contact with the exhaust gas is increased, and the purification efficiency is improved.

また、担体基材の壁面に溝面を有し、触媒層と溝面との間に空隙が位置するのが好ましい。溝が形成される位置に特に限定はないが、たとえば、セルの角部に形成された溝であれば、スラリーの表面張力により触媒層が厚く形成されるセルの角部において、触媒層の表裏面が排ガスと効率よく接触するため、排ガスが触媒層の内部にまで効率よく拡散されるため、浄化効率が向上する。   In addition, it is preferable that a groove surface is provided on the wall surface of the carrier substrate, and a gap is located between the catalyst layer and the groove surface. The position where the groove is formed is not particularly limited. For example, if the groove is formed at the corner of the cell, the surface of the catalyst layer is formed at the corner of the cell where the catalyst layer is formed thick due to the surface tension of the slurry. Since the back surface is in efficient contact with the exhaust gas, the exhaust gas is efficiently diffused into the catalyst layer, so that the purification efficiency is improved.

本発明の排ガス浄化用触媒をより詳細に説述するために、以下に、本発明を実施するための最良の形態について説明する。   In order to describe the exhaust gas purifying catalyst of the present invention in more detail, the best mode for carrying out the present invention will be described below.

本発明の排ガス浄化用触媒は、主として、担体基材と、触媒層と、を有する。   The exhaust gas purifying catalyst of the present invention mainly has a carrier substrate and a catalyst layer.

担体基材は、隔壁で区画され所定の方向に貫通する複数のセルを有する、いわゆるハニカム状の構造体である。「所定の方向」とは、担体基材が円柱状や角柱状の柱状体であれば、担体基材の軸方向に相当し、通常、排ガスが流れる流路方向となる。図5は、一般的な排ガス浄化用触媒を模式的に示す図であって、担体基材Aにおける「所定の方向」を矢印Xで示すことができる。   The carrier base material is a so-called honeycomb structure having a plurality of cells partitioned by partition walls and penetrating in a predetermined direction. The “predetermined direction” corresponds to the axial direction of the carrier base material when the carrier base material is a columnar or prismatic columnar body, and is usually a flow path direction in which exhaust gas flows. FIG. 5 is a diagram schematically showing a general exhaust gas purifying catalyst, and a “predetermined direction” in the carrier substrate A can be indicated by an arrow X.

各セルの大きさや数に特に限定はなく、通常、排ガス浄化用触媒に用いられている仕様であれば、要求される性能に応じて適宜選択すればよい。たとえば、自動車用の排ガス浄化用触媒として用いるのであれば、セル密度が200〜900cpsiの範囲にあるのが好ましく、隔壁の厚さが1〜6ミルであるのが好ましい。隔壁の厚さが上記範囲にあれば、強度と熱容量のバランスのとれた担体基材となる。   There is no particular limitation on the size and number of each cell, and the specification can be appropriately selected according to the required performance as long as the specification is normally used for an exhaust gas purifying catalyst. For example, when used as an exhaust gas purification catalyst for automobiles, the cell density is preferably in the range of 200 to 900 cpsi, and the partition wall thickness is preferably 1 to 6 mil. If the thickness of the partition wall is in the above range, a carrier substrate having a good balance between strength and heat capacity is obtained.

隔壁の材質は、セラミックス製または金属製が好ましい。担体基材がセラミックス製のセラミックス担体基材であれば、酸化物または非酸化物の各種セラミックスを用いることができる。具体的には、コージェライト、ムライト、アルミナ、スピネル、炭化珪素、窒化珪素、窒化アルミニウム、ジルコニア、リチウムアルミニウムシリケート、チタン酸アルミニウム、などが使用可能である。セラミックスを用いた担体基材は、軽量かつ高強度であり、耐熱性に優れる。また、担体基材が金属製のメタル担体基材であれば、耐熱性や耐食性に優れた、ステンレス鋼やAl−Cr−Fe合金などの各種合金が使用可能である。金属製の担体基材は、熱伝導が良いため、メタル担体基材を用いた排ガス浄化用触媒は、低温特性に優れる。   The material of the partition is preferably made of ceramics or metal. If the carrier substrate is a ceramic carrier substrate made of ceramics, various oxide or non-oxide ceramics can be used. Specifically, cordierite, mullite, alumina, spinel, silicon carbide, silicon nitride, aluminum nitride, zirconia, lithium aluminum silicate, aluminum titanate, and the like can be used. A carrier substrate using ceramics is lightweight and high in strength, and has excellent heat resistance. If the carrier substrate is a metal carrier substrate made of metal, various alloys such as stainless steel and Al—Cr—Fe alloy having excellent heat resistance and corrosion resistance can be used. Since the metal carrier base material has good heat conduction, the exhaust gas purifying catalyst using the metal carrier base material is excellent in low temperature characteristics.

セルの形状は、その断面(所定の方向に貫通するセルを所定の方向に対して垂直方向に切断したときの断面)の形状が三角形や四角形、六角形などの多角形であるものの他、平板と波板との積層体からなる担体基材であってもよい。   As for the shape of the cell, the shape of the cross section (a cross section obtained by cutting a cell penetrating in a predetermined direction in a direction perpendicular to the predetermined direction) is a polygon such as a triangle, a quadrangle, a hexagon, etc. It may be a carrier base material made of a laminate of corrugated plate and corrugated plate.

触媒層は、隔壁の壁面に担持される。この際、触媒層は、壁面の少なくとも一部と接触して担持されていればよい。触媒層の種類や担持量に特に限定はなく、目的に応じて適宜選択すればよい。触媒層の担持方法にも特に限定はなく、ウォッシュコート、ディップコート等、により触媒成分を含むスラリーをコート後、所定の温度で焼成を行う通常の各種担持方法を用いることができる。   The catalyst layer is supported on the wall surface of the partition wall. At this time, the catalyst layer may be supported in contact with at least a part of the wall surface. There are no particular limitations on the type and loading of the catalyst layer, and it may be appropriately selected according to the purpose. There is no particular limitation on the method for supporting the catalyst layer, and various conventional supporting methods in which the slurry containing the catalyst component is coated by wash coating, dip coating or the like and then fired at a predetermined temperature can be used.

本発明の排ガス浄化用触媒では、触媒層は、壁面との間にセルの貫通する方向(所定の方向)に貫通する空隙をもって担持されている。空隙は、所定の方向に貫通するため、排ガスの流路として活用できる。そのため、空隙は、セルの貫通する方向と平行に形成されるのが好ましい。そして、空隙は、排ガスの流路となって空隙で排ガスの浄化が行われるため、1つでも空隙が存在すれば浄化効率の向上効果が望めるが、複数の空隙が存在するのが好ましい。さらには、空隙を流れる排ガスと触媒層とが接触する面積が大きくなるように空隙を形成するとよい。ただし、空隙が多すぎたり、空隙を流れる排ガスと触媒層とが接触する面積が大きすぎたりすると、触媒層が担体基材に良好に保持されないことがある。そのため、1つのセルにおいて、「触媒層と接触する壁面の面積」:「触媒層と接触しない壁面の面積(担体基材の隔壁に後述の溝が形成されている場合には、溝の開口面積)」=9:1〜5:5であるのが好ましい。   In the exhaust gas purifying catalyst of the present invention, the catalyst layer is supported with a space penetrating in the cell penetrating direction (predetermined direction) between the catalyst layer and the wall surface. Since the gap penetrates in a predetermined direction, it can be used as a flow path for the exhaust gas. Therefore, it is preferable that the gap is formed in parallel with the direction through which the cell passes. And since a space | gap becomes a flow path of exhaust gas and purification | cleaning of exhaust gas is performed in a space | gap, if even one space | gap exists, the improvement effect of purification efficiency can be expected, but it is preferable that a several space | gap exists. Furthermore, it is good to form a space | gap so that the area which the waste gas which flows through a space | gap and a catalyst layer may contact becomes large. However, if there are too many voids, or if the area where the exhaust gas flowing through the voids contacts the catalyst layer is too large, the catalyst layer may not be satisfactorily held on the carrier substrate. Therefore, in one cell, “the area of the wall surface that is in contact with the catalyst layer”: “the area of the wall surface that is not in contact with the catalyst layer (when a groove described later is formed in the partition wall of the carrier substrate, the opening area of the groove) ) "= 9: 1 to 5: 5.

担体基材の壁面との間に空隙をもって触媒層を担持する方法としては、たとえば、所定の温度で焼失する焼失材を用いることにより空隙を容易に形成できる。具体的には、はじめに、担体基材の壁面のうち空隙を形成したい部分に、後の焼成工程での焼成温度以下で焼失する焼失材を配置する。焼失材を配置したままの担体基材に、スラリーをコートして焼成することで、焼失材は焼失するため、焼失材と同じ形状の空隙をもつ排ガス浄化用触媒を作製できる。焼失材としては、焼成温度以下で焼失する材料からなれば特に限定はない。したがって、樹脂のほか紙や木材であってもよく、その材質は問わない。   As a method of supporting the catalyst layer with a gap between the wall surface of the carrier base material, for example, a void can be easily formed by using a burned-out material that burns away at a predetermined temperature. Specifically, first, a burned-out material that is burned down at a firing temperature or lower in a subsequent firing step is disposed in a portion of the wall surface of the carrier base material where a void is to be formed. By coating the slurry on the carrier base material on which the burned-out material is disposed and firing, the burned-out material is burned off, so that an exhaust gas purifying catalyst having the same shape as the burned-out material can be produced. The burnout material is not particularly limited as long as it is made of a material that burns at a firing temperature or lower. Therefore, in addition to resin, paper or wood may be used, and the material thereof is not limited.

また、担体基材のセルの内側に開口する溝を隔壁に形成することにより、溝の内部空間を空隙とすることができる。すなわち、担体基材において、セルを区画する隔壁には、溝が形成されているのが好ましい。具体的には、隔壁に溝を形成することにより、セルの壁面としての溝面が形成され、この溝面との間に空隙をもって触媒層を担持させれば、溝の内部空間を空隙として利用できる。そして、セルの貫通する方向に延びる溝とすることで、空隙(溝の内部空間)を排ガスの流路として活用できる。   Moreover, the internal space of a groove | channel can be made into a space | gap by forming in the partition the groove | channel opened inside the cell of a support base material. That is, in the carrier substrate, it is preferable that grooves are formed in the partition walls that partition the cells. Specifically, by forming a groove on the partition wall, a groove surface is formed as a cell wall surface. If a catalyst layer is supported with a space between the groove surface, the internal space of the groove is used as a space. it can. And by setting it as the groove | channel extended in the direction which the cell penetrates, a space | gap (internal space of a groove | channel) can be utilized as a flow path of waste gas.

溝の形成位置に特に限定はなく、たとえば、複数本の溝をセルの平坦な面に形成(一例を図1に示す)する他、セルの断面形状が多角形であれば、隣接する壁面が交差してなるセルの角部に、隣接する壁面を跨ぐように形成(一例を図2に示す)してもよい。また、溝の断面形状にも特に限定はなく、断面コ字形状(図1参照)、半円形状、また、溝底部の断面をV字形状(図2ではL字形状)やU字形状とするのがよい。   The groove formation position is not particularly limited. For example, in addition to forming a plurality of grooves on the flat surface of the cell (an example is shown in FIG. 1), if the cross-sectional shape of the cell is a polygon, the adjacent wall surface You may form in a corner | angular part of the cell formed by crossing so that an adjacent wall surface may be straddled (an example is shown in FIG. 2). Also, the cross-sectional shape of the groove is not particularly limited, and the cross-sectional shape is U-shaped (see FIG. 1), semicircular, and the cross-section of the groove bottom is V-shaped (L-shaped in FIG. 2) or U-shaped. It is good to do.

ただし、壁面に溝を形成することで、溝の形成位置や寸法によっては、担体基材の強度が低下することがある。そのため、セルが貫通する所定の方向に対して垂直方向に切断したときの断面において、「担体基材の隔壁の断面積」:「担体基材に形成された溝の断面積」=9:1〜5:5の範囲とすれば、担体基材の強度が大きく低下することがない。   However, by forming the groove on the wall surface, the strength of the carrier substrate may be lowered depending on the position and size of the groove. Therefore, in a cross section when cut in a direction perpendicular to a predetermined direction through which the cell passes, “cross-sectional area of partition walls of carrier substrate”: “cross-sectional area of grooves formed in carrier substrate” = 9: 1 If it is in the range of ˜5: 5, the strength of the carrier base material will not be greatly reduced.

隔壁に溝をもつ担体基材を形成する際には、担体基材がセラミックス担体基材であれば、所望の担体基材の断面形状に応じた金型を用いた押出成形など、従来の方法により製造可能である。すなわち、金型の形状を変更するのみで、隔壁に所望の溝を形成することができる。   When forming a carrier substrate having grooves in the partition walls, if the carrier substrate is a ceramic carrier substrate, conventional methods such as extrusion using a mold corresponding to the cross-sectional shape of the desired carrier substrate Can be manufactured. That is, a desired groove can be formed in the partition only by changing the shape of the mold.

担体基材の隔壁に溝がある場合に、担体基材の溝面との間に空隙をもって触媒層を担持する方法としては、前述の焼失材を用いることにより溝内に空隙を容易に形成できる。焼失材は、溝内に埋めればよく、焼成により焼失材が焼失した後には、触媒層と溝面との間(溝の内部空間)に空隙が形成される。   When there is a groove in the partition wall of the carrier base material, the method of supporting the catalyst layer with a gap between the groove surface of the carrier base material can be easily formed in the groove by using the above-mentioned burned-out material. . The burned-out material may be buried in the groove, and after the burned-out material is burned out by firing, a void is formed between the catalyst layer and the groove surface (inner space of the groove).

触媒層は、排ガスに含まれるNOx、CO、HC、H2 Sなどの各エミッション成分を浄化できればよい。したがって、アルミナ、セリア、ジルコニア、セリア−ジルコニア固溶体などの多孔質酸化物にPt(白金)、Rh(ロジウム)、Pd(パラジウム)などの貴金属を担持した三元触媒や、アルカリ金属やアルカリ土類金属を含む複合酸化物を用いたNOx吸蔵触媒など、通常、排ガスを浄化する触媒として用いられている触媒成分を含む触媒層であればよい。 The catalyst layer only needs to be able to purify each emission component such as NOx, CO, HC, H 2 S contained in the exhaust gas. Therefore, a three-way catalyst in which a noble metal such as Pt (platinum), Rh (rhodium) or Pd (palladium) is supported on a porous oxide such as alumina, ceria, zirconia, or ceria-zirconia solid solution, or an alkali metal or alkaline earth A catalyst layer containing a catalyst component usually used as a catalyst for purifying exhaust gas, such as a NOx storage catalyst using a complex oxide containing a metal, may be used.

なお、本発明の排ガス浄化用触媒は、上記の実施の形態に限定されるものではない。たとえば、本発明の排ガス浄化用触媒の効果を損なわない程度であれば、他の機能を追加するために必要に応じて別の物質を添加してもよい。   The exhaust gas purifying catalyst of the present invention is not limited to the above embodiment. For example, as long as the effect of the exhaust gas purifying catalyst of the present invention is not impaired, another substance may be added as necessary to add another function.

以下、本発明の排ガス浄化用触媒の実施例を、図1〜図5を用いて比較例とともに具体的に説明する。   Examples of the exhaust gas purifying catalyst of the present invention will be specifically described below together with comparative examples with reference to FIGS.

[実施例1]
所定の形状を有する押出成形用金型を用い、成形体を得た。得られた成形体を乾燥後、所望の長さに切断し、図5に記載の担体基材と同様な全体形状をもつ担体基材を作製した。この担体基材を「担体基材A−1」とする。担体基材A−1は、直径103mm、長さ105mm、セル密度600cpsi、隔壁の厚さ3ミル(最大厚さ)であった。担体基材A−1を軸方向(図5の矢印X方向)に対して垂直に切断した断面の一部を図1に示す。担体基材A−1は、隔壁10で区画され軸方向に貫通する断面略正方形の複数のセル2を有する。セル2は、格子状に交差する隔壁10により区画されている。隔壁10は、各セル2の内側に開口する断面コ字形状の複数の溝13をもつ。すなわち、各セル2の内面を構成する壁面14には触媒層3が担持されるが、壁面14は、触媒層3を直接担持する担持面12の他、溝13の溝面11を含む。溝13は、各セル2を区画する隔壁10の4つの内面(壁面14)に形成され、1つの面に対して4つの溝13が形成されている。4つの溝13は、互いに平行で、担体基材A−1の一端面Eから他端面E’(図5参照)へと直線的に延びて貫通する。なお、「担体基材の隔壁10の断面積」:「担体基材に形成された溝13の断面積」=8:2であった。
[Example 1]
A molded body was obtained using an extrusion mold having a predetermined shape. The obtained molded body was dried and then cut into a desired length to prepare a carrier substrate having the same overall shape as the carrier substrate shown in FIG. This carrier base material is referred to as “carrier base material A-1”. The carrier substrate A-1 had a diameter of 103 mm, a length of 105 mm, a cell density of 600 cpsi, and a partition wall thickness of 3 mils (maximum thickness). FIG. 1 shows a part of a cross section obtained by cutting the carrier base material A-1 perpendicularly to the axial direction (the arrow X direction in FIG. 5). The carrier substrate A-1 includes a plurality of cells 2 having a substantially square cross section that is partitioned by the partition wall 10 and penetrates in the axial direction. The cell 2 is partitioned by partition walls 10 that intersect in a lattice pattern. The partition wall 10 has a plurality of grooves 13 having a U-shaped cross-section opening inside each cell 2. That is, the catalyst layer 3 is supported on the wall surface 14 constituting the inner surface of each cell 2, but the wall surface 14 includes the groove surface 11 of the groove 13 in addition to the support surface 12 that directly supports the catalyst layer 3. The grooves 13 are formed on the four inner surfaces (wall surfaces 14) of the partition wall 10 partitioning each cell 2, and four grooves 13 are formed on one surface. The four grooves 13 are parallel to each other and extend linearly from one end surface E of the carrier base material A-1 to the other end surface E ′ (see FIG. 5) and penetrate therethrough. Note that “cross-sectional area of the partition wall 10 of the carrier substrate”: “cross-sectional area of the groove 13 formed in the carrier substrate” = 8: 2.

次いで、担体基材A−1の溝13の内部空間に、壁面14の担持面12と面一となるように、樹脂を埋め込んだ。全ての溝13に樹脂を埋め込んだ状態で、担体基材A−1に触媒層3を以下の手順で形成し、実施例1の排ガス浄化用触媒を作製した。   Next, a resin was embedded in the internal space of the groove 13 of the carrier base material A-1 so as to be flush with the support surface 12 of the wall surface 14. With the resin embedded in all the grooves 13, the catalyst layer 3 was formed on the carrier base material A- 1 by the following procedure, and the exhaust gas-purifying catalyst of Example 1 was produced.

CeO2 −ZrO2 粉末と蒸留水を混合・攪拌し、所定量の硝酸白金溶液と硝酸ロジウム溶液とを投入した。得られた混合液を蒸留・乾固し、500℃で2時間焼成して、白金とロジウムを担持したCeO2 −ZrO2 粉末を得た。次に、得られたPt−Rh/CeO2 −ZrO2 粉末とアルミナゾルを所定量混合し、触媒スラリーSを調製した。 CeO 2 —ZrO 2 powder and distilled water were mixed and stirred, and a predetermined amount of platinum nitrate solution and rhodium nitrate solution were added. The obtained mixed liquid was distilled and dried, and calcined at 500 ° C. for 2 hours to obtain CeO 2 —ZrO 2 powder supporting platinum and rhodium. Next, a predetermined amount of the obtained Pt—Rh / CeO 2 —ZrO 2 powder and alumina sol were mixed to prepare a catalyst slurry S.

得られた触媒スラリーSを、樹脂を埋め込んだ担体基材A−1に流し込んで吸引してコート層を形成した。その後、550℃で2時間焼成した。550℃で焼成することにより、あらかじめ溝13に埋め込まれた樹脂は焼失し、壁面14には、樹脂が焼失した部分に空隙13をもって触媒層3が担持された。   The obtained catalyst slurry S was poured into a carrier substrate A-1 embedded with a resin and sucked to form a coat layer. Then, it baked at 550 degreeC for 2 hours. By baking at 550 ° C., the resin previously embedded in the groove 13 was burned out, and the catalyst layer 3 was supported on the wall surface 14 with the gap 13 in the portion where the resin was burned out.

なお、実施例1の排ガス浄化用触媒は、貴金属の担持量が、触媒1L当たり貴金属換算重量で、Ptが1.5g、Rhが0.4gであった。また、「触媒層の担持面12の面積」:「溝13の開口面積)」=8:2であった。   In the exhaust gas purifying catalyst of Example 1, the amount of noble metal supported was noble metal equivalent weight per liter of catalyst, Pt was 1.5 g, and Rh was 0.4 g. Further, “the area of the catalyst layer carrying surface 12”: “the opening area of the groove 13” = 8: 2.

[実施例2]
担体基材として担体基材A−2を用いた他は実施例1と同様にして、実施例2の排ガス浄化用触媒を作製した。以下に担体基材A−2の形状を説明する。
[Example 2]
Exhaust gas purification catalyst of Example 2 was produced in the same manner as in Example 1 except that the carrier substrate A-2 was used as the carrier substrate. The shape of the carrier substrate A-2 will be described below.

担体基材A−2は、直径103mm、長さ105mm、セル密度600cpsi、隔壁の厚さ3ミル(最大厚さ)であった。担体基材A−2を軸方向(図5の矢印X方向)に対して垂直に切断した断面の一部を図2に示す。担体基材A−2は、溝13’は、隣接する壁面14が交差してなるセルの角部に、隣接する壁面14を跨ぐように位置する他は、担体基材A−1と同様である。なお、「担体基材の隔壁10の断面積」:「担体基材に形成された溝13’の断面積」=9:1であった。   The carrier substrate A-2 had a diameter of 103 mm, a length of 105 mm, a cell density of 600 cpsi, and a partition wall thickness of 3 mils (maximum thickness). FIG. 2 shows a part of a cross section obtained by cutting the carrier substrate A-2 perpendicularly to the axial direction (the arrow X direction in FIG. 5). The carrier base material A-2 is the same as the carrier base material A-1, except that the groove 13 'is positioned so as to straddle the adjacent wall surface 14 at the corner of the cell formed by the intersection of the adjacent wall surfaces 14. is there. Note that “cross-sectional area of the partition wall 10 of the carrier substrate”: “cross-sectional area of the groove 13 ′ formed in the carrier substrate” = 9: 1.

担体基材A−2に対し、触媒スラリーSを用い、実施例1と同様の手順で触媒層3を形成すると、壁面14には、樹脂が焼失した部分に断面L字形状の空隙13’をもって触媒層3が担持された。なお、「触媒層の担持面12の面積」:「溝13’の開口面積」=9:1であった。   When the catalyst layer 3 is formed on the carrier base A-2 using the catalyst slurry S in the same procedure as in Example 1, the wall surface 14 has a gap 13 'having an L-shaped cross section at the portion where the resin has been burned out. Catalyst layer 3 was supported. In addition, “the area of the support surface 12 of the catalyst layer”: “the opening area of the groove 13 ′” = 9: 1

[比較例1]
担体基材として担体基材A−3を用いた他は実施例1と同様にして、比較例1の排ガス浄化用触媒を作製した。以下に担体基材A−3の形状を説明する。
[Comparative Example 1]
Exhaust gas purification catalyst of Comparative Example 1 was produced in the same manner as in Example 1 except that Carrier Base A-3 was used as the carrier base. The shape of the carrier substrate A-3 will be described below.

担体基材A−3は、断面が正方形の複数のセル2を有し、直径103mm、長さ105mm、セル密度600cpsi、隔壁の厚さ3ミルであった。担体基材A−3を軸方向(図5の矢印X方向)に対して垂直に切断した断面の一部を図3に示す。担体基材A−3は、溝をもたない他は、担体基材A−1と同様である。すなわち、触媒層3は、壁面14全体に担持され、空隙は形成されなかった。   The carrier substrate A-3 had a plurality of cells 2 having a square cross section, a diameter of 103 mm, a length of 105 mm, a cell density of 600 cpsi, and a partition wall thickness of 3 mils. FIG. 3 shows a part of a cross section obtained by cutting the carrier substrate A-3 perpendicularly to the axial direction (the arrow X direction in FIG. 5). The carrier substrate A-3 is the same as the carrier substrate A-1 except that it does not have a groove. That is, the catalyst layer 3 was supported on the entire wall surface 14 and no void was formed.

[触媒性能評価]
直列4気筒の2.5Lガソリンエンジンを搭載した車両の床下触媒として、実施例1、2および比較例1の各排ガス浄化用触媒をそれぞれ搭載し、理論空燃比で燃焼制御し、ガス空間速度を100000/Hrとし、200℃から450℃まで10℃/分の速度で昇温しながら、その間のHC成分、CO成分、NOx成分の浄化率を測定した。その結果から、各成分を50%浄化できる温度を算出した。算出された温度を「50%浄化温度」として、図4に示す。
[Catalyst performance evaluation]
The exhaust gas purifying catalysts of Examples 1 and 2 and Comparative Example 1 are mounted as underfloor catalysts of a vehicle equipped with an in-line 4-cylinder 2.5L gasoline engine, combustion controlled at the theoretical air-fuel ratio, and the gas space velocity is adjusted. The purification rate of the HC component, CO component, and NOx component was measured while raising the temperature from 200 ° C. to 450 ° C. at a rate of 10 ° C./min. From the result, the temperature at which each component could be purified by 50% was calculated. The calculated temperature is shown in FIG. 4 as “50% purification temperature”.

触媒層が、壁面12との間に空隙13をもって担持されている実施例1および実施例2の排ガス浄化用触媒では、触媒層3に取り囲まれた従来の流路(31)だけでなく、空隙13にも排ガスが流れ込む。そのため、排ガスと接触する触媒層3の表面積が増加し、また、空隙13でも排ガスの浄化が行われるため、比較例1の排ガス浄化用触媒に比べて浄化効率が向上した。   In the exhaust gas purifying catalysts of Example 1 and Example 2 in which the catalyst layer is supported with the gap 13 between the wall surface 12, not only the conventional flow path (31) surrounded by the catalyst layer 3 but also the gap Exhaust gas also flows into 13. Therefore, the surface area of the catalyst layer 3 in contact with the exhaust gas is increased, and the exhaust gas is purified even in the gap 13, so that the purification efficiency is improved as compared with the exhaust gas purification catalyst of Comparative Example 1.

実施例1の排ガス浄化用触媒は、実施例2の排ガス浄化用触媒に比べて触媒層と排ガスとの接触面積や空隙の総断面積が大きいため、特に優れた浄化性能を示した。   The exhaust gas purification catalyst of Example 1 exhibited particularly excellent purification performance because the contact area between the catalyst layer and the exhaust gas and the total cross-sectional area of the voids were larger than those of the exhaust gas purification catalyst of Example 2.

実施例1の排ガス浄化用触媒の径方向(セルの貫通する方向に対して垂直方向)断面図であって、複数のセルのうちの1つを模式的に示した拡大図である。It is radial direction (perpendicular | vertical direction with respect to the direction which the cell penetrates) of the exhaust gas purification catalyst of Example 1, Comprising: It is the enlarged view which showed typically one of several cells. 実施例2の排ガス浄化用触媒の径方向断面図であって、複数のセルのうちの1つを模式的に示した拡大図である。It is radial direction sectional drawing of the exhaust gas purification catalyst of Example 2, Comprising: It is the enlarged view which showed typically one of several cells. 比較例1の排ガス浄化用触媒の径方向断面図であって、複数のセルのうちの1つを模式的に示した拡大図である。It is radial direction sectional drawing of the exhaust gas purification catalyst of the comparative example 1, Comprising: It is the enlarged view which showed typically one of several cells. 実施例1,2および比較例1の排ガス浄化用触媒について、各排ガス成分の50%浄化温度を示すグラフである。6 is a graph showing 50% purification temperatures of exhaust gas components for exhaust gas purification catalysts of Examples 1 and 2 and Comparative Example 1. 一般的な排ガス浄化用触媒の一例を模式的に示す図であって、排ガス浄化用触媒の全体図である。It is a figure which shows typically an example of the general exhaust gas purification catalyst, Comprising: It is the whole figure of the exhaust gas purification catalyst.

符号の説明Explanation of symbols

A:担体基材
2:セル
3:触媒層
10:隔壁
11:壁面(溝面)
12:壁面(保持面)
13:空隙(溝)
14:壁面
A: Support base material 2: Cell 3: Catalyst layer 10: Partition wall 11: Wall surface (groove surface)
12: Wall surface (holding surface)
13: Air gap (groove)
14: Wall surface

Claims (3)

隔壁で区画され所定の方向に貫通する複数のセルを有する担体基材と、該隔壁の壁面に担持された触媒層と、からなり、
前記触媒層は、前記壁面との間に前記所定の方向に貫通する空隙をもって担持されていることを特徴とする排ガス浄化用触媒。
A carrier substrate having a plurality of cells partitioned by partition walls and penetrating in a predetermined direction, and a catalyst layer supported on the wall surface of the partition walls,
The catalyst for exhaust gas purification, wherein the catalyst layer is supported with a gap penetrating in the predetermined direction between the wall surface and the wall surface.
前記壁面は、前記隔壁に前記セルの内側に開口するとともに該セルの貫通する方向に延びる複数の溝が形成されてなる溝面を有し、
前記空隙は、前記触媒層と該溝面との間に位置する請求項1記載の排ガス浄化用触媒。
The wall surface has a groove surface in which a plurality of grooves that open in the cell and extend in a direction through the cell are formed in the partition wall,
The exhaust gas purifying catalyst according to claim 1, wherein the gap is located between the catalyst layer and the groove surface.
前記溝は、隣接する前記壁面が交差してなる前記セルの角部に隣接する該壁面を跨ぐように形成される請求項2記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to claim 2, wherein the groove is formed so as to straddle the wall surface adjacent to the corner portion of the cell formed by intersecting the adjacent wall surfaces.
JP2006002709A 2006-01-10 2006-01-10 Catalyst for cleaning exhaust gas Pending JP2007181798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002709A JP2007181798A (en) 2006-01-10 2006-01-10 Catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002709A JP2007181798A (en) 2006-01-10 2006-01-10 Catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2007181798A true JP2007181798A (en) 2007-07-19

Family

ID=38338305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002709A Pending JP2007181798A (en) 2006-01-10 2006-01-10 Catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2007181798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179426A (en) * 2015-03-23 2016-10-13 日本碍子株式会社 Honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179426A (en) * 2015-03-23 2016-10-13 日本碍子株式会社 Honeycomb structure

Similar Documents

Publication Publication Date Title
JP6738185B2 (en) Exhaust gas purification device
JP5807782B2 (en) Exhaust gas purification catalyst
JP4935219B2 (en) Exhaust gas purification catalyst
JP6864677B2 (en) Exhaust gas purification catalyst
US11187129B2 (en) Exhaust gas purification catalyst
WO2017213105A1 (en) Exhaust gas purifying catalyst
JP6460817B2 (en) Exhaust gas purification catalyst
JP2007021456A (en) Catalyst for cleaning exhaust gas
WO2015079908A1 (en) Exhaust gas purification catalyst
US20050163676A1 (en) Honeycomb structure and catalytic converter
WO2020039650A1 (en) Exhaust gas purification catalyst
JP5888259B2 (en) Catalytic converter
JP2006075724A (en) Catalyst for exhaust gas cleaning
JPWO2017163985A1 (en) Exhaust gas purification catalyst
JP6445228B1 (en) Exhaust gas purification catalyst
JP5780247B2 (en) Catalytic converter
JP6735912B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPWO2015087873A1 (en) Exhaust gas purification catalyst
JP2007209898A (en) Exhaust gas purification catalyst
JP2007136357A (en) Manufacturing method of catalyst for purification of exhaust gas
WO2014115419A1 (en) Catalytic converter
JP2007181798A (en) Catalyst for cleaning exhaust gas
JP2009000622A (en) Catalyst for cleaning exhaust gas
JP4963380B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2014223585A (en) Exhaust gas purification catalyst