JP2007178320A - Rotary encoder - Google Patents

Rotary encoder Download PDF

Info

Publication number
JP2007178320A
JP2007178320A JP2005378370A JP2005378370A JP2007178320A JP 2007178320 A JP2007178320 A JP 2007178320A JP 2005378370 A JP2005378370 A JP 2005378370A JP 2005378370 A JP2005378370 A JP 2005378370A JP 2007178320 A JP2007178320 A JP 2007178320A
Authority
JP
Japan
Prior art keywords
angle
scale
eccentric
rotary encoder
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005378370A
Other languages
Japanese (ja)
Other versions
JP4749154B2 (en
Inventor
Hayami Kikawa
速見 木川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2005378370A priority Critical patent/JP4749154B2/en
Publication of JP2007178320A publication Critical patent/JP2007178320A/en
Application granted granted Critical
Publication of JP4749154B2 publication Critical patent/JP4749154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow eccentricity to the rotating shaft of a scale board to some extent by correcting angle errors due to the eccentricity to the rotating shaft of the scale board, in a rotary encoder. <P>SOLUTION: The rotary encoder comprises the scale board giving an angle scale, and a pair of CCD linear sensors obtaining a pair of reading angles by reading the angle scale of a symmetric position of the scale board. In each proper rotation angle of the scale board of the rotary encoder, the average Ψ and the difference Φ of the pair of the reading angles are calculated, and the average Ψ and the difference Φ satisfy the relational: Φ=Asin(Ψ+B)+C, and eccentric factors A, B, C are calculated and are stored to a storing means, in advance. In measuring the actual angles, the measured angle values are corrected by using eccentric factors including the eccentric factors A, B, C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測量機に用いられるロータリエンコーダ、さらに詳細には、目盛盤が回転軸に対して偏心しているときに角度誤差を補正できるようにしたロータリエンコーダに関する。   The present invention relates to a rotary encoder used in a surveying instrument, and more particularly, to a rotary encoder that can correct an angular error when a scale plate is eccentric with respect to a rotating shaft.

測量機には、水平角と鉛直角を測定するために、ロータリエンコーダが用いられている。ロータリエンコーダとは、望遠鏡とともに回転する回転円盤であり、この回転円盤の周方向に沿って付された目盛を読むことによって、水平角と鉛直角を測定するものである。   The surveying instrument uses a rotary encoder to measure a horizontal angle and a vertical angle. The rotary encoder is a rotating disk that rotates together with the telescope, and measures a horizontal angle and a vertical angle by reading a scale attached along the circumferential direction of the rotating disk.

従来の測量機に用いられるロータリエンコーダでは、目盛盤の偏心誤差を消去するために一対の検出器で対向検出をしている。しかし、その対向検出する位置が、目盛盤の回転中心に対して等距離かつ正確に180°の配置になっていないと角度誤差を生じるので、目盛盤の回転軸に対する偏心量が所定値以下になるように調整して組み立てていた(下記特許文献1参照)。   In a rotary encoder used in a conventional surveying instrument, opposing detection is performed by a pair of detectors in order to eliminate the eccentric error of the dial. However, if the position where the opposite is detected is not equidistant and accurately positioned at 180 ° with respect to the rotation center of the scale plate, an angular error occurs, so the eccentricity with respect to the rotary shaft of the scale plate is less than a predetermined value. It adjusted and assembled so that it might become (refer the following patent document 1).

特開2001−289672号JP 2001-289672 A

しかしながら、ロータリエンコーダの目盛盤の偏心を検出して調整することは、作業員の負担が大きく、時間がかるものであり、測量機のコストダウンを阻むという問題があった。   However, detecting and adjusting the eccentricity of the rotary encoder scale plate is burdensome for the operator, takes time, and hinders cost reduction of the surveying instrument.

本発明は、前記問題に鑑みてなされたものであり、ロータリエンコーダの目盛盤が回転軸に対して偏心して取り付けられていても、偏心による角度誤差を補正することにより、ロータリエンコーダの目盛盤の回転軸に対する偏心をある程度許容できるようにすることを課題とする。   The present invention has been made in view of the above problems, and even if the rotary encoder scale plate is mounted eccentrically with respect to the rotary shaft, the rotary encoder scale plate is corrected by correcting the angular error due to the eccentricity. It is an object to allow a certain degree of eccentricity with respect to the rotating shaft.

前記課題を解決するため、請求項1に係る発明では、角度目盛が付された目盛盤と、該目盛盤の対称位置の角度目盛を読み取って一対の読取角度を得る検出器とを備えたロータリエンコーダにおいて、前記目盛盤を適宜角度回転させる度に、前記一対の読取角度を得て、該一対の読取角度の平均Ψと差Φとを算出して記憶し、記憶された複数組の前記平均Ψと差Φを用いて、前記目盛盤の回転軸に対する偏心を表す偏心因子を算出する偏心因子算出手段と、該偏心因子算出手段で算出した偏心因子を含む偏心因子を記憶する偏心因子記憶手段と、該偏心因子記憶手段に記憶された偏心因子を用いて、測角値を補正する測角値補正手段とを備えたことを特徴とする。   In order to solve the above-mentioned problem, in the invention according to claim 1, a rotary equipped with a scale plate with an angle scale and a detector that reads the angle scale at the symmetrical position of the scale board and obtains a pair of read angles. In the encoder, each time the scale plate is rotated by an appropriate angle, the pair of reading angles is obtained, the average Ψ and the difference Φ of the pair of reading angles are calculated and stored, and the plurality of sets of stored averages An eccentric factor calculating means for calculating an eccentric factor representing the eccentricity with respect to the rotation axis of the dial plate using Ψ and the difference Φ, and an eccentric factor storing means for storing an eccentric factor including the eccentric factor calculated by the eccentric factor calculating means And angle measurement value correcting means for correcting the angle measurement value using the eccentric factor stored in the eccentric factor storage means.

請求項2に係る発明では、請求項1に係る発明において、前記偏心因子算出手段は、記憶された複数組の平均Ψと差Φが、Φ=Asin(Ψ+B)+Cの関係を満たすとして、最小二乗法を用いて、前記偏心因子である前記A、B及びCの値を求めることを特徴とする。   In the invention according to claim 2, in the invention according to claim 1, the eccentricity factor calculation means determines that the stored plurality of sets of average Ψ and difference Φ satisfy the relationship of Φ = Asin (Ψ + B) + C. The values of A, B, and C, which are the eccentric factors, are obtained using a square method.

請求項1に係る発明によれば、測量機を出荷前に、ロータリエンコーダの目盛盤を適宜角度回転させる度に、一対の読取角度の平均Ψと差Φとを算出し、これらの平均Ψと差Φから目盛盤の回転軸に対する偏心を表す偏心因子を算出して記憶しておき、測量機で測定の際には、前記偏心因子を用いて測角値を補正するので、目盛盤が回転軸に対して若干偏心していても角度誤差が出ない。この際の偏心因子の算出には、面倒な測定作業がなく、極めて容易である。このため、ロータリエンコーダの目盛盤の偏心を高精度に調整する作業が不要となり、しかも、作業員の負担が小さくなり、作業時間が短縮され、測量機のコストダウンができる。   According to the first aspect of the invention, before shipping the surveying instrument, every time the rotary encoder dial is appropriately rotated, the average Ψ and the difference Φ of the pair of reading angles are calculated, and these average Ψ and An eccentricity factor representing the eccentricity with respect to the rotation axis of the dial is calculated and stored from the difference Φ, and when measuring with a surveying instrument, the angle measurement value is corrected using the eccentricity factor, so the dial rotates. Even if it is slightly decentered with respect to the axis, no angular error will occur. The calculation of the eccentric factor at this time is extremely easy because there is no troublesome measurement work. This eliminates the need to adjust the eccentricity of the rotary encoder scale plate with high accuracy, reduces the burden on the operator, shortens the work time, and reduces the cost of the surveying instrument.

請求項2に係る発明によれば、記憶された複数組の平均Ψと差Φが、Φ=Asin(Ψ+B)+Cの関係を満たすとして、最小二乗法を用いて、偏心因子A、B及びCの値を求めるから、偏心因子を簡単で正確に求めることができ、いっそう簡単に正確な測角値を得ることができる。   According to the second aspect of the invention, the stored average Ψ and the difference Φ satisfy the relationship of Φ = Asin (Ψ + B) + C, and the eccentric factors A, B, and C are calculated using the least square method. Therefore, the eccentricity factor can be obtained easily and accurately, and an accurate angle measurement value can be obtained more easily.

本発明は、測量機を出荷前に、ロータリエンコーダの目盛盤を適宜角度回転させる度に、一対の読取角度の平均Ψと差Φとを算出し、これらの平均Ψと差Φから目盛盤の回転軸に対する偏心を表す偏心因子を算出して記憶しておき、ユーザーが測量機で測定する際には、前記偏心因子を含む偏心因子を用いて測角値を補正するものである。   The present invention calculates the average Ψ and difference Φ of a pair of reading angles each time the rotary encoder dial is rotated by an appropriate angle before shipping the surveying instrument, and calculates the scale disk from these average Ψ and difference Φ. An eccentric factor representing the eccentricity with respect to the rotation axis is calculated and stored, and when the user measures with the surveying instrument, the angle measurement value is corrected using the eccentric factor including the eccentric factor.

図1は、本発明のロータリエンコーダに係る一実施例のブロック図である。図2は、ロータリエンコーダにおいて、目盛盤が偏心しているときの角度誤差の発生を説明する図である。図3は、目盛盤の偏心による角度誤差の変化を示す図である。図4は、ロータリエンコーダにおいて、目盛盤の偏心に加えてCCDリニアセンサが平行でない場合の角度誤差の発生を説明する図である。図5は、角度誤差の補正に必要な偏心因子を記憶する手順を示すフローチャートである。   FIG. 1 is a block diagram of an embodiment according to the rotary encoder of the present invention. FIG. 2 is a diagram for explaining the generation of an angle error when the dial is eccentric in the rotary encoder. FIG. 3 is a diagram showing a change in angular error due to the eccentricity of the dial. FIG. 4 is a diagram for explaining the generation of an angle error when the CCD linear sensor is not parallel in addition to the eccentricity of the scale plate in the rotary encoder. FIG. 5 is a flowchart showing a procedure for storing the eccentricity factor necessary for correcting the angle error.

図1に示したように、ロータリエンコーダは、目盛盤10と、該目盛盤10の周縁付近に設けられたコードパターン12と、対称位置のコードパターン12を読み取る一対のCCDリニアセンサ14、14’(検出器)と、このCCDリニアセンサ14、14’からの出力信号を増幅する増幅器15、15’と、増幅された信号をデジタル信号に変換するA/D変換器16、16’と、A/D変換器の出力信号から測角値を求めるCPU18と、データやプログラムを記憶する記憶手段20と、求めた測角値を表示する表示手段22とを備える。コードパターン12とは、細いスリットと太いスリットの組み合わせた符号によって角度目盛となるものである。一対のCCDリニアセンサ14、14’で、コードパターン12を読み、得られた読取角度の平均をとることによって、目盛盤10の偏心による誤差を軽減するようにしている。また、一対の増幅器15、15’の出力信号を切換えスイッチを用いて、1個のA/D変換器に入力して処理することも可能である。   As shown in FIG. 1, the rotary encoder includes a scale plate 10, a code pattern 12 provided near the periphery of the scale plate 10, and a pair of CCD linear sensors 14 and 14 ′ that read the code pattern 12 at a symmetrical position. (Detector), amplifiers 15 and 15 'for amplifying output signals from the CCD linear sensors 14 and 14', A / D converters 16 and 16 'for converting the amplified signals into digital signals, and A CPU18 which calculates | requires a measured angle value from the output signal of / D converter, the memory | storage means 20 which memorize | stores data and a program, and the display means 22 which displays the calculated | required measured angle value are provided. The code pattern 12 is an angle scale by a code combining a thin slit and a thick slit. The code pattern 12 is read by the pair of CCD linear sensors 14 and 14 ′, and the average of the obtained reading angles is taken to reduce errors due to the eccentricity of the dial 10. It is also possible to process the output signals of the pair of amplifiers 15 and 15 'by inputting them to one A / D converter using a changeover switch.

本実施例では、さらに、記憶手段20に目盛盤10の偏心に関する後述する偏心因子を予め記憶しておき、ユーザーが測角したとき、測角値をさらに偏心因子で補正して、目盛盤10の回転軸11に対する偏心による角度誤差を取り除くようにしている。   In the present embodiment, an eccentric factor (to be described later) relating to the eccentricity of the scale plate 10 is stored in advance in the storage means 20, and when the user measures the angle, the measured angle value is further corrected with the eccentric factor, and the scale plate 10 The angle error due to the eccentricity with respect to the rotating shaft 11 is removed.

まず、前記偏心因子の求め方について説明する。図2に基づいて、目盛盤10が回転軸11に対して偏心して固定されているときに生じる角度誤差δ1、δ2について説明する。目盛盤10を読み取るCCDリニアセンサ14、14’は、完全に平行とする。このCCDリニアセンサ14、14’上の矢印は、ピクセル番号が増加する方向を示す。目盛盤10の回転軸11の中心CaからCCDリニアセンサ14、14’までの距離を、それぞれR及びRとする。回転軸11を回転させたとき、目盛盤10の中心Cdの軌跡をTとする。この軌跡Tに沿う矢印Sは、目盛盤10の目盛0の方向Oから角度の増加する方向を示す。回転軸11の中心Caと目盛盤10の中心Cdとの間の距離をeとし、回転軸11回りに回転角θだけ回転したとし、目盛盤10の読み取り点P、Pが、回転軸11の中心Caを通る直線上にあったとする。すると、CCDリニアセンサ14、14’上の読み取り点P、Pは、目盛盤10が回転軸11に対して偏心していない場合の読み取り点Y、Yに対して、角度δ、δだけずれるので、この角度δ、δが角度誤差となる。 First, how to determine the eccentric factor will be described. Based on FIG. 2, angle errors δ1 and δ2 that occur when the dial 10 is fixed eccentrically with respect to the rotating shaft 11 will be described. The CCD linear sensors 14 and 14 'for reading the scale plate 10 are completely parallel. The arrows on the CCD linear sensors 14, 14 'indicate the direction in which the pixel number increases. The distance from the center Ca of the rotary shaft 11 of the graduation plate 10 to the CCD linear sensor 14, 14 ', respectively, and R 1 and R 2. When the rotary shaft 11 is rotated, the locus of the center Cd of the dial plate 10 is set as T. An arrow S along the locus T indicates a direction in which the angle increases from the direction O of the scale 0 of the scale board 10. The distance between the center Ca of the rotary shaft 11 and the center Cd of the scale plate 10 is set to e, and it is rotated around the rotary shaft 11 by the rotation angle θ, and the reading points P 1 and P 2 of the scale plate 10 are the rotary shafts. It is assumed that it is on a straight line passing through the 11 center Ca. Then, the reading points P 1 , P 2 on the CCD linear sensors 14, 14 ′ are at an angle δ 1 , with respect to the reading points Y 1 , Y 2 when the scale plate 10 is not eccentric with respect to the rotating shaft 11. Since they are shifted by δ 2 , the angles δ 1 and δ 2 are angle errors.

目盛盤10の中心Cdが目盛盤10の読み取り点Pと回転軸11の中心Caとを結ぶ線分上にあるとき、目盛盤10の目盛角度をθ0とする。さて、目盛盤10を回転軸11回りに回転角θだけ回転したとき、前述したように目盛盤10の偏心に伴う角度誤差δ、δがあるので、目盛盤10の読み取り点PにおいてCCDリニアセンサ14が読み取る目盛盤10の読取角度φは、θ−θよりも角度誤差δ分だけ小さな角度を示すことになり、次のようになる。
φ=θ−θ−δ
=θ−θ−tan−1{(e*sinθ)/(R−e*cosθ)}
≒θ−θ−(e*sinθ)/R
(1)
目盛盤10の読み取り点PにおいてCCDリニアセンサ14’が読み取る目盛盤10の読取角度φ2は、θ−θよりπ(180°)と角度誤差δ分だけ大きな角度を示すことになり、次のようになる。
φ=θ−θ+π+δ
=θ−θ+π+tan−1{(e*sinθ)/(R+e*cosθ)}
≒θ−θ+π+(e*sinθ)/R
(2)
(1)式及び(2)式から分かるように、
角度誤差δ=−(e*sinθ)/R及びδ=(e*sinθ)/Rは、図3の(a)及び(b)に示したように回転角θに対して正弦波となる。
When the center Cd of the graduation plate 10 is on the line connecting the centers Ca of read point P 1 and the rotary shaft 11 of the dial 10, the scale angle of the graduation plate 10 and theta 0. Now, when the scale plate 10 is rotated about the rotation axis 11 by the rotation angle θ, there are angular errors δ 1 and δ 2 due to the eccentricity of the scale plate 10 as described above, so at the reading point P 1 of the scale plate 10. The reading angle φ 1 of the scale plate 10 read by the CCD linear sensor 14 is an angle smaller than θ 0 −θ by an angle error δ 1 and is as follows.
φ 1 = θ 0 −θ−δ 1
= Θ 0 −θ−tan −1 {(e * sin θ) / (R 1 −e * cos θ)}
≈θ 0 −θ− (e * sin θ) / R 1
(1)
The reading angle φ 2 of the scale plate 10 read by the CCD linear sensor 14 ′ at the reading point P 2 of the scale plate 10 is larger than θ 0 -θ by π (180 °) and an angle error δ 2. It becomes as follows.
φ 2 = θ 0 −θ + π + δ 2
= Θ 0 −θ + π + tan −1 {(e * sin θ) / (R 2 + e * cos θ)}
≈θ 0 −θ + π + (e * sin θ) / R 2
(2)
As can be seen from equations (1) and (2),
The angle error δ 1 = − (e * sin θ) / R 1 and δ 2 = (e * sin θ) / R 2 are sine with respect to the rotation angle θ as shown in FIGS. 3A and 3B. Become a wave.

次に、図4に示したように、CCDリニアセンサ14、14’が完全に平行でなく、角度ηで交わるときは、読み取り点PとPは、CCDリニアセンサ14、14’が互いに平行なときの読み取り点PとPからそれぞれ角度η/2だけ回転するので、目盛盤10の読み取り点PとPに対する回転角は、それぞれθ−η/2、θ+η/2となり、前記(1)式及び(2)式は、次のように修正される。
φ=θ−(θ−η/2)−{e*sin(θ−η/2)}/R
=θ−θ+η/2−{e*sin(θ−η/2)}/R
(3)
φ=θ−(θ+η/2)+π+{e*sin(θ+η/2)}/R
=θ−θ−η/2+π+{e*sin(θ+η/2)}/R
(4)
Next, as shown in FIG. 4, CCD linear sensor 14, 14 'is not perfectly parallel, when intersect at an angle η, the read points P 1 and P 2 are CCD linear sensor 14, 14' are mutually since rotates by each angle eta / 2 from the reading point P 1 and P 2 when parallel, rotation angle with respect to the reading point P 1 and P 2 of the graduation plate 10 are respectively θ-η / 2, θ + η / 2 , and the The equations (1) and (2) are corrected as follows.
φ 1 = θ 0 − (θ−η / 2) − {e * sin (θ−η / 2)} / R 1
= Θ 0 −θ + η / 2− {e * sin (θ−η / 2)} / R 1
(3)
φ 2 = θ 0 − (θ + η / 2) + π + {e * sin (θ + η / 2)} / R 2
= Θ 0 −θ−η / 2 + π + {e * sin (θ + η / 2)} / R 2
(4)

ここで、目盛盤10の読み取り点PとPにおいて読み取る目盛盤10の読取角度φとφの差Φを求めると、次のようになる。ただし、φはπだけ減じてから計算する。
Φ=φ−(φ−π)
=η−{e/(R1)}√(R +R +2Rcosη)
*sin〔θ+tan−1{(R−R)/(R+R)*tan(η/2)}〕
(5)
ここで、ロータリエンコーダの誤差を含まない正しい回転角度を示す角度θrをθr=θ−θとおくと、(5)式は、最終的に次のように書き換えられる。
Φ=η+{e/(R*R)}√(R +R +2Rcosη)
*sin〔θr−θ+tan−1{(R−R)/(R+R
*tan(η/2)}〕 (6)
Here, the difference Φ between the reading angles φ 1 and φ 2 of the scale plate 10 read at the reading points P 1 and P 2 of the scale plate 10 is as follows. However, φ 2 is calculated from the reduced by π.
Φ = φ 1 − (φ 2 −π)
= Η- {e / (R 1 R 2 )} √ (R 1 2 + R 2 2 + 2R 1 R 2 cos η)
* Sin [θ + tan −1 {(R 1 −R 2 ) / (R 1 + R 2 ) * tan (η / 2)}]
(5)
Here, when an angle θr indicating a correct rotation angle not including an error of the rotary encoder is set to θr = θ 0 −θ, the expression (5) is finally rewritten as follows.
Φ = η + {e / (R 1 * R 2 )} √ (R 1 2 + R 2 2 + 2R 1 R 2 cos η)
* Sin [θr−θ 0 + tan −1 {(R 2 −R 1 ) / (R 1 + R 2 )
* Tan (η / 2)}] (6)

一方、読み取った目盛盤10の読取角度φとφの平均Ψを求めると、最終的に次のようになる。
Ψ={φ+(φ−π)}/2
=θr+(1/2){−(e/R)*sin(θ−η/2)
+(e/R)*sin(θ+η/2)}
(7)
ここで、(7)式の第2項はθrに比べて無視できるので、Ψ≒θrとすることができる。すると、(6)式を次のように表すこともできる。
Φ=Asin(Ψ+B)+C (8)
ただし、A、B及びCは、測角値の補正に使用する偏心因子であり、次のような値となる。ここで、RとRも、測角値の補正に使用する偏心因子である。
A=(e/R/R)√(R +R +2Rcosη) (9)
B=−θ
+tan−1{(R−R)/(R+R)*tan(η/2)} (10)
C=η (11)
On the other hand, when the average Ψ of the reading angles φ 1 and φ 2 of the scale plate 10 that has been read is obtained, the following is finally obtained.
Ψ = {φ 1 + (φ 2 −π)} / 2
= Θr + (1/2) {− (e / R 1 ) * sin (θ−η / 2)
+ (E / R 2 ) * sin (θ + η / 2)}
(7)
Here, since the second term of the equation (7) can be ignored as compared with θr, Ψ≈θr can be established. Then, the equation (6) can also be expressed as follows.
Φ = Asin (Ψ + B) + C (8)
However, A, B, and C are eccentric factors used for correcting the angle measurement value, and have the following values. Here, R 1 and R 2 are also eccentric factors used for correcting the angle measurement value.
A = (e / R 1 / R 2 ) √ (R 1 2 + R 2 2 + 2R 1 R 2 cos η) (9)
B = −θ 0
+ Tan −1 {(R 2 −R 1 ) / (R 1 + R 2 ) * tan (η / 2)} (10)
C = η (11)

そこで、実際に目盛盤10を適宜角度回転させて、その度に目盛盤10を読み取り、一対の読取角度の差Φ=φ−(φ−π)と、一対の読取角度の平均Ψ={φ+(φ−π)}/2を求め、(8)式の形に最小二乗法を適用してあてはめ計算すると、(8)式のA、B、Cの値を求めることができる。最小二乗法については、当業者に周知であるから、説明を省略する。A、B、Cの値が求まれば、回転軸11の中心Caと目盛盤10の中心Cdの間の距離e、前述した目盛盤10の目盛角度θ、一対のCCDリニアセンサ14、14’のなす角度ηを求めることができる。結果のみを記載すると、次のようになる。
e=AR/√(R +R +2RcosC) (12)
θ=−B+tan−1{(R−R)/(R+R)*tan(C/2)}
(13)
η=C (14)
Therefore, the scale plate 10 is actually rotated by an appropriate angle, and the scale plate 10 is read each time. A difference between a pair of reading angles Φ = φ 1 − (φ 2 −π) and an average of a pair of reading angles Ψ = By calculating {φ 1 + (φ 2 −π)} / 2 and applying the least square method to the form of equation (8), the values of A, B, and C in equation (8) can be obtained. it can. Since the least square method is well known to those skilled in the art, the description thereof is omitted. If the values of A, B, and C are obtained, the distance e between the center Ca of the rotating shaft 11 and the center Cd of the scale plate 10, the scale angle θ 0 of the scale plate 10 described above, and the pair of CCD linear sensors 14, 14 The angle η formed by 'can be obtained. When only the result is described, it becomes as follows.
e = AR 1 R 2 / √ (R 1 2 + R 2 2 + 2R 1 R 2 cosC) (12)
θ 0 = −B + tan −1 {(R 2 −R 1 ) / (R 1 + R 2 ) * tan (C / 2)}
(13)
η = C (14)

こうして、偏心因子R、R、A、B及びC又はR、R、e、θ及びηが求まると、これから、このロータリエンコーダで読み取った測角値の誤差を補正することができる。 Thus, when the eccentric factors R 1 , R 2 , A, B and C or R 1 , R 2 , e, θ 0 and η are obtained, the error of the measured angle value read by this rotary encoder can be corrected from this. it can.

次に、偏心因子を用いた測角値の補正方法について説明する。   Next, a method of correcting the angle measurement value using the eccentric factor will be described.

(3)式と(4)式は、θr=θ−θとおくと、次のように書ける。
φ=θr+(η/2)+(e/R)sin(θr−θ+η/2) (15)
φ=θr+π−(η/2)−(e/R)sin(θr−θ−η/2)(16)
(15)式及び(16)式を用いて、読み取った目盛盤10の読取角度φとφの平均Ψを求めると、最終的に次のようになる。
Ψ={φ+(φ−π)}/2
=θr−{e/(2R)}√(R +R −2Rcosη)
*sin〔θr+B
−tan−1{(R2−R1)/(R+R)*tan(η/2)}
+tan−1{(−R−R)/(R−R)*tan(η/2)}〕(17)
又は
Ψ={φ+(φ−π)}/2
=θr−(A/2){√(R +R −2RcosC)
/√(R +R +2RcosC)}
*sin〔θr+B
−tan−1{(R−R)/(R+R)*tan(C/2)}
+tan−1{(−R−R)/(R−R)}*tan(C/2)}〕 (18)
Equations (3) and (4) can be written as follows when θr = θ 0 −θ.
φ 1 = θr + (η / 2) + (e / R 1 ) sin (θr−θ 0 + η / 2) (15)
φ 2 = θr + π− (η / 2) − (e / R 2 ) sin (θr−θ 0 −η / 2) (16)
Using the equations (15) and (16), the average Ψ of the reading angles φ 1 and φ 2 of the scale plate 10 read is finally obtained as follows.
Ψ = {φ 1 + (φ 2 −π)} / 2
= Θr- {e / (2R 1 R 2)} √ (R 1 2 + R 2 2 -2R 1 R 2 cosη)
* Sin [θr + B
−tan −1 {(R 2 −R 1 ) / (R 1 + R 2 ) * tan (η / 2)}
+ Tan −1 {(−R 1 −R 2 ) / (R 1 −R 2 ) * tan (η / 2)}] (17)
Or Ψ = {φ 1 + (φ 2 −π)} / 2
= Θr- (A / 2) { √ (R 1 2 + R 2 2 -2R 1 R 2 cosC)
/ √ (R 1 2 + R 2 2 + 2R 1 R 2 cosC)}
* Sin [θr + B
−tan −1 {(R 2 −R 1 ) / (R 1 + R 2 ) * tan (C / 2)}
+ Tan −1 {(−R 1 −R 2 ) / (R 1 −R 2 )} * tan (C / 2)}] (18)

(18)式のsinの〔 〕内のθrは、Ψとおくことができるので、(18)式を次のように書くこともできる。
Ψ=θr−(A/2){√(R +R −2RcosC)
/√(R +R +2RcosC)}
*sin〔Ψ+B
−tan−1{(R−R)/(R+R)*tan(C/2)}
+tan−1{(−R−R)/(R−R)*tan(C/2)}〕 (19)
Since θr in [] of sin in equation (18) can be set to ψ, equation (18) can also be written as follows.
Ψ = θr- (A / 2) {√ (R 1 2 + R 2 2 -2R 1 R 2 cosC)
/ √ (R 1 2 + R 2 2 + 2R 1 R 2 cosC)}
* Sin [Ψ + B
−tan −1 {(R 2 −R 1 ) / (R 1 + R 2 ) * tan (C / 2)}
+ Tan −1 {(−R 1 −R 2 ) / (R 1 −R 2 ) * tan (C / 2)}] (19)

予めR、R、A、B及びCの値が求めてあれば、この(19)式から、一対のCCDリニアセンサ14、14’から読み取った目盛盤10の読取角度φとφの平均Ψに、次の誤差補正量Ccompを加算することにより、目盛盤10の回転軸11に対する偏心による角度誤差を小さくすることができることが分かる。
Ccomp=(A/2){√(R +R −2RcosC)
/√(R +R +2RcosC)}
*sin〔Ψ+B
−tan−1{(R−R)/(R+R)*tan(C/2)}
+tan−1{(−R−R)/(R−R)*tan(C/2)}〕 (20)
If the values of R 1 , R 2 , A, B and C are obtained in advance, the reading angles φ 1 and φ 2 of the scale plate 10 read from the pair of CCD linear sensors 14 and 14 ′ from this equation (19). It can be seen that the angle error due to the eccentricity of the dial 10 with respect to the rotating shaft 11 can be reduced by adding the following error correction amount Ccomp to the average Ψ of
Ccomp = (A / 2) { √ (R 1 2 + R 2 2 -2R 1 R 2 cosC)
/ √ (R 1 2 + R 2 2 + 2R 1 R 2 cosC)}
* Sin [Ψ + B
−tan −1 {(R 2 −R 1 ) / (R 1 + R 2 ) * tan (C / 2)}
+ Tan −1 {(−R 1 −R 2 ) / (R 1 −R 2 ) * tan (C / 2)}] (20)

CPU18は、前記(19)式と(20)式を用いて測角値を補正することにより、正確な測角値を算出する。このCPU18が(19)式と(20)式を用いて測角値を補正する演算をすることが、請求項1に記載の測角値補正手段に相当する。   The CPU 18 corrects the angle measurement value using the equations (19) and (20), thereby calculating an accurate angle measurement value. The CPU 18 performs an operation for correcting the angle measurement value using the equations (19) and (20).

さて、工場で測量機が完成すると、望遠鏡を適宜角度回転させることにより目盛盤10を回転させて、その度CCDリニアセンサ14で目盛盤10を読み取り、目盛盤10の読取角度φとφを得る。このとき、前記(20)式におけるRとRの値も、CCDリニアセンサ14、14’に投影される目盛盤10の像から測定され、記憶手段20に記憶される。こうして求めた多数組の平均Ψと差Φから、CPU18は、最小二乗法を用いることにより、(8)式のA、B、Cの値を求め、このA、B、Cの値も記憶手段20に記憶する。(20)式の誤差補正量Ccompを表す振幅と初期位相を記憶手段20に記憶してもよい。そこで、図5に基づいて、A、B、Cの値を求める手順を説明する。 Now, when the surveying instrument is completed at the factory, the scale plate 10 is rotated by rotating the telescope at an appropriate angle. The CCD linear sensor 14 reads the scale plate 10 each time, and the reading angles φ 1 and φ 2 of the scale plate 10 are read. Get. At this time, the values of R 1 and R 2 in the equation (20) are also measured from the image of the scale plate 10 projected onto the CCD linear sensors 14, 14 ′ and stored in the storage means 20. The CPU 18 obtains the values of A, B, and C in the equation (8) from the average Ψ and the difference Φ of the multiple sets thus obtained by using the least square method, and the values of A, B, and C are also stored in the storage means. 20 stored. The storage means 20 may store the amplitude and the initial phase representing the error correction amount Ccomp in the equation (20). A procedure for obtaining the values of A, B, and C will be described with reference to FIG.

まず、測量機完成後、偏心因子算出プログラムをスタートさせる。すると、ステップS1に進み、CPU18に一対のCCDリニアセンサ14、14’で目盛盤10を読み取り、読取角度φとφを得る。次に、ステップS2に進んで、CPU18は、一対のCCDリニアセンサ14、14’で読み取った読取角度φとφの平均Ψと差Φを求めて記憶する。次にステップS3に進んで、適宜角度(たとえば30°程度)測量機の望遠鏡を回転させることにより、目盛盤10を適宜角度回転させる。 First, after the surveying instrument is completed, the eccentricity factor calculation program is started. Then, it progresses to step S1, and the scale board 10 is read to CPU18 with a pair of CCD linear sensors 14 and 14 ', and reading angle (phi) 1 and (phi) 2 are obtained. Then, the process proceeds to step S2, CPU 18 stores seeking read angle phi 1 and phi 2 of the average Ψ and difference Φ read by the pair of CCD linear sensor 14, 14 '. Next, proceeding to step S3, the scale plate 10 is rotated at an appropriate angle by rotating the telescope of the surveying instrument at an appropriate angle (for example, about 30 °).

次に、ステップS4に進み、CPU18は、このプログラムを終了してもよいかどうか判断する。これには、所定回数以上読取角度φとφを取得したかどうかで判断する。少なくとも3回以上異なる角度で、ステップS1−S3を完了させていれば終了可能であるが、通常、ステップS1−S4を繰り返して、望遠鏡を360°以上回転させたときに、終了と判断する。終了と判断しなければ、ステップS1に戻る。 Next, it progresses to step S4 and CPU18 judges whether this program may be complete | finished. This is determined by whether the reading angles φ 1 and φ 2 have been acquired a predetermined number of times or more. If steps S1-S3 are completed at different angles at least three times or more, the process can be completed. Normally, however, steps S1-S4 are repeated, and it is determined that the process is completed when the telescope is rotated 360 degrees or more. If it is not determined to end, the process returns to step S1.

ステップS4で終了と判断すれば、ステップS5に進んで、CPU18は、最小二乗法を用いることにより、(8)式のA、B、Cの値を求める。このステップS1〜S5が、請求項1に記載の偏心因子算出手段に相当する。さらにステップS6に進んで、A、B、Cの値を記憶手段20に記憶する。このステップS6が、請求項1に記載の偏心因子記憶手段に相当する。これで、このプログラムを終了する。   If it is determined in step S4 that the process is terminated, the process proceeds to step S5, and the CPU 18 obtains the values of A, B, and C in the equation (8) by using the least square method. Steps S <b> 1 to S <b> 5 correspond to the eccentricity factor calculating means described in claim 1. In step S6, the values of A, B, and C are stored in the storage unit 20. This step S6 corresponds to the eccentric factor storage means described in claim 1. This ends the program.

本実施例によれば、偏心因子R、R、A、B及びCが既知となっているので、ユーザーが測角を行うと、一対のCCDリニアセンサ14、14’から得た読取角度φとφの平均Ψに、(20)式の誤差補正量Ccompを加えて、目盛盤10の回転軸11に対する偏心による角度誤差を補正して、より正確な測角値を求めて表示手段22に表示できる。このため、目盛盤10の回転軸に対する若干の偏心を許容してもよくなるうえ、且つ、CCDリニアセンサ14、14’の取り付け調整が容易となり、また、偏心因子R、R、A、B及びCを求めるための作業員の労力も小さくて済むので、目盛盤を回転軸に取り付ける作業が容易になって時間短縮され、コストダウンを図ることができる。 According to the present embodiment, since the eccentric factors R 1 , R 2 , A, B, and C are known, the reading angle obtained from the pair of CCD linear sensors 14 and 14 ′ when the user measures the angle. By adding the error correction amount Ccomp of the equation (20) to the average Ψ of φ 1 and φ 2 to correct the angular error due to the eccentricity with respect to the rotary shaft 11 of the dial plate 10, a more accurate angle measurement value is obtained and displayed. It can be displayed on the means 22. For this reason, a slight eccentricity with respect to the rotation axis of the dial plate 10 may be allowed, the mounting adjustment of the CCD linear sensors 14 and 14 'becomes easy, and the eccentric factors R 1 , R 2 , A, B And the labor of the operator for obtaining C and C can be reduced, so that the work for attaching the scale plate to the rotating shaft is facilitated, the time is shortened, and the cost can be reduced.

ところで、本発明は、前記実施例に限るものではなく種々の変形が可能である。たとえば、前記実施例のように、偏心因子をΦとΨの間に(8)式の関係があるとして最小二乗法で求めたが、ΦとΨの間に次の(21)式のように、フーリエ級数において第2調和波(n=2)以上を無視した関係を仮定して、E0、E1及びF1を求めてもよい。   By the way, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, as in the previous embodiment, the eccentricity factor was obtained by the least square method assuming that there is a relationship of Eq. (8) between Φ and ψ, but the following equation (21) is obtained between Φ and ψ. E0, E1, and F1 may be obtained assuming a relationship in which the second harmonic wave (n = 2) or more is ignored in the Fourier series.

Φ=E0+E1cosΨ+F1sinΨ (21)
このフーリエ係数E0、E1及びF1の算出法も、当業者に周知であるから、フーリエ係数の求め方の説明は省略する。(21)式は簡単に(8)式と同じ形式に変形して、偏心因子A、B及びCの値を求めることができ、後は前記実施例と同様に測角値の補正を行うことができる。
Φ = E0 + E1 cos Ψ + F1 sin Ψ (21)
Since methods for calculating the Fourier coefficients E0, E1, and F1 are also well known to those skilled in the art, description of how to obtain the Fourier coefficients is omitted. Equation (21) can be easily transformed into the same form as Equation (8) to determine the values of eccentric factors A, B, and C, and thereafter the angle measurement value is corrected in the same manner as in the previous embodiment. Can do.

また、前記実施例については、図5におけるステップS3をステップS4からステップS1へ戻る途中の位置へ移動させる設計変更をしても、本発明は成立する。   In addition, with respect to the above-described embodiment, the present invention can be realized even if a design change is made to move step S3 in FIG. 5 to a position on the way from step S4 to step S1.

この誤差補正機能を有するロータリエンコーダは、測量機での測角に用いることばかりでなく、測量機以外にも、角度を測定する機器に広く利用できるものである。   The rotary encoder having the error correction function is not only used for angle measurement by a surveying instrument, but can be widely used for devices that measure angles other than surveying instruments.

本発明のロータリエンコーダのブロック図。The block diagram of the rotary encoder of this invention. ロータリエンコーダにおいて、目盛盤が回転軸に対して偏心しているときの角度誤差の発生を説明する図。The figure explaining the generation | occurrence | production of an angle error when the scale board is eccentric with respect to a rotating shaft in a rotary encoder. 前記角度誤差の変化を示す図。The figure which shows the change of the said angle error. ロータリエンコーダにおいて、目盛盤が回転軸に対する偏心に加えて、CCDリニアセンサが互いに平行でない場合の角度誤差の発生を説明する図。In a rotary encoder, the figure which explains generation | occurrence | production of an angle error in case a scale plate is eccentric with respect to a rotating shaft, and a CCD linear sensor is not mutually parallel. 本発明のロータリエンコーダにおいて、測角値の補正に必要な偏心因子を記憶する手順を示すフローチャート。The flowchart which shows the procedure which memorize | stores the eccentric factor required for correction | amendment of a measured angle value in the rotary encoder of this invention.

符号の説明Explanation of symbols

10 目盛盤
11 回転軸
12 目盛
14 CCDリニアセンサ(検出器)
10 Scale board 11 Rotating shaft 12 Scale 14 CCD linear sensor (detector)

Claims (2)

角度目盛が付された目盛盤と、該目盛盤の対称位置の角度目盛を読み取って一対の読取角度を得る検出器とを備えたロータリエンコーダにおいて、
前記目盛盤を適宜角度回転させる度に、前記一対の読取角度を得て、該一対の読取角度の平均Ψと差Φとを算出して記憶し、記憶された複数組の前記平均Ψと差Φを用いて、前記目盛盤の回転軸に対する偏心を表す偏心因子を算出する偏心因子算出手段と、
該偏心因子算出手段で算出した偏心因子を含む偏心因子を記憶する偏心因子記憶手段と、
該偏心因子記憶手段に記憶された偏心因子を用いて、測角値を補正する測角値補正手段とを備えたことを特徴とするロータリエンコーダ。
In a rotary encoder comprising a scale plate with an angle scale and a detector that reads the angle scale at a symmetrical position of the scale board and obtains a pair of reading angles,
Each time the scale plate is rotated by an appropriate angle, the pair of reading angles is obtained, the average Ψ and the difference Φ of the pair of reading angles are calculated and stored, and the stored plural sets of the average Ψ and the difference are stored. Using Φ, an eccentric factor calculating means for calculating an eccentric factor representing the eccentricity with respect to the rotation axis of the dial plate,
An eccentric factor storage means for storing an eccentric factor including the eccentric factor calculated by the eccentric factor calculation means;
A rotary encoder comprising: an angle measurement value correcting unit that corrects an angle measurement value using the eccentric factor stored in the eccentric factor storage unit.
前記偏心因子算出手段は、記憶された複数組の平均Ψと差ΦがΦ=Asin(Ψ+B)+Cの関係を満たすとして、最小二乗法を用いて、前記偏心因子である前記A、B及びCの値を求めることを特徴とする請求項1に記載のロータリエンコーダ。   The eccentricity factor calculating means uses the least square method and assumes that the eccentricity factors A, B, and C, assuming that the stored average Ψ and difference Φ satisfy a relationship of Φ = Asin (Ψ + B) + C. The rotary encoder according to claim 1, wherein a value of is obtained.
JP2005378370A 2005-12-28 2005-12-28 Rotary encoder Active JP4749154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378370A JP4749154B2 (en) 2005-12-28 2005-12-28 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378370A JP4749154B2 (en) 2005-12-28 2005-12-28 Rotary encoder

Publications (2)

Publication Number Publication Date
JP2007178320A true JP2007178320A (en) 2007-07-12
JP4749154B2 JP4749154B2 (en) 2011-08-17

Family

ID=38303649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378370A Active JP4749154B2 (en) 2005-12-28 2005-12-28 Rotary encoder

Country Status (1)

Country Link
JP (1) JP4749154B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300366A (en) * 2008-06-17 2009-12-24 Sokkia Topcon Co Ltd Rotary encoder and angle correction method
JP2011017653A (en) * 2009-07-10 2011-01-27 Mitsutoyo Corp Error calculation method for angle detection device
WO2011074103A1 (en) * 2009-12-17 2011-06-23 キヤノン株式会社 Rotary encoder and rotation mechanism comprising same
GB2478303A (en) * 2010-03-02 2011-09-07 Taylor Hobson Ltd Surface measurement instrument and calibration thereof
EP2982940A1 (en) 2014-08-04 2016-02-10 Kabushiki Kaisha TOPCON Angle detection device and survey instrument including the same
JP2017044545A (en) * 2015-08-26 2017-03-02 株式会社トプコン Vertical shaft structure of surveying instrument
CN107883892A (en) * 2016-09-30 2018-04-06 佳能株式会社 Eccentric computational methods, rotary encoder, robots arm and robot device
JP2019143979A (en) * 2018-02-15 2019-08-29 セイコーエプソン株式会社 Encoder unit, angle detection method, and robot
CN114034329A (en) * 2021-10-13 2022-02-11 超同步股份有限公司 Eccentric correction method of circular grating encoder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289672A (en) * 2000-04-07 2001-10-19 Sokkia Co Ltd Disk for rotary encoder and its controlling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289672A (en) * 2000-04-07 2001-10-19 Sokkia Co Ltd Disk for rotary encoder and its controlling method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300366A (en) * 2008-06-17 2009-12-24 Sokkia Topcon Co Ltd Rotary encoder and angle correction method
JP2011017653A (en) * 2009-07-10 2011-01-27 Mitsutoyo Corp Error calculation method for angle detection device
EP2278277A3 (en) * 2009-07-10 2016-12-28 Mitutoyo Corporation Error calculation method for angle detection device
US8688397B2 (en) 2009-07-10 2014-04-01 Mitutoyo Corporation Error calculation method for angle detection device
WO2011074103A1 (en) * 2009-12-17 2011-06-23 キヤノン株式会社 Rotary encoder and rotation mechanism comprising same
US8476578B2 (en) 2009-12-17 2013-07-02 Canon Kabushiki Kaisha Rotary encoder and rotation mechanism including the same
JP5436578B2 (en) * 2009-12-17 2014-03-05 キヤノン株式会社 Rotary encoder and rotating mechanism having the same
US9322631B2 (en) 2010-03-02 2016-04-26 Taylor Hobson Limited Surface measurement instrument and calibration thereof
GB2478303B (en) * 2010-03-02 2018-03-07 Taylor Hobson Ltd Surface measurement instrument and calibration thereof
GB2478303A (en) * 2010-03-02 2011-09-07 Taylor Hobson Ltd Surface measurement instrument and calibration thereof
EP2982940A1 (en) 2014-08-04 2016-02-10 Kabushiki Kaisha TOPCON Angle detection device and survey instrument including the same
JP2016035438A (en) * 2014-08-04 2016-03-17 株式会社トプコン Angle detection device, and measurement device
US9714848B2 (en) 2014-08-04 2017-07-25 Kabushiki Kaisha Topcon Angle detection device and survey instrument including the same
CN105333858A (en) * 2014-08-04 2016-02-17 株式会社拓普康 Angle detection device and survey instrument including the same
CN105333858B (en) * 2014-08-04 2018-06-08 株式会社拓普康 Angle detection device, measuring device
JP2017044545A (en) * 2015-08-26 2017-03-02 株式会社トプコン Vertical shaft structure of surveying instrument
JP2018059714A (en) * 2016-09-30 2018-04-12 キヤノン株式会社 Eccentricity calculation method, rotary encoder, robot arm and robot apparatus
CN107883892A (en) * 2016-09-30 2018-04-06 佳能株式会社 Eccentric computational methods, rotary encoder, robots arm and robot device
US10514255B2 (en) 2016-09-30 2019-12-24 Canon Kabushiki Kaisha Eccentricity calculating method, rotary encoder, robotic arm and robot apparatus
CN107883892B (en) * 2016-09-30 2020-05-08 佳能株式会社 Eccentricity calculation method, rotary encoder, robot arm, and robot apparatus
JP2019143979A (en) * 2018-02-15 2019-08-29 セイコーエプソン株式会社 Encoder unit, angle detection method, and robot
US10775204B2 (en) 2018-02-15 2020-09-15 Seiko Epson Corporation Encoder unit, angle measuring method, and robot
CN114034329A (en) * 2021-10-13 2022-02-11 超同步股份有限公司 Eccentric correction method of circular grating encoder

Also Published As

Publication number Publication date
JP4749154B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4749154B2 (en) Rotary encoder
JP4824415B2 (en) Rotary encoder
JP4824635B2 (en) Angle correction method for rotary encoder
US6188341B1 (en) Encoder interpolation circuit which corrects an interpolation angle between a received sine-wave encoder signal and a cosine-wave encoder signal
JP5243956B2 (en) Self-calibration for inertial instrument based on real-time bias estimator
JP4142942B2 (en) Rotary encoder
JP2008145299A (en) Rotation displacement correction device and displacement detector
US20080028824A1 (en) Calibration Method
US11579001B2 (en) Calibrator, encoder, driving device, stage device, robot, encoder manufacturing method, and calibration program
US5052111A (en) Method and apparatus for providing runout compensation in a wheel
CN101566466A (en) Profile analysis system and method
CN114636387A (en) Circular grating encoder double-reading-head asymmetric installation eccentric error compensation method
US5414516A (en) Position measuring apparatus
JP5085440B2 (en) Rotary encoder and angle correction method for rotary encoder
US8219348B2 (en) Method for calibrating and/or correcting a display device having a needle, the needle being able to move in rotation about an axis of rotation
CN111780967B (en) Turntable transmission precision optical composite detection method capable of correcting eccentric error
JP5902891B2 (en) Encoder and calibration method
JP5137907B2 (en) Encoder
JP7447324B1 (en) Rotary encoder, rotary encoder system, and rotation angle detection method using rotary encoder
JP4075402B2 (en) Electronic compass
JP2000111325A (en) Measuring method of initially set incident angle in rotation angle measurement using laser interferometer
JP2002048595A (en) Calibration method for sensor
JP2010169635A (en) Shape measurement device
JPH01270784A (en) Controller for motor
CN117309009A (en) Encoder precision compensation circuit and encoder precision compensation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Ref document number: 4749154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250