JP2007180352A - Coil assembly of high frequency transformer - Google Patents

Coil assembly of high frequency transformer Download PDF

Info

Publication number
JP2007180352A
JP2007180352A JP2005378536A JP2005378536A JP2007180352A JP 2007180352 A JP2007180352 A JP 2007180352A JP 2005378536 A JP2005378536 A JP 2005378536A JP 2005378536 A JP2005378536 A JP 2005378536A JP 2007180352 A JP2007180352 A JP 2007180352A
Authority
JP
Japan
Prior art keywords
coil
frequency transformer
adjustment
primary coil
coil assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005378536A
Other languages
Japanese (ja)
Inventor
Yasuo Matsuzawa
保夫 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IQ FOUR KK
Original Assignee
IQ FOUR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IQ FOUR KK filed Critical IQ FOUR KK
Priority to JP2005378536A priority Critical patent/JP2007180352A/en
Publication of JP2007180352A publication Critical patent/JP2007180352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable accurate fine adjustment of leakage magnetic flux as far as a fine level, remarkable expansion of the adjustment/control range from a small value to a large value, adjustment and control of a coupling coefficient, adjustment of resonance, reduction of an internal electrostatic capacity, application even to a transformer having a large current capacity, acquisition of high stability, performance, and characteristic, simple manufacture with a simple structure, good productivity and low cost, and thus satisfaction of demands of many customers. <P>SOLUTION: The above problem is solved by parallelly overlapping part or whole of the engaged winding state between cyclidrical primary and secondary windings 11 and 12 arranged side by side with respect to the axial direction and changing the length of the overlap. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、漏れ磁束を制御できる高周波トランスのコイル組立体に関するものである。   The present invention relates to a coil assembly of a high-frequency transformer that can control leakage magnetic flux.

高周波トランスのコイル組立体の一つに下記特許文献1の図13に示されているものがある。この高周波トランスのコイル組立体は、U状に形成した複数枚の平板状導体を端部同士で順次螺旋状に当接接続させながら絶縁材を介して積み重ねて、巻数の多い単数の一次コイルと巻数の少ない複数の二次コイルを形成し、これら複数の二次コイルを電気的に並列に結線して上記一次コイルの間に挟みこませ、全体を複数のボルト・ナットにより締め付けたものである。   One of the coil assemblies of a high-frequency transformer is shown in FIG. The coil assembly of this high-frequency transformer includes a single primary coil having a large number of turns, in which a plurality of flat conductors formed in a U-shape are stacked via an insulating material while being in contact with each other in a spiral manner. A plurality of secondary coils with a small number of turns are formed, the plurality of secondary coils are electrically connected in parallel and sandwiched between the primary coils, and the whole is tightened with a plurality of bolts and nuts. .

しかし、この特許文献1の図13のような構造では、ボルト・ナットの締め具合でコイル間の相互インダクタンスも結合係数も漏洩インダクタンスも甚だしくは自己インダクタンスまでもが変動して安定性が悪く、また、漏れ磁束の調整、制御が困難で、それらのインダクタンスや結合係数を十分良好なものにできず、高性能の高周波トランスは得られない。更に、部品点数が多くなり、製作が容易でなく、生産性が悪く、コスト高を招く。   However, in the structure as shown in FIG. 13 of Patent Document 1, the mutual inductance, coupling coefficient, leakage inductance, and self-inductance fluctuate due to the tightening of the bolts and nuts, resulting in poor stability. Therefore, it is difficult to adjust and control the leakage magnetic flux, and the inductance and coupling coefficient cannot be made sufficiently good, and a high-performance high-frequency transformer cannot be obtained. In addition, the number of parts increases, making it difficult to manufacture, resulting in poor productivity and high cost.

次に、下記特許文献2に示されているものがある。この高周波トランスのコイル組立体は、一次コイルのパターンを形成した適数の誘電体基板と、二次コイルのパターンを形成した適数の誘電体基板とを積層し、それらを各々電気的に適宜に接続したものである。   Next, there is one disclosed in Patent Document 2 below. The coil assembly of this high-frequency transformer has an appropriate number of dielectric substrates on which a primary coil pattern is formed and an appropriate number of dielectric substrates on which a secondary coil pattern is formed. Is connected to.

しかし、この特許文献2の場合、そのような構造では結合係数や漏洩インダクタンス等を良好なものにできず、漏れ磁束の調整、制御は不可能であり、高性能の高周波トランスは得られない。勿論、電流容量の大きなものにすることは極めて困難である。   However, in the case of this patent document 2, such a structure cannot make a coupling coefficient, a leakage inductance, etc. favorable, adjustment and control of leakage magnetic flux are impossible, and a high-performance high frequency transformer cannot be obtained. Of course, it is extremely difficult to make the current capacity large.

この点、下記特許文献3に示されているものでは、同一の基板に一次コイルと二次コイルのパターンを並行させて渦巻き状に形成したものを複数積層しているので、結合係数を高めることは可能である。   In this respect, in the one shown in Patent Document 3 below, a plurality of spiral coils formed by arranging the patterns of the primary coil and the secondary coil on the same substrate are stacked, so that the coupling coefficient is increased. Is possible.

しかし、この特許文献3の場合でも、そのような構造では漏れ磁束の調整、制御は不可能であり、電流容量の大きなものにすることは極めて困難である。   However, even in the case of Patent Document 3, it is impossible to adjust and control the leakage flux with such a structure, and it is extremely difficult to make the current capacity large.

特開2000−150259号公報JP 2000-150259 A 特開2001−6941号公報JP 2001-6941 A 特開2002−141228号公報JP 2002-141228 A

そこで、本発明は、一次コイルと二次コイルとの間の巻線相互の重なり具合を変えることで、漏れ磁束したがって漏洩インダクタンスを微細なところまで的確に微調整できるようにするとともに、その漏れ磁束したがって漏洩インダクタンスの調整、制御範囲をゼロに近い小さな値から大きな値まで大幅に広げることができるようにし、かつ、結合係数の調整、制御も行えるようにし、また、それらの調整、制御を容易に行えるようにし、更には、トランス内部乃至外部接続回路に存在する静電容量との共振等の調整も可能にし、電流容量の大きなものにも難なく適用できるようにして、加えて、トランス内部の静電容量を小さくできるようにし、高い安定性を呈し高性能高特性が期待できる優れた高周波トランスを提供できるようにし、しかも、構造を簡潔にして簡単かつ生産性よく低コストで製作できるようにし、もって、広範な顧客の要望を支障なく容易かつ迅速に満たすことができるようにすることをその課題とするものである。   In view of this, the present invention makes it possible to finely adjust the leakage magnetic flux and hence the leakage inductance to a fine level by changing the overlapping state of the windings between the primary coil and the secondary coil. Therefore, the leakage inductance can be adjusted and the control range can be greatly expanded from a small value close to zero to a large value, and the coupling coefficient can be adjusted and controlled. In addition, it is possible to adjust resonance with the capacitance existing in the transformer or in the external connection circuit, and can be applied to a device having a large current capacity without difficulty. It is possible to reduce the capacitance, and to provide an excellent high-frequency transformer that exhibits high stability and high performance and high characteristics. However, the challenge is to make the structure simple, easy, productive and low-cost, so that a wide range of customer requirements can be easily and quickly satisfied. .

而して、本発明の高周波トランスのコイル組立体は、軸方向に併設する筒状の一次コイルと二次コイルとの一部乃至全部の巻線相互を噛合状態に並行に重ねたことを特徴とする。   Thus, the coil assembly of the high-frequency transformer according to the present invention is characterized in that a part of or all of the windings of the cylindrical primary coil and the secondary coil provided side by side in the axial direction are stacked in parallel in an engaged state. And

本発明によれば、その構成により、一次コイルと二次コイルとにおいて、巻線相互が重なっていない部分で漏れ磁束が生じ、漏洩インダクタンスが生じるから、その重なりの長さを変えることだけで極めて容易に漏れ磁束及び漏洩インダクタンスを変化させることができ、コイル相互間の結合係数をも変えることができ、かつ、トランス内部の静電容量を小さくできる。したがって、上述の課題を解決することができる。   According to the present invention, due to the configuration, in the primary coil and the secondary coil, leakage magnetic flux is generated in a portion where the windings are not overlapped with each other, and leakage inductance is generated. Therefore, it is extremely easy to change the overlapping length. The leakage magnetic flux and the leakage inductance can be easily changed, the coupling coefficient between the coils can be changed, and the capacitance inside the transformer can be reduced. Therefore, the above-described problem can be solved.

軸方向に併設する筒状の一次コイルと二次コイルとの一部乃至全部の巻線相互を噛合状態に並行に重ねて成る高周波トランスのコイル組立体にあって、上記一次コイルと上記二次コイルとを、それぞれ絶縁被覆平角導電帯のエッジワイズ巻きにより螺状コイルに形成するとともに、当該コイル相互を一部乃至全部で螺合させる。これについては実施例で詳細に説明する。   A coil assembly of a high-frequency transformer in which a part or all of windings of a cylindrical primary coil and a secondary coil provided side by side in an axial direction are stacked in parallel in a meshed state, and the primary coil and the secondary coil The coils are each formed into a spiral coil by edgewise winding of an insulating coated rectangular conductive band, and the coils are partly or wholly screwed together. This will be described in detail in Examples.

また、他の一つは、軸方向に併設する筒状の一次コイルと二次コイルとの一部乃至全部の巻線相互を噛合状態に並行に重ねて成る高周波トランスのコイル組立体にあって、上記一次コイルと上記二次コイルとにおける噛合状態に並行に重ねる巻線相互の一部乃至全部を捻り合わせる。つまり、試作試験によって一次コイルと二次コイルとの巻線相互で噛合状態に並行に重ねる部分の長さが寸法的に既に明らかになっている場合には、その巻線の巻回前に巻線相互の重なる部分同士を予め捻り合わせておけば、一次コイルと二次コイルの巻線が一つに連なった状態となるので、これを単に一つのコイルとして筒状に巻回すれば、結果的に、一次コイルと二次コイルとの巻線相互が要部で噛合状態に重なっているコイル組立体と同様のものに形成されることとなるのである。したがって、より一層簡単迅速に製作でき、コストダウンできる。   The other one is a coil assembly of a high-frequency transformer in which a part or all of windings of a cylindrical primary coil and a secondary coil provided side by side in the axial direction are overlapped in parallel in a meshed state. Then, a part or all of the windings stacked in parallel with the meshing state of the primary coil and the secondary coil are twisted together. In other words, if the length of the portion of the primary coil and the secondary coil that are overlapped in parallel with each other in the meshing state has already been dimensionally determined by the prototype test, the winding before winding of the winding is possible. If the overlapping parts of the wires are twisted together in advance, the winding of the primary coil and the secondary coil will be connected to one, so if you just wind this as a single coil in the shape of a cylinder, the result In particular, the windings of the primary coil and the secondary coil are formed in the same structure as the coil assembly in which the main portions overlap each other in the meshing state. Therefore, it can be manufactured more easily and quickly, and the cost can be reduced.

図1乃至図3は、本発明に係るコイル組立体を備えた有鉄心の高周波トランスを示しており、この高周波トランスは、高さ方向に長いロ字状の閉磁路を形成したフェライトコア1の下部に一対の支持脚2をボルト・ナット3と締結バンド4で固定し、そのフェライトコア1の両側辺5に同一のコイル組立体6を1個宛都合2個装着している。   FIGS. 1 to 3 show a cored high-frequency transformer provided with a coil assembly according to the present invention. This high-frequency transformer has a ferrite core 1 having a closed rectangular magnetic path that is long in the height direction. A pair of support legs 2 are fixed to the lower portion with bolts / nuts 3 and fastening bands 4, and two identical coil assemblies 6 are attached to both sides 5 of the ferrite core 1.

双方のコイル組立体6は、各々絶縁被覆平角導電帯7,8をエッジワイズ巻きして内径同士と外径同士が同径の螺状コイル9,10に形成した一次コイル11と二次コイル12とを進退可動に螺合させるとともに、一次コイル11相互と二次コイル12相互とを一対の圧着端子13,14を介して電気的に並列又は直列に結線して成る。なお、絶縁被覆平角導電帯7,8には、ポリエステル樹脂被覆平角銅帯等を用いるとよい。   Both coil assemblies 6 have primary and secondary coils 11 and 12 formed into spiral coils 9 and 10 having the same inner diameter and the same outer diameter by edgewise winding insulation-coated rectangular conductive bands 7 and 8, respectively. And the primary coil 11 and the secondary coil 12 are electrically connected in parallel or in series via a pair of crimp terminals 13 and 14. For the insulation coated rectangular conductive bands 7 and 8, a polyester resin coated rectangular copper band or the like may be used.

(1)実験その1
如上の構成において、双方のコイル組立体6の一次コイル11と二次コイル12をいずれも巻数10Tに形成し、双方の一次コイル11相互と二次コイル12相互とを電気的に並列に結線し、一次コイル11と二次コイル12との螺合によって重なる双方の巻数を共々10T(図4参照)から0Tまで1T宛変化させて、周波数が20kHz、50kHz、100kHzの各々の場合についてインダクタンスLと漏洩インダクタンスLlとを測定したところ、次の結果を得た。
フェライトコア1 : UU120×160×120
絶縁被覆平角導電帯7,8 : 2×5.5 PEW
使用測定機器 : HP製 4194A
IMPEDANCE/GAIN−PHASE ANALYZER
INTEG TIME : MED
AVERAGING : 8
(1) Experiment 1
In the above configuration, the primary coil 11 and the secondary coil 12 of both the coil assemblies 6 are both formed to have a winding number of 10T, and both the primary coil 11 and the secondary coil 12 are electrically connected in parallel. The number of turns of both of the primary coil 11 and the secondary coil 12 that are overlapped by screwing is changed from 10T (see FIG. 4) to 1T, and the frequency is 20 kHz, 50 kHz, and 100 kHz. When the leakage inductance Ll was measured, the following result was obtained.
Ferrite core 1: UU120 × 160 × 120
Insulation coated rectangular conductive bands 7, 8: 2 × 5.5 PEW
Measurement equipment used: HP 4194A
IMPEDANCE / GAIN-PHASE ANALYZER
INTEG TIME: MED
AVERAGING: 8

Figure 2007180352

分離1 : 一次コイル11と二次コイル12とが分離しただけのもの
分離2 : 分離した各コイルの隙間を軸方向に圧縮したもの
Figure 2007180352

Separation 1: The primary coil 11 and the secondary coil 12 are separated only. Separation 2: The gap between the separated coils is compressed in the axial direction.

この表1より、インダクタンスLは、いずれの場合も大きく変動しないことがわかる。   From Table 1, it can be seen that the inductance L does not vary greatly in either case.

Figure 2007180352

分離1 : 一次コイル11と二次コイル12とが分離しただけのもの
分離2 : 分離した各コイルの隙間を軸方向に圧縮したもの
Figure 2007180352

Separation 1: The primary coil 11 and the secondary coil 12 are separated only. Separation 2: The gap between the separated coils is compressed in the axial direction.

この表2を周波数毎のグラフにして見ると、図5乃至図7のようになり、漏洩インダクタンスLlは、重ねた巻数に対応して変化する滑らかな曲線となることがわかる。また、0T分離1の場合と0T分離2の場合とを比較するとその差は歴然としており、一次コイル11と二次コイル12とが重なっていない状態での各コイルの隙間が漏洩インダクタンスLlに大きく係わっていることがわかる。結果として、並列結線によるときは、一次コイル11と二次コイル12とのコイル間の螺動進退と漏洩インダクタンスLlの増減に関する特性は頗る安定で、漏洩インダクタンスLlすなわち漏れ磁束をコイル間の機械的な螺動進退でスムーズに微調整できるとともに、広範囲に的確に調整できることがわかり、コイル間の結合係数も同様にして調整できることがわかる。   Looking at Table 2 as a graph for each frequency, it becomes as shown in FIGS. 5 to 7, and it can be seen that the leakage inductance Ll is a smooth curve that changes in accordance with the number of turns. Further, when the case of 0T separation 1 and the case of 0T separation 2 are compared, the difference is obvious, and the gap between the coils when the primary coil 11 and the secondary coil 12 do not overlap each other is large in the leakage inductance Ll. You can see that they are involved. As a result, when parallel connection is used, the characteristics of the primary coil 11 and the secondary coil 12 in terms of screw advance / retreat and increase / decrease in the leakage inductance Ll are very stable, and the leakage inductance Ll, that is, the leakage magnetic flux is mechanically applied between the coils. It can be seen that it can be finely adjusted smoothly by advancing and retreating smoothly, and can be adjusted precisely over a wide range, and the coupling coefficient between coils can be adjusted in the same manner.

(2)実験その2
前述の構成において、双方のコイル組立体6の一次コイル11と二次コイル12をいずれも巻数72Tに形成し、双方の一次コイル11相互と二次コイル12相互とを電気的に直列に結線し、一次コイル11と二次コイル12の螺合によって重なる一方のコイル組立体6の巻数を72T{100%}(図8A参照)の一定に、また、他方のコイル組立体6の巻数を72T{100%}、71T{99%}(図8B参照)、70T{98%}、68T{95%}、65T{90%}、61T{85%}、57T{80%}と変化させて、周波数が20kHz、50kHz、100kHzの各々の場合についてインダクタンスLと漏洩インダクタンスLlとを測定したところ、次の結果を得た。
フェライトコア1 : UU120×160×120
絶縁被覆平角導電帯7,8 : 0.9×9 PEW
使用測定機器 : HP製 4194A
IMPEDANCE/GAIN−PHASE ANALYZER
INTEG TIME : MED
AVERAGING : 8
(2) Experiment 2
In the above-described configuration, the primary coil 11 and the secondary coil 12 of both the coil assemblies 6 are both formed to have a winding number of 72T, and both the primary coil 11 and the secondary coil 12 are electrically connected in series. The number of turns of one coil assembly 6 that is overlapped by the primary coil 11 and the secondary coil 12 is fixed to 72T {100%} (see FIG. 8A), and the number of turns of the other coil assembly 6 is 72T { 100%}, 71T {99%} (see FIG. 8B), 70T {98%}, 68T {95%}, 65T {90%}, 61T {85%}, 57T {80%} When the inductance L and the leakage inductance Ll were measured for each of 20 kHz, 50 kHz, and 100 kHz, the following results were obtained.
Ferrite core 1: UU120 × 160 × 120
Insulation coated rectangular conductive bands 7, 8: 0.9 × 9 PEW
Measurement equipment used: HP 4194A
IMPEDANCE / GAIN-PHASE ANALYZER
INTEG TIME: MED
AVERAGING: 8

Figure 2007180352
Figure 2007180352

この表3によれば、インダクタンスLは直列結線による高い値を呈するとともに、重ねた巻数が少なくなりかつ周波数が高くなるにつれてそのインダクタンスLが増大して行くことがわかる。結果として、直列結線によるときは、インダクタンスLの値を高くすることができるだけでなく、一次コイル11と二次コイル12とのコイル間の機械的な螺動進退でそのインダクタンスLの大きさを微調整できるとともに、広い範囲に的確に調整できることがわかる。   According to Table 3, it can be seen that the inductance L exhibits a high value due to series connection, and the inductance L increases as the number of stacked turns decreases and the frequency increases. As a result, when the series connection is used, not only the value of the inductance L can be increased, but also the magnitude of the inductance L can be reduced by mechanical screwing between the primary coil 11 and the secondary coil 12. It can be adjusted and can be accurately adjusted over a wide range.

Figure 2007180352
Figure 2007180352

この表4を周波数毎のグラフにして見ると、図9乃至図11のようになり、漏洩インダクタンスLlは、重ねた巻数に対応して変化する滑らかな曲線となることがわかる。結果として、直列結線によるときは、一次コイル11と二次コイル12とのコイル間の螺動進退と漏洩インダクタンスLlの増減に関する特性は頗る安定で、漏洩インダクタンスLlすなわち漏れ磁束をコイル間の機械的な螺動進退でスムーズに微調整できるとともに、並列結線の場合よりも更に広い範囲に的確に調整できることがわかり、コイル間の結合係数も同様にして調整できることがわかる。   Looking at Table 4 as a graph for each frequency, it becomes as shown in FIGS. 9 to 11, and it can be seen that the leakage inductance L1 is a smooth curve that changes in accordance with the number of turns. As a result, when the series connection is used, the characteristics relating to the screw advance / retreat between the primary coil 11 and the secondary coil 12 and the increase / decrease of the leakage inductance Ll are very stable, and the leakage inductance Ll, that is, the leakage magnetic flux is mechanically applied between the coils. It can be seen that fine adjustment can be made smoothly by moving forward and backward, and that it can be accurately adjusted over a wider range than in the case of parallel connection, and the coupling coefficient between the coils can be adjusted in the same manner.

したがって、実施例1によれば、所期の課題を解決でき、所期の効果を発揮する。   Therefore, according to the first embodiment, the desired problem can be solved and the desired effect can be achieved.

なお、図示の実施例1では、コイル組立体6をフェライトコア1の両側辺5にだけ装着しているが、コイル組立体6の一次コイル11と二次コイル12とが各々絶縁被覆平角導電帯7,8をエッジワイズ巻きして螺状コイル9,10に形成しているので、フェライトコア1のコーナー部及び上辺、下辺にも進出させることが可能で、これにより効率、性能を一層向上させることができる。   In the illustrated embodiment 1, the coil assembly 6 is mounted only on the both sides 5 of the ferrite core 1. However, the primary coil 11 and the secondary coil 12 of the coil assembly 6 are each insulatively coated rectangular conductive bands. Since 7 and 8 are wound edgewise to form the spiral coils 9 and 10, the ferrite core 1 can be advanced to the corner, upper side, and lower side, thereby further improving efficiency and performance. be able to.

図12、図13は、本発明に係るコイル組立体1個だけから成る空芯型の高周波トランスを示している。この場合の一個のコイル組立体6は、実施例1と同様に構成するので実施例1の説明をもって多くを省略するが、更に具体的には、一次コイル11と二次コイル12は、例えば0.8×8 PEW の絶縁被覆平角導電帯を用いて巻数7Tに形成して、進退可動に螺合させる。このようにして空芯型であっても単なるコイル相互の螺動進退により漏れ磁束したがって漏洩インダクタンスの調整ができ、コイル間の結合係数も調整ができる。したがって、この実施例2の場合も、所期の課題を解決でき、所期の効果を発揮する。   12 and 13 show an air-core type high-frequency transformer comprising only one coil assembly according to the present invention. In this case, since one coil assembly 6 is configured in the same manner as in the first embodiment, much of the description is omitted in the description of the first embodiment. More specifically, the primary coil 11 and the secondary coil 12 are, for example, 0 .8 × 8 PEW Insulating coated rectangular conductive band is used to form a winding number of 7T and screwed forward and backward. In this way, even in the case of the air core type, the leakage magnetic flux and hence the leakage inductance can be adjusted by simply screwing back and forth between the coils, and the coupling coefficient between the coils can also be adjusted. Therefore, also in the case of the second embodiment, the desired problem can be solved and the desired effect can be exhibited.

本発明の高周波トランスのコイル組立体は、コンバータ用トランス、絶縁用トランス、インピーダンス変換器等に広く利用することができる。   The coil assembly of the high-frequency transformer of the present invention can be widely used for converter transformers, insulating transformers, impedance converters, and the like.

本発明に係るコイル組立体の実施例1を示す平面図である。It is a top view which shows Example 1 of the coil assembly which concerns on this invention. 同実施例1の正面図である。It is a front view of the same Example 1. 同実施例1の一部截断側面図である。It is a partially cutaway side view of Example 1. 同実施例1の実験その1についての説明図である。It is explanatory drawing about the experiment 1 of the Example 1. FIG. 上記実施例1の表2についての測定周波数20kHzにおける漏洩インダクタンスを示すグラフである。It is a graph which shows the leakage inductance in the measurement frequency of 20 kHz about Table 2 of the said Example 1. FIG. 同実施例1の表2についての測定周波数50kHzにおける漏洩インダクタンスを示すグラフである。It is a graph which shows the leakage inductance in the measurement frequency 50kHz about Table 2 of the Example 1. FIG. 同実施例1の表2についての測定周波数100kHzにおける漏洩インダクタンスを示すグラフである。It is a graph which shows the leakage inductance in the measurement frequency of 100 kHz about Table 2 of the Example 1. FIG. 同実施例1の実験その2についての説明図である。It is explanatory drawing about the experiment 2 of the Example 1. FIG. 上記実施例1の表4についての測定周波数20kHzにおける漏洩インダクタンスを示すグラフである。It is a graph which shows the leakage inductance in the measurement frequency of 20 kHz about Table 4 of the said Example 1. FIG. 同実施例1の表4についての測定周波数50kHzにおける漏洩インダクタンスを示すグラフである。It is a graph which shows the leakage inductance in the measurement frequency 50kHz about Table 4 of the Example 1. FIG. 同実施例1の表4についての測定周波数100kHzにおける漏洩インダクタンスを示すグラフである。It is a graph which shows the leakage inductance in the measurement frequency of 100 kHz about Table 4 of the Example 1. FIG. 本発明に係る高周波トランスのコイル組立体の実施例2を示す平面図である。It is a top view which shows Example 2 of the coil assembly of the high frequency transformer which concerns on this invention. 同実施例2の正面図である。It is a front view of the same Example 2.

符号の説明Explanation of symbols

1 フェライトコア
2 支持脚
3 ボルト・ナット
4 締結バンド
5 側辺
6 コイル組立体
・ 絶縁被覆平角導電帯
9,10 螺状コイル
11 一次コイル
12 二次コイル
13,14 圧着端子
DESCRIPTION OF SYMBOLS 1 Ferrite core 2 Support leg 3 Bolt and nut 4 Fastening band 5 Side 6 Coil assembly, Insulation covering rectangular conductive band 9,10 Screw coil 11 Primary coil 12 Secondary coil 13, 14 Crimp terminal

Claims (3)

軸方向に併設する筒状の一次コイルと二次コイルとの一部乃至全部の巻線相互を噛合状態に並行に重ねたことを特徴とする高周波トランスのコイル組立体。   A coil assembly for a high-frequency transformer, wherein a part or all of a winding of a cylindrical primary coil and a secondary coil provided side by side in an axial direction are stacked in parallel in a meshed state. 上記一次コイルと上記二次コイルとを、それぞれ絶縁被覆平角導電帯のエッジワイズ巻きにより螺状コイルに形成するとともに、当該コイル相互を一部乃至全部で螺合させた請求項1記載の高周波トランスのコイル組立体。   2. The high-frequency transformer according to claim 1, wherein the primary coil and the secondary coil are each formed into a spiral coil by edgewise winding of an insulating coated rectangular conductive band, and the coils are partially or entirely screwed together. Coil assembly. 上記一次コイルと上記二次コイルとにおける噛合状態に並行に重ねる一部乃至全部の巻線相互を捻り合わせた請求項1記載の高周波トランスのコイル組立体。   2. A coil assembly for a high-frequency transformer according to claim 1, wherein a part or all of the windings overlapped in parallel with the meshing state of the primary coil and the secondary coil are twisted together.
JP2005378536A 2005-12-28 2005-12-28 Coil assembly of high frequency transformer Pending JP2007180352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378536A JP2007180352A (en) 2005-12-28 2005-12-28 Coil assembly of high frequency transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378536A JP2007180352A (en) 2005-12-28 2005-12-28 Coil assembly of high frequency transformer

Publications (1)

Publication Number Publication Date
JP2007180352A true JP2007180352A (en) 2007-07-12

Family

ID=38305235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378536A Pending JP2007180352A (en) 2005-12-28 2005-12-28 Coil assembly of high frequency transformer

Country Status (1)

Country Link
JP (1) JP2007180352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738545B1 (en) * 2010-10-05 2011-08-03 株式会社精電製作所 High frequency transformer
JP2012243880A (en) * 2011-05-17 2012-12-10 Murata Mach Ltd Transformer, non-contact power supply system, and method for manufacturing high-frequency transformer
JP2014505364A (en) * 2011-01-07 2014-02-27 ウルト エレクトロニクス ミッドコム インコーポレイティッド Flat wire flat transformer
JP2017204404A (en) * 2016-05-12 2017-11-16 東京エレクトロン株式会社 Plasma processing device
CN109817436A (en) * 2019-01-22 2019-05-28 东莞市昱懋纳米科技有限公司 A kind of inductor and the method for manufacturing inductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254211U (en) * 1988-10-13 1990-04-19
JP2004103624A (en) * 2002-09-05 2004-04-02 Nec Tokin Corp Transformer and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254211U (en) * 1988-10-13 1990-04-19
JP2004103624A (en) * 2002-09-05 2004-04-02 Nec Tokin Corp Transformer and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738545B1 (en) * 2010-10-05 2011-08-03 株式会社精電製作所 High frequency transformer
JP2012080011A (en) * 2010-10-05 2012-04-19 Seiden Seisakusho:Kk High frequency transformer
JP2014505364A (en) * 2011-01-07 2014-02-27 ウルト エレクトロニクス ミッドコム インコーポレイティッド Flat wire flat transformer
JP2012243880A (en) * 2011-05-17 2012-12-10 Murata Mach Ltd Transformer, non-contact power supply system, and method for manufacturing high-frequency transformer
JP2017204404A (en) * 2016-05-12 2017-11-16 東京エレクトロン株式会社 Plasma processing device
CN109817436A (en) * 2019-01-22 2019-05-28 东莞市昱懋纳米科技有限公司 A kind of inductor and the method for manufacturing inductor

Similar Documents

Publication Publication Date Title
US8310332B2 (en) High current amorphous powder core inductor
TWI452581B (en) High current magnetic component and methods of manufacture
KR101285646B1 (en) Multilayer inductor
US7852187B2 (en) Compact electromagnetic component and multilayer winding thereof
JP5339398B2 (en) Multilayer inductor
JP6826794B2 (en) Thin, high current compatible complex transformer
JP2008502166A (en) Planar high voltage transformer device
US20220130602A1 (en) Transformer And Method For Manufacturing Transformer
EP2661758A2 (en) Flatwire planar transformer
JP2007180352A (en) Coil assembly of high frequency transformer
US20150130577A1 (en) Insulation planar inductive device and methods of manufacture and use
TWI656541B (en) Surface mount component assembly for a circuit board
US6861938B2 (en) High-frequency power inductance element
JPH10308315A (en) Inductance element part
US20180053591A1 (en) Noise filter
JP5713232B2 (en) Noise filter
JPH1116751A (en) Transformer
JPH11111526A (en) Winding-type chip inductor
JP2000306751A (en) Choke coil
CN111430133A (en) Half-turn structure of transformer coil and winding method thereof
JPS63313906A (en) Foil rolled electronic parts and their manufacture
US20220108823A1 (en) Inductor
JP3952755B2 (en) Power transformer
US20230048930A1 (en) Electric transformer with a definite impedance by means of spiraled windings
US20230046765A1 (en) Electric transformer with a definite impedance by means of a second magnetic circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100728

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100827