JP2007179385A - Apparatus and method for cae analysis - Google Patents

Apparatus and method for cae analysis Download PDF

Info

Publication number
JP2007179385A
JP2007179385A JP2005378329A JP2005378329A JP2007179385A JP 2007179385 A JP2007179385 A JP 2007179385A JP 2005378329 A JP2005378329 A JP 2005378329A JP 2005378329 A JP2005378329 A JP 2005378329A JP 2007179385 A JP2007179385 A JP 2007179385A
Authority
JP
Japan
Prior art keywords
analysis
finite element
element model
plastic strain
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005378329A
Other languages
Japanese (ja)
Other versions
JP4760374B2 (en
Inventor
Yasuteru Kawahara
康照 川原
Takashi Kumagai
孝士 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005378329A priority Critical patent/JP4760374B2/en
Publication of JP2007179385A publication Critical patent/JP2007179385A/en
Application granted granted Critical
Publication of JP4760374B2 publication Critical patent/JP4760374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately reflect the effect of plastic deformation (work hardening) that occurs during machining on CAE analysis. <P>SOLUTION: An apparatus for CAE analysis, which, for a subject of analysis including metallic parts manufactured from a metallic plate through machining, conducts nonlinear analysis using a finite element model of the subject of analysis on its behavior involving plastic deformation under preset analysis conditions, calculates plastic strain of the machined part of the finite element model using parameters about an angle formed between adjacent elements, the plate thickness of each element and the size of each element, as a pretreatment prior to the nonlinear analysis, for each element corresponding to at least the machined part of the finite element model. The plastic strain calculated is reflected on the initial state of the finite element model. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属板から成形加工を経て製造される金属部品を含む解析対象物に対するCAE解析用装置及び方法に関する。   The present invention relates to a CAE analysis apparatus and method for an analysis object including a metal part manufactured from a metal plate through a forming process.

従来から、実測値と解析値との整合性に応じて解析アルゴリズムを修正するCAE解析用装置が知られている(例えば、特許文献1参照)。
特開2005−182529号公報
Conventionally, a CAE analysis device that corrects an analysis algorithm in accordance with the consistency between an actual measurement value and an analysis value is known (see, for example, Patent Document 1).
JP 2005-182529 A

ところで、金属板から成形加工を経て製造される金属部品は、成形加工時に塑性変形するので、当該塑性変形による影響(加工硬化)を考慮した解析モデルを作成しなければ、精度の高い解析結果を得られない。   By the way, metal parts manufactured by forming from metal plates undergo plastic deformation at the time of forming, so if you do not create an analysis model that takes into account the influence of the plastic deformation (work hardening), you can obtain highly accurate analysis results. I can't get it.

そこで、本発明は、成形加工時に生ずる塑性変形による影響を簡易且つ適切に考慮して、精度の高い解析結果を得ることが可能なCAE解析用装置及び方法の提供を目的とする。   Accordingly, an object of the present invention is to provide an apparatus and method for CAE analysis that can obtain a highly accurate analysis result in a simple and appropriate manner taking into account the influence of plastic deformation that occurs during molding.

上記目的を達成するため、第1の発明は、金属板から成形加工を経て製造される金属部品を含む解析対象物に対して、該解析対象物の有限要素モデルを用いて、設定された解析条件下における塑性変形を伴う挙動について非線形解析を行うCAE解析用装置において、
前記非線形解析に先立つ前処理として、前記有限要素モデルにおける少なくとも前記成形加工された部位に対応する各要素に対して、隣接する要素間のなす角度、要素の板厚、及び、要素の大きさに関するパラメータを用いて、該加工部位における塑性歪を算出(推定演算)し、該算出した塑性歪を前記有限要素モデルの初期状態に反映させることを特徴とする。
In order to achieve the above object, the first invention provides an analysis set using a finite element model of an analysis target for an analysis target including a metal part manufactured from a metal plate through a forming process. In CAE analysis equipment that performs non-linear analysis of behavior with plastic deformation under conditions,
As pre-processing prior to the nonlinear analysis, with respect to each element corresponding to at least the molded part in the finite element model, the angle between adjacent elements, the plate thickness of the element, and the size of the element A parameter is used to calculate (estimate) the plastic strain at the machining site, and the calculated plastic strain is reflected in the initial state of the finite element model.

第2の発明は、第1の発明に係るCAE解析用装置において、前記算出した塑性歪を、対応する要素の初期歪として付与することを特徴とする。   A second invention is characterized in that, in the CAE analysis apparatus according to the first invention, the calculated plastic strain is applied as an initial strain of a corresponding element.

第3の発明は、金属板から成形加工を経て製造される金属部品を含む解析対象物に対して、該解析対象物の有限要素モデルを用いて、設定された荷重/拘束条件下における塑性変形を伴う挙動について非線形解析を行うCAE解析用方法において、
前記有限要素モデルにおける少なくとも前記成形加工された部位に対応する各要素に対して、隣接する要素間のなす角度、要素の板厚、及び、要素の大きさに関するパラメータを用いて、該加工部位における塑性歪を算出するステップと、
前記算出した塑性歪を前記有限要素モデルに反映させるステップと、
前記算出した塑性歪が反映された前記有限要素モデルを用いて、前記非線形解析を行うステップとを含むことを特徴とする。
According to a third aspect of the present invention, a plastic deformation under a set load / restraint condition is applied to an analysis object including a metal part manufactured by forming from a metal plate using a finite element model of the analysis object. In the CAE analysis method for performing nonlinear analysis on behavior with
For each element corresponding to at least the molded part in the finite element model, parameters relating to the angle formed between adjacent elements, the plate thickness of the element, and the size of the element are used. Calculating a plastic strain;
Reflecting the calculated plastic strain in the finite element model;
Performing the nonlinear analysis using the finite element model in which the calculated plastic strain is reflected.

本発明によれば、加工部位に対応する各要素に対して、隣接する要素間のなす角度、要素の板厚、及び、要素の大きさに関するパラメータを用いて、該加工部位における塑性歪を算出し、該算出した塑性歪を有限要素モデルの初期状態に反映させることで、成形加工時に生ずる塑性変形による影響を簡易且つ適切に考慮したCAE解析を実現することができる。   According to the present invention, for each element corresponding to a machining site, the plastic strain at the machining site is calculated using parameters relating to the angle between adjacent elements, the plate thickness of the element, and the size of the element. Then, by reflecting the calculated plastic strain in the initial state of the finite element model, it is possible to realize a CAE analysis that easily and appropriately considers the influence of plastic deformation that occurs during the forming process.

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明に係るCAE解析用装置は、以下詳説する機能を実現するソフトウェアが組み込まれたコンピューター(スーパーコンピューターを含む)により実現される。本発明に係るソフトウェアは、解析用ソフトウェアから切り離して前処理用ソフトウェアとして別個独立に実現されるが、既存の解析用ソフトウェア(例えば、LS−DYNA、ABAQUS、PAM−CRASH(共に登録商標)等)又は新規の解析用ソフトウェアに、前処理ソフトウェアとして組み込むこともできる。   The CAE analysis apparatus according to the present invention is realized by a computer (including a supercomputer) in which software for realizing the functions described in detail below is incorporated. The software according to the present invention is implemented separately from the analysis software and separately as preprocessing software, but existing analysis software (for example, LS-DYNA, ABAQUS, PAM-CRASH (both are registered trademarks), etc.) Alternatively, it can be incorporated as pre-processing software into new analysis software.

ユーザが直接利用するコンピューター端末は、ユーザインターフェースとして例えばマウスやキーボードを有し、解析用モデルや解析結果等を表示するディスプレイを有する。また、このコンピューター端末には、例えば社内LAN等により、負荷の大きな計算を実行するスーパーコンピューターや、解析モデルの基になるCADデータを供給するCAD端末等が接続されてよい。また、このコンピューター端末には、モデル作成用ソフトウェア(例えば、IDEAS、Hyper−Mesh(共に登録商標)等)がインストールされてよい。   A computer terminal used directly by a user has, for example, a mouse and a keyboard as a user interface, and a display for displaying an analysis model, an analysis result, and the like. The computer terminal may be connected to a super computer that executes a calculation with a large load, a CAD terminal that supplies CAD data that is a basis of an analysis model, and the like by an in-house LAN, for example. In addition, model creation software (for example, IDEAS, Hyper-Mesh (both are registered trademarks), etc.) may be installed in the computer terminal.

図1は、本発明によるCAE解析用方法に関連する主要処理の流れの概要を示すフローチャートである。   FIG. 1 is a flowchart showing an outline of the main processing flow related to the CAE analysis method according to the present invention.

モデル作成段階(ステップ100)では、モデル作成用ソフトウェアを用いて、解析対象となる構造物の有限要素モデル(CAE解析モデル)が作成される。解析対象となる構造物は、例えば車両全体のボデー構造や、ドア単体等任意である。有限要素モデルは、一般的に、これらの構造物のCADデータに基づいて作成される。   In the model creation stage (step 100), a finite element model (CAE analysis model) of a structure to be analyzed is created using model creation software. The structure to be analyzed is arbitrary, for example, a body structure of the entire vehicle or a door alone. A finite element model is generally created based on CAD data of these structures.

尚、一般的に、ドアやフロア等のような薄板(鋼板等)で形成される板金部材は、シェル要素でモデル化され、例えばエンジンのシリンダブロック等のような肉厚の鋳造部品は、ソリッド要素でモデル化される。尚、メッシュサイズ等については、解析の用途や計算負荷等を勘案して適宜決定される。各要素には、その対応する部材の板厚情報や材料特性(弾性係数E、G、ポアソン比ν、弾性域等)が付与される。解析中における各要素の応力−歪特性は、この材料特性によって決まる。   In general, a sheet metal member formed of a thin plate (steel plate or the like) such as a door or a floor is modeled by a shell element. For example, a thick cast part such as a cylinder block of an engine is solid. Modeled with elements. Note that the mesh size and the like are appropriately determined in consideration of the purpose of analysis and calculation load. Each element is given plate thickness information and material characteristics (elastic coefficients E, G, Poisson's ratio ν, elastic region, etc.) of the corresponding member. The stress-strain characteristics of each element during the analysis are determined by the material characteristics.

拘束条件設定段階(ステップ110)では、解析段階で用いられる拘束条件がモデル化(設定)される。例えば、各部品間の接続部は、その許容する自由度に応じて適切な拘束条件が付与される。また、板が重なり合う部分については接触条件が定義されてもよい。また、スポット溶接部については、スポット溶接をモデル化する梁要素やバネ要素等によりモデル化されてよい。   In the constraint condition setting stage (step 110), the constraint conditions used in the analysis stage are modeled (set). For example, an appropriate restraint condition is given to the connection part between each part according to the freedom degree which it accept | permits. Further, a contact condition may be defined for a portion where the plates overlap. The spot welded portion may be modeled by a beam element, a spring element, or the like that models spot welding.

荷重条件設定段階(ステップ120)では、解析段階で用いられる拘束条件が設定される。例えば、ある部材のある部位に荷重が加わる場合を解析する場合には、当該荷重が当該部位のシェル要素のノードに負荷される荷重条件が設定される。また、衝突解析であれば、衝突速度が荷重条件に含められ、変形過程における要素間(接続部)の破断条件が上記の拘束条件として更に定義されてもよい。   In the load condition setting stage (step 120), constraint conditions used in the analysis stage are set. For example, when analyzing a case where a load is applied to a certain part of a certain member, a load condition is set in which the load is applied to a node of a shell element of the part. In the case of the collision analysis, the collision speed may be included in the load condition, and the fracture condition between the elements (connection portions) in the deformation process may be further defined as the constraint condition.

初期歪設定段階(ステップ130)では、解析段階で用いられる有限要素モデルに対して、加工部における加工硬化の影響が反映されるように、初期歪が設定される。尚、この処理の詳細については後述する。   In the initial strain setting stage (step 130), the initial strain is set so that the influence of work hardening in the processed portion is reflected on the finite element model used in the analysis stage. Details of this process will be described later.

以上のステップ100〜130が終了すると、有限要素モデルや各種解析条件を含む解析用モデルが出来上がり、解析のための前処理が終了した状態となる。   When the above steps 100 to 130 are completed, an analysis model including a finite element model and various analysis conditions is completed, and the preprocessing for analysis is completed.

解析段階(ステップ140)では、上述の如く設定した解析条件の下、解析対象となる構造物の挙動が解析される。この解析では、解析目的に応じた解析アルゴリズムが適宜選択される。本実施例では、線形解析ではなく、解析対象となる構造物の塑性変形を伴う挙動について解析可能な非線形解析(非線形静的解析、動的構造解析・非線形構造過渡解析)が実行される。解析対象となる構造物の挙動とは、解析の目的に依存するが、例えば構造物全体の荷重―変形態様、各部位の荷重―変形態様、各部位の応力発生態様、各部位の破断の有無等を含む。解析結果は、所定のファイルに出力されるとともに、例えばディスプレイに表示され、色の異なる等高線等により応力の発生態様等が提示される。   In the analysis stage (step 140), the behavior of the structure to be analyzed is analyzed under the analysis conditions set as described above. In this analysis, an analysis algorithm corresponding to the analysis purpose is appropriately selected. In this embodiment, not a linear analysis but a nonlinear analysis (nonlinear static analysis, dynamic structural analysis / nonlinear structural transient analysis) capable of analyzing the behavior accompanied by plastic deformation of a structure to be analyzed is executed. The behavior of the structure to be analyzed depends on the purpose of the analysis.For example, the load-deformation mode of the entire structure, the load-deformation mode of each part, the stress generation mode of each part, and whether or not each part is broken Etc. The analysis result is output to a predetermined file and displayed on a display, for example, and a stress generation mode is presented by contour lines having different colors.

次に、上述の初期歪設定段階(ステップ130)での処理の詳細について、図2以降を参照して説明していく。   Next, details of the processing in the initial distortion setting stage (step 130) will be described with reference to FIG.

図2は、モデル作成段階で生成される、ある一部品の有限要素モデルを示す斜視図である。図2に示す部品は、薄板により製造される板金部材であり、シェル要素によりモデル化されている。一般的に、車両のドアやフロア等のような板金部材は、平らな素板(原料)を所定形状に切り出し、プレス機等により曲げ加工や絞り加工等を施して成形される。図2には、丸Xにより、かかる加工部位の一部を代表的に示す。このような加工部位では、所望の曲げ形状等に成形されていることから、必然的に塑性変形が生じている。   FIG. 2 is a perspective view showing a finite element model of a certain part generated in the model creation stage. The component shown in FIG. 2 is a sheet metal member manufactured by a thin plate, and is modeled by a shell element. Generally, a sheet metal member such as a door or a floor of a vehicle is formed by cutting a flat base plate (raw material) into a predetermined shape and performing bending or drawing with a press machine or the like. In FIG. 2, a part of such a processing site is representatively indicated by a circle X. In such a processed part, since it is formed into a desired bent shape or the like, plastic deformation inevitably occurs.

図3(A)は、塑性歪(初期歪)の無い要素の解析上での応力−歪特性を示す図である。要素は、設定された材料特性に従って、図3(A)に示すような弾性域と塑性域における挙動を呈する。即ち、要素は、図3(A)の点A(弾性限)を越えてまで(弾性域内では)、傾き(弾性係数E)で歪の増加に対して応力が線形的に増加し、弾性限の点Aを越えると(塑性域に移行すると)、歪の増加に対して応力が図3(A)に示すように非線形的に増加する。   FIG. 3A is a diagram showing stress-strain characteristics in analysis of an element having no plastic strain (initial strain). The element exhibits a behavior in an elastic region and a plastic region as shown in FIG. 3A in accordance with the set material properties. In other words, the stress increases linearly with respect to the increase in strain with an inclination (elastic coefficient E) until the point A (elastic limit) in FIG. When the point A is exceeded (when shifting to the plastic region), the stress increases nonlinearly as shown in FIG.

図3(B)は、加工硬化の発生過程の一例を示す図である。例えば加工時に材料が、弾性限Aを越えて、図3(B)の点Bのような塑性域に達すると、加工硬化が生じ、加工後、図3(B)の点Cに示すように、塑性歪εwhが生ずる。 FIG. 3B is a diagram illustrating an example of a process of occurrence of work hardening. For example, when the material exceeds the elastic limit A and reaches a plastic region such as point B in FIG. 3B during processing, work hardening occurs, and after processing, as indicated by point C in FIG. 3B. A plastic strain ε wh is generated.

図3(C)は、塑性歪εwhを有する要素の応力−歪特性を示す図である。要素に塑性歪εwhが与えられると、当該要素の弾性域(弾性限)が変化し、当該要素は、図3(C)に示すように、弾性限の点Bを越えてから、塑性域における非線形の挙動を示すことになる。 FIG. 3C is a diagram showing stress-strain characteristics of an element having a plastic strain εwh . When a plastic strain ε wh is applied to an element, the elastic region (elastic limit) of the element changes, and the element passes through the plastic region after exceeding the point B of the elastic limit as shown in FIG. Will show non-linear behavior.

このように、加工部位における要素は、加工硬化の影響で、同一の荷重条件に対して他の部位(加工を受けていない部位)における要素とは異なる挙動を示す。従って、解析の精度を高めるためには、加工時に生ずる塑性歪の影響(加工硬化の影響)を適切に考慮する必要がある。   As described above, the element in the processed part exhibits a behavior different from the element in the other part (the part not subjected to processing) due to the effect of work hardening. Therefore, in order to increase the accuracy of analysis, it is necessary to appropriately consider the influence of plastic strain (work hardening effect) that occurs during processing.

これに対して、成形加工を行う金型(プレス型)を同様に有限要素でモデル化して、有限要素法に基づく解析により成形加工時に生ずる塑性歪を算出し、当該塑性歪を、対応する各要素に予め付与することも考えられる。かかる方法によれば、加工部における要素に初期歪εwhが付与されるので、図3(C)に示したように、加工硬化の影響が反映された解析が可能である。しかしながら、かかる方法では、金型の有限要素モデルを作成し、金型による成形加工をシミュレートする荷重条件等を設定する必要があるので、作業工数が膨大となる。 On the other hand, the mold (press mold) for forming is similarly modeled with a finite element, and the plastic strain generated during the forming process is calculated by analysis based on the finite element method. It is also conceivable to give the element in advance. According to this method, since the initial strain epsilon wh is given to the elements in the processing unit, as shown in FIG. 3 (C), it is possible to analyze the effect of work hardening is reflected. However, in this method, it is necessary to create a finite element model of a mold and set a load condition or the like for simulating a molding process using the mold, and therefore the number of work steps becomes enormous.

そこで、本実施例では、以下で詳説するように、簡易的な手法で、加工時に生ずる塑性歪の影響(加工硬化の影響)を、解析に適切に反映させることを可能とする。   Therefore, in this embodiment, as will be described in detail below, it is possible to appropriately reflect the influence of plastic strain (the influence of work hardening) generated during processing by a simple method in the analysis.

図4は、図2における丸Xの曲げ加工部における2つの要素を示す図である。このように、有限要素モデルでは、曲げ加工部は、曲げに応じた角度をなす2つの要素によりモデル化されている。   FIG. 4 is a diagram showing two elements in the bent portion of the circle X in FIG. As described above, in the finite element model, the bending portion is modeled by two elements having an angle corresponding to the bending.

本実施例では、簡易的に、図5(A)に示す加工前の平らな状態から図5(B)に示す加工後の曲げ状態に至る際には、隣接する要素間で角度θが加工により生じたと仮定して、加工により生じた塑性歪εwhを、パラメータθと共にパラメータL1,L2,tを用いて所定の計算式f(関数f)により算出する。即ち、εwh=f(L1,L2,θ,t)。 In this embodiment, when the state before the processing shown in FIG. 5A is flat and the bending state after processing shown in FIG. 5B is reached, the angle θ is processed between adjacent elements. The plastic strain ε wh generated by the processing is calculated by a predetermined calculation formula f (function f) using the parameters L1, L2, and t together with the parameter θ. That is, ε wh = f (L1, L2, θ, t).

ここで、角度θは、隣接する要素が平面である場合にはそれらの法線ベクトルのなす角度の外角に相当する。尚、隣接する要素が平面で無い場合(例えば幾何的な歪がある場合)も考えられるので、この場合、角度θは、適宜近似して導出される。例えば3つの代表的なノードで形成される平面同士のなす角度として近似的に算出されてよいし、3つのノードの複数の組み合わせによる平均値であってもよい。パラメータL1,L2は、隣接する要素の各要素の長さであり、図5に示すように、角度θをなす方向成分の長さである。尚、実際には、要素は正確な矩形でない場合が多いので、そのような場合、パラメータL1,L2は、適宜近似して導出される。パラメータL1,L2は、各辺に沿った離散的な複数点同士で算出した距離の例えば平均値であってよい。パラメータtは、要素の板厚であり、基本的には同一部材については何れの部位についても同一であり、例えば設計値が用いられてよい。   Here, when the adjacent element is a plane, the angle θ corresponds to the outer angle formed by the normal vectors. In addition, since the case where an adjacent element is not a plane (for example, when there is a geometric distortion) is also conceivable, in this case, the angle θ is appropriately approximated and derived. For example, it may be approximately calculated as an angle formed by planes formed by three representative nodes, or may be an average value by a plurality of combinations of three nodes. The parameters L1 and L2 are the lengths of the adjacent elements, and are the lengths of the direction components forming the angle θ as shown in FIG. Actually, since the element is often not an accurate rectangle, in such a case, the parameters L1 and L2 are derived by approximation as appropriate. The parameters L1 and L2 may be, for example, average values of distances calculated at a plurality of discrete points along each side. The parameter t is the plate thickness of the element. Basically, the same member is the same for any part, and for example, a design value may be used.

実際には、図6に示すように、規則的にメッシュ分割されている箇所では、各要素に対して、隣接する要素は4つ存在する。例えば要素S1に着目すると、要素S1に対しては、4つの要素S2−S5が隣接している。従って、この場合、要素S1に係る塑性歪εwhは、要素S1の長さL11、L12、要素S2の長さL22、要素S3の長さL32、要素S4の長さL41、要素S5の長さL51、要素S1と要素S2とのなす角度θ12(図5(B)参照)、要素S1と要素S3とのなす角度θ13(図示せず)、要素S1と要素S4とのなす角度θ14(図示せず)、要素S1と要素S5とのなす角度θ15(図示せず)、各要素の板厚t(本例では全て同じ)からなるパラメータを用いて、算出される。即ち、要素S1に係る塑性歪εwh=f(L11,L12,L22,L32,L41,L51,θ12,θ13,θ14,θ15,t)により算出される。尚、計算式fは、理論式等をベースに作成され、実験的に適合されるものであってよい。 Actually, as shown in FIG. 6, there are four adjacent elements for each element in a regularly meshed portion. For example, when focusing on the element S1, four elements S2 to S5 are adjacent to the element S1. Accordingly, in this case, the plastic strain ε wh related to the element S1 is the lengths L11 and L12 of the element S1, the length L22 of the element S2, the length L32 of the element S3, the length L41 of the element S4, and the length of the element S5. L51, an angle θ12 formed by the elements S1 and S2 (see FIG. 5B), an angle θ13 formed by the elements S1 and S3 (not shown), and an angle θ14 formed by the elements S1 and S4 (not shown). 1), the angle θ15 formed by the element S1 and the element S5 (not shown), and the parameter consisting of the plate thickness t of each element (all the same in this example). That is, the plastic strain ε wh = f (L11, L12, L22, L32, L41, L51, θ12, θ13, θ14, θ15, t) related to the element S1 is calculated. The calculation formula f may be created based on a theoretical formula or the like and experimentally adapted.

或いは、隣接する要素を、8つとして考えてもよい。即ち、図6に示すように、例えば要素S1に着目すると、要素S1に対しては、8つの要素S2−S9が隣接している。従って、この場合、要素S1に係る塑性歪εwhは、これらの8つの要素S2−S9との関係で、同様に算出されることになる。尚、この場合、要素S1に対して対角位置で隣接する要素S6−S9との関係では、各要素Sの長さに関するパラメータLは対角線の長さ(対角位置にあるノード間の長さ)が用いられてよい。 Alternatively, the adjacent elements may be considered as eight. That is, as shown in FIG. 6, when attention is paid to the element S1, for example, eight elements S2 to S9 are adjacent to the element S1. Therefore, in this case, the plastic strain ε wh related to the element S1 is similarly calculated in relation to these eight elements S2-S9. In this case, in the relationship with the elements S6 to S9 adjacent to the element S1 at the diagonal position, the parameter L regarding the length of each element S is the length of the diagonal line (the length between the nodes at the diagonal position). ) May be used.

尚、塑性歪εwhは、有限要素モデルの全ての要素に対して網羅的に算出されてもよい。或いは、加工部周辺の要素に対してのみ算出されてもよい。 The plastic strain ε wh may be comprehensively calculated for all elements of the finite element model. Or you may calculate only with respect to the element around a process part.

このようにして算出される各要素の塑性歪εwhは、上述の初期歪設定段階(ステップ130)にて、初期歪として当該要素に予め付与される。具体的には、各要素の初期歪(デフォルト値はゼロ)が、上述の如く算出される塑性歪εwhの値に置き換えられる。 The plastic strain ε wh of each element calculated in this way is preliminarily applied to the element as an initial strain in the above-described initial strain setting stage (step 130). Specifically, the initial strain (default value is zero) of each element is replaced with the value of the plastic strain ε wh calculated as described above.

この結果、上記解析段階(ステップ140)の初期状態(即ち、荷重が付与されて無い状態)で、各要素は、それぞれの塑性歪εwhを初期歪として既に有している状態となる。従って、各要素は、上記解析段階(ステップ140)において解析が実行されると、作用する荷重に応じて、図3(C)に示したように、それぞれ付与された初期歪εwhの値に応じた点Cから、弾性限の点B(点Bの位置は、初期歪εwhの値に応じて異なる。)を越えるまで、弾性係数Eに応じた傾きで弾性域における挙動を示し、弾性限の点Bを越えてから、塑性域における挙動を示すことになる。 As a result, in the analysis phase initial state (step 140) (i.e., the absence is load applied), each element is in a state of already having respective plastic strain epsilon wh as the initial strain. Therefore, when the analysis is executed in the analysis stage (step 140), each element has a value of the initial strain εwh given thereto as shown in FIG. 3C according to the applied load. From the corresponding point C to the elastic limit point B (the position of the point B differs depending on the value of the initial strain ε wh ), the behavior in the elastic region is shown with an inclination corresponding to the elastic modulus E, After exceeding the limit point B, the behavior in the plastic region is shown.

このように、本実施例では、実質的に加工時に生ずる要素間の角度変化のみに着目した簡易な計算方法で塑性歪εwh(初期歪)を算出するので、計算負荷や作業工数を増加させること無く、加工時に生ずる塑性歪の影響(加工硬化の影響)を適切に考慮することができる。特に本実施例では、着目する要素に対して、最大でも8つの隣接する要素のみを考慮して、塑性歪εwh(初期歪)を算出するので、曲げ、絞り成形等の成形解析と連成させる手法(前処理として成形解析を行い、その結果を解析用のモデルに組み込む手法)と比べて、計算負荷を低減できると共に、作業工数を削減することができる。 As described above, in this embodiment, the plastic strain ε wh (initial strain) is calculated by a simple calculation method focusing on only the change in the angle between the elements that occurs substantially during processing, so that the calculation load and the work man-hour are increased. Therefore, it is possible to appropriately consider the influence of plastic strain (effect of work hardening) that occurs during processing. In particular, in this embodiment, the plastic strain ε wh (initial strain) is calculated taking into account only up to eight adjacent elements with respect to the element of interest, and therefore coupled with molding analysis such as bending and drawing. Compared with a technique (a technique in which molding analysis is performed as preprocessing and the result is incorporated into a model for analysis), the calculation load can be reduced and the number of work steps can be reduced.

尚、本実施例では、上述の如く、要素の材料特性自体を変化させるのではなく、算出した塑性歪εwhに応じた初期歪を設定することで、解析で用いる有限要素モデルに加工硬化の影響を反映させているが、算出した塑性歪εwhに応じて要素の材料特性自体を補正することで、同等の効果を得ることも可能である。しかしながら、前者の手法は、初期歪のデフォルト値を変更するだけでよく、各要素の材料特性自体を書き換える必要が無いため、作業工程が少なくて有効である。 In this embodiment, as described above, instead of changing the material characteristics of the element itself, the initial strain corresponding to the calculated plastic strain ε wh is set, so that the work hardening is applied to the finite element model used in the analysis. Although the influence is reflected, it is also possible to obtain an equivalent effect by correcting the material property itself of the element according to the calculated plastic strain εwh . However, the former method is effective because only the default value of the initial strain needs to be changed, and it is not necessary to rewrite the material characteristics of each element.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述の実施例では、各パラメータは、有限要素モデルの幾何的なデータに基づいて導出されているが、例えば角度θのようなパラメータは、当該有限要素モデルの作成元であるCADモデルのデータに基づいて導出されてもよい。また、長さLについても、メッシュ作成時の平均的なメッシュサイズ(例えば自動メッシュ分割時のメッシュサイズ)に応じて簡易的に導出されてもよい。   For example, in the above-described embodiment, each parameter is derived based on the geometric data of the finite element model. For example, a parameter such as the angle θ is a value of the CAD model from which the finite element model is created. It may be derived based on the data. Also, the length L may be simply derived according to the average mesh size at the time of mesh creation (for example, the mesh size at the time of automatic mesh division).

本発明による解析方法に関連する処理の流れの概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the flow of the process relevant to the analysis method by this invention. 有限要素モデルの一例の概観を示す斜視図である。It is a perspective view which shows the general appearance of an example of a finite element model. 加工硬化の影響による材料特性の変化を示す応力−歪特性図である。It is a stress-strain characteristic figure which shows the change of the material characteristic by the influence of work hardening. 図2における丸Xの曲げ加工部における2つの要素を示す図である。It is a figure which shows two elements in the bending process part of the circle | round | yen X in FIG. 本発明による加工部の角度変化に基づいて塑性歪εwh(初期歪)を算出する方法の説明図である。It is explanatory drawing of the method of calculating the plastic distortion | strain (epsilon) wh (initial strain) based on the angle change of the process part by this invention. 隣接する要素の説明図である。It is explanatory drawing of an adjacent element.

符号の説明Explanation of symbols

S1〜S9 要素(シェル要素)   S1 to S9 elements (shell elements)

Claims (4)

金属板から成形加工を経て製造される金属部品を含む解析対象物に対して、該解析対象物の有限要素モデルを用いて、設定された解析条件下における塑性変形を伴う挙動について非線形解析を行うCAE解析用装置において、
前記非線形解析に先立つ前処理として、前記有限要素モデルにおける少なくとも前記成形加工された部位に対応する各要素に対して、隣接する要素間のなす角度、要素の板厚、及び、要素の大きさに関するパラメータを用いて、該加工部位における塑性歪を算出し、該算出した塑性歪を前記有限要素モデルの初期状態に反映させることを特徴とする、CAE解析用装置。
Non-linear analysis is performed on the analysis object including the metal parts manufactured from the metal plate by using the finite element model of the analysis object with the plastic deformation under the set analysis conditions. In CAE analysis equipment,
As pre-processing prior to the nonlinear analysis, with respect to each element corresponding to at least the molded part in the finite element model, the angle between adjacent elements, the plate thickness of the element, and the size of the element An apparatus for CAE analysis, characterized in that a plastic strain at the processing site is calculated using a parameter, and the calculated plastic strain is reflected in an initial state of the finite element model.
前記算出した塑性歪を、対応する要素の初期歪として付与する、請求項1に記載のCAE解析用装置。   The CAE analysis apparatus according to claim 1, wherein the calculated plastic strain is applied as an initial strain of a corresponding element. コンピューターをして請求項1又は2に記載のCAE解析用装置を実現させるコンピューター読み取り可能なプログラム。   A computer-readable program for realizing a CAE analysis apparatus according to claim 1 or 2 by a computer. 金属板から成形加工を経て製造される金属部品を含む解析対象物に対して、該解析対象物の有限要素モデルを用いて、設定された荷重/拘束条件下における塑性変形を伴う挙動について非線形解析を行うCAE解析用方法において、
前記有限要素モデルにおける少なくとも前記成形加工された部位に対応する各要素に対して、隣接する要素間のなす角度、要素の板厚、及び、要素の大きさに関するパラメータを用いて、該加工部位における塑性歪を算出するステップと、
前記算出した塑性歪を前記有限要素モデルに反映させるステップと、
前記算出した塑性歪が反映された前記有限要素モデルを用いて、前記非線形解析を行うステップとを含むことを特徴とする、CAE解析用方法。
Non-linear analysis of behavior with plastic deformation under a set load / constraint condition using a finite element model of the analysis object for an analysis object including a metal part manufactured from a metal plate through a forming process In the CAE analysis method
For each element corresponding to at least the molded part in the finite element model, parameters relating to the angle formed between adjacent elements, the plate thickness of the element, and the size of the element are used. Calculating a plastic strain;
Reflecting the calculated plastic strain in the finite element model;
And performing the nonlinear analysis using the finite element model in which the calculated plastic strain is reflected.
JP2005378329A 2005-12-28 2005-12-28 CAE analysis apparatus and method Expired - Fee Related JP4760374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378329A JP4760374B2 (en) 2005-12-28 2005-12-28 CAE analysis apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378329A JP4760374B2 (en) 2005-12-28 2005-12-28 CAE analysis apparatus and method

Publications (2)

Publication Number Publication Date
JP2007179385A true JP2007179385A (en) 2007-07-12
JP4760374B2 JP4760374B2 (en) 2011-08-31

Family

ID=38304492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378329A Expired - Fee Related JP4760374B2 (en) 2005-12-28 2005-12-28 CAE analysis apparatus and method

Country Status (1)

Country Link
JP (1) JP4760374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113033040A (en) * 2021-03-05 2021-06-25 一汽奔腾轿车有限公司 Accurate modeling method for vehicle flexible connection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065207B (en) * 2013-01-17 2016-04-06 同济大学 Based on the engine cylinder-body process route optimization method of processing unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320432A (en) * 1997-05-16 1998-12-04 Nec Corp Method and system for plasticity analysis using finite element method, and recording medium where plasticity analyzing program using finite element method is recorded
JPH11102382A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Simulation method for designing structure, computer-readable recording medium where program for implementing same method is recorded, and simulation device for designing structure
JP2000357574A (en) * 1999-06-14 2000-12-26 Sumitomo Wiring Syst Ltd Terminal strength estimation method
JP2004042098A (en) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc Forming simulation analysis method
JP2004050254A (en) * 2002-07-22 2004-02-19 Nippon Steel Corp Press analysis method of pressed component by computer simulation, and characteristic analysis method of structure including pressed component
JP2004050253A (en) * 2002-07-22 2004-02-19 Nippon Steel Corp Press formation analysis method of pressed part by means of computer simulation, and characteristic analysis method of structure including pressed part
JP2004102424A (en) * 2002-09-05 2004-04-02 Yokohama Rubber Co Ltd:The Method for predicting dynamic characteristic of structure, method for predicting performance of tire, program for predicting dynamic characteristic of structure and input/output device
JP2004325213A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Characteristic analysis method of structure including press formed metal component, characteristic analysis program, and storage medium for recording program
JP2005528700A (en) * 2002-05-31 2005-09-22 ユージーエス、コープ Computer deformation analyzer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320432A (en) * 1997-05-16 1998-12-04 Nec Corp Method and system for plasticity analysis using finite element method, and recording medium where plasticity analyzing program using finite element method is recorded
JPH11102382A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Simulation method for designing structure, computer-readable recording medium where program for implementing same method is recorded, and simulation device for designing structure
JP2000357574A (en) * 1999-06-14 2000-12-26 Sumitomo Wiring Syst Ltd Terminal strength estimation method
JP2005528700A (en) * 2002-05-31 2005-09-22 ユージーエス、コープ Computer deformation analyzer
JP2004042098A (en) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc Forming simulation analysis method
JP2004050254A (en) * 2002-07-22 2004-02-19 Nippon Steel Corp Press analysis method of pressed component by computer simulation, and characteristic analysis method of structure including pressed component
JP2004050253A (en) * 2002-07-22 2004-02-19 Nippon Steel Corp Press formation analysis method of pressed part by means of computer simulation, and characteristic analysis method of structure including pressed part
JP2004102424A (en) * 2002-09-05 2004-04-02 Yokohama Rubber Co Ltd:The Method for predicting dynamic characteristic of structure, method for predicting performance of tire, program for predicting dynamic characteristic of structure and input/output device
JP2004325213A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Characteristic analysis method of structure including press formed metal component, characteristic analysis program, and storage medium for recording program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113033040A (en) * 2021-03-05 2021-06-25 一汽奔腾轿车有限公司 Accurate modeling method for vehicle flexible connection
CN113033040B (en) * 2021-03-05 2023-02-21 一汽奔腾轿车有限公司 Accurate modeling method for vehicle flexible connection

Also Published As

Publication number Publication date
JP4760374B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US7870792B2 (en) Forming limit strain analysis
US8589132B2 (en) Method, device, program, and recording medium of analyzing cause of springback
KR101368108B1 (en) Springback occurrence cause analyzing method, springback occurrence cause analyzing device, computer readable recording medium for recording springback occurrence cause analyzing program
Pires et al. On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials
JP4880043B2 (en) Break prediction method, break prediction system, program, and recording medium
EP2919139A1 (en) Method and apparatus for optimization analysis of bonding positions on structure
JP5941320B2 (en) Mold shape simulation system, program and method
KR102030213B1 (en) System and method for prediction of snap-through buckling of formed steel sheet panels
Mole et al. A 3D forming tool optimisation method considering springback and thinning compensation
JP4386294B2 (en) Food Dent Performance Evaluation Method
JP4851252B2 (en) Structure evaluation program
JP2008102041A (en) Rigidity analysis system of structure and its program
JP7446579B2 (en) Curved surface fitting processing method, fitting processing device, fitting processing program, and computer-readable storage medium storing the fitting processing program
JP3978377B2 (en) Molding simulation analysis method
JP4760374B2 (en) CAE analysis apparatus and method
JP2015108880A (en) Draw model reflection method for press molding simulation result
JP5131212B2 (en) Material state estimation method
Chen et al. Geometric compensation for automotive stamping die design integrating structure deflection and blank thinning
Lin et al. Approximating circular arcs by Bézier curves and its application to modelling tooling for FE forming simulations
JP2005044146A (en) Finite element analysis method, program and device
JP2016045836A (en) Calculation system and calculation program for constraint inherent deformation data, weld deformation predication system and weld deformation prediction program
JP2008155227A (en) Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium
CN113543929A (en) Method and apparatus for predicting and/or reducing deformation of multi-piece assembly
JP7401769B2 (en) Structural property analysis method, structural property analysis device and computer program
Lin et al. A computational response surface study of curved-surface-curved-edge aluminum hemming using solid-to-shell mapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4760374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees