JP2007180398A - Method for manufacturing capacitor - Google Patents

Method for manufacturing capacitor Download PDF

Info

Publication number
JP2007180398A
JP2007180398A JP2005379155A JP2005379155A JP2007180398A JP 2007180398 A JP2007180398 A JP 2007180398A JP 2005379155 A JP2005379155 A JP 2005379155A JP 2005379155 A JP2005379155 A JP 2005379155A JP 2007180398 A JP2007180398 A JP 2007180398A
Authority
JP
Japan
Prior art keywords
dielectric
capacitor
film
manufacturing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005379155A
Other languages
Japanese (ja)
Inventor
Hidesato Aizawa
英里 相澤
Hitoshi Saida
仁 齋田
Yuki Miyamoto
ゆき 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005379155A priority Critical patent/JP2007180398A/en
Publication of JP2007180398A publication Critical patent/JP2007180398A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a capacitor having a dielectric layer having a high dielectric constant, and preventing leakage current from deteriorating by a large amount. <P>SOLUTION: The capacitor manufacturing method comprises an application process for forming an application film, by applying a dielectric precursor solution containing titanium, barium, strontium, and a group IA element to the surface of a base material; and a heat treatment process for performing heat treatment on the application film at 700 to 900°C to obtain a high dielectric film. The high dielectric film contains the group IA element of 1.5 to 5 pts.wt. with respect to the dielectric substance of 100 pts.wt. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はコンデンサの製造方法に関するものであり、特に半導体の電源供給のために用いられるデカップリングコンデンサの製造方法に好適に用いることができるコンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a capacitor, and more particularly to a method for manufacturing a capacitor that can be suitably used for a method for manufacturing a decoupling capacitor used for power supply of a semiconductor.

近年の演算速度高速化のため、半導体素子はインピーダンスが急激に変動したときなどに動作電源電圧が不安定になりやすい。この電源電圧を安定させ、かつ高周波ノイズを低減させるため、電圧電源ラインとグランドラインとの間にデカップリングコンデンサを配置している。従来のデカップリングコンデンサはマザーボードである回路基板上にチップコンデンサを半導体チップ近傍に設けて実装している。この場合、チップコンデンサと半導体チップとの間で配線の引き回しが必要であり、これらのリード間では比較的大きなインダクタンスが存在する。従って、チップコンデンサを設けても高速動作の半導体に対しての電源電圧変動の抑制及び高周波ノイズの低減の効果は少なくなってしまっていた。デカップリングコンデンサに要求されることは基板回路の等価直列抵抗及び等価直列インダクタンスを低減することである。特に、デカップリングコンデンサと半導体との間の配線の引き回しによるインダクタンスの増加はデカップリングコンデンサの高周波特性を妨げている。そこで、半導体の直下にコンデンサを配置することにより、半導体とデカップリングコンデンサとの配線距離を最短にしてインダクタンスを低減させることが提案されている(特許文献1)。   Due to the recent increase in calculation speed, the operating power supply voltage of semiconductor elements tends to become unstable when the impedance changes rapidly. In order to stabilize the power supply voltage and reduce high frequency noise, a decoupling capacitor is disposed between the voltage power supply line and the ground line. A conventional decoupling capacitor is mounted on a circuit board, which is a motherboard, by providing a chip capacitor near the semiconductor chip. In this case, wiring must be routed between the chip capacitor and the semiconductor chip, and a relatively large inductance exists between these leads. Therefore, even if a chip capacitor is provided, the effects of suppressing fluctuations in power supply voltage and reducing high-frequency noise are reduced with respect to a semiconductor operating at high speed. What is required of the decoupling capacitor is to reduce the equivalent series resistance and equivalent series inductance of the substrate circuit. In particular, the increase in inductance due to the wiring between the decoupling capacitor and the semiconductor hinders the high frequency characteristics of the decoupling capacitor. In view of this, it has been proposed to reduce the inductance by arranging a capacitor immediately below the semiconductor to minimize the wiring distance between the semiconductor and the decoupling capacitor (Patent Document 1).

このような半導体直下にもうけるデカップリングコンデンサは、大容量で薄いものが求められていることから積層セラミックコンデンサよりも、高誘電率の誘電体薄膜を電極ではさみこんだタイプの対向電極型薄膜コンデンサが好ましい。   A decoupling capacitor directly under such a semiconductor is required to have a large capacity and a thin capacitor. Therefore, a counter electrode type thin film capacitor in which a dielectric thin film with a high dielectric constant is sandwiched between electrodes rather than a multilayer ceramic capacitor. Is preferred.

薄膜誘電体層として、ペロブスカイト構造を持つチタン酸バリウムストロンチウム(以下、「BST」という。)を用いることが、誘電率の高さおよびPbを含まないため環境適応型コンデンサとして好ましいことが知られている(特許文献2)。   It is known that the use of barium strontium titanate (hereinafter referred to as “BST”) having a perovskite structure as a thin-film dielectric layer is preferable as an environment-adaptive capacitor because it does not contain a high dielectric constant and Pb. (Patent Document 2).

一方、同じ誘電体層を用いた構造であるが、半導体メモリ用の誘電体としてBSTにIa族元素として、Li、Na,Kを添加することにより250〜500℃の低温で誘電体膜を結晶化できることが提案されている(特許文献3)。
特開平04−225594号公報 特開平09−078249号公報 特開2000−77616号公報
On the other hand, although the structure uses the same dielectric layer, a dielectric film for a semiconductor memory can be crystallized at a low temperature of 250 to 500 ° C. by adding Li, Na, and K as a group Ia element to BST. It has been proposed that this can be realized (Patent Document 3).
Japanese Patent Laid-Open No. 04-225594 Japanese Patent Application Laid-Open No. 09-078249 JP 2000-77616 A

しかしながら、薄膜デカップリングコンデンサに適したBSTは、(Ba1−xSrTiO組成(xは0〜1,yは1.0〜1.10)であるが、組成が同一であっても、製造方法が異なると、その構造が異なるため誘電率、リーク特性等は大きく変化する。そして、従来の製造方法では、十分に高い誘電率と低いリーク特性を両立することは困難であった。 However, BST suitable for a thin film decoupling capacitor has a composition of (Ba 1-x Sr x ) y TiO 3 (x is 0 to 1, y is 1.0 to 1.10.), But the composition is the same. However, if the manufacturing method is different, the structure is different, so that the dielectric constant, leakage characteristics, and the like change greatly. In the conventional manufacturing method, it is difficult to achieve both a sufficiently high dielectric constant and low leakage characteristics.

なお、上記特許文献3に記載の誘電体素子は同じBSTを用いた素子であるが、半導体メモリ用であるため、250〜500℃の低温熱処理であっても、より高温(500℃)の熱処理を用いた場合と同等の「高い残留分極Pr値を維持」することを目的としている。また、スパッタ法によるBST膜であるため、成膜コストが高価なものとなり、汎用電子部品であるデカップリングコンデンサには適用が困難であった。なお、デカップリングコンデンサにおいては、残留分極特性が良いことは全く要求されず、悪くとも特に問題とはならない。   The dielectric element described in Patent Document 3 is an element using the same BST. However, since it is for a semiconductor memory, a higher temperature (500 ° C.) heat treatment is performed even at a low temperature heat treatment of 250 to 500 ° C. The purpose is to “maintain a high remanent polarization Pr value”, which is equivalent to the case where is used. In addition, since the BST film is formed by sputtering, the film formation cost is high, and it is difficult to apply to a decoupling capacitor that is a general-purpose electronic component. It should be noted that the decoupling capacitor is not required to have good remanent polarization characteristics, and is not particularly problematic at all.

本発明は、上記事情に鑑みてなされたものであり、誘電率が高く、リーク電流が大きく劣化しない大容量コンデンサを安価に製造できるコンデンサの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a capacitor manufacturing method that can manufacture a high-capacity capacitor that has a high dielectric constant and does not significantly deteriorate a leakage current at low cost.

本発明は、チタン、バリウム、ストロンチウム、及びIA族元素を含む誘電体前駆体溶液を基材上に塗布して塗膜を形成する塗布工程と、前記塗膜を700〜900℃で熱処理し、高誘電体膜を得る熱処理工程とを有し、前記高誘電体膜は誘電体100重量部に対し1.5〜5重量部のIA族元素を含むコンデンサの製造方法である。   The present invention includes a coating step of coating a dielectric precursor solution containing titanium, barium, strontium, and a group IA element on a substrate to form a coating film, and heat-treating the coating film at 700 to 900 ° C. A heat treatment step for obtaining a high dielectric film, wherein the high dielectric film is a method for manufacturing a capacitor containing 1.5 to 5 parts by weight of an IA group element with respect to 100 parts by weight of a dielectric.

これらの誘電体膜の製造方法によれば、誘電率が向上してもリーク電流増加を抑制することが可能となる。誘電体膜がIA族元素が含まれていない場合は、焼成温度を高くすると、誘電率は少しは上昇はするが、格子中の欠陥によるキャリアが発生しやすく、これがリーク電流の大幅な劣化原因となる。これに対し、本発明は、上記IA族元素を特定量含み、且つ焼成温度を特定範囲に設定することで、上記のようなキャリアの発生が十分に抑制されて、大幅な誘電率の上昇にも係わらずリーク電流が抑制されている。また、誘電体前駆体溶液を基材上に塗布して塗膜を形成する方法のため、安価な装置で大面積の塗膜を形成することができる。   According to these dielectric film manufacturing methods, it is possible to suppress an increase in leakage current even if the dielectric constant is improved. When the dielectric film does not contain a group IA element, the dielectric constant increases slightly when the firing temperature is increased, but carriers due to defects in the lattice are likely to be generated, which is a cause of significant deterioration of the leakage current. It becomes. In contrast, the present invention includes a specific amount of the group IA element and sets the firing temperature in a specific range, so that the generation of carriers as described above is sufficiently suppressed, resulting in a significant increase in dielectric constant. Nevertheless, the leakage current is suppressed. Moreover, since the dielectric precursor solution is applied onto a substrate to form a coating film, a large-area coating film can be formed with an inexpensive apparatus.

また、本発明はIA族元素がLiであることが好ましい。Liは他のIA族元素、例えば、NaやKに比べてBSTに固溶しやすいので、Liを用いると、誘電体膜の誘電率をより向上させやすいという利点がある。   In the present invention, the Group IA element is preferably Li. Li is more easily dissolved in BST than other group IA elements such as Na and K. Therefore, when Li is used, there is an advantage that the dielectric constant of the dielectric film can be improved more easily.

本発明のコンデンサは、特にデカップリングコンデンサとして好適に用いられる。高誘電率で低リーク特性の誘電体薄膜を安価に大面積に形成可能であり、かつコンデンサ全体を薄くすることが可能だからである。   The capacitor of the present invention is particularly preferably used as a decoupling capacitor. This is because a dielectric thin film having a high dielectric constant and low leakage characteristics can be formed on a large area at a low cost, and the entire capacitor can be made thin.

本発明によれば、誘電率が高く、リーク電流が大きく劣化せずかつ安価に大面積に形成可能な誘電体層を有するコンデンサの製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the capacitor | condenser which has a dielectric layer with a high dielectric constant, a leak current does not deteriorate greatly, and can be formed in a large area cheaply is provided.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のコンデンサの製造方法は、基体上に下部電極を形成する工程と、誘電体前駆体溶液を塗布して塗膜を形成する塗布工程と、塗膜を熱処理し高誘電体膜を得る焼成工程と、誘電体膜上に上部電極を形成する工程から製造される。このうち、基体上に下部電極を形成する工程と誘電体膜上に上部電極を形成する工程は従来公知の工程と同じ汎用工程である。   The method for producing a capacitor of the present invention includes a step of forming a lower electrode on a substrate, a coating step of coating a dielectric precursor solution to form a coating film, and a baking process for heat-treating the coating film to obtain a high dielectric film. It is manufactured from a process and a process of forming an upper electrode on the dielectric film. Of these, the step of forming the lower electrode on the substrate and the step of forming the upper electrode on the dielectric film are the same general-purpose steps as conventionally known steps.

基体上に下部電極を形成する工程としては、例えば、熱酸化膜付きSiウェハ上に密着層としてスパッタ法でTiO層を成膜した上に導電性材料、例えばPtをスパッタ法で成膜する。あるいは、基体と下部電極の両方の機能を有する金属箔、例えばニッケル金属箔を用いることも可能である。 As a step of forming the lower electrode on the substrate, for example, a TiO 2 layer is formed as a bonding layer on a Si wafer with a thermal oxide film by a sputtering method, and then a conductive material such as Pt is formed by a sputtering method. . Alternatively, it is possible to use a metal foil having the functions of both the base and the lower electrode, for example, a nickel metal foil.

誘電体前駆体溶液を塗布して塗膜を形成する塗布工程において、誘電体前駆体溶液としては、有機化合物を溶解したゾルゲル原料溶液やMOD(有機金属分解法)原料溶液がある。例えば、金属アルコキシド、有機酸塩をトルエンやキシレン等の有機溶媒に溶解した溶液である。   In the coating process in which the dielectric precursor solution is applied to form a coating film, examples of the dielectric precursor solution include a sol-gel raw material solution in which an organic compound is dissolved and a MOD (organic metal decomposition method) raw material solution. For example, a solution obtained by dissolving a metal alkoxide or an organic acid salt in an organic solvent such as toluene or xylene.

なお、ゾルゲル法とMOD法とは完全に別個に用いられる方法ではなく、相互に組み合わせて使用することが一般的である。例えば、Ba源(ソース)として酢酸Baを用い、Ti、Sr源としてその金属アルコキシドを用いて溶液を調製することができる。或いは、ゾルゲル法とMOD法の二つの方法を総称してゾルゲル法と呼ぶ場合もあり、いずれの場合も前駆体溶液を塗布し焼成することによって誘電体層を形成することができる。   Note that the sol-gel method and the MOD method are not completely separate methods and are generally used in combination with each other. For example, a solution can be prepared using Ba acetate as the Ba source and using the metal alkoxide as the Ti and Sr sources. Alternatively, the two methods of the sol-gel method and the MOD method may be collectively referred to as the sol-gel method, and in either case, the dielectric layer can be formed by applying the precursor solution and baking.

すなわち、誘電体前駆体溶液のBa,Sr,Ti、IA族元素のソースとしては、金属のアルコキシド,金属錯体または金属カルボン酸塩等の有機金属塩を用いることができる。金属アルコキシドとしては、例えばOCH、OC、OC、OC、OCOCHなどのアルコキシル基からなるアルコキシドを用いることができる。金属錯体化合物としては前記金属のアセチルアセトン、ベンゾイルアセトン、ベンゾイルトリフルオロアセトン、ベンゾイルジフルオロアセトン、ベンゾイルフルオロアセトンの錯体等が挙げられる。また、金属カルボン酸塩としては、例えば、酢酸,シュウ酸等の金属カルボン酸塩を用いることができる。使用する溶媒は、前記金属ソースである誘電体前駆体を溶解できるものであれば特に限定されないが、例えばトルエン、キシレンや、メタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類などを用いることができる。 That is, an organometallic salt such as a metal alkoxide, a metal complex, or a metal carboxylate can be used as the source of the Ba, Sr, Ti, and Group IA elements of the dielectric precursor solution. As the metal alkoxide, it can be used, for example OCH 3, OC 2 H 5, OC 3 H 7, OC 4 H 9, alkoxide consisting of alkoxyl groups such as OC 2 H 4 OCH 3. Examples of the metal complex compound include complexes of the above metal acetylacetone, benzoylacetone, benzoyltrifluoroacetone, benzoyldifluoroacetone, benzoylfluoroacetone, and the like. Moreover, as a metal carboxylate, metal carboxylates, such as an acetic acid and an oxalic acid, can be used, for example. The solvent to be used is not particularly limited as long as it can dissolve the dielectric precursor as the metal source. For example, toluene, xylene, alcohols such as methanol, ethanol, isopropyl alcohol, and butanol can be used. .

本発明においては焼成後の誘電体100重量部に対し1.5〜5重量部のLi、Na、KなどのIA族元素を含むように、誘電体前駆体溶液にIA族元素の前駆体を加える。添加量が前記範囲未満では効果が顕著でなく、前記範囲を超えると誘電率が低下する。なお、焼成条件によっては、焼成段階で膜から揮発等により抜けやすい元素もあるため、その前駆体溶液への添加量はそれを考慮する場合もある。   In the present invention, the precursor of the group IA element is added to the dielectric precursor solution so that 1.5 to 5 parts by weight of the group IA elements such as Li, Na, and K are included with respect to 100 parts by weight of the fired dielectric. Add. If the addition amount is less than the above range, the effect is not remarkable, and if it exceeds the above range, the dielectric constant decreases. Depending on the firing conditions, some elements are likely to escape from the film due to volatilization or the like in the firing stage, so the amount added to the precursor solution may be taken into account.

次に誘電体前駆体溶液を、下部電極上に塗布して塗膜を形成する(塗布工程)。塗布は、公知の方法、例えば、スピンコート法、スピンキャスト法、ブレード法、スプレーコート法、バーコート法、ディップ法などの塗布法によって行うことができる。その後、塗膜を乾燥させて、塗膜中の溶媒をほぼ除去する。   Next, a dielectric precursor solution is apply | coated on a lower electrode, and a coating film is formed (application | coating process). The coating can be performed by a known method such as a spin coating method, a spin casting method, a blade method, a spray coating method, a bar coating method, or a dip method. Thereafter, the coating film is dried to substantially remove the solvent in the coating film.

そして、塗膜を熱処理し高誘電体膜を得る熱処理(焼成)工程を行う。通常、誘電体前駆体溶液法で塗膜の焼成を行う場合は、焼成を2段階で行う。即ち、まず塗膜について仮焼成を行った後、本焼成を行う。仮焼成は通常、焼成温度を300〜500℃、昇温速度を1〜1000℃/分、保持時間を1〜30分に設定して行う。これらはホットプレート上にて行うことができる。   And the heat processing (baking) process which heat-processes a coating film and obtains a high dielectric material film is performed. Usually, when baking a coating film by a dielectric precursor solution method, baking is performed in two steps. That is, first, the coating film is temporarily baked and then the main baking is performed. Temporary firing is usually performed by setting the firing temperature to 300 to 500 ° C., the rate of temperature rise to 1 to 1000 ° C./minute, and the holding time to 1 to 30 minutes. These can be performed on a hot plate.

本焼成は、仮焼成した塗膜を700〜900℃で焼成する(焼成工程)。前記範囲未満ではリーク電流は低いが、誘電率も低い。前記範囲を超えるとリーク電流が急激に増加し誘電率の評価も困難となる。   In the main baking, the temporarily fired coating film is fired at 700 to 900 ° C. (baking step). Below this range, the leakage current is low, but the dielectric constant is also low. When the above range is exceeded, the leakage current increases rapidly, making it difficult to evaluate the dielectric constant.

前記温度範囲で焼成する限り、昇温速度、保持時間は特に限定されず、適宜設定することが可能である。通常は、塗膜が目標の膜厚になるまで塗膜の形成−仮焼成−本焼成のサイクルを繰り返す。このとき塗膜の形成−仮焼成のサイクルを繰り返し最後に本焼成を行い目標の膜厚を有する誘電体膜を形成してもよい。こうして誘電体膜の製造が完了する。   As long as firing is performed within the above temperature range, the rate of temperature rise and the holding time are not particularly limited and can be set as appropriate. Usually, the cycle of coating film formation-temporary baking-main baking is repeated until the coating film reaches a target film thickness. At this time, a cycle of coating film formation-temporary baking may be repeated, and final baking may be performed to form a dielectric film having a target film thickness. Thus, the production of the dielectric film is completed.

次に、誘電体膜上に上部電極を形成する工程としては、導電性材料、例えばCuをスパッタ法で成膜する。膜厚が5〜30μm必要な場合には、さらに銅めっき等により厚付けすることも可能である。以上のようにしてコンデンサの製造が完了する。   Next, as a step of forming the upper electrode on the dielectric film, a conductive material, for example, Cu is formed by sputtering. When a film thickness of 5 to 30 μm is required, it can be further thickened by copper plating or the like. The manufacture of the capacitor is completed as described above.

上記コンデンサの製造方法によれば、誘電率が高く、リーク電流が大きく劣化せずかつ安価に大面積に形成可能な誘電体層を有するコンデンサを得ることができる。なお、誘電率が高く、リーク電流が大きく劣化しない理由は定かではないが、特定量のIA族元素が添加されており、且つ本焼成が特定温度範囲で行われることで、格子欠陥によるキャリアの発生が十分に抑制されるためではないかと考えている。   According to the method for manufacturing a capacitor, it is possible to obtain a capacitor having a dielectric layer that has a high dielectric constant, does not significantly deteriorate leakage current, and can be formed on a large area at a low cost. Although the reason why the dielectric constant is high and the leakage current is not greatly deteriorated is not clear, a specific amount of Group IA element is added, and the main firing is performed in a specific temperature range, so that carriers due to lattice defects can be obtained. I think that it is because generation | occurrence | production is fully suppressed.

次に、本発明の内容を、実施例及び比較例を挙げてより具体的に説明するが、本発明は、下記実施例に限定されるものではない。   Next, the content of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.

厚さ0.5mmの熱酸化膜付きSiウェハ上に、スパッタリング法により厚さ5nmのTiO層を形成した。続いて、TiO膜の上に、Ptをスパッタリングして、Ptからなる厚さ100nmの下部電極層を形成した。 A TiO 2 layer having a thickness of 5 nm was formed on a Si wafer with a thermal oxide film having a thickness of 0.5 mm by a sputtering method. Subsequently, Pt was sputtered on the TiO 2 film to form a lower electrode layer made of Pt and having a thickness of 100 nm.

次に、誘電体前駆体溶液を次のようにして調製した。トルエンおよびブタノールからなる混合溶媒中に、組成式:(Ba0.7Sr0.31.03TiOで表されるBSTが焼成後得られるよう、チタン、バリウム、ストロンチウムが含有されたオクチル酸を原料とするBST用MOD前駆体溶液に、焼成後のBST100重量部に対しLiをオクチル酸リチウムとして添加した。 Next, a dielectric precursor solution was prepared as follows. Octyl containing titanium, barium and strontium in a mixed solvent consisting of toluene and butanol so that BST represented by the composition formula: (Ba 0.7 Sr 0.3 ) 1.03 TiO 3 is obtained after firing. Li was added as lithium octylate to the MOD precursor solution for BST using an acid as a raw material with respect to 100 parts by weight of BST after firing.

次に、上記のようにして調製した誘電体前駆体溶液を、下部電極層の上に、スピンコート法により塗布し、塗膜を形成した。その後、150℃で10分間、塗膜を乾燥させて、塗膜中の溶媒を除去した。   Next, the dielectric precursor solution prepared as described above was applied onto the lower electrode layer by a spin coating method to form a coating film. Thereafter, the coating film was dried at 150 ° C. for 10 minutes to remove the solvent in the coating film.

次に、塗膜を焼成した。焼成は仮焼成(焼成温度:300℃、昇温速度:10℃/分、保持時間:10分)及び本焼成(焼成温度:300〜1000℃、昇温速度:100℃/分、保持時間:30分)の2段階で行った。   Next, the coating film was baked. Firing is temporary firing (firing temperature: 300 ° C., heating rate: 10 ° C./min, holding time: 10 minutes) and main baking (baking temperature: 300 to 1000 ° C., heating rate: 100 ° C./min, holding time: 30 minutes).

そして、再び誘電体前駆体溶液を塗布し、上記2段階焼成を行った。こうして上記塗布及び2段階焼成を1サイクルとして繰返し5回行い、膜厚130nmの誘電体薄膜を形成した。   Then, the dielectric precursor solution was applied again, and the above-described two-stage firing was performed. Thus, the coating and the two-stage baking were repeated five times as one cycle to form a dielectric thin film having a thickness of 130 nm.

最後に、誘電体膜上に、Ptのスパッタリングにより、Ptからなる厚さ200nmの上部電極層を得た。以上のようにしてコンデンサを得た。   Finally, an upper electrode layer made of Pt and having a thickness of 200 nm was obtained on the dielectric film by sputtering of Pt. A capacitor was obtained as described above.

こうして得られたコンデンサについて、比誘電率、リーク電流密度、及び誘電損失を測定した。上部電極および下部電極にプローブ針を押し当て、インピーダンスアナライザにより100kHzにおける誘電率および誘電損失を測定した。同様にリーク電流密度は半導体パラメータアナライザにより、室温下で測定した。リーク電流密度は、室温下で、上部電極層と下部電極層との間に100kV/cmの電界を印加したときに生じる電流を測定した。結果を図1および図2に示す。なお、図1および図2において、「○」はLi含有量が0重量部、「●」は1.0重量部、「△」は、1.5重量部、「▲」は、3.0重量部、「▽」は5.0重量部、「▼」は、8.0重量部の場合をそれぞれ示している。   With respect to the capacitor thus obtained, the relative permittivity, the leakage current density, and the dielectric loss were measured. The probe needle was pressed against the upper electrode and the lower electrode, and the dielectric constant and dielectric loss at 100 kHz were measured with an impedance analyzer. Similarly, the leakage current density was measured at room temperature with a semiconductor parameter analyzer. As for the leakage current density, a current generated when an electric field of 100 kV / cm was applied between the upper electrode layer and the lower electrode layer at room temperature was measured. The results are shown in FIG. 1 and FIG. In FIG. 1 and FIG. 2, “◯” indicates that the Li content is 0 parts by weight, “●” indicates 1.0 part by weight, “Δ” indicates 1.5 parts by weight, and “▲” indicates 3.0 parts by weight. Part by weight, “▽” indicates 5.0 parts by weight, and “▼” indicates 8.0 parts by weight.

すなわち、Li含有量が1重量部では未添加と比して大きな差はない。しかし、1.5、3、5重量部の場合には、700〜900℃において、未添加と比して明らかな誘電率の上昇が見られるが、未添加と比してリーク電流はむしろ低下している。8重量部の場合にはどの温度範囲においても誘電率が低下した。なお、1000℃熱処理においてはリーク電流が大きく流れるため、誘電率の測定は困難であった。   In other words, when the Li content is 1 part by weight, there is no significant difference compared to the case where no Li is added. However, in the case of 1.5, 3 and 5 parts by weight, a clear increase in the dielectric constant is seen at 700 to 900 ° C. as compared with no addition, but the leakage current is rather lowered as compared with no addition. is doing. In the case of 8 parts by weight, the dielectric constant decreased in any temperature range. In the heat treatment at 1000 ° C., a large leak current flows, so that it is difficult to measure the dielectric constant.

また、誘電損失は900℃以下の熱処理温度においては、いずれも5%以下であったが、1000℃では20%を超えた。   In addition, the dielectric loss was 5% or less at a heat treatment temperature of 900 ° C. or less, but exceeded 20% at 1000 ° C.

以上の結果から、Liを含有するBST膜を誘電体前駆体溶液を用い成膜し、700〜900℃で焼成した場合には、Li含有量が1.5〜5重量部の場合に誘電率を向上しつつ、リーク電流増加を抑制できていることが確認された。   From the above results, when a BST film containing Li was formed using a dielectric precursor solution and baked at 700 to 900 ° C., the dielectric constant was obtained when the Li content was 1.5 to 5 parts by weight. It was confirmed that an increase in leakage current could be suppressed while improving.

なお、誘電体膜組成はICPにて確認し、ほぼ誘電体前駆体溶液添加量比に応じた膜組成が確認された。   The dielectric film composition was confirmed by ICP, and the film composition almost corresponding to the added amount ratio of the dielectric precursor solution was confirmed.

また、本実施例のコンデンサは、対向電極面積2cm角であっても2μF以上の高容量を示し、CPU直下に設置するデカップリングコンデンサとして使用可能であった。さらに、スパッタ法によるBST薄膜を有するコンデンサよりも高容量であるばかりでなく、製造コストも概ね50%であった。以上の結果から本発明の効果は明らかである。   Further, the capacitor of this example showed a high capacity of 2 μF or more even when the counter electrode area was 2 cm square, and could be used as a decoupling capacitor installed directly under the CPU. Furthermore, it has a higher capacity than a capacitor having a BST thin film formed by sputtering, and the manufacturing cost is approximately 50%. The effects of the present invention are clear from the above results.

図1は、焼成温度による誘電率の変化を、Li含有量をパラメターに示した図である。FIG. 1 is a diagram showing a change in dielectric constant depending on a firing temperature, with a Li content as a parameter. 図2は、焼成温度によるリーク電流の変化、Li含有量をパラメターに示した図である。FIG. 2 is a diagram showing the change in leakage current according to the firing temperature and the Li content as parameters.

Claims (3)

チタン、バリウム、ストロンチウム、及びIA族元素を含む誘電体前駆体溶液を基材上に塗布して塗膜を形成する塗布工程と、
前記塗膜を700〜900℃で熱処理し、高誘電体膜を得る熱処理工程とを有し、
前記高誘電体膜は誘電体100重量部に対し1.5〜5重量部のIA族元素を含むコンデンサの製造方法。
An application step of applying a dielectric precursor solution containing titanium, barium, strontium, and a group IA element on a substrate to form a coating film;
A heat treatment step of heat-treating the coating film at 700 to 900 ° C. to obtain a high dielectric film,
The high dielectric film is a method of manufacturing a capacitor containing 1.5 to 5 parts by weight of a group IA element with respect to 100 parts by weight of a dielectric.
前記IA族元素がLiである、請求項1に記載のコンデンサの製造方法。   The method for manufacturing a capacitor according to claim 1, wherein the Group IA element is Li. 前記コンデンサがデカップリングコンデンサである、請求項1乃至3に記載のコンデンサの製造方法。   The method for manufacturing a capacitor according to claim 1, wherein the capacitor is a decoupling capacitor.
JP2005379155A 2005-12-28 2005-12-28 Method for manufacturing capacitor Withdrawn JP2007180398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379155A JP2007180398A (en) 2005-12-28 2005-12-28 Method for manufacturing capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379155A JP2007180398A (en) 2005-12-28 2005-12-28 Method for manufacturing capacitor

Publications (1)

Publication Number Publication Date
JP2007180398A true JP2007180398A (en) 2007-07-12

Family

ID=38305269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379155A Withdrawn JP2007180398A (en) 2005-12-28 2005-12-28 Method for manufacturing capacitor

Country Status (1)

Country Link
JP (1) JP2007180398A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280441A (en) * 2008-05-22 2009-12-03 Murata Mfg Co Ltd Production method of dielectric single crystal thin film
JP2009295907A (en) * 2008-06-09 2009-12-17 Sumitomo Metal Mining Co Ltd Method of manufacturing thin-film capacitor material
WO2011004722A1 (en) * 2009-07-09 2011-01-13 株式会社村田製作所 Method for producing complex oxide powder, and complex oxide powder
WO2011135731A1 (en) * 2010-04-28 2011-11-03 株式会社ユーテック Substrate processing apparatus and method for manufacturing thin film
JP2011249669A (en) * 2010-05-28 2011-12-08 Kanji Shimizu Electric energy storage device
US8454747B2 (en) 2009-02-18 2013-06-04 Murata Manufacturing Co., Ltd. Method for producing single-crystal thin film
CN112820545A (en) * 2020-12-30 2021-05-18 艾华新动力电容(苏州)有限公司 Heat setting process for PEI (polyetherimide) film capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280441A (en) * 2008-05-22 2009-12-03 Murata Mfg Co Ltd Production method of dielectric single crystal thin film
JP2009295907A (en) * 2008-06-09 2009-12-17 Sumitomo Metal Mining Co Ltd Method of manufacturing thin-film capacitor material
US8454747B2 (en) 2009-02-18 2013-06-04 Murata Manufacturing Co., Ltd. Method for producing single-crystal thin film
WO2011004722A1 (en) * 2009-07-09 2011-01-13 株式会社村田製作所 Method for producing complex oxide powder, and complex oxide powder
CN102471084A (en) * 2009-07-09 2012-05-23 株式会社村田制作所 Method for producing complex oxide powder, and complex oxide powder
CN102471084B (en) * 2009-07-09 2014-08-13 株式会社村田制作所 Method for producing complex oxide powder, and complex oxide powder
JP5621774B2 (en) * 2009-07-09 2014-11-12 株式会社村田製作所 Method for producing composite oxide powder and composite oxide powder
KR101471651B1 (en) 2009-07-09 2014-12-11 가부시키가이샤 무라타 세이사쿠쇼 Method for producing complex oxide powder, and complex oxide powder
WO2011135731A1 (en) * 2010-04-28 2011-11-03 株式会社ユーテック Substrate processing apparatus and method for manufacturing thin film
US9171745B2 (en) 2010-04-28 2015-10-27 Youtec Co., Ltd. Substrate treatment apparatus and method for manufacturing thin film
JP2011249669A (en) * 2010-05-28 2011-12-08 Kanji Shimizu Electric energy storage device
CN112820545A (en) * 2020-12-30 2021-05-18 艾华新动力电容(苏州)有限公司 Heat setting process for PEI (polyetherimide) film capacitor

Similar Documents

Publication Publication Date Title
JP2007180398A (en) Method for manufacturing capacitor
US20080047117A1 (en) Methods of Making Articles Comprising Manganese Doped Barium Titanate Thin Film Compositions
KR100938073B1 (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
KR100798288B1 (en) Dielectric membranes and a process for preparing the same
JP2007005804A (en) Acceptor doped barium-titanate-based thin film capacitors on metal foils and methods of making thereof
US8648992B2 (en) Method for manufacturing thin film capacitor and thin film capacitor obtained by the same
CN1790569B (en) Dielectric thin film, dielectric thin film device, and method of production thereof
EP2760029A1 (en) Dielectric thin film-forming composition and method of forming dielectric thin film using the same
JP3129175B2 (en) Method for manufacturing (Ba, Sr) TiO3 thin film capacitor
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JP2009540602A (en) Sintering of chemical solution deposited dielectric thin films assisted by glass flux
US7887879B2 (en) Coating solution for forming high dielectric constant thin film and method for forming dielectric thin film using the same
JP2008235088A (en) Dielectric thin film, dielectric thin film capacitor, and manufacturing method of dielectric thin film capacitor
JP2000504882A (en) High dielectric constant barium strontium niobium oxide applied to integrated circuits
CN103198923A (en) Manufacturing method of thin-film capacitor and thin-film capacitor obtained through manufacturing method
Halder et al. Microstructure and electrical properties of BaTiO 3 and (Ba, Sr) TiO 3 ferroelectric thin films on nickel electrodes
JP3561123B2 (en) Dielectric thin film and manufacturing method thereof
JP2008053281A (en) High dielectric film and its forming method
JP4911659B2 (en) Method for manufacturing dielectric thin film capacitor
JP2008004576A (en) Method of pretreating substrate for forming dielectric thin film
JP2001244139A (en) Thin-film capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303