JP2007179846A - Manufacturing method of microporous polyolefin-based diaphragm - Google Patents

Manufacturing method of microporous polyolefin-based diaphragm Download PDF

Info

Publication number
JP2007179846A
JP2007179846A JP2005376370A JP2005376370A JP2007179846A JP 2007179846 A JP2007179846 A JP 2007179846A JP 2005376370 A JP2005376370 A JP 2005376370A JP 2005376370 A JP2005376370 A JP 2005376370A JP 2007179846 A JP2007179846 A JP 2007179846A
Authority
JP
Japan
Prior art keywords
silicon compound
polyolefin
diaphragm
producing
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005376370A
Other languages
Japanese (ja)
Other versions
JP4351673B2 (en
Inventor
Kyung Jin Ko
ジン コ キョン
Chang Yong Lee
ヨン リー チャン
Jae Won Yang
ウォン ヤン ジャエ
Ki Sun Choi
スン チョイ キ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOUBLE SCOPE KK
Original Assignee
DOUBLE SCOPE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOUBLE SCOPE KK filed Critical DOUBLE SCOPE KK
Priority to JP2005376370A priority Critical patent/JP4351673B2/en
Publication of JP2007179846A publication Critical patent/JP2007179846A/en
Application granted granted Critical
Publication of JP4351673B2 publication Critical patent/JP4351673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of easily controlling size of minute pores by using a silicon compound having a hydrophobic group and a hydrophilic group as a pore formation additive, and used for highly distributing a ratio of open cells directly related to ventilation capability, in a manufacturing method of a microporous polyolefin-based diaphragm. <P>SOLUTION: This manufacturing method of a microporous polyolefin-based diaphragm includes steps of: mixing 20-80 wt.% of a silicon compound having a hydrophobic group and a hydrophilic group in a polyethylene-mixed resin having a melt index of 0.01-0.5; melting the mixture at a temperature of 200-270°C by mixing it in an extruding screw and thereafter passing it through a T-die and a cast roll to form a sheet having a thickness of 300-600 μm; stretching the sheet four times to seven times in both the vertical and horizontal axis directions to manufacture a film having a thickness of 10-25 μm; and removing the silicon compound from the film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微多孔性ポリオレフィン系隔膜の製造方法に係り、より詳しくは、リチウムイオン電池のような高性能2次電池に用いられる微多孔性ポリオレフィン系隔膜を製造するに際して、疎水基及び親水基を有するシリコン化合物を気孔形成添加物として使用することにより、隔膜の内部及び表面に形成される微細気孔の大きさをより容易に制御することができ、特に通気性と直接関連のあるオープンセル(Open cell)の割合を高く分布させることができる隔膜の製造方法に関する。   The present invention relates to a method for producing a microporous polyolefin diaphragm, and more specifically, in producing a microporous polyolefin diaphragm used in a high performance secondary battery such as a lithium ion battery, a hydrophobic group and a hydrophilic group. By using a silicon compound having a pore-forming additive, it is possible to more easily control the size of fine pores formed in and on the surface of the diaphragm, and in particular, an open cell directly related to air permeability ( The present invention relates to a method for producing a diaphragm capable of distributing a high percentage of open cells.

近年、電子産業の発達に伴い、リチウムイオン電池やリチウムイオンポリマー電池などのような高性能2次電池への需要が大いに増加しつつある。例えば、携帯電話や携帯用情報端末機器、PDA、デジタルカメラ、ノート型パソコン、ブルートゥース(Bluetooth)などはいずれもこのような高性能2次電池を電源として用いており、今後、医療用、軍事用など多様な分野へと2次電池の応用分野が広がっていくことと見込まれる。   In recent years, with the development of the electronic industry, the demand for high performance secondary batteries such as lithium ion batteries and lithium ion polymer batteries has been greatly increasing. For example, mobile phones, portable information terminal devices, PDAs, digital cameras, notebook computers, Bluetooth, etc. all use such high-performance secondary batteries as power sources. The application field of secondary batteries is expected to expand into various fields.

通常、再充電可能な2次電池は、大きく正極物質、負極物質、電解液、及び隔膜といった4通りの構成要素から構成されている。ここで、隔膜(セパレータ)は、膜の表面及び内部に微細な気孔、即ち微多孔が広く分布されている薄いフィルムであり、正極物質と負極物質とが直接接触して起こる短絡現象を防止し、電解液を媒介としてイオン物質だけを自由に通過させる役割を果たす。また、短絡が生じると、隔膜の内部の気孔を迅速に遮断する、いわゆるシャットダウン(Shutdown)機能を発揮して温度上昇による発火や爆発の恐れを阻止する。このように隔膜はイオン物質を円滑に通過させると共に、電解液を安定的に保持することにより、電池の安全性及び寿命を向上させる機能をする。   In general, a rechargeable secondary battery is mainly composed of four components such as a positive electrode material, a negative electrode material, an electrolytic solution, and a diaphragm. Here, the diaphragm (separator) is a thin film in which fine pores, that is, micropores are widely distributed on the surface and inside of the membrane, and prevents a short-circuit phenomenon caused by direct contact between the positive electrode material and the negative electrode material. It plays the role of allowing only ionic substances to freely pass through the electrolyte. In addition, when a short circuit occurs, a so-called shutdown function that quickly blocks pores inside the diaphragm is exhibited to prevent the possibility of ignition or explosion due to temperature rise. In this way, the diaphragm functions to improve the safety and life of the battery by allowing the ionic substance to pass smoothly and maintaining the electrolyte in a stable manner.

現在の技術的なレベルに照らしてみるとき、2次電池の構成要素のうち正極及び負極物質、そして電解液に対しては技術的にほとんど安定化ないし最適化段階に達していると認められるが、隔膜に対しては、まだ多くの部分において品質改善が求められている。よって、現在使用されている高性能2次電池の寿命及び品質を決める最も重要な技術的な要素は、つまり隔膜であると言え、隔膜の性能によって電池の品質及び寿命が左右されているのが現状である。   In light of the current technical level, it is recognized that among the components of the secondary battery, the positive and negative electrode materials and the electrolyte are technically almost stabilized or optimized. However, quality improvement is still required for many parts of the diaphragm. Therefore, it can be said that the most important technical factor that determines the life and quality of high-performance secondary batteries currently used is the diaphragm, and the quality and life of the battery depend on the performance of the diaphragm. Currently.

これまで、2次電池用微多孔性隔膜の主材料としては、電解液に対して安定しており、シャットダウン特性及び絶縁特性に優れているポリオレフィン系樹脂が多用されてきた。特に、湿式工程の製造方法を採択して単層構造の微多孔性隔膜を製造する場合は、ポリオレフィン系高分子樹脂の中でも分子量が極めて大きなポリエチレン樹脂を主に使用している。   Until now, as a main material of a microporous diaphragm for a secondary battery, a polyolefin-based resin that is stable against an electrolytic solution and excellent in shutdown characteristics and insulating characteristics has been frequently used. In particular, when a microporous diaphragm having a single layer structure is manufactured by adopting a wet process manufacturing method, a polyethylene resin having a very large molecular weight is mainly used among polyolefin polymer resins.

従来より知られている微多孔性ポリオレフィン系隔膜の製造方法は、下記の通りである。先ず、主材料、例えば、分子量の高いポリエチレン樹脂に気孔形成添加物として可塑剤やワックス類などを適宜な割合にて加え、これをホッパーを介して押出用スクリュー内に仕込んで溶融させた後、Tダイ(T-die)及びキャストロール(Casting roll)などを通過させて所定の幅及び厚さを有するシート(Sheet)を形成する。次いで、前記シートを縦軸及び横軸方向にそれぞれ延伸して所望の幅及び厚さを有する隔膜フィルムを得た後、このフィルムを溶剤(Solvent)に沈積させて前記気孔形成添加物を除去する。これにより、気孔形成添加物が溶出されながら、その位置に微細な気孔が形成されるようになり、その結果、微多孔性構造を有する隔膜が得られる。前記微多孔性隔膜は、熱固定及びコロナ(Corona)処理などの工程を経て所定の寸法に切断された後、2次電池用隔膜として用いられる。   A conventionally known method for producing a microporous polyolefin diaphragm is as follows. First, after adding a plasticizer or wax as a pore forming additive in an appropriate ratio to a main material, for example, a high molecular weight polyethylene resin, this is charged into an extrusion screw via a hopper and melted. A sheet having a predetermined width and thickness is formed by passing through a T-die and a casting roll. The sheet is then stretched in the vertical and horizontal directions to obtain a diaphragm film having a desired width and thickness, and then the film is deposited in a solvent to remove the pore-forming additive. . As a result, fine pores are formed at the positions while the pore-forming additive is eluted, and as a result, a diaphragm having a microporous structure is obtained. The microporous diaphragm is cut into a predetermined size through processes such as heat fixation and corona treatment, and then used as a secondary battery diaphragm.

一方、2次電池用隔膜の性能を決める最も重要な要素である気孔特性は、気孔の大きさ、気孔率及びオープンセルの割合などによって決められる。ここで、オープンセルは隔膜を貫通する気孔を意味し、通気性と直接関連する。ところが、かかる気孔特性は隔膜の製造工程の中で初期段階で大部分決められる。即ち、主材料と気孔形成添加物を配合及び混練する過程、そして溶融及び押出工程によってシートを形成する段階において大部分の気孔特性が決められるものである。特に、気孔形成添加物は気孔特性と最も密接な関連がある。しかしながら、従来は気孔形成添加物として主にパラフィンワックス、流動パラフィン、プロセスオイルなどの有機液相体を使用してきたが、かかる従来の方法では技術的に微細な気孔の大きさ及び分布を精密に制御するに限界があった。   On the other hand, the pore characteristics, which are the most important factors determining the performance of the secondary battery diaphragm, are determined by the pore size, the porosity, the ratio of open cells, and the like. Here, the open cell means a pore penetrating the diaphragm, and is directly related to air permeability. However, such pore characteristics are largely determined at an early stage in the manufacturing process of the diaphragm. That is, most of the pore characteristics are determined in the process of blending and kneading the main material and the pore-forming additive, and in the step of forming the sheet by the melting and extrusion process. In particular, the pore-forming additive is most closely related to the pore properties. However, in the past, organic liquid phases such as paraffin wax, liquid paraffin, and process oil have been mainly used as pore-forming additives. However, in such conventional methods, technically fine pore size and distribution are precisely measured. There was a limit to control.

したがって、本発明は、上記問題点に鑑みなされたもので、その目的は、微多孔性ポリオレフィン系隔膜の製造方法において、疎水基及び親水基を有するシリコン化合物を気孔形成添加物として使用することにより、微細気孔の大きさをより容易に制御でき、特に通気性と直接関連のあるオープンセルの割合を高く分布させる方法を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and its purpose is to use a silicon compound having a hydrophobic group and a hydrophilic group as a pore-forming additive in a method for producing a microporous polyolefin-based diaphragm. It is an object of the present invention to provide a method for controlling the size of fine pores more easily, and in particular, distributing a high proportion of open cells directly related to air permeability.

上記目的を達成するために、本発明は、溶融指数0.01乃至0.5のポリエチレン混合樹脂に疎水基及び親水基を有するシリコン化合物を前記ポリエチレン混合樹脂に対して20重量%から80重量%混合する段階と、前記混合物を押出用スクリュー内に混入して200℃乃至270℃の温度で溶融させた後、Tダイ及びキャストロールなどを通過させて厚さ300μm乃至600μmであるシートを形成する段階と、前記シートを縦軸及び横軸方向にそれぞれ4倍乃至7倍延伸させて厚さ10μm乃至25μmのフィルムを製造する段階と、前記フィルムを有機溶媒に沈積させて前記シリコン化合物を取り除く段階と、を含むことを特徴とする。   In order to achieve the above object, the present invention provides a silicon compound having a hydrophobic group and a hydrophilic group in a polyethylene mixed resin having a melt index of 0.01 to 0.5 to 20 wt% to 80 wt% based on the polyethylene mixed resin. Mixing, mixing the mixture into an extrusion screw, melting the mixture at a temperature of 200 ° C. to 270 ° C., and passing through a T die and a cast roll to form a sheet having a thickness of 300 μm to 600 μm. A step of producing a film having a thickness of 10 μm to 25 μm by stretching the sheet 4 to 7 times in the vertical and horizontal directions, and a step of depositing the film in an organic solvent to remove the silicon compound. It is characterized by including these.

本発明によれば、疎水基及び親水基を有するシリコン化合物を気孔形成添加物として用いることにより、隔膜の表面及び内部に形成される微細気孔の大きさをより容易に制御することができ、特に通気性と直接関連のあるオープンセルの割合が高く分布されるように改善させるという効果がある。   According to the present invention, by using a silicon compound having a hydrophobic group and a hydrophilic group as a pore-forming additive, the size of the fine pores formed on the surface and inside of the diaphragm can be more easily controlled. There is an effect of improving so that the proportion of open cells directly related to the air permeability is highly distributed.

従って、本発明は高性能2次電池、特にリチウム電池の性能を改善するに大いに供されることと見込まれる。   Therefore, the present invention is expected to be greatly used to improve the performance of high performance secondary batteries, particularly lithium batteries.

以下、本発明についてより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は疎水基及び親水基を有するシリコン化合物を気孔形成添加物として使用することを特徴とする。前記シリコン化合物は下記の化1又は化2のように示される。   The present invention is characterized by using a silicon compound having a hydrophobic group and a hydrophilic group as a pore-forming additive. The silicon compound is represented by the following chemical formula 1 or chemical formula 2.

Figure 2007179846
Figure 2007179846

前記化1において、R1及びRはそれぞれ−H、−OH、−COOH、−CHCOOH、−NH、−SCOH、−CH、−Cの中で選択されたいずれか1つであって、RとRは同じでも異なっても良く、重合度1は10〜1,000である。 In Formula 1, R 1 and R 2 were each selected from —H, —OH, —COOH, —CH 3 COOH, —NH 2 , —SCO 3 H, —CH 3 , and —C 6 H 5 . In any one of them, R 1 and R 2 may be the same or different, and the degree of polymerization 1 is 10 to 1,000.

Figure 2007179846
Figure 2007179846

前記化2において、Rは親水基であって−OH、−COOH、−CHCOOH、−SCOHの中で選択されたいずれか1つであり、互いに同じ置換基でも相異なる置換基でもよい。また、Rは疎水基であって−H、−CH、−C、−NHの中で選択されたいずれか1つであって、互いに同じ置換基でも相異なる置換基でもよい。更に重合度m及びnはその和が10〜1,000である。 In the chemical formula 2, R 3 is a hydrophilic group and is any one selected from —OH, —COOH, —CH 3 COOH, and —SCO 3 H. But you can. R 4 is a hydrophobic group and is any one selected from —H, —CH 3 , —C 6 H 5 , and —NH 2 , and may be the same or different substituents. Good. Furthermore, the sum of polymerization degrees m and n is 10 to 1,000.

前記化1及び化2のシリコン化合物において、疎水基はシリコン化合物の撥水性を高め、親水基は吸湿性及び浸潤性などを高める。従って、前記シリコン化合物において親水基の置換割合が多くなると、大体気孔のサイズが大きくなり、疎水基の置換割合が多くなると、気孔のサイズが小さくなる。本発明の主材料であるポリエチレン樹脂は疎水性物質なので、親水基と混合されると、よく混ぜられず塊状になり、気孔のサイズが大きくなる。特に、化2のシリコン化合物は親水基及び疎水基がブロック化した構造からなるので、親水基及び疎水基の置換程度に応じて隔膜の内部及び表面の気孔サイズやオープンセルの分布、気孔率などを効率よく制御することができる。   In the chemical compounds 1 and 2, the hydrophobic group enhances the water repellency of the silicon compound, and the hydrophilic group enhances the hygroscopicity and the infiltration property. Therefore, when the substitution ratio of hydrophilic groups in the silicon compound is increased, the pore size is increased. When the substitution ratio of hydrophobic groups is increased, the pore size is decreased. Since the polyethylene resin which is the main material of the present invention is a hydrophobic substance, when it is mixed with a hydrophilic group, it is not mixed well and becomes a lump and the pore size increases. In particular, since the silicon compound of Chemical Formula 2 has a structure in which a hydrophilic group and a hydrophobic group are blocked, depending on the degree of substitution of the hydrophilic group and the hydrophobic group, the pore size in the inside and the surface of the diaphragm, the distribution of open cells, the porosity, etc. Can be controlled efficiently.

本発明の主材料は分子量が相異なる2つ以上のポリエチレン樹脂からなる混合樹脂であって、溶融指数が0.01乃至0.5であるものを用いることが望ましい。また、シリコン化合物の混合割合は前記ポリエチレン混合樹脂に対して20から80重量%を使用することができるが、シリコン化合物の割合が20重量%以下であれば、気孔の分布が極めて不良となるため隔膜の機能を遂行することができず、逆に80重量%以上であれば隔膜の強度があまり弱くなって望ましくない。本発明では隔膜が高い気孔分布率及び優秀なオープンセル形成割合を示しながら安定した機械的強度をも保つためには、シリコン化合物を50重量%から60重量%程度を投入するのが好適である。こうすれば、隔膜フィルム内部の全体としての気孔分布率が50%〜80%程度であり、これら気孔のうち通気性と直接関連のあるオープンセルの割合が90%〜95%レベルを維持することになる。   The main material of the present invention is preferably a mixed resin composed of two or more polyethylene resins having different molecular weights and having a melt index of 0.01 to 0.5. Further, the mixing ratio of the silicon compound can be 20 to 80% by weight with respect to the polyethylene mixed resin. However, if the ratio of the silicon compound is 20% by weight or less, the pore distribution becomes extremely poor. If the function of the diaphragm cannot be performed, and if it is 80% by weight or more, the strength of the diaphragm is too weak. In the present invention, in order to maintain a stable mechanical strength while the diaphragm shows a high pore distribution rate and an excellent open cell formation rate, it is preferable to add 50 to 60% by weight of a silicon compound. . In this way, the pore distribution rate as a whole inside the diaphragm film is about 50% to 80%, and the proportion of open cells directly related to air permeability among these pores is maintained at a level of 90% to 95%. become.

これにより、主材料であるポリエチレン混合樹脂に気孔形成添加物であるシリコン化合物を混合した後、従来の方法と同様に酸化防止剤などの添加剤を加え、これを押出用スクリューに混入して200℃乃至270℃の温度で溶融させた後、通常の方法でTダイ及びキャストロールなどを通過させて厚さ300μm乃至600μmのシートを形成する。   Thus, after mixing the silicon compound as the pore forming additive with the polyethylene mixed resin as the main material, an additive such as an antioxidant is added in the same manner as in the conventional method, and this is mixed into the screw for extrusion. After melting at a temperature of 270 ° C. to 270 ° C., a sheet having a thickness of 300 μm to 600 μm is formed by passing through a T-die, a cast roll and the like by a normal method.

ついで、前記シートを縦軸及び横軸方向にそれぞれ4倍乃至7倍延伸させて厚さ10μm乃至25μmであるフィルムを形成する。この際、前記延伸比率は延伸前シートの厚さ及び最終フィルムの厚さによって決められる。最後に、所定の厚さに延伸されたシートをヘキサン、サイクロヘキサン、塩化メチレン、メチルエチルケトンなどの有機溶媒に沈積してシリコン化合物を抽出し、更に二軸延伸工程及び熱固定工程などを経て2次電池用微多孔性隔膜が完成される。   Next, the sheet is stretched 4 to 7 times in the vertical and horizontal directions to form a film having a thickness of 10 to 25 μm. At this time, the stretching ratio is determined by the thickness of the sheet before stretching and the thickness of the final film. Finally, the sheet stretched to a predetermined thickness is deposited in an organic solvent such as hexane, cyclohexane, methylene chloride, methyl ethyl ketone, and the silicon compound is extracted, followed by a biaxial stretching process and a heat setting process. A microporous membrane for a battery is completed.

溶融指数(Melt Index)0.01乃至0.5であるポリエチレン混合樹脂に対して下記の化3のように示されるシリコン化合物(重合度1は10〜1,000)50重量%を添加し、この混合物を押出用スクリュー内で240℃〜250℃の温度で溶融混練した。   50% by weight of a silicon compound (degree of polymerization 1 is 10 to 1,000) represented by the following chemical formula 3 is added to a polyethylene mixed resin having a Melt Index of 0.01 to 0.5, This mixture was melt-kneaded in an extrusion screw at a temperature of 240 ° C to 250 ° C.

Figure 2007179846
Figure 2007179846

次いで、ギアポンプ及びTダイを介して前記混合物を押出して厚さ500μmのシートを形成し、このシートを連続的に80℃以下の温度で10m/minの速度でキャストロールを通過させて厚さ450μmのシートを形成した。   Next, the mixture is extruded through a gear pump and a T die to form a sheet having a thickness of 500 μm, and this sheet is continuously passed through a cast roll at a temperature of 80 ° C. or less at a speed of 10 m / min, and a thickness of 450 μm. Sheet was formed.

前記シートを110〜120℃の温度で縦方向は5倍、横方向は7倍の延伸比率で延伸し、延伸されたシートを90%以上のヘキサン溶液に2〜3分間沈積して前記シリコン化合物を取り除いた。   The silicon compound is stretched at a temperature of 110 to 120 ° C. at a stretching ratio of 5 times in the longitudinal direction and 7 times in the lateral direction, and the stretched sheet is deposited in a hexane solution of 90% or more for 2 to 3 minutes. Removed.

前記延伸シートを水とアルコールが7対3の割合で混合された沈積槽に沈積してから約10分後に取り出した後、熱固定チャンバーで延伸比率25%、熱固定温度120度の条件で延伸及び熱固定して微多孔性隔膜を完成した。   The stretched sheet was taken out about 10 minutes after being deposited in a sedimentation tank in which water and alcohol were mixed at a ratio of 7: 3, and then stretched in a heat setting chamber at a stretching ratio of 25% and a heat setting temperature of 120 degrees. And heat setting to complete a microporous diaphragm.

前記微多孔性隔膜に対して各種気孔特性を測定した結果、膜厚さが10〜12μmであり、気孔の大きさは100〜300nmで、気孔率が65%、オープンセル形成率が93%であることが認められた。   As a result of measuring various pore characteristics with respect to the microporous diaphragm, the film thickness was 10 to 12 μm, the pore size was 100 to 300 nm, the porosity was 65%, and the open cell formation rate was 93%. It was recognized that there was.

気孔形成添加物として下記の化4のように示されるシリコン化合物を用いることを除いて前記実施例1と同様な方法で微多孔性隔膜を製造した。このとき、シリコン化合物(化4)の重合度はmが10〜100で、nが300〜400であるものを使用した。   A microporous diaphragm was produced in the same manner as in Example 1 except that a silicon compound represented by the following chemical formula 4 was used as a pore-forming additive. At this time, the polymerization degree of the silicon compound (Chemical Formula 4) was that m was 10 to 100 and n was 300 to 400.

Figure 2007179846
Figure 2007179846

前記微多孔性隔膜に対して各種気孔特性を測定した結果、膜厚さが10〜12μmであり、気孔の大きさは50〜200nmで、気孔率が63%、オープンセル形成率が91%であることが認められた。   As a result of measuring various pore characteristics with respect to the microporous diaphragm, the film thickness was 10 to 12 μm, the pore size was 50 to 200 nm, the porosity was 63%, and the open cell formation rate was 91%. It was recognized that there was.

Claims (5)

高性能2次電池に用いられる微多孔性ポリオレフィン系隔膜の製造方法において、
溶融指数0.01乃至0.5のポリエチレン混合樹脂に疎水基及び親水基を有するシリコン化合物を前記ポリエチレン混合樹脂に対して20重量%から80重量%混合する段階と、
前記混合する段階で混合された混合物を押出用スクリュー内に混入して200℃乃至270℃の温度で溶融させた後、Tダイ及びキャストロールを通過させて厚さ300μm乃至600μmであるシートを形成する段階と、
前記シートを縦軸及び横軸方向にそれぞれ4倍乃至7倍延伸させて厚さ10μm乃至25μmのフィルムを製造する段階と、
前記フィルムを有機溶媒に沈積させて前記シリコン化合物を取り除く段階と、を含むことを特徴とするポリオレフィン系微多孔性隔膜の製造方法。
In a method for producing a microporous polyolefin diaphragm used in a high performance secondary battery,
Mixing a silicon compound having a hydrophobic group and a hydrophilic group in a polyethylene mixed resin having a melt index of 0.01 to 0.5 with 20 wt% to 80 wt% with respect to the polyethylene mixed resin;
The mixture mixed in the mixing step is mixed in an extrusion screw, melted at a temperature of 200 ° C. to 270 ° C., and then passed through a T die and a cast roll to form a sheet having a thickness of 300 μm to 600 μm. And the stage of
Stretching the sheet 4 to 7 times in the vertical and horizontal directions, respectively, to produce a film having a thickness of 10 μm to 25 μm;
Depositing the film in an organic solvent to remove the silicon compound, and a method for producing a polyolefin-based microporous diaphragm.
前記シリコン化合物は、下記の化1に示す化合物を用いることを特徴とする請求項1記載のポリオレフィン系微多孔性隔膜の製造方法。
Figure 2007179846
(ここで、R1及びRはそれぞれ−H、−OH、−COOH、−CHCOOH、−NH、−SCOH、−CH、−Cの中で選択されたいずれか1つであって、RとRは互いに同じでも異なっても良く、重合度1は10〜1,000である。)
2. The method for producing a polyolefin microporous diaphragm according to claim 1, wherein the silicon compound is a compound represented by the following chemical formula 1.
Figure 2007179846
(Where R 1 and R 2 are each selected from —H, —OH, —COOH, —CH 3 COOH, —NH 2 , —SCO 3 H, —CH 3 , —C 6 H 5. R 1 and R 2 may be the same or different from each other, and the degree of polymerization 1 is 10 to 1,000.)
前記シリコン化合物は、下記の化2に示す化合物を用いることを特徴とする請求項1記載のポリオレフィン系微多孔性隔膜の製造方法。
Figure 2007179846
(ここで、Rは−OH、−COOH、−CHCOOH、−SCOHの中で選択されたいずれか1つであり、Rは−H、−CH、−C、−NHの中で選択されたいずれか1つであって、RとRは互いに同じ置換基でも相異なる置換基でもよく、重合度m及びnはその和が10〜1,000である。)
2. The method for producing a polyolefin microporous diaphragm according to claim 1, wherein the silicon compound is a compound represented by the following chemical formula 2.
Figure 2007179846
(Here, R 3 is any one selected from —OH, —COOH, —CH 3 COOH, and —SCO 3 H, and R 4 is —H, —CH 3 , —C 6 H 5. , —NH 2 , wherein R 3 and R 4 may be the same or different from each other, and the degree of polymerization m and n is 10 to 1,000 in total. .)
前記有機溶媒は、ヘキサン、サイクロヘキサン、塩化メチレン、メチルエチルケトンのうちから選択されたいずれか1種又は2種以上を用いることを特徴とする請求項1記載のポリオレフィン系微多孔性隔膜の製造方法。   2. The method for producing a polyolefin-based microporous membrane according to claim 1, wherein the organic solvent is one or more selected from hexane, cyclohexane, methylene chloride, and methyl ethyl ketone. 前記シリコン化合物は、ポリエチレン混合樹脂に対して50重量%から60重量%混合することを特徴とする請求項1記載のポリオレフィン系微多孔性隔膜の製造方法。   2. The method for producing a polyolefin-based microporous diaphragm according to claim 1, wherein the silicon compound is mixed in an amount of 50% to 60% by weight with respect to the polyethylene mixed resin.
JP2005376370A 2005-12-27 2005-12-27 Method for producing microporous polyolefin diaphragm Active JP4351673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005376370A JP4351673B2 (en) 2005-12-27 2005-12-27 Method for producing microporous polyolefin diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005376370A JP4351673B2 (en) 2005-12-27 2005-12-27 Method for producing microporous polyolefin diaphragm

Publications (2)

Publication Number Publication Date
JP2007179846A true JP2007179846A (en) 2007-07-12
JP4351673B2 JP4351673B2 (en) 2009-10-28

Family

ID=38304825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005376370A Active JP4351673B2 (en) 2005-12-27 2005-12-27 Method for producing microporous polyolefin diaphragm

Country Status (1)

Country Link
JP (1) JP4351673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244336A (en) * 2018-11-01 2019-01-18 上海恩捷新材料科技有限公司 Lithium ion battery separator and preparation method thereof is blended in a kind of wet process
CN109863623A (en) * 2016-10-24 2019-06-07 住友化学株式会社 Spacer and secondary cell comprising spacer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837130B1 (en) 2004-03-04 2008-06-12 미쓰비시 가가꾸 가부시키가이샤 Phthalocyanine composite, and photoconductive material, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image-forming apparatus using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863623A (en) * 2016-10-24 2019-06-07 住友化学株式会社 Spacer and secondary cell comprising spacer
KR20190070337A (en) * 2016-10-24 2019-06-20 스미또모 가가꾸 가부시키가이샤 A secondary battery including a separator and a separator
KR102073224B1 (en) * 2016-10-24 2020-02-05 스미또모 가가꾸 가부시키가이샤 Secondary battery including the separator and the separator
CN109863623B (en) * 2016-10-24 2020-08-25 住友化学株式会社 Spacer and secondary battery including the same
US10840492B2 (en) 2016-10-24 2020-11-17 Sumitomo Chemical Company, Limited Separator and secondary battery including the separator
CN109244336A (en) * 2018-11-01 2019-01-18 上海恩捷新材料科技有限公司 Lithium ion battery separator and preparation method thereof is blended in a kind of wet process
CN109244336B (en) * 2018-11-01 2022-03-11 上海恩捷新材料科技有限公司 Wet-process blending lithium ion battery diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JP4351673B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP6995845B2 (en) High wetting separator and its manufacturing method
KR20170101290A (en) Polyolefin microporous membrane, production method thereof and separator for battery
JP4267634B2 (en) Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same
TW201017960A (en) Sodium secondary battery
JP2009185093A (en) Polyolefin microporous film
CN106463679A (en) Battery separator and production method therefor
JPWO2016024533A1 (en) Polyolefin microporous membrane and method for producing the same, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013142156A (en) Polyolefin-based microporous film and method for producing the same
TW201014016A (en) Sodium secondary battery
JPWO2016024548A1 (en) Microporous membrane made of polyolefin and method for producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4351673B2 (en) Method for producing microporous polyolefin diaphragm
JP4563008B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
JP2020084084A (en) Polyolefin microporous film
CN106163791A (en) Laminated porous film and nonaqueous electrolytic solution secondary battery
KR101674985B1 (en) Composition for separator, separator formed by using the composition, and battery using the separator
JP4369921B2 (en) Microporous polyolefin diaphragm for secondary battery and method for producing the same
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5592745B2 (en) Polyolefin microporous membrane
KR20160088973A (en) Micro porous separator coated and its preparing method
JP6381754B1 (en) Non-aqueous electrolyte secondary battery
JP2007262203A (en) Microporous film made of polyolefin
KR20090009636A (en) Fabrication method of multi-component microporous film for lithium secondary battery separator and multi-component microporous film therefrom
CN110181837B (en) Production method for controlling aperture of lithium ion secondary battery diaphragm
KR101765817B1 (en) Separator for Secondary Battery with Improved Safety at High Temperature and Method of Making the Same
KR100776029B1 (en) Fine porous polyolefin separator for secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250