JP2007180193A - Manufacturing method of printed board - Google Patents

Manufacturing method of printed board Download PDF

Info

Publication number
JP2007180193A
JP2007180193A JP2005375689A JP2005375689A JP2007180193A JP 2007180193 A JP2007180193 A JP 2007180193A JP 2005375689 A JP2005375689 A JP 2005375689A JP 2005375689 A JP2005375689 A JP 2005375689A JP 2007180193 A JP2007180193 A JP 2007180193A
Authority
JP
Japan
Prior art keywords
circuit pattern
circuit board
pattern
printed circuit
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005375689A
Other languages
Japanese (ja)
Inventor
Takashi Kawakami
孝 川上
Nobuyuki Sagusa
信之 佐草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Co Ltd
Original Assignee
Soken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Co Ltd filed Critical Soken Co Ltd
Priority to JP2005375689A priority Critical patent/JP2007180193A/en
Publication of JP2007180193A publication Critical patent/JP2007180193A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To mass-produce a thin, light, soft, strong and flexible printed board, without using adhesive. <P>SOLUTION: A plating electrode layer (20) is formed on one face of a transfer substrate (21). A photosensitive organic polymer material is formed on a face of the plating electrode layer (20) as an insulating layer (1) by an evaporation polymerization method. The insulating layer (1) is processed, and inversion pattern of a prescribed circuit pattern (2) is formed on the plating electrode layer (20). The prescribed circuit pattern (2) is formed by plating, by using the inversion pattern of the circuit pattern (2) and the plating electrode layer (20). An insulating substrate (3) is formed on the circuit pattern (2) by the evaporation polymerization method. The plating electrode layer (20) is immersed in a strong alkali liquid (24) and is melted, and this is peeled from the transfer substrate (21). The insulating layer (4) of the organic polymer material is evaporated and is polymerized as a cover sheet. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は情報機器、電子機器、携帯機器、自動車部品、航空宇宙機器、などのフラットケ−ブルや平面アンテナ、或いは半導体デバイス、半導体ソケットなどに用いて好適なフレキシブルなプリント基板及びその製造方法に関する。 The present invention relates to a flexible printed circuit board suitable for use in flat cables and flat antennas for information equipment, electronic equipment, portable equipment, automobile parts, aerospace equipment, etc., semiconductor devices, semiconductor sockets, and the like, and a method for manufacturing the same.

従来のフレキシブルプリント基板Pは、例えば、図7に断面図を示す構造となっている。さらに図8に、フレキシブルプリント基板Pの拡大断面図を示す。以下、従来のフレキシブルプリント基板Pの製法につき、図9及び図10を参照して説明する。絶縁基体(ポリイミドのシ−ト等)11(図 9A)の表面に接着剤12(図9B)により薄い銅板13を接着し(図9C)、さらにその表面に、図示せずとも感光乳剤を塗布し、露光・現像、エッチングを施し、回路パタ−ン14を形成した(図10A)。この回路パタ−ン14の表面に接着剤15を塗布し(図10B)、絶縁層としてカバ−シ−ト(ポリイミドのシ−ト等)16を接着している(図10C)。図10Cにおいて、カバ−シ−ト16には接着剤の収縮によって凹部16aが生じている。プリント基板を柔軟なものにして、電子機器の屈曲部や筐体内の立体配線として使われる。 A conventional flexible printed circuit board P has, for example, a structure shown in a sectional view in FIG. Furthermore, the expanded sectional view of the flexible printed circuit board P is shown in FIG. Hereinafter, a method for manufacturing the conventional flexible printed circuit board P will be described with reference to FIGS. A thin copper plate 13 is adhered to the surface of an insulating substrate (polyimide sheet or the like) 11 (FIG. 9A) with an adhesive 12 (FIG. 9B) (FIG. 9C), and a photosensitive emulsion is coated on the surface, not shown. Then, exposure, development and etching were performed to form a circuit pattern 14 (FIG. 10A). An adhesive 15 is applied to the surface of the circuit pattern 14 (FIG. 10B), and a cover sheet (polyimide sheet or the like) 16 is adhered as an insulating layer (FIG. 10C). In FIG. 10C, the cover sheet 16 has a recess 16a due to shrinkage of the adhesive. The printed circuit board is made flexible so that it is used as a three-dimensional wiring in a bent part of an electronic device or a housing.

また、従来のプリント基板の中間層の形成にポリイミド樹脂の蒸着重合技術を用いるものがある(例えば、特許文献1参照)。これは、まず樹脂成形体や樹脂フィルムなどの絶縁基体上に、蒸着重合によってポリイミドの薄膜を形成する。その後、前記中間膜上に金属膜を形成する。ポリイミド樹脂の中間層が樹脂基体及び金属膜の双方と高い密着性を持つことを利用して、樹脂基体に対する金属膜の密着性を得ることを目的としたものである。
しかしながら、絶縁基体として樹脂成形体や樹脂フィルムを用いるので、薄くて軽いプリント基板は得られない。
In addition, there is a conventional method using a polyimide resin vapor deposition polymerization technique for forming an intermediate layer of a printed circuit board (see, for example, Patent Document 1). First, a polyimide thin film is formed by vapor deposition polymerization on an insulating substrate such as a resin molded body or a resin film. Thereafter, a metal film is formed on the intermediate film. The object is to obtain the adhesion of the metal film to the resin substrate by utilizing that the intermediate layer of the polyimide resin has high adhesion to both the resin substrate and the metal film.
However, since a resin molded body or a resin film is used as the insulating substrate, a thin and light printed board cannot be obtained.

また、従来のプリント基板の中間層の形成にポリイミド樹脂の蒸着重合技術を用いるものがある(例えば、特許文献2参照)。これは、まず熱伝導性の高い炭素質の絶縁基体上に、蒸着重合によってポリイミドの薄膜を形成する。その後、前記中間膜上に金属膜を形成する。ポリイミド樹脂の中間層が炭素質基体及び金属膜の双方と高い密着性を持つことを利用して、炭素質基体に対する金属膜の密着性とを高めて、放熱性の向上を得ることを目的としたものである。
しかしながら、絶縁基体として炭素繊維強化炭素複合材料を用いるので、薄くて軽いプリント基板は得られない。
In addition, there is a conventional method using a polyimide resin deposition polymerization technique for forming an intermediate layer of a printed circuit board (for example, see Patent Document 2). First, a polyimide thin film is formed on a carbonaceous insulating substrate having high thermal conductivity by vapor deposition polymerization. Thereafter, a metal film is formed on the intermediate film. The purpose is to improve the heat dissipation by increasing the adhesion of the metal film to the carbonaceous substrate by utilizing the fact that the intermediate layer of the polyimide resin has high adhesion to both the carbonaceous substrate and the metal film. It is a thing.
However, since a carbon fiber reinforced carbon composite material is used as an insulating substrate, a thin and light printed board cannot be obtained.

また、従来のプリント基板の絶縁層の形成にポリイミド樹脂の蒸着重合技術を用いるものがある(例えば、特許文献3参照)。まず、成形品である立体回路基板の上に銅薄膜膜を形成し、レ−ザ加工で回路パタ−ンを形成し、ついで絶縁層を蒸着重合もしくはプラズマ重合により形成する。前記工程を繰り返して多層基板を得るというものである。
しかしながら、絶縁基体として成形品を用いるので、薄くて軽いプリント基板は得られない。
特開2003−34883号公報(第3頁、図1) 特開2002−151811号公報(第2頁、図1) 特開2002−164657号公報(第3頁、図1)
Moreover, there exists a thing using the vapor deposition polymerization technique of a polyimide resin for formation of the insulating layer of the conventional printed circuit board (for example, refer patent document 3). First, a copper thin film is formed on a molded circuit board as a molded product, a circuit pattern is formed by laser processing, and then an insulating layer is formed by vapor deposition polymerization or plasma polymerization. The above process is repeated to obtain a multilayer substrate.
However, since a molded product is used as the insulating base, a thin and light printed board cannot be obtained.
JP 2003-34883 A (page 3, FIG. 1) Japanese Patent Laid-Open No. 2002-151811 (2nd page, FIG. 1) JP 2002-164657 A (page 3, FIG. 1)

電子機器の薄型化、軽量化の要求が増大している。すなわち、携帯電話に代表されるモバイル機器(PDA、情報端末等)やノ−トパソコンの薄型化、軽量化の加速により、軽くて薄い筐体の限られた空間に折り曲げ実装されるため、フレキシブルプリント基板は薄く、軽く、軟らかく、丈夫であることを求められる。 There is an increasing demand for thinner and lighter electronic devices. In other words, flexible printing is possible because it is bent and mounted in a limited space in a light and thin housing by accelerating the reduction in thickness and weight of mobile devices (PDAs, information terminals, etc.) and laptop computers typified by mobile phones. The substrate is required to be thin, light, soft and strong.

しかし、絶縁基体としてシ−ト材11を使用すると、シ−ト材11自体が一定以上の厚みがないと取り扱いにくい。同様に、導電層材としてシ−ト材13を使用すると、シ−ト材13自体に一定以上の厚みがないと取り扱いにくい。従って、量産性は良くなかった。さらに、図9及び図10に示す製造工程によって、絶縁基体としてのシ−ト材11と導電層材としてのシ−ト材13を接着剤12及び15によって張り合わせていたため、図7に示す完成したフレキシブルプリント基板Pは、厚いものとなっていた。そのため、充分な柔軟性を得るのが難しかった。 However, when the sheet material 11 is used as an insulating substrate, it is difficult to handle unless the sheet material 11 itself has a certain thickness or more. Similarly, when the sheet material 13 is used as the conductive layer material, it is difficult to handle unless the sheet material 13 itself has a certain thickness or more. Therefore, mass productivity was not good. Further, the sheet material 11 as the insulating base and the sheet material 13 as the conductive layer material are bonded together by the adhesives 12 and 15 in the manufacturing process shown in FIGS. The flexible printed circuit board P was thick. Therefore, it has been difficult to obtain sufficient flexibility.

また、絶縁基体は樹脂シ−トを使用していたが、樹脂によっては吸湿性がある。そのため導電層が酸化剥離しやすくなった(銅箔の表面に酸化銅が出来はがれやすくなる)。 In addition, although a resin sheet is used for the insulating substrate, some resins are hygroscopic. For this reason, the conductive layer is easily oxidized and peeled off (copper oxide is easily peeled off on the surface of the copper foil).

さらに、上記部材を張り合わせるために、接着剤を使うことにより、接着剤自体の劣化による不具合から逃れられなかった。すなわち、高温においては、接着力が低下する。折り曲げているときにははがれやすい。接着力が強すぎると導電層に亀裂を生じやすくなる。 Further, by using an adhesive to bond the above members together, it was not possible to escape from problems due to deterioration of the adhesive itself. That is, the adhesive strength decreases at high temperatures. Easy to peel off when bent. If the adhesive force is too strong, the conductive layer is liable to crack.

上記欠点を除去し量産性を向上させるのが本発明の課題である。 The object of the present invention is to improve the mass productivity by removing the above-mentioned drawbacks.

以上の課題は「(A)転写基板の一方の面にメッキ用電極層を形成する工程;
(B)前記メッキ用電極層の面上に蒸着重合法により感光性の有機高分子材料を絶縁層として蒸着する工程;
(C)前記絶縁層に所定の回路パタ−ンに対応するマスクを宛がう工程;
(D)前記マスクを介して前記絶縁層を露光し、現像により所定の回路パタ−ンの反転パターンを形成する工程;
(E)前記回路パタ−ンの反転パターンに導電性の材料をメッキすることにより回路パターンを形成する工程;
(F)前記回路パタ−ン上に蒸着重合法により有機高分子材料を絶縁基体として蒸着させる工程;
(G)前記メッキ用電極層を強アルカリ液又は強酸液で除去することにより前記回路パタ−ンが転写された絶縁基体を得る工程;及び
(H)前記回路パタ−ンが転写された絶縁基体に蒸着重合法により有機高分子材料を絶縁層として蒸着させる工程;
から成ることを特徴とするプリント基板の製造方法。」によって解決される。
The above-mentioned subject is "(A) the process of forming the electrode layer for plating on one surface of a transfer substrate;
(B) depositing a photosensitive organic polymer material as an insulating layer on the surface of the electrode layer for plating by vapor deposition polymerization;
(C) assigning a mask corresponding to a predetermined circuit pattern to the insulating layer;
(D) exposing the insulating layer through the mask and forming a reversal pattern of a predetermined circuit pattern by development;
(E) forming a circuit pattern by plating a conductive material on the inverted pattern of the circuit pattern;
(F) a step of vapor-depositing an organic polymer material as an insulating substrate on the circuit pattern by vapor deposition polymerization;
(G) a step of obtaining an insulating substrate to which the circuit pattern is transferred by removing the plating electrode layer with a strong alkaline solution or a strong acid solution; and (H) an insulating substrate to which the circuit pattern is transferred. Depositing an organic polymer material as an insulating layer by vapor deposition polymerization;
A printed circuit board manufacturing method comprising: Is solved by.

また、以上の課題は「(A)転写基板の一方の面にメッキ用電極層を形成する工程;
(B)前記メッキ用電極層の面上に蒸着重合法により感光性の有機高分子材料を絶縁層として蒸着する工程;
(C)前記絶縁層に所定の回路パタ−ンに対応するマスクを宛がう工程;
(D)前記マスクを介して前記絶縁を露光し、現像により所定の回路パタ−ンの反転パターンを形成する工程;
(E)前記回路パタ−ンの反転パターンに導電性の材料をメッキすることにより回路パターンを形成する工程;
(F)前記導電性の材料で成る回路パタ−ン上に導電性の材料をメッキして前記所定の回路パターンを所定の厚さとする工程;
(G)前記回路パタ−ン上に蒸着重合法により有機高分子材料を絶縁基体として蒸着させる工程;
(H)前記メッキ用電極層を強アルカリ液又は強酸液で除去することにより前記回路パタ−ンが転写された絶縁基体を得る工程;及び
(I)前記回路パタ−ンが転写された絶縁基体に蒸着重合法により有機高分子材料を絶縁層として蒸着させる工程;
から成ることを特徴とするプリント基板の製造方法。」によって解決される。
In addition, the above problem is “(A) a step of forming a plating electrode layer on one surface of the transfer substrate;
(B) depositing a photosensitive organic polymer material as an insulating layer on the surface of the electrode layer for plating by vapor deposition polymerization;
(C) assigning a mask corresponding to a predetermined circuit pattern to the insulating layer;
(D) exposing the insulation through the mask and forming a reversal pattern of a predetermined circuit pattern by development;
(E) forming a circuit pattern by plating a conductive material on the inverted pattern of the circuit pattern;
(F) a step of plating a conductive material on a circuit pattern made of the conductive material so that the predetermined circuit pattern has a predetermined thickness;
(G) a step of vapor-depositing an organic polymer material as an insulating substrate on the circuit pattern by vapor deposition polymerization;
(H) a step of obtaining an insulating substrate to which the circuit pattern is transferred by removing the plating electrode layer with a strong alkaline solution or a strong acid solution; and (I) an insulating substrate to which the circuit pattern is transferred. Depositing an organic polymer material as an insulating layer by vapor deposition polymerization;
A printed circuit board manufacturing method comprising: Is solved by.

従来のプリント基板に比べて大幅に薄く丈夫なプリント基板となる。
また、接着剤を使用しないので製造が簡単ではがれにくいプリント基板となる。
また、絶縁基体とカバ−シ−トが同じ有機高分子材料を用いて、同じ製造工程で製造可能である。さらに、量産性も向上する。
The printed circuit board is significantly thinner and more durable than conventional printed circuit boards.
Further, since no adhesive is used, the printed circuit board is easy to manufacture and difficult to peel off.
Further, the insulating base and the cover sheet can be manufactured in the same manufacturing process using the same organic polymer material. Furthermore, mass productivity is improved.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

図5は、本発明の第1の実施の形態のプリント基板P’の拡大断面図である。図5において、有機高分子材料の絶縁層からなる所定の回路パタ−ンの反転パタ−ンである絶縁層(1)と導電性の材料で成る所定の回路パタ−ン(2)の上に有機高分子材料の絶縁層が絶縁基体(3)として形成され、さらに有機高分子材料の絶縁層がカバ−シ−ト(4)として形成されている。 FIG. 5 is an enlarged cross-sectional view of the printed circuit board P ′ according to the first embodiment of the present invention. In FIG. 5, an insulating layer (1) which is an inverted pattern of a predetermined circuit pattern made of an insulating layer made of an organic polymer material and a predetermined circuit pattern (2) made of a conductive material. An insulating layer made of an organic polymer material is formed as an insulating substrate (3), and an insulating layer made of an organic polymer material is formed as a cover sheet (4).

ここで、図1を参照して、本発明に適用される蒸着重合装置60について説明する。 Here, with reference to FIG. 1, the vapor deposition polymerization apparatus 60 applied to this invention is demonstrated.

基板32及び真空槽壁30をモノマ−の蒸発温度程度(200℃)に加熱しておき、この中に2種類のモノマ−を図1に示すように導入する。モノマ−の飽和蒸気圧が等しくなる温度に加熱、導入して複雑形状の表面にポリイミド膜を形成する方法が開発されている(全方向同時蒸着重合)。 The substrate 32 and the vacuum chamber wall 30 are heated to about the vaporization temperature of the monomer (200 ° C.), and two types of monomers are introduced therein as shown in FIG. A method has been developed in which a polyimide film is formed on the surface of a complex shape by heating and introducing to a temperature at which the saturated vapor pressure of the monomer is equal (omnidirectional simultaneous vapor deposition polymerization).

図1においてモノマ−としてPMDA(無水ピロメリト酸)34及びODA(オキシジアニリン)36が槽30内に導入される。 In FIG. 1, PMDA (pyromellitic anhydride) 34 and ODA (oxydianiline) 36 are introduced into a tank 30 as monomers.

1種類のモノマ−だけを導入した場合には、真空槽壁30及び基板32上にモノマ−は付着できず、再蒸発して排気されるが、2種類のモノマ−を同時に導入すると、両者が基板上で反応して蒸気圧の低い二重体や三重体となり基板32上に付着し、更に反応して高重合体へと成長する。未反応モノマ−分子が真空槽壁面全体から再蒸発するため均一な膜圧分布の薄膜が得られる。このようにして、複雑形状の基板、部品などに均一な膜厚のポリイミド膜を被覆することが出来る。 When only one type of monomer is introduced, the monomer cannot adhere to the vacuum chamber wall 30 and the substrate 32 and is re-evaporated and exhausted. However, if two types of monomer are introduced simultaneously, It reacts on the substrate to form a duplex or triple with a low vapor pressure, adheres to the substrate 32, and further reacts to grow into a high polymer. Since the unreacted monomer molecules are re-evaporated from the entire vacuum chamber wall surface, a thin film having a uniform film pressure distribution can be obtained. In this way, a polyimide film having a uniform film thickness can be coated on a substrate or component having a complicated shape.

蒸着重合法は、モノマ−の輸送を通常の真空昇華精製するプロセスと同じ手法で行うことから、生成する膜の純度が高く、しかも溶媒の添加・除去・回収などの工程がなく(無公害)、不純物の混入が極めて少ない膜が得られる。また、基板表面の凸凹形状に忠実に膜が成長するため、細孔の内面でも均質に成膜できる。 The vapor deposition polymerization method uses the same method as the normal vacuum sublimation purification process to transport monomers, so the resulting film has high purity, and there are no steps such as solvent addition, removal, and recovery (non-polluting). As a result, a film containing very little impurities can be obtained. In addition, since the film grows faithfully to the uneven shape of the substrate surface, it can be uniformly formed even on the inner surface of the pore.

図2は、本発明の実施の形態のプリント基板P’の回路パタ−ンの反転パタ−ン形成前の製造工程を示している。 FIG. 2 shows a manufacturing process before forming the reverse pattern of the circuit pattern of the printed circuit board P 'according to the embodiment of the present invention.

図2Aは、転写基板としてSUS板21を用意した。 In FIG. 2A, a SUS plate 21 was prepared as a transfer substrate.

図2Bは、SUS板21の一方の面にメッキ用電極層としてアルミ薄膜20を形成した。 In FIG. 2B, an aluminum thin film 20 is formed on one surface of the SUS plate 21 as a plating electrode layer.

図2Cは、アルミ薄膜20を形成したSUS板21に感光性の有機高分子材料を蒸着重合した。図示したように感光性の有機高分子材料の絶縁層1が形成される。 In FIG. 2C, a photosensitive organic polymer material was vapor deposited and polymerized on the SUS plate 21 on which the aluminum thin film 20 was formed. As shown in the drawing, an insulating layer 1 of a photosensitive organic polymer material is formed.

図3に本発明の実施の形態のプリント基板の回路パタ−ンの反転パタ−ン形成後の製造工程を示している。 FIG. 3 shows a manufacturing process after forming an inversion pattern of the circuit pattern of the printed circuit board according to the embodiment of the present invention.

本実施形態では、図3に示す製造工程で作成した感光性の有機高分子材料の絶縁層1に露光・現像、エッチングを施し、回路パタ−ンの反転パターンを形成している。図3Aにその断面図を示す。エッチングされたところは、メッキ用電極層のアルミ薄膜20が剥き出しになっている。 In this embodiment, the photosensitive organic polymer material insulating layer 1 produced in the manufacturing process shown in FIG. 3 is exposed, developed and etched to form a circuit pattern reversal pattern. FIG. 3A shows a cross-sectional view thereof. The etched aluminum layer 20 of the electrode layer for plating is exposed.

回路パターンの反転パターンの形成方法は、この方法に限らず他の方法でも良い。
例えば、有機高分子材料の絶縁層1を回転刃またはレ−ザ−加工器で削り回路パターンの反転パタ−ンを形成する方法等が使用できる。
The method for forming the reverse pattern of the circuit pattern is not limited to this method, and other methods may be used.
For example, a method of cutting the insulating layer 1 made of an organic polymer material with a rotary blade or a laser processing device to form an inverted pattern of a circuit pattern can be used.

図3Bは前記の回路パタ−ンの反転パタ−ンに銅メッキによって導電層(回路パターン)2を形成する。メッキ用電極層としてアルミ薄膜20を使用し、電解メッキ法により回路パターン2を形成することができる。尚、図11に一例としての回路パターン2の平面図を示す。 In FIG. 3B, a conductive layer (circuit pattern) 2 is formed on the inverted pattern of the circuit pattern by copper plating. The circuit pattern 2 can be formed by electrolytic plating using the aluminum thin film 20 as the electrode layer for plating. FIG. 11 shows a plan view of the circuit pattern 2 as an example.

図3Cは回路パターン2上に絶縁基体3としてのポリイミドの絶縁層3を形成するために蒸着重合を行ったものである。 FIG. 3C shows a case where vapor deposition polymerization is performed to form a polyimide insulating layer 3 as an insulating substrate 3 on the circuit pattern 2.

図4に本発明の実施の形態の強アルカリ浸漬工程を示す。 FIG. 4 shows a strong alkali dipping process according to the embodiment of the present invention.

図4Aのように、製造用余白部分17を切除する。メッキ用電極層としてのアルミ薄膜20が強アルカリ液(例えば、水酸化ナトリウム)にさらされるようにするためである。 As shown in FIG. 4A, the manufacturing blank portion 17 is cut out. This is because the aluminum thin film 20 as the electrode layer for plating is exposed to a strong alkaline solution (for example, sodium hydroxide).

図4Bのように、強アルカリ液24に浸漬する。尚、図4B、4Cでは省略したが、強アルカリ液24は溶剤槽23に入っている。(図6参照) As shown in FIG. 4B, it is immersed in the strong alkaline solution 24. Although not shown in FIGS. 4B and 4C, the strong alkaline solution 24 is in the solvent tank 23. (See Figure 6)

図4Cのように、メッキ用電極層としてのアルミ薄膜20が溶けて無くなり、SUS板21から所定の回路パタ−ン2が転写された絶縁基体3が剥離する。 As shown in FIG. 4C, the aluminum thin film 20 as the electrode layer for plating melts and disappears, and the insulating substrate 3 onto which the predetermined circuit pattern 2 is transferred is peeled off from the SUS plate 21.

図4Dのように、所定の回路パタ−ン2が転写された絶縁基体3に蒸着重合により絶縁層としてのカバーシート4を形成することにより完成したプリント基板P’を得る。 As shown in FIG. 4D, a completed printed circuit board P 'is obtained by forming a cover sheet 4 as an insulating layer by vapor deposition polymerization on an insulating substrate 3 to which a predetermined circuit pattern 2 is transferred.

図5は、本発明の実施の形態の製法によるプリント板P’の拡大断面図である。従来は、例えば図8の拡大断面図に示すように、回路パターン14を挟み、ポリイミド層(絶縁材シ−ト)11及び16を接着剤12及び15で貼り付けていた。 FIG. 5 is an enlarged cross-sectional view of the printed board P ′ according to the manufacturing method of the embodiment of the present invention. Conventionally, for example, as shown in an enlarged cross-sectional view of FIG. 8, a circuit pattern 14 is sandwiched, and polyimide layers (insulating material sheets) 11 and 16 are bonded with adhesives 12 and 15.

本発明の実施の形態の製法により得られたプリント基板P’は非常に薄くフレキシブルなものとなる。撓みやすく、曲げる部分のある回路構成も銅箔の如く容易に行われ、種々の加工が容易となる。 The printed circuit board P ′ obtained by the manufacturing method according to the embodiment of the present invention is very thin and flexible. A circuit configuration that is easy to bend and has a portion to be bent is easily performed like a copper foil, and various processing is facilitated.

本発明の実施の形態の製法によれば、更に図4Dにおいてポリイミドカバ−シ−ト4の上に導電性の材料(例えばアルミ二ウム)がスパッタされて、図示しないがアルミ薄膜が形成される。これにより、外部から内部への、及び内部から外部への電磁波シ−ルドを行うことができる。 According to the manufacturing method of the embodiment of the present invention, a conductive material (for example, aluminum) is further sputtered onto the polyimide cover sheet 4 in FIG. 4D to form an aluminum thin film (not shown). . Thereby, the electromagnetic wave shield from the outside to the inside and from the inside to the outside can be performed.

以上、発明の実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術思想に基づいて種々の変形が可能である。 As mentioned above, although embodiment of invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば、以上の実施の形態では、回路パタ−ンを形成する導電性の材料として銅を用いたが、これに限ることなく他の導電性材料、例えば、銀(Ag)や金(Au)であってもよい。 For example, in the above embodiment, copper is used as the conductive material for forming the circuit pattern. However, the present invention is not limited to this, and other conductive materials such as silver (Ag) and gold (Au) are used. There may be.

また、回路パターンを所定の厚さにする場合にメッキする材料は、所定の回路パターンを形成した導電性材料と同じでも良いし、異なっても良い。 Further, the material to be plated when the circuit pattern has a predetermined thickness may be the same as or different from the conductive material on which the predetermined circuit pattern is formed.

また、回路パタ−ンとしての銅表面に酸化防止のためにニッケル(Ni)、銀(Ag)または金(Au)をメッキするようにしても良い。これは、絶縁基体を形成する前の面でも、メッキ用電極層を除去した後の面でも同様である。実施の形態において、絶縁基体を形成する前の面は、図3Bに示すように、有機高分子材料の絶縁層1の間に回路パターン2が形成され銅の表面が表れている。また、メッキ用電極層を除去した後の面でも、図4Cに示すように、有機高分子材料の絶縁層1の間に回路パターン2が形成され銅の表面が表れている。これらの面に酸化防止処置を施すと良い。本発明の回路パタ−ンにはこのような場合も含むものとする。 Further, nickel (Ni), silver (Ag), or gold (Au) may be plated on the copper surface as a circuit pattern to prevent oxidation. This is the same on the surface before the insulating base is formed and on the surface after the plating electrode layer is removed. In the embodiment, as shown in FIG. 3B, a circuit pattern 2 is formed between the insulating layers 1 of the organic polymer material on the surface before the insulating base is formed, and the copper surface appears. Further, even on the surface after the plating electrode layer is removed, as shown in FIG. 4C, the circuit pattern 2 is formed between the insulating layers 1 of the organic polymer material, and the copper surface appears. These surfaces may be subjected to an antioxidant treatment. The circuit pattern of the present invention includes such a case.

また、感光性有機高分子材料として、感光性ポリイミドを用いたが感光性エポキシ樹脂でも良い。 Moreover, although photosensitive polyimide was used as the photosensitive organic polymer material, photosensitive epoxy resin may be used.

また、蒸着重合させて得られる有機高分子材料としてポリイミドを用いたが、他の蒸着重合させて得られる有機高分子材料、例えばポリ尿素やポリアミドであってもよい。モノマ−の種類を変えて、種々の有機高分子材料の蒸着重合物が得られ、その特性に応じて用いることができる Moreover, although polyimide was used as the organic polymer material obtained by vapor deposition polymerization, other organic polymer materials obtained by vapor deposition polymerization, such as polyurea and polyamide, may be used. Vapor deposition polymers of various organic polymer materials can be obtained by changing the type of monomer, and can be used according to the characteristics

また、メッキ用電極材料として、アルミニウムを用いたが、亜鉛、スズ、鉛でも良い。
電極としての導電性を有し溶剤(実施の形態では、強アルカリ液であったが、強酸液でも良い)に浸漬することによってプリント基板と転写基板を簡単に剥離できるものであれば良い。強アルカリ液としては、水酸化ナトリウム水溶液、水酸化アンモニウム水溶液、水酸化バリウム水溶液で良い。また、強酸液としては、硫酸水溶液、硝酸水溶液、塩酸水溶液で良い。種々の導電材料と溶剤の組み合わせを、その特性に応じて用いることができる
Moreover, although aluminum was used as the electrode material for plating, zinc, tin, or lead may be used.
Any material may be used as long as it has conductivity as an electrode and can be easily peeled off from the printed board by being immersed in a solvent (in the embodiment, it was a strong alkaline solution, but may be a strong acid solution). The strong alkaline solution may be a sodium hydroxide aqueous solution, an ammonium hydroxide aqueous solution, or a barium hydroxide aqueous solution. The strong acid solution may be a sulfuric acid aqueous solution, a nitric acid aqueous solution, or a hydrochloric acid aqueous solution. Combinations of various conductive materials and solvents can be used depending on their properties

また、転写基板材料としてステンレスを用いたが、チタン、ニッケル、白金でも良い。溶剤に対する耐蝕性があれば良いので、種々溶剤との組み合わせをその特性に応じて用いることができる。 Further, although stainless steel is used as the transfer substrate material, titanium, nickel, or platinum may be used. Any combination of various solvents can be used depending on the characteristics, as long as they have corrosion resistance to the solvent.

本発明の実施の形態に適用される蒸着重合装置の模式図である。It is a schematic diagram of the vapor deposition polymerization apparatus applied to embodiment of this invention. 本発明の実施の形態の製造方法によるプリント基板の回路パタ−ンの反転パタ−ン形成前の製造工程をA〜Cの順で示す断面図である。It is sectional drawing which shows the manufacturing process before the inversion pattern formation of the circuit pattern of the printed circuit board by the manufacturing method of embodiment of this invention in order of AC. 本発明の実施の形態の製造方法によるプリント基板の回路パタ−ンの反転パタ−ン形成後の製造工程をA〜Cの順で示す断面図である。It is sectional drawing which shows the manufacturing process after the reverse pattern formation of the circuit pattern of the printed circuit board by the manufacturing method of embodiment of this invention in order of AC. 本発明の実施の形態の製造方法によるプリント基板の強アルカリ液浸漬工程をA〜Dの順で示す断面図である。It is sectional drawing which shows the strong alkaline liquid immersion process of the printed circuit board by the manufacturing method of embodiment of this invention in order of AD. 本発明の実施の形態の製造方法によるプリント基板の拡大断面図である。It is an expanded sectional view of the printed circuit board by the manufacturing method of an embodiment of the invention. 本発明の実施の形態のプリント基板の製造工程の一部を示し、強アルカリ液に中間物を浸漬した状況を示す断面図である。It is sectional drawing which shows a part of manufacturing process of the printed circuit board of embodiment of this invention, and shows the condition where the intermediate was immersed in the strong alkali liquid. 比較のための従来の製法のフレキシブルプリント基板の一例の断面図である 。It is sectional drawing of an example of the flexible printed circuit board of the conventional manufacturing method for a comparison. 比較のための従来の製法のフレキシブルプリント基板の一例の拡大断面図である。It is an expanded sectional view of an example of the flexible printed circuit board of the conventional manufacturing method for a comparison. 従来のプリント基板の回路パタ−ン形成前の製造工程をA〜Cの順で示す断面図である。It is sectional drawing which shows the manufacturing process before circuit pattern formation of the conventional printed circuit board in order of AC. 従来のプリント基板の回路パタ−ン形成後の製造工程をA〜Cの順で示す断面図である。It is sectional drawing which shows the manufacturing process after the circuit pattern formation of the conventional printed circuit board in order of AC. 回路パタ−ンの一例を示す平面図である。It is a top view which shows an example of a circuit pattern.

符号の説明Explanation of symbols

1・・・絶縁層、2・・・回路パタ−ン、3・・・絶縁層(絶縁基体)、4・・・絶縁層(カバ−シ−ト)、11・・・絶縁基体、12・・・接着剤、13・・・銅板、14・・・回路パタ−ン、15・・・接着剤、16・・・絶縁層(カバ−シ−ト)、16a・・・凹部、17・・・製造用余白部分
20・・・メッキ用電極層、21・・・転写基板、23・・・溶剤槽、24・・・強アルカリ液(例えば、水酸化ナトリウム水溶液)
30・・・真空槽壁、32・・・基板(ガラスエポキシ板)、34・・・PMDA(無水ピロメリト酸)、36・・・ODA(オキシジアニリン)
60・・・蒸着重合装置
DESCRIPTION OF SYMBOLS 1 ... Insulating layer, 2 ... Circuit pattern, 3 ... Insulating layer (insulating base | substrate), 4 ... Insulating layer (cover sheet), 11 ... Insulating base | substrate, 12. ..Adhesive, 13 ... Copper plate, 14 ... Circuit pattern, 15 ... Adhesive, 16 ... Insulating layer (cover sheet), 16a ... Recess, 17 ... -Manufacturing blank portion 20 ... Electrode layer for plating, 21 ... Transfer substrate, 23 ... Solvent tank, 24 ... Strong alkaline solution (for example, sodium hydroxide aqueous solution)
30 ... Vacuum chamber wall, 32 ... Substrate (glass epoxy plate), 34 ... PMDA (pyromellitic anhydride), 36 ... ODA (oxydianiline)
60 ... Vapor deposition polymerization apparatus

Claims (15)

(A)転写基板の一方の面にメッキ用電極層を形成する工程;
(B)前記メッキ用電極層の面上に蒸着重合法により感光性の有機高分子材料を絶縁層として蒸着する工程;
(C)前記絶縁層に所定の回路パタ−ンに対応するマスクを宛がう工程;
(D)前記マスクを介して前記絶縁層を露光し、現像により所定の回路パタ−ンの反転パターンを形成する工程;
(E)前記回路パタ−ンの反転パターンに導電性の材料をメッキすることにより回路パターンを形成する工程;
(F)前記回路パタ−ン上に蒸着重合法により有機高分子材料を絶縁基体として蒸着させる工程;
(G)前記メッキ用電極層を強アルカリ液又は強酸液で除去することにより前記回路パタ−ンが転写された絶縁基体を得る工程;及び
(H)前記回路パタ−ンが転写された絶縁基体に蒸着重合法により有機高分子材料を絶縁層として蒸着させる工程;
から成ることを特徴とするプリント基板の製造方法。
(A) forming a plating electrode layer on one surface of the transfer substrate;
(B) depositing a photosensitive organic polymer material as an insulating layer on the surface of the electrode layer for plating by vapor deposition polymerization;
(C) assigning a mask corresponding to a predetermined circuit pattern to the insulating layer;
(D) exposing the insulating layer through the mask and forming a reversal pattern of a predetermined circuit pattern by development;
(E) forming a circuit pattern by plating a conductive material on the inverted pattern of the circuit pattern;
(F) a step of vapor-depositing an organic polymer material as an insulating substrate on the circuit pattern by vapor deposition polymerization;
(G) a step of obtaining an insulating substrate to which the circuit pattern is transferred by removing the plating electrode layer with a strong alkaline solution or a strong acid solution; and (H) an insulating substrate to which the circuit pattern is transferred. Depositing an organic polymer material as an insulating layer by vapor deposition polymerization;
A printed circuit board manufacturing method comprising:
(A)転写基板の一方の面にメッキ用電極層を形成する工程;
(B)前記メッキ用電極層の面上に蒸着重合法により感光性の有機高分子材料を絶縁層として蒸着する工程;
(C)前記絶縁層に所定の回路パタ−ンに対応するマスクを宛がう工程;
(D)前記マスクを介して前記絶縁層を露光し、現像により所定の回路パタ−ンの反転パターンを形成する工程;
(E)前記回路パタ−ンの反転パターンに導電性の材料をメッキすることにより回路パターンを形成する工程;
(F)前記導電性の材料で成る回路パタ−ン上に導電性の材料をメッキして前記所定の回路パターンを所定の厚さとする工程;
(G)前記回路パタ−ン上に蒸着重合法により有機高分子材料を絶縁基体として蒸着させる工程;
(H)前記メッキ用電極層を強アルカリ液又は強酸液で除去することにより前記回路パタ−ンが転写された絶縁基体を得る工程;及び
(I)前記回路パタ−ンが転写された絶縁基体に蒸着重合法により有機高分子材料を絶縁層として蒸着させる工程;
から成ることを特徴とするプリント基板の製造方法。
(A) forming a plating electrode layer on one surface of the transfer substrate;
(B) depositing a photosensitive organic polymer material as an insulating layer on the surface of the electrode layer for plating by vapor deposition polymerization;
(C) assigning a mask corresponding to a predetermined circuit pattern to the insulating layer;
(D) exposing the insulating layer through the mask and forming a reversal pattern of a predetermined circuit pattern by development;
(E) forming a circuit pattern by plating a conductive material on the inverted pattern of the circuit pattern;
(F) a step of plating a conductive material on a circuit pattern made of the conductive material so that the predetermined circuit pattern has a predetermined thickness;
(G) a step of vapor-depositing an organic polymer material as an insulating substrate on the circuit pattern by vapor deposition polymerization;
(H) a step of obtaining an insulating substrate to which the circuit pattern is transferred by removing the plating electrode layer with a strong alkaline solution or a strong acid solution; and (I) an insulating substrate to which the circuit pattern is transferred. Depositing an organic polymer material as an insulating layer by vapor deposition polymerization;
A printed circuit board manufacturing method comprising:
前記導電性の材料で成る回路パタ−ン上に導電性の材料をメッキして前記所定の回路パターンを所定の厚さとするとき、前記回路パターンと同じ導電性の材料でメッキすることを特徴とする請求項2に記載のプリント基板の製造方法。 When a conductive material is plated on the circuit pattern made of the conductive material so that the predetermined circuit pattern has a predetermined thickness, the conductive pattern is plated with the same conductive material as the circuit pattern. A printed circuit board manufacturing method according to claim 2. 前記導電性の材料で成る回路パタ−ン上に導電性の材料をメッキして前記所定の回路パターンを所定の厚さとするとき、前記回路パターンと異なる導電性の材料でメッキすることを特徴とする請求項2に記載のプリント基板の製造方法。 When a conductive material is plated on the circuit pattern made of the conductive material so that the predetermined circuit pattern has a predetermined thickness, the conductive pattern is plated with a conductive material different from the circuit pattern. A printed circuit board manufacturing method according to claim 2. 前記導電性の材料は、銅、金及び銀のいずれかであることを特徴とする請求項1乃至4のいずれかに記載のプリント基板の製造方法。 The method for manufacturing a printed circuit board according to claim 1, wherein the conductive material is one of copper, gold, and silver. 前記導電性の材料が銅の場合、その酸化防止のために、金、銀、ニッケルのいずれかをメッキしたことを特徴とする請求項5に記載のプリント基板の製造方法。 6. The method of manufacturing a printed circuit board according to claim 5, wherein when the conductive material is copper, gold, silver, or nickel is plated to prevent oxidation. 前記所定の回路パタ−ンの表面に酸化防止のためにニッケル、金、銀のいずれかひとつをメッキしたことを特徴とする請求項1乃至6のいずれかに記載のプリント基板の製造方法。 7. The method of manufacturing a printed circuit board according to claim 1, wherein the surface of the predetermined circuit pattern is plated with one of nickel, gold, and silver to prevent oxidation. 前記メッキ用電極層を強アルカリ液又は強酸液で除去した後に現れる前記所定の回路パタ−ンの表面に酸化防止のためにニッケル、金、銀のいずれかひとつをメッキしたことを特徴とする請求項1乃至7のいずれかに記載のプリント基板の製造方法。 The surface of the predetermined circuit pattern that appears after the electrode layer for plating is removed with a strong alkaline solution or a strong acid solution is plated with any one of nickel, gold, and silver to prevent oxidation. Item 8. A printed circuit board manufacturing method according to any one of Items 1 to 7. 前記絶縁層上に金属薄膜を形成することを特徴とする請求項1乃至8のいずれかに記載のプリント基板の製造方法。 9. The method for manufacturing a printed circuit board according to claim 1, wherein a metal thin film is formed on the insulating layer. 前記有機高分子材料はポリイミド、ポリアミド及びポリ尿素のいずれかであることを特徴とする請求項1乃至9のいずれかに記載のプリント基板の製造方法。 The method for manufacturing a printed circuit board according to any one of claims 1 to 9, wherein the organic polymer material is any one of polyimide, polyamide, and polyurea. 前記感光性の有機高分子材料が感光性ポリイミド、感光性エポキシ樹脂のいずれかであることを特徴とする請求項1乃至10のいずれかに記載のプリント基板の製造方法。 The method for producing a printed circuit board according to claim 1, wherein the photosensitive organic polymer material is one of photosensitive polyimide and photosensitive epoxy resin. 前記メッキ用電極層がアルミニウム、亜鉛、スズ、鉛のいずれかであることを特徴とする請求項1乃至11のいずれかに記載のプリント基板の製造方法。 The method for manufacturing a printed circuit board according to any one of claims 1 to 11, wherein the plating electrode layer is any one of aluminum, zinc, tin, and lead. 前記転写基板材料がステンレス、チタン、ニッケル、白金のいずれかであることを特徴とする請求項1乃至12のいずれかに記載のプリント基板の製造方法。 The method of manufacturing a printed circuit board according to any one of claims 1 to 12, wherein the transfer substrate material is any one of stainless steel, titanium, nickel, and platinum. 前記強アルカリ液が、水酸化ナトリウム水溶液、水酸化アンモニウム水溶液、水酸化バリウム水溶液のいずれかであることを特徴とする請求項1乃至13のいずれかに記載のプリント基板の製造方法。 The method for producing a printed circuit board according to any one of claims 1 to 13, wherein the strong alkali solution is any one of an aqueous sodium hydroxide solution, an aqueous ammonium hydroxide solution, and an aqueous barium hydroxide solution. 前記強酸液が、硫酸水溶液、硝酸水溶液、塩酸水溶液のいずれかであることを特徴とする請求項1乃至13のいずれかに記載のプリント基板の製造方法。 The method for producing a printed circuit board according to any one of claims 1 to 13, wherein the strong acid solution is any one of a sulfuric acid aqueous solution, a nitric acid aqueous solution, and a hydrochloric acid aqueous solution.
JP2005375689A 2005-12-27 2005-12-27 Manufacturing method of printed board Pending JP2007180193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375689A JP2007180193A (en) 2005-12-27 2005-12-27 Manufacturing method of printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375689A JP2007180193A (en) 2005-12-27 2005-12-27 Manufacturing method of printed board

Publications (1)

Publication Number Publication Date
JP2007180193A true JP2007180193A (en) 2007-07-12

Family

ID=38305102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375689A Pending JP2007180193A (en) 2005-12-27 2005-12-27 Manufacturing method of printed board

Country Status (1)

Country Link
JP (1) JP2007180193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716988A (en) * 2013-10-30 2014-04-09 胜宏科技(惠州)股份有限公司 Multi-coating circuit board and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716988A (en) * 2013-10-30 2014-04-09 胜宏科技(惠州)股份有限公司 Multi-coating circuit board and production method thereof

Similar Documents

Publication Publication Date Title
US8092696B2 (en) Method for manufacturing printed circuit board
WO2007043666A1 (en) Process for producing polyimide film with copper wiring
JPWO2007111268A1 (en) Method for producing copper wiring polyimide film and copper wiring polyimide film
US7211332B2 (en) Laminate
JP2006278950A (en) Printed circuit board and its manufacturing method
WO2019201145A1 (en) Easy-to-peel carrier foil, preparation method therefor, and application thereof
US20090266589A1 (en) Process for producing metal wiring board
KR101203308B1 (en) A two layer film, a method of manufacturing a two layer film, and a method of manufacturing a printed circuit board
JP5164465B2 (en) Resin substrate
US7931818B2 (en) Process of embedded circuit structure
JP7311839B2 (en) Method for manufacturing copper-clad laminate
JP2007180193A (en) Manufacturing method of printed board
JP6323261B2 (en) Manufacturing method of flexible copper wiring board and flexible copper-clad laminate with support film used therefor
JP2007180192A (en) Printed board and manufacturing method therefor
JP2003078234A (en) Printed wiring board and its manufacturing method
JP2007081297A (en) Printed board and its manufacturing method
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
JP5276950B2 (en) Method for manufacturing circuit wiring board
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
JP2007134536A (en) Manufacturing method of printed circuit board
CN112911817B (en) Manufacturing method of flexible copper clad laminate
JP2021172006A (en) Copper-clad laminate, and method for manufacturing copper-clad laminate
JP2009004588A (en) Copper clad polyimide substrate
JP2007134695A (en) Manufacturing method of metal wiring heat resistant resin board
JP2006179827A (en) Board material for flexible board, flexible board employing same, and method of manufacturing them

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071030