JP2007178296A - Rotating body measuring method - Google Patents

Rotating body measuring method Download PDF

Info

Publication number
JP2007178296A
JP2007178296A JP2005377912A JP2005377912A JP2007178296A JP 2007178296 A JP2007178296 A JP 2007178296A JP 2005377912 A JP2005377912 A JP 2005377912A JP 2005377912 A JP2005377912 A JP 2005377912A JP 2007178296 A JP2007178296 A JP 2007178296A
Authority
JP
Japan
Prior art keywords
rotating body
shape
magnification
detector
fourier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377912A
Other languages
Japanese (ja)
Other versions
JP4848513B2 (en
Inventor
Makoto Fukuda
眞 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2005377912A priority Critical patent/JP4848513B2/en
Publication of JP2007178296A publication Critical patent/JP2007178296A/en
Application granted granted Critical
Publication of JP4848513B2 publication Critical patent/JP4848513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating body measuring device 20 and a method without emergence of a higher order k not permitting correct calculation even when the higher order k is taken into consideration, thereby correctly obtaining the profile r (θ) of a rotating body and rotational deflection quantities x(θ), y(θ). <P>SOLUTION: A plurality of sets of angular arrangement of detectors in which magnification coefficients α<SB>1k</SB>, β<SB>1k</SB>emerging at denominators in expressions 22 and 23 are made uniform, are selected, using four or more detectors. The magnifications H<SB>1k</SB>, H<SB>2k</SB>(hence magnification coefficients α<SB>1k</SB>, β<SB>1k</SB>and so forth), are selected so that the parts in which the denominators of the expressions 22 and 23 become zero, are complemented among the plurality of sets. Using the complementary magnification coefficients α<SB>1k</SB>, β<SB>1k</SB>(hence A<SB>ak</SB>, B<SB>ak</SB>and so forth), the profile r (θ) and the rotational deflection quantities x (θ), y (θ) are obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回転体の形状を含む特性を測定する回転体測定方法および装置(以下、「回転体測定方法等」という。)に関し、特にハードディスクまたは光ディスク等の情報機器における回転軸の形状および回転振れ量を非接触で測定する回転体測定方法等に関する。 The present invention relates to a rotating body measuring method and apparatus for measuring characteristics including the shape of a rotating body (hereinafter referred to as “rotating body measuring method and the like”), and in particular, the shape and rotation of a rotating shaft in an information device such as a hard disk or an optical disk. The present invention relates to a rotating body measuring method and the like for measuring the amount of shake without contact.

近年、ハードディスクまたは光ディスク等の情報機器の高度化および小型化に伴い、軸受けに要求される回転精度はますます高くなっており、それと共に、回転軸の振れ測定の高精度化に対する要求もますます高くなっている。特に回転体においては、変位検出器(以下、「検出器」と省略する。)単体の精度だけではなく、回転時のフーリエ成分の高次な次数を検出する要求も出てきている。例えばハードディスクにおいては、20次程度までの周波数成分が問題となってきている。   In recent years, with the advancement and miniaturization of information devices such as hard disks and optical discs, the rotational accuracy required for bearings has been increasing, and at the same time, there has been a demand for higher accuracy in the measurement of rotational shaft runout. It is high. In particular, in a rotating body, not only the accuracy of a single displacement detector (hereinafter abbreviated as “detector”) but also a demand for detecting a higher order of a Fourier component during rotation has come out. For example, in a hard disk, frequency components up to the 20th order have become a problem.

従来、回転軸または回転体(以下、特に区別する必要がある場合を除き、「回転体」と統一する。)の振れ測定(以下、「回転振れ測定」と言う。)を非接触で測定する方法として較正した3つの検出器を同時に使用し、回転体の形状と回転振れを求める3点法が研究されている(非特許文献1参照)。3点法は、3つの検出器の配置(角度)と検出データの重みとを巧妙に選び、検出データの重み付け加算値を求めることにより、回転振れ(回転体の偏心量)に依存せずに回転体の形状を検出することができるという特徴を利用した方法である。回転振れ成分は、求められた回転体の形状に基づいて求める。3点法は、回転体の形状または回転振れの挙動が単純でフーリエ級数の次数が低い場合には、非常に高い精度で回転体の形状または回転振れを求めることができると言われている。   Conventionally, run-out measurement (hereinafter referred to as “rotational run-out measurement”) of a rotating shaft or a rotary body (hereinafter referred to as “rotating body” unless otherwise required) is measured in a non-contact manner. As a method, a three-point method has been studied in which three calibrated detectors are used at the same time to obtain the shape and rotational runout of the rotating body (see Non-Patent Document 1). In the three-point method, the arrangement (angle) of the three detectors and the weight of the detection data are carefully selected, and the weighted addition value of the detection data is obtained, so that it does not depend on the rotational shake (the eccentric amount of the rotating body). This is a method utilizing the feature that the shape of the rotating body can be detected. The rotational shake component is obtained based on the obtained shape of the rotating body. The three-point method is said to be able to determine the shape or rotational shake of the rotating body with very high accuracy when the shape of the rotating body or the behavior of the rotational shake is simple and the order of the Fourier series is low.

次に、3点法の原理について説明する。図5は、3点法の原理を説明するための回転体および検出器の配置を示す。図5において、符号10は回転体、1、2および3は検出器(プローブ)、Oはxy座標の原点、Ocは回転体の中心位置、θは回転体10の回転角、φは検出器1の配置角度、φは検出器2の配置角度、φは検出器3の配置角度である。図5に示されるように、回転体の中心位置Ocは偏心して、偏心量は(x(θ)、y(θ))であるものとする。 Next, the principle of the three-point method will be described. FIG. 5 shows the arrangement of the rotating body and the detector for explaining the principle of the three-point method. 5, reference numeral 10 is the rotating body 1, 2 and 3 the detector (probe), O is the origin of the xy coordinates, Oc is the center position of the rotator, theta is the angle of rotation of the rotating body 10, phi 1 is detected The arrangement angle of the detector 1, φ 2 is the arrangement angle of the detector 2, and φ 3 is the arrangement angle of the detector 3. As shown in FIG. 5, it is assumed that the center position Oc of the rotating body is eccentric, and the eccentricity is (x (θ), y (θ)).

回転体10の形状をr(θ)で表し、フーリエ級数展開して各次数毎の成分で表示すると、以下の(1)式のようになる。   When the shape of the rotator 10 is represented by r (θ), Fourier series expansion is performed and the components are displayed for each order, the following equation (1) is obtained.

r(θ)=r0+Σ(Akcos(kθ)+Bksin(kθ)) (1)     r (θ) = r0 + Σ (Akcos (kθ) + Bksin (kθ)) (1)

(1)式で、r0は回転体の平均半径、kはフーリエ級数の次数、Ak、Bkは形状を表す形状フーリエ係数であり、加算(Σ)はk=1からN(目標とするフーリエ級数成分の最高次数)までとるものとする。平均半径r0は、形状r(θ)を求める場合には一定値と考えられるため、0と考えてよい。各検出器i(i=1〜3)での検出変位をdi(θ)で表すと、以下の(2)式となる。   In equation (1), r0 is the average radius of the rotating body, k is the order of the Fourier series, Ak and Bk are the shape Fourier coefficients representing the shape, and addition (Σ) is k = 1 to N (target Fourier series) Up to the highest order of the component). The average radius r0 can be considered to be 0 because it is considered to be a constant value when the shape r (θ) is obtained. When the detected displacement at each detector i (i = 1 to 3) is represented by di (θ), the following equation (2) is obtained.

di(θ)=r(θ+φi)+x(θ)cosφi+y(θ)sinφi (2)     di (θ) = r (θ + φi) + x (θ) cosφi + y (θ) sinφi (2)

形状r(θ)を求めるために、w(i=1〜3)を重みとして、重み付け加算dr(θ)を以下の(3)式のようにとる。 In order to obtain the shape r (θ), w i (i = 1 to 3) is used as a weight, and the weighted addition dr (θ) is represented by the following equation (3).

dr(θ)=wr(θ+φ)+wr(θ+φ)+wr(θ+φ
+x(θ)(wcosφ+wcosφ+wcosφ
+y(θ)(wsinφ+wsinφ+wsinφ) (3)
dr (θ) = w 1 r (θ + φ 1 ) + w 2 r (θ + φ 2 ) + w 3 r (θ + φ 3 )
+ X (θ) (w 1 cos φ 1 + w 2 cos φ 2 + w 3 cos φ 3 )
+ Y (θ) (w 1 sin φ 1 + w 2 sin φ 2 + w 3 sin φ 3 ) (3)

(3)式で、重みwと配置角度φとを以下の(4)式のようにとると、偏心量x(θ)およびy(θ)に依存せずに重み付け加算dr(θ)を得ることができる。 When the weight w i and the arrangement angle φ i are expressed by the following equation (4) in the equation (3), the weighted addition dr (θ) does not depend on the eccentric amounts x (θ) and y (θ). Can be obtained.

cosφ+wcosφ+wcosφ=0
sinφ+wsinφ+wsinφ=0 (4)
w 1 cos φ 1 + w 2 cos φ 2 + w 3 cos φ 3 = 0
w 1 sin φ 1 + w 2 sin φ 2 + w 3 sin φ 3 = 0 (4)

(4)式で、w=0、φ=0としても一般性は失われないので、この方法で検討している報告も存在する。(4)式が成り立つと、重み付け加算dr(θ)は偏心量x(θ)、y(θ)に依存しなくなる。(3)式および(1)式より、 Since generality is not lost even if w 1 = 0 and φ 1 = 0 in the equation (4), there is also a report examined by this method. When the equation (4) is established, the weighted addition dr (θ) does not depend on the eccentric amounts x (θ) and y (θ). From (3) and (1),

dr(θ)=wr(θ+φ)+wr(θ+φ)+wr(θ+φ
=wΣ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
+wΣ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
+wΣ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
(5)
dr (θ) = w 1 r (θ + φ 1 ) + w 2 r (θ + φ 2 ) + w 3 r (θ + φ 3 )
= W 1 Σ {Akcos (k (θ + φ 1 )) + Bksin (k (θ + φ 1 ))}
+ W 2 Σ {Akcos (k (θ + φ 2 )) + Bksin (k (θ + φ 2 ))}
+ W 3 Σ {Akcos (k (θ + φ 3 )) + Bksin (k (θ + φ 3 ))}
(5)

(5)式を変形して、αk、βkを以下の(6)式のようにおけば、(5)式は(7)式のように表すことができる。αk、βkは、各次数毎の倍率を表すので、倍率係数と呼ぶことにする。   By transforming equation (5) and setting αk and βk as the following equation (6), equation (5) can be expressed as equation (7). Since αk and βk represent the magnification for each order, they are called magnification factors.

cos(kφ)+wcos(kφ)+wcos(kφ):=αk
sin(kφ)+wsin(kφ)+wsin(kφ):=βk (6)
dr(θ)=Σ{(Akαk−Bkβk)cos(kθ)
+(Bkαk+Akβk)sin(kθ)}
=Σ{Fkcos(kθ)+Gksin(kθ)} (7)
w 1 cos (kφ 1 ) + w 2 cos (kφ 2 ) + w 3 cos (kφ 3 ): = αk
w 1 sin (kφ 1 ) + w 2 sin (kφ 2 ) + w 3 sin (kφ 3 ): = βk (6)
dr (θ) = Σ {(Akαk−Bkβk) cos (kθ)
+ (Bkαk + Akβk) sin (kθ)}
= Σ {Fkcos (kθ) + Gksin (kθ)} (7)

従って、3つの検出器i(i=1〜3)の重み付け加算値dr(θ)のフーリエ係数Fk、Gkを求め、倍率係数αk、βkからAk、Bkを以下の(8)式で求めることができる。   Accordingly, the Fourier coefficients Fk and Gk of the weighted addition values dr (θ) of the three detectors i (i = 1 to 3) are obtained, and Ak and Bk are obtained from the magnification coefficients αk and βk by the following equation (8). Can do.

Ak=(αkFk+βkGk)/(αk+βk
Bk=(−βkFk+αkGk)/(αk+βk) (8)
Ak = (αkFk + βkGk) / (αk 2 + βk 2 )
Bk = (− βkFk + αkGk) / (αk 2 + βk 2 ) (8)

(8)式のAk、Bkを用い、回転体の形状r(θ)を(1)式で求めることができる。ここで、注意するべきことは、(8)式においては、倍率係数αkとβkとを分母に有していることである。形状r(θ)が求まると、偏心量x(θ)、y(θ)は以下の(9)式で求まる。   Using the Ak and Bk in the equation (8), the shape r (θ) of the rotating body can be obtained by the equation (1). Here, it should be noted that the expression (8) has the scaling factors αk and βk in the denominator. When the shape r (θ) is obtained, the eccentric amounts x (θ) and y (θ) are obtained by the following equation (9).

x(θ)={−(d(θ)-r(θ+φ))sinφ
+(d(θ)-r(θ+φ))sinφ}/sin(φ−φ
y(θ)={(d(θ)-r(θ+φ))cosφ
−(d(θ)-r(θ+φ))cosφ}/sin(φ−φ
(9)
x (θ) = {− (d 2 (θ) −r (θ + φ 2 )) sin φ 1
+ (D 1 (θ) −r (θ + φ 1 )) sin φ 2 } / sin (φ 1 −φ 2 )
y (θ) = {(d 2 (θ) −r (θ + φ 2 )) cos φ 1
− (D 1 (θ) −r (θ + φ 1 )) cos φ 2 } / sin (φ 1 −φ 2 )
(9)

回転体10の偏心量x(θ)、y(θ)は、回転時には1次の回転振れとして現れる。この回転振れには回転体10自体の回転振れと回転体10の取付け誤差とを含むが、両者を分離することはできない。さらに、回転体10の偏心量x(θ)、y(θ)の周波数成分をCk、Dk、Nk、Mkで表せば、以下の(10)式回転振れの周波数成分を求めることが可能である。   The eccentric amounts x (θ) and y (θ) of the rotating body 10 appear as primary rotational shakes during rotation. This rotational shake includes the rotational shake of the rotating body 10 itself and the mounting error of the rotating body 10, but the two cannot be separated. Furthermore, if the frequency components of the eccentric amounts x (θ) and y (θ) of the rotator 10 are expressed by Ck, Dk, Nk, and Mk, it is possible to obtain the following (10) rotational vibration frequency components. .

x(θ)=Σ{Ckcos(kθ)+Dksin(kθ)}
y(θ)=Σ{Nkcos(kθ)+Mksin(kθ)} (10)
x (θ) = Σ {Ckcos (kθ) + Dksin (kθ)}
y (θ) = Σ {Nkcos (kθ) + Mksin (kθ)} (10)

以上が3点法の原理である。次に、3点法の処理の流れをフローチャートを用いて説明する。図6は、3点法の処理の流れをフローチャートで示す。図6に示されるように、回転体10の回転振れの一次成分(偏心量)が0となるように重みw(i=1〜3)を求める(ステップS30)。ステップS30で求まった重みw(i=1〜3)に従って、各検出器i(i=1〜3)の角度φ(i=1〜3)毎のフーリエ成分を加算した倍率係数αk、βkを求める(ステップS32)。ステップS30で求まった重みw(i=1〜3)に従って、検出器i(i=1〜3)出力の重み付け加算dr(θ)を求める(ステップS34)。ステップS34で求まった重み付け加算dr(θ)のフーリエ係数Fk、Gkを求める(ステップS36)。ステップS36で求まったフーリエ係数Fk、GkとステップS32で求まった倍率係数αk、βkとから、形状のフーリエ成分である形状フーリエ係数Ak、Bkを求める(ステップS38)。ステップS38で求まった形状フーリエ係数Ak、Bkから回転体10の形状r(θ)を求める(ステップS40)。ステップS40で求まった回転体10の形状r(θ)と各検出器i(i=1〜3)の出力とから、回転体10の回転振れ量x(θ)、y(θ)を算出する(ステップS42)。 The above is the principle of the three-point method. Next, the process flow of the three-point method will be described using a flowchart. FIG. 6 is a flowchart showing the process flow of the three-point method. As shown in FIG. 6, the weights w i (i = 1 to 3) are obtained so that the primary component (eccentric amount) of the rotational shake of the rotating body 10 becomes zero (step S30). In accordance with the weights w i (i = 1 to 3) obtained in step S30, a magnification coefficient αk obtained by adding the Fourier components for each angle φ i (i = 1 to 3) of each detector i (i = 1 to 3), βk is obtained (step S32). In accordance with the weights w i (i = 1 to 3) obtained in step S30, the weighted addition dr (θ) of the detector i (i = 1 to 3) output is obtained (step S34). Fourier coefficients Fk and Gk of the weighted addition dr (θ) obtained in step S34 are obtained (step S36). Shape Fourier coefficients Ak and Bk which are Fourier components of the shape are obtained from the Fourier coefficients Fk and Gk obtained in step S36 and the magnification coefficients αk and βk obtained in step S32 (step S38). The shape r (θ) of the rotating body 10 is obtained from the shape Fourier coefficients Ak and Bk obtained in step S38 (step S40). The rotational shake amounts x (θ) and y (θ) of the rotating body 10 are calculated from the shape r (θ) of the rotating body 10 obtained in step S40 and the output of each detector i (i = 1 to 3). (Step S42).

奥山栄樹、守時一、「3点法による真円度形状測定と軸の回転精度測定に関する一考察」、精密工学会誌、Vol.65、No.9、1999.Eki Okuyama, Hajime Moritoki, “A Consideration on Measuring Roundness Shape and Measuring Rotational Accuracy of Shaft by Three-Point Method”, Journal of Precision Engineering, Vol.65, No.9, 1999.

上述した3点法では、(8)式の分母にαk+βkが含まれているため、0割が生ずる可能性があるという問題がある。(8)式において、倍率Hkを(11)式とする。 In the above-described three-point method, αk 2 + βk 2 is included in the denominator of equation (8), so that there is a possibility that 0% may occur. In equation (8), the magnification Hk is defined as equation (11).

Hk=√(αk+βk) (11) Hk = √ (αk 2 + βk 2 ) (11)

倍率Hkは(6)式が成立するように選ぶため、フーリエ級数の高次までを考える場合、0になる可能性がある。つまり、従来の3点法では、倍率Hkが0または非常に小さい値となることから、高次の次数を考える場合、正しく計算できない次数が出てくるということになる。このため、回転体10の形状r(θ)、ひいては回転振れ量x(θ)、y(θ)が正しく求まらないという問題があった。   Since the magnification Hk is selected so that the formula (6) is established, there is a possibility that it becomes 0 when considering higher order Fourier series. That is, in the conventional three-point method, the magnification Hk is 0 or a very small value, and therefore, when a higher order is considered, an order that cannot be calculated correctly appears. For this reason, there has been a problem that the shape r (θ) of the rotating body 10 and thus the rotational shake amounts x (θ) and y (θ) cannot be obtained correctly.

上述した問題点をより明らかにするため、実際の回転振れ測定について説明する。図7(A)および(B)は、実際の回転振れ測定に用いた測定装置40を示す。図7(A)は検出器装置20の平面図、図7(B)はX−X’断面図を示す。図7(A)および(B)で、図5と同じ符号を付した箇所は同じ要素を示すため説明は省略する。図7(A)および(B)において、符号12は回転体(0.5″真球)であり、各検出器i(i=1〜3)の配置角度φ(i=1〜3)は、φ=0゜、φ=120゜、φ=−135゜である。 In order to clarify the problems described above, actual rotational shake measurement will be described. FIGS. 7A and 7B show a measuring apparatus 40 used for actual rotational shake measurement. 7A is a plan view of the detector device 20, and FIG. 7B is a cross-sectional view taken along the line XX ′. In FIGS. 7A and 7B, the portions denoted by the same reference numerals as those in FIG. 7A and 7B, reference numeral 12 denotes a rotating body (0.5 ″ true sphere), and an arrangement angle φ i (i = 1 to 3) of each detector i (i = 1 to 3). Are φ 1 = 0 °, φ 2 = 120 °, and φ 3 = −135 °.

図8は、各検出器i(i=1〜3)の出力波形と、3つの検出器i(i=1〜3)出力を加算した波形dr(θ)とをグラフで示す。図8で、横軸は回転角θ(゜)、左縦軸は測定された変位(μm)、右縦軸は加算された変位(μm)である。各検出器i(i=1〜3)の出力は、検出器間で倍率のずれがあるものの、幅で1.4μm以下に抑えられている。一方、3つの検出器i(i=1〜3)出力を加算した波形dr(θ)は、幅で80nmを切る値となっており、一次成分(偏心量に依存する成分)がキャンセルされていることがわかる。   FIG. 8 is a graph showing an output waveform of each detector i (i = 1 to 3) and a waveform dr (θ) obtained by adding the outputs of three detectors i (i = 1 to 3). In FIG. 8, the horizontal axis represents the rotation angle θ (°), the left vertical axis represents the measured displacement (μm), and the right vertical axis represents the added displacement (μm). The output of each detector i (i = 1 to 3) is suppressed to 1.4 μm or less in width, although there is a magnification shift between the detectors. On the other hand, the waveform dr (θ) obtained by adding the outputs of the three detectors i (i = 1 to 3) has a value of less than 80 nm in width, and the primary component (component depending on the eccentricity) is canceled. I understand that.

図9は、上記加算した波形dr(θ)から回転体12の形状を求めた図である。図9に示されるように、求まった真球(鋼球)12の真円度誤差(roundness error:図9では太線)は、40nm以下と小さい値であり、回転振れ(rotational motion error:図9では細線)は、80nm以下である。   FIG. 9 is a diagram in which the shape of the rotating body 12 is obtained from the added waveform dr (θ). As shown in FIG. 9, the roundness error (roundness error: thick line in FIG. 9) of the obtained true sphere (steel ball) 12 is a small value of 40 nm or less, and rotational motion error: FIG. ) Is 80 nm or less.

図10は、回転振れの周波数成分をグラフで表示したものである。図10で、横軸はフーリエ級数の次数k、縦軸は振幅(μm)であり、各次数毎に検出器i(i=1〜3)の順で示してある。図10において、周波数成分はフーリエ級数展開し、各成分の振幅値として表している。図10に示されるように、3次の成分が顕著であり、3次をピークに次第に小さくなっていくことがわかる。   FIG. 10 is a graph showing the frequency component of rotational shake. In FIG. 10, the horizontal axis represents the order k of the Fourier series, and the vertical axis represents the amplitude (μm), which is shown in the order of the detector i (i = 1 to 3) for each order. In FIG. 10, frequency components are expanded as Fourier series and expressed as amplitude values of the respective components. As shown in FIG. 10, it can be seen that the third-order component is remarkable and gradually decreases with the third-order peak.

図11は、本測定(配置角度φ=0゜、φ=120゜、φ=−135゜)に対し、倍率Hkをプロットしたグラフである。図11で、横軸はフーリエ級数の次数k、縦軸は倍率Hk(a.u.)である。上述のように、倍率Hkが0となるかまたは小さくなりすぎると、求めるフーリエ級数係数の誤差が大きくなるという問題がある。図11に示されるように、次数k=1、23および25で倍率Hkが0となっている。第1次が0となるのは、重みw(i=1〜3)を(4)式を満たすように計算しているためである。 FIG. 11 is a graph plotting the magnification Hk with respect to the main measurement (arrangement angle φ 1 = 0 °, φ 2 = 120 °, φ 3 = −135 °). In FIG. 11, the horizontal axis represents the order k of the Fourier series, and the vertical axis represents the magnification Hk (au). As described above, when the magnification Hk becomes 0 or becomes too small, there is a problem that an error of a Fourier series coefficient to be obtained becomes large. As shown in FIG. 11, the magnification Hk is 0 at the orders k = 1, 23, and 25. The primary order is 0 because the weights w i (i = 1 to 3) are calculated so as to satisfy the expression (4).

図12は、フーリエ級数の次数kを整数とせず、連続な変数として計算することにより、倍率Hkの変化分を示すグラフである。図12で、横軸は連続としたフーリエ級数の次数k、縦軸は倍率Hk(a.u.)である。図12に示されるように、次数k=12で節を持ち、周辺で振幅値が大きく変化する様子がわかる。さらに、図12に示されるように、次数k=23および25で倍率Hkが0となっている。   FIG. 12 is a graph showing the change in the magnification Hk by calculating the order k of the Fourier series as a continuous variable without taking it as an integer. In FIG. 12, the horizontal axis represents the Fourier series order k, and the vertical axis represents the magnification Hk (au). As shown in FIG. 12, it can be seen that there is a node at the order k = 12, and the amplitude value changes greatly in the vicinity. Furthermore, as shown in FIG. 12, the magnification Hk is 0 at orders k = 23 and 25.

図13は、配置角度φ=0゜、φ=110゜、φ=−135゜と、φのみ変化させた場合について、倍率Hkの変化分(連続)を示すグラフである。図13で、横軸は連続としたフーリエ級数の次数k、縦軸は倍率Hk(a.u.)である。図13に示されるように、節が次数k=8と22とに現れ、図11と異なり、次数k=14で振幅値の変化が大きくなっている。一方、図12(φ=120゜)の場合に倍率Hkが0となっていた次数k=23、25では、倍率Hkは0となっていない。 13, the arrangement angle phi 1 = 0 °, phi 2 = 110 °, phi 3 = -135 °, the case of changing only phi 2, is a graph showing the variation of magnification Hk (continuous). In FIG. 13, the horizontal axis represents the Fourier series order k, and the vertical axis represents the magnification Hk (au). As shown in FIG. 13, nodes appear at orders k = 8 and 22, and unlike FIG. 11, the change in amplitude value is large at order k = 14. On the other hand, in the order k = 23 and 25 where the magnification Hk was 0 in the case of FIG. 12 (φ 2 = 120 °), the magnification Hk is not 0.

以上、実際の回転振れ測定によりさらに明らかにされたように、従来の3点法では、(8)式の分母にαk+βkが含まれているため、0割が生ずる可能性があるという問題があった。倍率Hkは(6)式が成立するように選ぶため、フーリエ級数の高次までを考える場合、0になる可能性がある。つまり、従来の3点法では、倍率Hkが0または非常に小さい値となることから、高次の次数を考える場合、正しく計算できない次数が出てくるということになる。このため、回転体10の形状r(θ)、ひいては回転振れ量x(θ)、y(θ)が正しく求まらないという問題があった。 As described above, as further clarified by actual rotational shake measurement, the conventional three-point method includes αk 2 + βk 2 in the denominator of equation (8). There was a problem. Since the magnification Hk is selected so that the formula (6) is established, there is a possibility that it becomes 0 when considering higher order Fourier series. That is, in the conventional three-point method, the magnification Hk is 0 or a very small value, and therefore, when a higher order is considered, an order that cannot be calculated correctly appears. For this reason, there has been a problem that the shape r (θ) of the rotating body 10 and thus the rotational shake amounts x (θ) and y (θ) cannot be obtained correctly.

そこで、本発明の目的は、上記問題を解決するためになされたものであり、高次の次数を考えた場合でも、正しく計算できない次数が出てくるということがなく、回転体の形状r(θ)、ひいては回転振れ量x(θ)、y(θ)を正しく求めることができる回転体測定方法等を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problem. Even when a higher order is considered, an order that cannot be calculated correctly does not appear, and the shape r ( It is an object of the present invention to provide a rotating body measuring method and the like that can correctly obtain θ) and, in turn, rotational shake amounts x (θ) and y (θ).

この発明の回転体測定装置は、回転体の形状を含む特性を測定する回転体測定装置であって、該回転体の回転円周上に測定中心に向けて配置された少なくとも4本の検出器群と、該検出器群に接続された処理部とを備え、前記検出器群の内の3本を一組とする第1組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第1組の倍率が所定の条件に従う角度に設定され、前記検出器群の内の、第1組と少なくとも1本が異なる3本を一組とする第2組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第2組の倍率が第1組の倍率を補完する補完条件に従う角度に設定されており、前記処理部は、前記検出器群の出力と所定の多点法とに基づき回転体の形状を含む特性を算出することを特徴とする。   A rotating body measuring apparatus according to the present invention is a rotating body measuring apparatus for measuring characteristics including the shape of a rotating body, and includes at least four detectors arranged toward a measurement center on a rotating circumference of the rotating body. And a processing unit connected to the detector group, and an arrangement angle of a first set of detectors including three of the detector groups is a Fourier series of the shape of the rotating body A first set of magnifications used for component calculation is set to an angle according to a predetermined condition, and a second set of detectors in which at least one different from the first set in the detector group is one set. The arrangement angle is set to an angle in accordance with a complementary condition in which the second set of magnifications used when calculating the Fourier series component of the shape of the rotating body is supplemented with the first set of magnifications. The characteristic including the shape of the rotating body is calculated based on the output and a predetermined multipoint method. To.

ここで、この発明の回転体測定装置において、前記検出器群の内に3本を一組とする第m組(m≧2)を設定し、第m組は第1組乃至第m−1組と少なくとも1本が異なるものであり、第m組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第m組の倍率が第1組乃至第m−1組の各倍率を補完する補完条件に従う角度に設定することができる。   Here, in the rotating body measuring apparatus according to the present invention, an m-th set (m ≧ 2), in which three sets are included in the detector group, is set, and the m-th set is the first to m−1. The arrangement angle of the m-th detector is different from that of the set, and the m-th set magnification used when calculating the Fourier series component of the shape of the rotating body is the first to m-1th set. Each angle can be set to an angle according to a complementing condition for complementing.

ここで、この発明の回転体測定装置において、回転体の形状は回転角によるフーリエ級数で表され、変位検出器の出力である検出変位は回転体の偏心量と該変位検出器の配置角度における回転体の形状とに基づき表され、前記処理部は、各組毎に、各検出器の検出変位の重み付け加算を求める際における重みを、偏心量が0となるように求める重み算出処理手段と、各組毎に、前記重み算出処理手段により求めた重みを用いて各変位検出器の配置角度毎のフーリエ成分を加算した倍率係数を求める倍率係数算出処理手段と、各組毎に前記倍率係数算出処理手段により求めた倍率係数に基づく倍率を求め、フーリエ級数の各次数毎に各組の倍率の大小を比較し、各次数毎に大きい方の組を選択する選択処理手段と、各組毎に、前記重み算出処理手段により求めた重みを用いて各検出器の検出変位の重み付け加算を求める重み付け加算処理手段と、各組毎に、前記重み付け加算処理手段により求めた重み付け加算のフーリエ係数を求めるフーリエ係数算出処理手段と、各組毎に、前記倍率係数算出処理手段により求めた倍率係数と前記フーリエ係数算出処理手段により求めた重み付け加算のフーリエ係数とを用いて、回転体の形状のフーリエ係数を求める形状フーリエ係数算出処理手段と、前記形状フーリエ係数算出処理手段により求めた各組毎の回転体の形状のフーリエ係数について、前記選択処理手段により各次数毎に選択した組の方の回転体の形状のフーリエ係数を各次数毎の正の回転体の形状のフーリエ係数として求める正形状フーリエ係数算出処理手段と、前記正形状フーリエ係数算出処理手段により求めた正の回転体の形状のフーリエ係数に基づき、回転体の形状を求める形状算出処理手段とを備えることができる。   Here, in the rotating body measuring apparatus of the present invention, the shape of the rotating body is represented by a Fourier series according to the rotation angle, and the detected displacement that is the output of the displacement detector is the eccentric amount of the rotating body and the arrangement angle of the displacement detector. A weight calculation processing means for obtaining a weight when calculating the weighted addition of the detected displacement of each detector for each group so that the eccentricity amount is 0 A magnification coefficient calculation processing means for obtaining a magnification coefficient by adding a Fourier component for each arrangement angle of each displacement detector using the weight obtained by the weight calculation processing means for each set; and the magnification coefficient for each set. Selection processing means for obtaining a magnification based on the magnification coefficient obtained by the calculation processing means, comparing the magnitudes of the magnifications of each set for each order of the Fourier series, and selecting a larger set for each order; and for each set The weight calculation process Weighted addition processing means for obtaining weighted addition of detection displacement of each detector using the weight obtained by the stage, and Fourier coefficient calculation processing means for obtaining Fourier coefficient of weighted addition obtained by the weighted addition processing means for each set And, for each set, the shape Fourier coefficient for obtaining the Fourier coefficient of the shape of the rotating body using the magnification coefficient obtained by the magnification coefficient calculation processing means and the weighted addition Fourier coefficient obtained by the Fourier coefficient calculation processing means. About the Fourier coefficient of the shape of the rotating body for each set obtained by the calculation processing means and the shape Fourier coefficient calculating processing means, the Fourier coefficient of the shape of the rotating body of the set selected for each order by the selection processing means And a positive shape Fourier coefficient calculation processing means for calculating the positive shape for each order as a Fourier coefficient of the shape of the positive rotating body; Based on the Fourier coefficients of the shape of the positive rotating body obtained by the coefficient calculation processing means can comprise a shape calculation processing means for calculating the shape of the rotating body.

ここで、この発明の回転体測定装置において、前記処理部は、前記形状算出処理手段により求めた形状と前記重み付け加算処理手段により求めた各組毎の重み付け加算とに基づき、回転体の回転振れ量を求める回転振れ量算出手段をさらに備えることができる。   Here, in the rotating body measuring apparatus according to the present invention, the processing unit is configured to rotate the rotating body of the rotating body based on the shape obtained by the shape calculation processing means and the weighted addition for each set obtained by the weighted addition processing means. A rotational shake amount calculating means for obtaining the amount can be further provided.

ここで、この発明の回転体測定装置において、前記所定の条件は、複数の配置角度に関する第1組の倍率におけるフーリエ級数の次数中での最大値が最小となる倍率の場合の配置角度であるものとすることができる。   Here, in the rotating body measuring apparatus according to the present invention, the predetermined condition is an arrangement angle in a case where the maximum value in the order of the Fourier series in the first set of magnifications for a plurality of arrangement angles is a minimum. Can be.

ここで、この発明の回転体測定装置において、前記補完条件は、各組の倍率が所定の値以上の近似的に均一な値となる倍率の場合の配置角度であるものとすることができる。   Here, in the rotating body measuring apparatus according to the present invention, the complementary condition may be an arrangement angle in a case where the magnification of each set is an approximately uniform value greater than or equal to a predetermined value.

ここで、この発明の回転体測定装置において、検出器が4本の場合、変位検出器の配置角度は、各々、0°、110°、120°及び−135°とすることができる。   Here, in the rotating body measuring apparatus of the present invention, when the number of detectors is four, the arrangement angles of the displacement detectors can be 0 °, 110 °, 120 °, and −135 °, respectively.

この発明の回転体測定方法は、回転体の形状を含む特性を測定する回転体測定方法であって、該回転体の回転円周上に測定中心に向けて配置された少なくとも4本の検出器群と、該検出器群に接続された処理部とを用いるものであり、前記検出器群の内の3本を一組とする第1組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第1組の倍率が所定の条件に従う角度に設定され、前記検出器群の内の、第1組と少なくとも1本が異なる3本を一組とする第2組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第2組の倍率が第1組の倍率を補完する補完条件に従う角度に設定されており、前記処理部は、前記検出器群の出力と所定の多点法とに基づき回転体の形状を含む特性を算出することを特徴とする。   The rotating body measuring method of the present invention is a rotating body measuring method for measuring characteristics including the shape of the rotating body, and is provided with at least four detectors arranged on the rotating circumference of the rotating body toward the measurement center. Group and a processing unit connected to the detector group, and the arrangement angle of the first set of detectors including three of the detector groups as a set is the shape of the rotating body. The first set of magnifications used for calculating the Fourier series component of the second set is set to an angle in accordance with a predetermined condition, and a second set of three sets, at least one of which is different from the first set in the detector group. The arrangement angle of the detector is set to an angle according to a complementary condition in which the second set of magnifications used when calculating the Fourier series component of the shape of the rotating body is supplemented with the first set of magnifications, and the processing unit The characteristics including the shape of the rotating body are calculated based on the output of the vessel group and a predetermined multipoint method. I am characterized in.

ここで、この発明の回転体測定方法において、前記検出器群の内に3本を一組とする第m組(m≧2)を設定し、第m組は第1組乃至第m−1組と少なくとも1本が異なるものであり、第m組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第m組の倍率が第1組乃至第m−1組の各倍率を補完する補完条件に従う角度に設定することができる。   Here, in the rotating body measuring method according to the present invention, an m-th group (m ≧ 2) is set in which three sets are included in the detector group, and the m-th group is the first to m−1. The arrangement angle of the m-th detector is different from that of the set, and the m-th set magnification used when calculating the Fourier series component of the shape of the rotating body is the first to m-1th set. Each angle can be set to an angle according to a complementing condition for complementing.

ここで、この発明の回転体測定方法において、回転体の形状は回転角によるフーリエ級数で表され、変位検出器の出力である検出変位は回転体の偏心量と該変位検出器の配置角度における回転体の形状とに基づき表され、前記処理部が、各組毎に、各検出器の検出変位の重み付け加算を求める際における重みを、偏心量が0となるように求める重み算出処理ステップと、各組毎に、前記重み算出処理ステップにより求めた重みを用いて各変位検出器の配置角度毎のフーリエ成分を加算した倍率係数を求める倍率係数算出処理ステップと、各組毎に前記倍率係数算出処理ステップにより求めた倍率係数に基づく倍率を求め、フーリエ級数の各次数毎に各組の倍率の大小を比較し、各次数毎に大きい方の組を選択する選択処理ステップと、各組毎に、前記重み算出処理ステップにより求めた重みを用いて各検出器の検出変位の重み付け加算を求める重み付け加算処理ステップと、各組毎に、前記重み付け加算処理ステップにより求めた重み付け加算のフーリエ係数求めるフーリエ係数算出処理ステップと、各組毎に、前記倍率係数算出処理ステップにより求めた倍率係数と前記フーリエ係数算出処理ステップにより求めた重み付け加算のフーリエ係数とを用いて、回転体の形状のフーリエ係数を求める形状フーリエ係数算出処理ステップと、前記形状フーリエ係数算出処理ステップにより求めた各組毎の回転体の形状のフーリエ係数について、前記選択処理ステップにより各次数毎に選択した組の方の回転体の形状のフーリエ係数を各次数毎の正の回転体の形状のフーリエ係数として求める正形状フーリエ係数算出処理ステップと、前記正形状フーリエ係数算出処理ステップにより求めた正の回転体の形状のフーリエ係数に基づき、回転体の形状を求める形状算出処理ステップとを実行することができる。   Here, in the rotating body measuring method of the present invention, the shape of the rotating body is represented by a Fourier series based on the rotation angle, and the detected displacement that is the output of the displacement detector is the eccentric amount of the rotating body and the arrangement angle of the displacement detector. A weight calculation processing step which is expressed based on the shape of the rotating body, and the processing unit obtains a weight when calculating the weighted addition of the detection displacement of each detector for each group so that the eccentricity becomes zero; A magnification factor calculation processing step for obtaining a magnification factor by adding a Fourier component for each arrangement angle of each displacement detector using the weight obtained by the weight calculation processing step for each group; and the magnification factor for each group A magnification step based on the magnification coefficient obtained in the calculation processing step is obtained, a comparison processing step is performed for each order of the Fourier series, the magnitude of each pair is compared, and a larger pair is selected for each order; A weighted addition processing step for obtaining a weighted addition of the detected displacement of each detector using the weight obtained by the weight calculating step, and a Fourier for obtaining a Fourier coefficient of the weighted addition obtained by the weighted addition processing step for each set. Using the coefficient calculation processing step, and for each set, the magnification coefficient obtained by the magnification coefficient calculation processing step and the weighted addition Fourier coefficient obtained by the Fourier coefficient calculation processing step, the Fourier coefficient of the shape of the rotating body is calculated. About the shape Fourier coefficient calculation processing step to be obtained, and the Fourier coefficient of the shape of the rotator for each set obtained by the shape Fourier coefficient calculation processing step, the pair of rotators selected for each order by the selection processing step The Fourier coefficient of the shape is obtained as the Fourier coefficient of the shape of the positive rotating body for each order. And a shape calculation processing step for obtaining the shape of the rotating body based on the Fourier coefficient of the shape of the positive rotating body obtained by the positive shape Fourier coefficient calculation processing step. .

ここで、この発明の回転体測定方法において、前記処理部は、前記形状算出処理ステップにより求めた形状と前記重み付け加算処理ステップにより求めた各組毎の重み付け加算とに基づき、回転体の回転振れ量を求める回転振れ量算出ステップをさらに備えることができる。   Here, in the rotating body measuring method according to the present invention, the processing unit may rotate the rotating body of the rotating body based on the shape obtained by the shape calculating process step and the weighted addition for each set obtained by the weighted adding process step. A rotational shake amount calculation step for obtaining the amount can be further provided.

ここで、この発明の回転体測定方法において、前記所定の条件は、複数の配置角度に関する第1組の倍率におけるフーリエ級数の次数中での最大値が最小となる倍率の場合の配置角度であるものとすることができる。   Here, in the rotating body measuring method of the present invention, the predetermined condition is an arrangement angle in a case where the maximum value in the order of the Fourier series in the first set of magnifications for a plurality of arrangement angles is a minimum. Can be.

ここで、この発明の回転体測定方法において、前記補完条件は、各組の倍率が所定の値以上の近似的に均一な値となる倍率の場合の配置角度であるものとすることができる。   Here, in the rotating body measuring method of the present invention, the complementary condition may be an arrangement angle in the case of a magnification at which each set of magnifications is an approximately uniform value equal to or greater than a predetermined value.

ここで、この発明の回転体測定方法において、検出器が4本の場合、変位検出器の配置角度は、各々、0°、110°、120°及び−135°とすることができる。   Here, in the rotating body measuring method of the present invention, when the number of detectors is four, the arrangement angles of the displacement detectors can be 0 °, 110 °, 120 °, and −135 °, respectively.

本発明の回転体測定方法等によれば、従来の3点法において3本という検出器の本数制限を外し、4本以上の検出器を用いて、第一に、フーリエ係数の式の分母にくる倍率係数等が均一になる検出器の角度配置を複数組選択する(所定の条件)。第二に、同式の分母が0となる部分は複数組の間で補完しあうように倍率(結果的に倍率係数)を選択する(補完条件)。第三に、この補完しあう倍率係数等(結果的にフーリエ係数)を用いて形状と回転振れ量を求める。従って、形状等の算出時の誤差変動が少なく、次数が高くなっても本発明の回転体測定方法等を適用することができる。このため、高次の次数を考えた場合でも、正しく計算できない次数が出てくるということがなく、回転体の形状、ひいては回転振れ量を正しく求めることができる回転体測定装置および方法を提供することができるという効果がある。   According to the rotating body measuring method and the like of the present invention, in the conventional three-point method, the limit of the number of detectors of three is removed, and four or more detectors are used. A plurality of sets of detector angular arrangements with uniform magnification coefficients are selected (predetermined conditions). Secondly, a magnification (as a result, a magnification factor) is selected so that a portion where the denominator of the same equation is 0 is complemented between a plurality of sets (complementation condition). Thirdly, the shape and the rotational shake amount are obtained by using the complementary magnification coefficient and the like (resulting Fourier coefficient). Therefore, the variation in error when calculating the shape and the like is small, and the rotating body measuring method of the present invention can be applied even when the order is high. For this reason, even when a higher order is considered, there is provided an apparatus and method for measuring a rotating body capable of correctly obtaining the shape of the rotating body and thus the amount of rotational run-out without causing an order that cannot be calculated correctly. There is an effect that can be.

まず、本発明の回転体測定方法(所定の多点法)等の原理について説明し、次に各実施例について図面を参照して詳細に説明する。   First, the principle of the rotating body measuring method (predetermined multipoint method) of the present invention will be described, and then each embodiment will be described in detail with reference to the drawings.

本発明の回転体測定方法等の原理. Principle of the rotating body measuring method of the present invention.

図1は、本発明の回転体測定方法等の原理を説明するための回転体および検出器の配置を示す。図1で、背景技術で用いた図5と同じ符号を付した箇所は同じ要素を示すため説明は省略する。図1において、符号4は検出器(プローブ)、φは検出器4の配置角度である。回転体10には金属からなる軸が多く、検出器i(i=1〜4)には静電容量型の(変位)検出器を用いているが、光学的な検出器を用いてもよい。4本の検出器1〜4は、いずれも測定中心O(0,0)を通るように設定しておく。4本の検出器1〜4を順にφ、φ、φ、φの配置角度に取り付け、そのほぼ中心に回転体10を設置しておく。図1に示されるように、回転体10の回転角をθとし、回転体の中心位置Ocは(x(θ)、y(θ))偏心している、すなわち偏心量は(x(θ)、y(θ))であるものとする。図1に示される配置角度で、第1組を検出器1(φ)、検出器2(φ)、検出器3(φ)とし、第2組を検出器1(φ)、検出器4(φ)、検出器3(φ)とする。 FIG. 1 shows the arrangement of a rotating body and detectors for explaining the principle of the rotating body measuring method and the like of the present invention. In FIG. 1, portions denoted by the same reference numerals as those used in the background art in FIG. In FIG. 1, reference numeral 4 is a detector (probe), and φ 4 is an arrangement angle of the detector 4. The rotating body 10 has many shafts made of metal, and the detector i (i = 1 to 4) uses a capacitance type (displacement) detector, but an optical detector may be used. . All of the four detectors 1 to 4 are set so as to pass through the measurement center O (0, 0). Four detectors 1 to 4 are sequentially attached to the arrangement angles of φ 1 , φ 2 , φ 3 , and φ 4 , and the rotating body 10 is installed at substantially the center thereof. As shown in FIG. 1, the rotation angle of the rotating body 10 is θ, and the center position Oc of the rotating body is eccentric (x (θ), y (θ)), that is, the amount of eccentricity is (x (θ), y (θ)). With the arrangement angle shown in FIG. 1, the first set is detector 1 (φ 1 ), detector 2 (φ 2 ), detector 3 (φ 3 ), and the second set is detector 1 (φ 1 ), It is assumed that detector 4 (φ 4 ) and detector 3 (φ 3 ).

まず、重み等の符号の付け方について簡単に示す。符号および用語は背景技術で説明した3点法の原理に準じている。第1組の重み(係数)をw11、w12、w13とし、第2組の重みをw21、w24、w23とする。第1組の倍率係数をα1k、β1kとし、第2組の倍率係数をα2k、β2kとする。第1組の倍率をHk1、第2組の倍率をHk2とする。第1組の形状フーリエ係数をA1k、B1kとし、第2組の形状フーリエ係数をA2k、B2kとする。各検出器1〜4からの出力信号をd1、d2、d3、d4とする。第1組の信号出力d1、d2およびd3を加算したものをdr1とし、第2組の信号出力d1、d4およびd3を加算したものをdr2とする。dr1から求まる形状およびその次数成分をrr1、rr1kとし、dr2から求まる形状およびその次数成分をrr2、rr2kとする。 First, how to attach weights and the like will be briefly described. The symbols and terms are in accordance with the principle of the three-point method described in the background art. The weights (coefficients) of the first set are w 11 , w 12 , and w 13, and the weights of the second set are w 21 , w 24 , and w 23 . The first set of magnification coefficients are α 1k and β 1k, and the second set of magnification coefficients are α 2k and β 2k . The magnification of the first set is H k1 , and the magnification of the second set is H k2 . The first set of shapes Fourier coefficients A1K, and B 1k, the second set of shapes Fourier coefficients A 2k, and B 2k. The output signals from the detectors 1 to 4 are d1, d2, d3, and d4. The sum of the first set of signal outputs d1, d2, and d3 is designated as dr1, and the sum of the second set of signal outputs d1, d4, and d3 is designated as dr2. The shape obtained from dr1 and its order components are rr1 and rr1k, and the shape obtained from dr2 and its order components are rr2 and rr2k.

回転体10の形状をr(θ)で表し、フーリエ級数展開して各次数毎の成分で表示すると、3点法の場合と同様に、以下の(1)式のようになる。   When the shape of the rotator 10 is represented by r (θ) and expanded by Fourier series and displayed with components for each order, the following equation (1) is obtained as in the case of the three-point method.

r(θ)=r0+Σ(Akcos(kθ)+Bksin(kθ)) (1)     r (θ) = r0 + Σ (Akcos (kθ) + Bksin (kθ)) (1)

(1)式で、r0は回転体の平均半径、kはフーリエ級数の次数、Ak、Bkは形状を表す形状フーリエ係数であり、加算(Σ)はk=1からN(目標とするフーリエ級数成分の最高次数)までとるものとする。平均半径r0は、形状r(θ)を求める場合には一定値と考えられるため、0と考えてよい。各検出器i(i=1〜4)での検出変位をdi(θ)で表すと、3点法の場合と同様に、以下の(2)式となる。   In equation (1), r0 is the average radius of the rotating body, k is the order of the Fourier series, Ak and Bk are the shape Fourier coefficients representing the shape, and addition (Σ) is k = 1 to N (target Fourier series) Up to the highest order of the component). The average radius r0 can be considered to be 0 because it is considered to be a constant value when the shape r (θ) is obtained. When the detected displacement at each detector i (i = 1 to 4) is represented by di (θ), the following equation (2) is obtained as in the case of the three-point method.

di(θ)=r(θ+φi)+x(θ)cosφi+y(θ)sinφi (2)     di (θ) = r (θ + φi) + x (θ) cosφi + y (θ) sinφi (2)

形状r(θ)を求めるために、w(i=1〜4)を重みとして、重み付け加算dr1(θ)、dr2(θ)を以下の(12)式、(13)式のようにとる。 In order to obtain the shape r (θ), w i (i = 1 to 4) is used as a weight, and weighted additions dr1 (θ) and dr2 (θ) are taken as in the following equations (12) and (13). .

dr1(θ)=w11r(θ+φ)+w12r(θ+φ)+w13r(θ+φ
+x(θ)(w11cosφ+w12cosφ+w13cosφ
+y(θ)(w11sinφ+w12sinφ+w13sinφ
(12)
dr2(θ)=w21r(θ+φ)+w24r(θ+φ)+w23r(θ+φ
+x(θ)(w21cosφ+w24cosφ+w23cosφ
+y(θ)(w21sinφ+w24sinφ+w23sinφ
(13)
dr1 (θ) = w 11 r (θ + φ 1 ) + w 12 r (θ + φ 2 ) + w 13 r (θ + φ 3 )
+ X (θ) (w 11 cos φ 1 + w 12 cos φ 2 + w 13 cos φ 3 )
+ Y (θ) (w 11 sin φ 1 + w 12 sin φ 2 + w 13 sin φ 3 )
(12)
dr2 (θ) = w 21 r (θ + φ 1 ) + w 24 r (θ + φ 2 ) + w 23 r (θ + φ 3 )
+ X (θ) (w 21 cos φ 1 + w 24 cos φ 2 + w 23 cos φ 3 )
+ Y (θ) (w 21 sinφ 1 + w 24 sinφ 2 + w 23 sinφ 3 )
(13)

(11)式で、重みwijと配置角度φ(i=1〜4)とを以下の(14)式、(15)式のようにとると、偏心量x(θ)およびy(θ)に依存せずに重み付け加算dr1(θ)、dr2(θ)を得ることができる。 In equation (11), when the weight w ij and the arrangement angle φ i (i = 1 to 4) are taken as in the following equations (14) and (15), the eccentric amounts x (θ) and y (θ The weighted additions dr1 (θ) and dr2 (θ) can be obtained without depending on.

11cosφ+w12cosφ+w13cosφ=0
11sinφ+w12sinφ+w13sinφ=0 (14)
21cosφ+w24cosφ+w23cosφ=0
21sinφ+w24sinφ+w23sinφ=0 (15)
w 11 cos φ 1 + w 12 cos φ 2 + w 13 cos φ 3 = 0
w 11 sin φ 1 + w 12 sin φ 2 + w 13 sin φ 3 = 0 (14)
w 21 cosφ 1 + w 24 cosφ 4 + w 23 cosφ 3 = 0
w 21 sinφ 1 + w 24 sinφ 4 + w 23 sinφ 3 = 0 (15)

(14)式、(15)式が成り立つと、重み付け加算dr1(θ)、dr2(θ)は偏心量x(θ)、y(θ)に依存しなくなる。(12)式、(13)式と(1)式より、   When the expressions (14) and (15) are established, the weighted additions dr1 (θ) and dr2 (θ) do not depend on the eccentric amounts x (θ) and y (θ). From Equation (12), Equation (13) and Equation (1),

dr1(θ)=w11r(θ+φ)+w12r(θ+φ)+w13r(θ+φ
=w11Σ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
+w12Σ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
+w13Σ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
(16)
dr2(θ)=w21r(θ+φ)+w24r(θ+φ)+w23r(θ+φ
=w21Σ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
+w24Σ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
+w23Σ{Akcos(k(θ+φ))+Bksin(k(θ+φ))}
(17)
dr1 (θ) = w 11 r (θ + φ 1 ) + w 12 r (θ + φ 2 ) + w 13 r (θ + φ 3 )
= W 11 Σ {Akcos (k (θ + φ 1 )) + Bksin (k (θ + φ 1 ))}
+ W 12 Σ {Akcos (k (θ + φ 2 )) + Bksin (k (θ + φ 2 ))}
+ W 13 Σ {Akcos (k (θ + φ 3 )) + Bksin (k (θ + φ 3 ))}
(16)
dr2 (θ) = w 21 r (θ + φ 1 ) + w 24 r (θ + φ 4 ) + w 23 r (θ + φ 3 )
= W 21 Σ {Akcos (k (θ + φ 1 )) + Bksin (k (θ + φ 1 ))}
+ W 24 Σ {Akcos (k (θ + φ 4 )) + Bksin (k (θ + φ 4 ))}
+ W 23 Σ {Akcos (k (θ + φ 3 )) + Bksin (k (θ + φ 3 ))}
(17)

(16)式、(17)式を変形して、倍率係数α1k、β1k、α2k、β2kを以下の(18)式、(19)式のようにおけば、(16)式は(20)式のように、(17)式は(21)式のように表すことができる。 If the equations (16) and (17) are modified and the magnification coefficients α 1k , β 1k , α 2k , and β 2k are set as in the following equations (18) and (19), the equation (16) becomes Like equation (20), equation (17) can be expressed as equation (21).

11cos(kφ)+w12cos(kφ)+w13cos(kφ):=α1k
11sin(kφ)+w12sin(kφ)+w13sin(kφ):=β1k
(18)
21cos(kφ)+w24cos(kφ)+w23cos(kφ):=α2k
21sin(kφ)+w24sin(kφ)+w23sin(kφ):=β2k
(19)
dr1(θ)=Σ{(A1kα1k−B1kβ1k)cos(kθ)
+(B1kα1k+A1kβ1k)sin(kθ)}
=Σ{F1kcos(kθ)+G1ksin(kθ)} (20)
dr2(θ)=Σ{(A2kα2k−B2kβ2k)cos(kθ)
+(B2kα2k+A2kβ2k)sin(kθ)}
=Σ{F2kcos(kθ)+G2ksin(kθ)} (21)
w 11 cos (kφ 1 ) + w 12 cos (kφ 2 ) + w 13 cos (kφ 3 ): = α 1k
w 11 sin (kφ 1 ) + w 12 sin (kφ 2 ) + w 13 sin (kφ 3 ): = β 1k
(18)
w 21 cos (kφ 1 ) + w 24 cos (kφ 4 ) + w 23 cos (kφ 3 ): = α 2k
w 21 sin (kφ 1 ) + w 24 sin (kφ 4 ) + w 23 sin (kφ 3 ): = β 2k
(19)
dr1 (θ) = Σ {(A 1k α 1k −B 1k β 1k ) cos (kθ)
+ (B 1k α 1k + A 1k β 1k ) sin (kθ)}
= Σ {F 1k cos (kθ) + G 1k sin (kθ)} (20)
dr2 (θ) = Σ {(A 2k α 2k −B 2k β 2k ) cos (kθ)
+ (B 2k α 2k + A 2k β 2k ) sin (kθ)}
= Σ {F 2k cos (kθ) + G 2k sin (kθ)} (21)

従って、4つの検出器i(i=1〜4)の重み付け加算値dr1(θ)のフーリエ係数F1k、G1kを求め、倍率係数α1k、β1kからA1k、B1kを以下の(22)式で求めることができる。第2組についても同様に、A2k、B2kを以下の(23)式で求めることができる。 Accordingly, the Fourier coefficients F 1k and G 1k of the weighted addition values dr1 (θ) of the four detectors i (i = 1 to 4) are obtained, and the magnification coefficients α 1k and β 1k are converted into A 1k and B 1k as follows ( 22). Similarly, for the second set, A 2k and B 2k can be obtained by the following equation (23).

1k=(α1k1k+β1k1k)/(α1k +β1k
1k=(−β1k1k+α1k1k)/(α1k +β1k ) (22)
2k=(α2k2k+β2k2k)/(α2k +β2k
2k=(−β2k2k+α2k2k)/(α2k +β2k ) (23)
A 1k = (α 1k F 1k + β 1k G 1k ) / (α 1k 2 + β 1k 2 )
B 1k = (− β 1k F 1k + α 1k G 1k ) / (α 1k 2 + β 1k 2 ) (22)
A 2k = (α 2k F 2k + β 2k G 2k ) / (α 2k 2 + β 2k 2 )
B 2k = (− β 2k F 2k + α 2k G 2k ) / (α 2k 2 + β 2k 2 ) (23)

(22)式、(23)式において、α1kとβ1kとの二乗和およびα2kとβ2kとの二乗和が含まれている。ここで、倍率H1k、H2kを、以下の(24)式、(25)式とする。 In the expressions (22) and (23), the sum of squares of α 1k and β 1k and the sum of squares of α 2k and β 2k are included. Here, the magnifications H1k and H2k are defined as the following expressions (24) and (25).

1k=√(α1k +β1k ) (24)
2k=√(α2k +β2k ) (25)
H 1k = √ (α 1k 2 + β 1k 2 ) (24)
H 2k = √ (α 2k 2 + β 2k 2 ) (25)

1k、H2kは、各次数k毎に値が出てくるので、各次数k毎のそれぞれの大小を比較して、大きい方の組をその次数kの係数として採用する。つまり、各次数k毎に(A1k、B1k)を取るか、(A2k、B2k)を取るかが決まる。各次数k毎に決まったフーリエ係数を(Aak、Bak)として、これを用いて回転体の形状r(θ)を(1)式で求めることができる。形状r(θ)が求まると、偏心量x(θ)、y(θ)は3点法と同様に、以下の(9)式で求まる。 Since H 1k and H 2k have values for each order k, the magnitudes of each order k are compared, and the larger set is adopted as the coefficient of the order k. That is, for each order k, it is determined whether (A 1k , B 1k ) or (A 2k , B 2k ) is taken. The Fourier coefficient determined for each order k is set as (A ak , B ak ), and using this, the shape r (θ) of the rotating body can be obtained by equation (1). When the shape r (θ) is obtained, the eccentricity amounts x (θ) and y (θ) are obtained by the following equation (9) as in the three-point method.

x(θ)={−(d(θ)-r(θ+φ))sinφ
+(d(θ)-r(θ+φ))sinφ}/sin(φ−φ
y(θ)={(d(θ)-r(θ+φ))cosφ
−(d(θ)-r(θ+φ))cosφ}/sin(φ−φ
(9)
x (θ) = {− (d 2 (θ) −r (θ + φ 2 )) sin φ 1
+ (D 1 (θ) −r (θ + φ 1 )) sin φ 2 } / sin (φ 1 −φ 2 )
y (θ) = {(d 2 (θ) −r (θ + φ 2 )) cos φ 1
− (D 1 (θ) −r (θ + φ 1 )) cos φ 2 } / sin (φ 1 −φ 2 )
(9)

回転体10の偏心量x(θ)、y(θ)は、回転時には1次の回転振れとして現れる。この回転振れには回転体10自体の回転振れと回転体10の取付け誤差とを含むが、両者を分離することはできない。さらに、回転体10の偏心量x(θ)、y(θ)の周波数成分をCk、Dk、Nk、Mkで表せば、3点法と同様に、(10)式で回転振れの周波数成分を求めることが可能である。以上が、本発明の回転体測定方法等の原理である。   The eccentric amounts x (θ) and y (θ) of the rotating body 10 appear as primary rotational shakes during rotation. This rotational shake includes the rotational shake of the rotating body 10 itself and the mounting error of the rotating body 10, but the two cannot be separated. Further, if the frequency components of the eccentric amounts x (θ) and y (θ) of the rotating body 10 are expressed by Ck, Dk, Nk, and Mk, the frequency component of the rotational shake is expressed by the equation (10) as in the three-point method. It is possible to ask. The above is the principle of the rotating body measuring method of the present invention.

x(θ)=Σ{Ckcos(kθ)+Dksin(kθ)}
y(θ)=Σ{Nkcos(kθ)+Mksin(kθ)} (10)
x (θ) = Σ {Ckcos (kθ) + Dksin (kθ)}
y (θ) = Σ {Nkcos (kθ) + Mksin (kθ)} (10)

以下、本発明の一実施例について説明する。図2(A)および(B)は、本発明の実施例1における回転体測定装置20を示す。図2(A)は回転体検出器装置20の平面図、図2(B)はX−X’断面図を示す。図2(A)および(B)で、図1と同じ符号を付した箇所は同じ要素を示すため説明は省略する。図2(A)および(B)において、符号12は回転体(0.5″真球)であり、各検出器i(i=1〜4)の配置角度φ(i=1〜4)は、φ=0゜、φ=120゜、φ=−135゜、φ=110゜が好適である。各組については上述の原理で説明した例(第1組を検出器1(φ)、検出器2(φ)、検出器3(φ)とし、第2組を検出器1(φ)、検出器4(φ)、検出器3(φ))を用いて説明する。 Hereinafter, an embodiment of the present invention will be described. 2A and 2B show a rotating body measuring apparatus 20 in Embodiment 1 of the present invention. 2A is a plan view of the rotating body detector device 20, and FIG. 2B is a cross-sectional view taken along line XX ′. 2 (A) and 2 (B), the same reference numerals as those in FIG. 2 (A) and 2 (B), reference numeral 12 denotes a rotating body (0.5 ″ sphere), and an arrangement angle φ i (i = 1 to 4) of each detector i (i = 1 to 4). Are preferably φ 1 = 0 °, φ 2 = 120 °, φ 3 = −135 °, φ 4 = 110 °, and each set is an example described in the above principle (the first set is the detector 1). (Φ 1 ), detector 2 (φ 2 ), detector 3 (φ 3 ), and the second set is detector 1 (φ 1 ), detector 4 (φ 4 ), detector 3 (φ 3 )) Will be described.

図1および図2(A)、(B)に示されるように、回転体12の形状r(θ)を含む諸特性(回転振れ量等)を測定する回転体測定装置20は、回転体12の回転円周上に測定中心Oに向けて配置された少なくとも4本の検出器群i(i=1〜4)と、検出器群i(i=1〜4)に接続された処理部30とを備えている。処理部30の機能については後述する。検出器群i(i=1〜4)の内の3本を一組とする第1組の検出器の配置角度(φ、φ、φ)は、回転体12の形状r(θ)のフーリエ級数成分算出時に用いる第1組の倍率H1kが所定の条件に従う角度に設定されている。所定の条件としては、第1組の倍率H1kを所望の配置角度について求め、フーリエ級数の次数kの中での最大値となる倍率H1kを選ぶ。この操作を他の所望の配置角度について繰返し、最大となる倍率H1kが最小となる場合の配置角度を第1組の検出器の配置角度(φ、φ、φ)とする。つまり、所定の条件は、複数の所望の配置角度に関する第1組の倍率H1kにおけるフーリエ級数の次数k中での最大値が最小となる倍率の場合の配置角度とする条件である。一方、検出器群i(i=1〜4)の内の、第1組と少なくとも1本が異なる3本を一組とする第2組の検出器の配置角度(φ、φ、φ)は、回転体12の形状r(θ)のフーリエ級数成分算出時に用いる第2組の倍率H2kが第1組の倍率H1kを補完する補完条件に従う角度に設定されている。補完条件としては、各組の倍率H1k、H2kが所定の値以上の近似的に均一な値となる倍率の場合の配置角度とする条件である。例えば、第1組で求まった各次数kの倍率H1kが小さくなるところで大きくなるように補完するようなH2kとなる場合の配置角度とする条件である。近似的に均一な値とは、倍率H1kとH1kとを比較して大きい方を採り、それらのすべてがほぼ均一になるように倍率を決めればよいという意味である。所定の値としては例えば0.7が好適であるが、この値に限定されるものではなく、あまり小さくならない値であればよい。処理部30は、検出器群i(i=1〜4)の出力と所定の多点法(例えば、上述した本発明の回転体測定方法等の原理)に基づき、回転体20の形状r(θ)を含む特性(回転振れ量)を算出する。 As shown in FIG. 1 and FIGS. 2A and 2B, the rotating body measuring device 20 that measures various characteristics (rotational shake amount and the like) including the shape r (θ) of the rotating body 12 includes the rotating body 12. And at least four detector groups i (i = 1 to 4) arranged toward the measurement center O on the rotation circumference of the sensor, and the processing unit 30 connected to the detector group i (i = 1 to 4). And. The function of the processing unit 30 will be described later. The arrangement angle (φ 1 , φ 2 , φ 3 ) of a first set of three detectors i (i = 1 to 4) in the detector group i is a shape r (θ of the rotating body 12 The first set of magnifications H 1k used when calculating the Fourier series component of) is set to an angle according to a predetermined condition. As a predetermined condition, a first set of magnifications H 1k is obtained for a desired arrangement angle, and a magnification H 1k that is the maximum value in the order k of the Fourier series is selected. This operation is repeated for other desired arrangement angles, and the arrangement angle when the maximum magnification H 1k is the minimum is the arrangement angle (φ 1 , φ 2 , φ 3 ) of the first set of detectors. That is, the predetermined condition is a condition for setting the arrangement angle in the case of a magnification at which the maximum value in the order k of the Fourier series in the first set of magnifications H 1k for a plurality of desired arrangement angles is the minimum. On the other hand, in the detector group i (i = 1 to 4), the arrangement angle (φ 1 , φ 4 , φ) of the second set of detectors, each of which includes at least one set different from the first set. 3 ) is set to an angle according to a complementary condition in which the second set of magnifications H 2k used when calculating the Fourier series component of the shape r (θ) of the rotating body 12 is supplemented with the first set of magnifications H 1k . The complementary condition is a condition for setting the arrangement angle when the magnifications H 1k and H 2k of each set are approximately uniform values equal to or larger than a predetermined value. For example, there is a condition for the arrangement angle when H 2k is complemented so as to increase when the magnification H 1k of each order k obtained in the first set becomes smaller. An approximately uniform value means that the magnification H 1k and H 1k are compared and the larger one is taken, and the magnification should be determined so that all of them are substantially uniform. For example, 0.7 is preferable as the predetermined value, but the value is not limited to this value, and any value that does not become too small may be used. Based on the output of the detector group i (i = 1 to 4) and a predetermined multipoint method (for example, the principle of the method for measuring a rotating body of the present invention described above), the processing unit 30 forms the shape r ( A characteristic (rotational shake amount) including θ) is calculated.

次に、処理部30の機能について説明する。図3は、処理部30の機能を機能ブロック図で示す。上述したように、回転体12の形状r(θ)は回転角θによるフーリエ級数で表され、(変位)検出器i(i=1〜4)の出力である検出変位di(θ)は、回転体12の偏心量x(θ)、y(θ)と(変位)検出器i(i=1〜4)の配置角度における回転体12の形状とに基づき表されている。図3に示されるように、処理部30は、重み算出処理部(重み算出処理手段)31、倍率係数算出処理部(倍率係数算出処理手段)32、選択処理部(選択処理手段)33、重み付け加算処理部(重み付け加算処理手段)34、フーリエ係数算出処理部(フーリエ係数算出処理手段)35、形状フーリエ係数算出処理部(形状フーリエ係数算出処理手段)36、正形状フーリエ係数算出処理部(正形状フーリエ係数算出処理手段)37、形状算出処理部(形状算出処理手段)38を備えている。処理部30の上記各機能はコンピュータ・プログラムとして実現することが好適であり、当該コンピュータ・プログラムは本発明を構成する。当該コンピュータ・プログラムはCD−ROMまたはDVD等の記録媒体の形態でコンピュータCPUに供給することができ、当該コンピュータ・プログラムを記録したCD−ROM等の記録媒体も同様に本発明を構成することになる。   Next, functions of the processing unit 30 will be described. FIG. 3 is a functional block diagram showing functions of the processing unit 30. As described above, the shape r (θ) of the rotating body 12 is represented by a Fourier series based on the rotation angle θ, and the detected displacement di (θ) that is the output of the (displacement) detector i (i = 1 to 4) is This is expressed based on the eccentric amounts x (θ) and y (θ) of the rotating body 12 and the shape of the rotating body 12 at the arrangement angle of the (displacement) detector i (i = 1 to 4). As shown in FIG. 3, the processing unit 30 includes a weight calculation processing unit (weight calculation processing unit) 31, a magnification factor calculation processing unit (magnification coefficient calculation processing unit) 32, a selection processing unit (selection processing unit) 33, weighting. Addition processing section (weighted addition processing means) 34, Fourier coefficient calculation processing section (Fourier coefficient calculation processing means) 35, shape Fourier coefficient calculation processing section (shape Fourier coefficient calculation processing means) 36, positive shape Fourier coefficient calculation processing section (positive A shape Fourier coefficient calculation processing means) 37 and a shape calculation processing section (shape calculation processing means) 38. The above functions of the processing unit 30 are preferably realized as a computer program, and the computer program constitutes the present invention. The computer program can be supplied to the computer CPU in the form of a recording medium such as a CD-ROM or DVD, and a recording medium such as a CD-ROM on which the computer program is recorded also constitutes the present invention. Become.

重み算出処理部31は、各組毎に、各検出器での検出変位di(θ)の重み付け加算dr1(θ)等((12)式、(13)式))を求める際における重みw11等を、偏心量x(θ)、y(θ)が0となるように求める((14)式、(15)式))。 The weight calculation processing unit 31 calculates the weight w 11 when obtaining the weighted addition dr1 (θ) of the detection displacement di (θ) at each detector (formula (12), formula (13)) for each set. Etc. are calculated so that the eccentric amounts x (θ) and y (θ) are 0 (formulas (14) and (15)).

倍率係数算出処理部32は、各組毎に、重み算出処理部31により求めた重みw11、w12、w13等を用いて、各(変位)検出器i(i=1〜4)の配置角度毎のフーリエ成分を加算した倍率係数α1k、β1k等を求める((18)式、(19)式))。 The magnification coefficient calculation processing unit 32 uses the weights w 11 , w 12 , w 13, and the like obtained by the weight calculation processing unit 31 for each group, for each (displacement) detector i (i = 1 to 4). Magnification coefficients α 1k , β 1k and the like obtained by adding the Fourier components for each arrangement angle are obtained (Equations (18) and (19)).

選択処理部33は、各組毎に倍率係数算出処理部32により求めた倍率係数α1k、β1k等に基づく倍率H1k、H2kを求め、フーリエ級数の各次数k毎に各組の倍率H1kとH2kとの大小を比較し、各次数k毎に大きい方の組を選択する。 The selection processing unit 33 obtains the magnifications H 1k and H 2k based on the magnification factors α 1k and β 1k obtained by the magnification factor calculation processing unit 32 for each set, and the magnification of each set for each order k of the Fourier series. The magnitudes of H 1k and H 2k are compared, and the larger set is selected for each order k.

重み付け加算処理部34は、各組毎に、重み算出処理部31により求めた重みw11、w12、w13等を用いて各検出器i(i=1〜4)の検出変位di(θ)の重み付け加算dr1(θ)等を求める((16)式、(17)式))。例えば(16)式の第1式中の重みw11、w12、w13は、重み算出処理部31で求まった重みw11、w12、w13を使用する。r(θ+φ)は角度θ+φにおける検出器1の検出器出力(μm)を用いる。r(θ+φ)、r(θ+φ)も同様とする。この結果、角度θ(0〜360°)における重み付け加算dr1(θ)が求まる。 The weighted addition processing unit 34 detects the detected displacement di (θ) of each detector i (i = 1 to 4) using the weights w 11 , w 12 , w 13 and the like obtained by the weight calculation processing unit 31 for each group. ) Weighted addition dr1 (θ) and the like (Equations (16) and (17))). For example (16) weight w 11 of the first in Expressions, w 12, w 13 uses the weights w 11, w 12, w 13 that Motoma' the weight calculation unit 31. For r (θ + φ 1 ), the detector output (μm) of the detector 1 at the angle θ + φ 1 is used. The same applies to r (θ + φ 2 ) and r (θ + φ 3 ). As a result, the weighted addition dr1 (θ) at the angle θ (0 to 360 °) is obtained.

フーリエ係数算出処理部35は、各組毎に、重み付け加算処理34により求めた重み付け加算dr1(θ)等のフーリエ係数F1k、G1k等を求める((20)式、(21)式))。 The Fourier coefficient calculation processing unit 35 obtains Fourier coefficients F 1k , G 1k and the like such as weighted addition dr1 (θ) obtained by the weighted addition process 34 for each group (Equations (20) and (21)). .

形状フーリエ係数算出処理部36は、各組毎に、倍率係数算出処理部32により求めた倍率係数α1k、β1k等とフーリエ係数算出処理部35により求めた重み付け加算のフーリエ係数F1k、G1k等とを用いて、回転体12の形状のフーリエ係数A1k、B1k等を求める((22)式、(23)式))。 The shape Fourier coefficient calculation processing unit 36 uses, for each group, the magnification coefficients α 1k and β 1k obtained by the magnification coefficient calculation processing unit 32 and the weighted addition Fourier coefficients F 1k and G obtained by the Fourier coefficient calculation processing unit 35. Using 1k and the like, Fourier coefficients A 1k and B 1k and the like of the shape of the rotating body 12 are obtained (equations (22) and (23)).

正形状フーリエ係数算出処理部37は、形状フーリエ係数算出処理部36により求めた各組毎の回転体12の形状のフーリエ係数A1k、B1k等について、選択処理部33により各次数k毎に選択した組の方の回転体12の形状のフーリエ係数を各次数k毎の正の回転体12の形状のフーリエ係数Aak、Bakとして求める。 The regular shape Fourier coefficient calculation processing unit 37 uses the selection processing unit 33 for each order k for the Fourier coefficients A 1k , B 1k, etc. of the shape of the rotating body 12 for each set obtained by the shape Fourier coefficient calculation processing unit 36. The Fourier coefficient of the shape of the rotating body 12 of the selected pair is obtained as the Fourier coefficients A ak and B ak of the shape of the positive rotating body 12 for each order k.

形状算出処理部38は、正形状フーリエ係数算出処理部37により求めた正の回転体12の形状のフーリエ係数Aak、Bakに基づき、回転体12の形状r(θ)を求める((1)式)。 The shape calculation processing unit 38 obtains the shape r (θ) of the rotating body 12 based on the Fourier coefficients A ak and B ak of the shape of the positive rotating body 12 obtained by the regular shape Fourier coefficient calculation processing unit 37 ((1 )formula).

処理部30は、回転体12の形状r(θ)だけではなく、他の回転振れ量等の特性を測定するために、さらに回転振れ量算出部(回転振れ量算出手段)39を備えている。回転振れ量算出部39は、形状算出処理部38により求めた形状r(θ)と重み付け加算処理部34により求めた各組毎の重み付け加算d1(θ)等とに基づき、回転体12の回転振れ量(偏心量、x(θ)とy(θ))を求める((9)式)。   The processing unit 30 further includes a rotational shake amount calculation unit (rotational shake amount calculation means) 39 in order to measure not only the shape r (θ) of the rotating body 12 but also other characteristics such as the rotational shake amount. . The rotational shake amount calculation unit 39 rotates the rotating body 12 based on the shape r (θ) obtained by the shape calculation processing unit 38 and the weighted addition d1 (θ) for each set obtained by the weighted addition processing unit 34. The shake amount (eccentric amount, x (θ) and y (θ)) is obtained (Equation (9)).

次に、本発明の回転体測定方法の処理の流れ(処理部30の機能)をフローチャートを用いて説明する。図4は、本発明の回転体測定方法の処理の流れをフローチャートで示す。図4に示されるように、まず、各組毎に、各検出器での検出変位di(θ)の重み付け加算dr1(θ)等((12)式、(13)式))を求める際における重みw11等を、偏心量x(θ)、y(θ)が0となるように求める(重み算出処理ステップ。ステップS10。(14)式、(15)式))。 Next, the processing flow (function of the processing unit 30) of the rotating body measuring method of the present invention will be described with reference to a flowchart. FIG. 4 is a flowchart showing the process flow of the rotating body measuring method of the present invention. As shown in FIG. 4, first, for each group, a weighted addition dr1 (θ) of detection displacement di (θ) at each detector (formula (12), formula (13))) is obtained. The weights w 11 and the like are obtained so that the eccentric amounts x (θ) and y (θ) are 0 (weight calculation processing step, step S10, formulas (14) and (15)).

各組毎に、重み算出処理ステップ(ステップS10)により求めた重みw11、w12、w13等を用いて、各(変位)検出器i(i=1〜4)の配置角度毎のフーリエ成分を加算した倍率係数α1k、β1k等を求める(倍率係数算出処理ステップ。ステップS12。(18)式、(19)式))。 For each group, using the weights w 11 , w 12 , w 13, and the like obtained in the weight calculation processing step (step S 10), Fourier for each arrangement angle of each (displacement) detector i (i = 1 to 4). Magnification coefficients α 1k , β 1k and the like obtained by adding the components are obtained (magnification coefficient calculation processing step, step S12 (formula (18), formula (19))).

各組毎に倍率係数算出処理ステップ(ステップS12)により求めた倍率係数α1k、β1k等に基づく倍率H1k、H2kを求め、フーリエ級数の各次数k毎に各組の倍率H1kとH2kとの大小を比較し、各次数k毎に大きい方の組を選択する(選択処理ステップ。ステップS14) The magnifications H 1k and H 2k based on the magnification factors α 1k and β 1k obtained by the magnification factor calculation processing step (step S12) are obtained for each group, and the magnification H 1k of each set is obtained for each order k of the Fourier series. Compare the magnitude with H2k, and select the larger set for each order k (selection processing step, step S14).

各組毎に、重み算出処理ステップ(ステップS10)により求めた重みw11、w12、w13等を用いて各検出器i(i=1〜4)の検出変位di(θ)の重み付け加算dr1(θ)等を求める(重み付け加算処理ステップ。ステップS16。(16)式、(17)式))。例えば(16)式の第1式中の重みw11、w12、w13は、重み算出処理部31で求まった重みw11、w12、w13を使用する。r(θ+φ)は角度θ+φにおける検出器1の検出器出力(μm)を用いる。r(θ+φ)、r(θ+φ)も同様とする。この結果、角度θ(0〜360°)における重み付け加算dr1(θ)が求まる。 For each group, the weighted addition of the detected displacement di (θ) of each detector i (i = 1 to 4) using the weights w 11 , w 12 , w 13, etc. obtained in the weight calculation processing step (step S 10). dr1 (θ) and the like are obtained (weighted addition processing step, step S16, equations (16) and (17)). For example (16) weight w 11 of the first in Expressions, w 12, w 13 uses the weights w 11, w 12, w 13 that Motoma' the weight calculation unit 31. For r (θ + φ 1 ), the detector output (μm) of the detector 1 at the angle θ + φ 1 is used. The same applies to r (θ + φ 2 ) and r (θ + φ 3 ). As a result, the weighted addition dr1 (θ) at the angle θ (0 to 360 °) is obtained.

各組毎に、重み付け加算処理ステップ(ステップS16)により求めた重み付け加算dr1(θ)等のフーリエ係数F1k、G1k等を求める(フーリエ係数算出処理ステップ。ステップS18。(20)式、(21)式))。 For each group, Fourier coefficients F 1k , G 1k and the like such as weighted addition dr1 (θ) obtained in the weighted addition processing step (step S16) are obtained (Fourier coefficient calculation processing step; step S18, equation (20), (20). 21) Formula)).

各組毎に、倍率係数算出処理ステップ(ステップS18)により求めた倍率係数α1k、β1k等とフーリエ係数算出処理ステップ(ステップS18)により求めた重み付け加算のフーリエ係数F1k、G1k等とを用いて、回転体12の形状のフーリエ係数A1k、B1k等を求める(形状フーリエ係数算出処理ステップ。ステップS20。(22)式、(23)式))。 For each group, the magnification coefficients α 1k , β 1k and the like obtained in the magnification coefficient calculation processing step (step S18), the weighted addition Fourier coefficients F 1k and G 1k and the like obtained in the Fourier coefficient calculation processing step (step S18), Are used to find the Fourier coefficients A 1k , B 1k, etc. of the shape of the rotating body 12 (shape Fourier coefficient calculation processing step, step S20 (formula (22), formula (23))).

形状フーリエ係数算出処理ステップ(ステップS20)により求めた各組毎の回転体12の形状のフーリエ係数A1k、B1k等について、選択処理ステップ(ステップS14)により各次数k毎に選択した組の方の回転体12の形状のフーリエ係数を各次数k毎の正の回転体12の形状のフーリエ係数Aak、Bakとして求める(正形状フーリエ係数算出処理ステップ。ステップS22) For the Fourier coefficients A 1k , B 1k, etc. of the shape of the rotating body 12 for each set obtained in the shape Fourier coefficient calculation processing step (step S20), the set selected for each order k in the selection processing step (step S14). The Fourier coefficient of the shape of the rotating body 12 is obtained as the Fourier coefficients A ak and B ak of the shape of the positive rotating body 12 for each order k (positive shape Fourier coefficient calculation processing step, step S22).

正形状フーリエ係数算出処理ステップ(ステップS22)により求めた正の回転体12の形状のフーリエ係数Aak、Bakに基づき、回転体12の形状r(θ)を求める(形状算出処理ステップ。ステップS24。(1)式)。 Based on the Fourier coefficients A ak and B ak of the shape of the positive rotating body 12 obtained in the regular shape Fourier coefficient calculating process step (step S22), the shape r (θ) of the rotating body 12 is obtained (shape calculating process step. S24 (Formula (1)).

処理部30は、回転体12の形状r(θ)だけではなく、他の回転振れ量等の特性を測定するために、さらに回転振れ量算出ステップを備えている。回転振れ量算出ステップでは、形状算出処理ステップ(ステップS24)により求めた形状r(θ)と重み付け加算処理ステップ(ステップS16)により求めた各組毎の重み付け加算d1(θ)等とに基づき、回転体12の回転振れ量(偏心量、x(θ)とy(θ))を求める(ステップS26。(9)式)。   The processing unit 30 further includes a rotational shake amount calculation step to measure not only the shape r (θ) of the rotating body 12 but also other characteristics such as the rotational shake amount. In the rotational shake amount calculation step, based on the shape r (θ) obtained in the shape calculation processing step (step S24), the weighted addition d1 (θ) for each set obtained in the weighted addition processing step (step S16), etc. A rotational shake amount (eccentric amount, x (θ) and y (θ)) of the rotating body 12 is obtained (step S26, equation (9)).

以上より、本発明の実施例1によれば、回転体測定装置20は、回転体12の回転円周上に測定中心Oに向けて配置された少なくとも4本の検出器群i(i=1〜4)と、検出器群i(i=1〜4)に接続された処理部30とを備えている。検出器群i(i=1〜4)の内の3本を一組とする第1組の検出器の配置角度(φ、φ、φ)は、回転体12の形状r(θ)のフーリエ級数成分算出時に用いる第1組の倍率H1kが所定の条件に従う角度に設定されている。所定の条件としては、第1組の倍率H1kを所望の配置角度について求め、フーリエ級数の次数kの中での最大値となる倍率H1kを選ぶ。この操作を他の所望の配置角度について繰返し、最大となる倍率H1kが最小となる場合の配置角度を第1組の検出器の配置角度(φ、φ、φ)とする。一方、検出器群i(i=1〜4)の内の、第1組と少なくとも1本が異なる3本を一組とする第2組の検出器の配置角度(φ、φ、φ)は、回転体12の形状r(θ)のフーリエ級数成分算出時に用いる第2組の倍率H2kが第1組の倍率H1kを補完する補完条件に従う角度に設定されている。補完条件としては、各組の倍率H1k、H2kが所定の値以上の近似的に均一な値となる倍率の場合の配置角度とする条件である。処理部30は、検出器群i(i=1〜4)の出力と所定の多点法(例えば、上述した本発明の回転体測定方法等の原理)に基づき、回転体20の形状r(θ)を含む特性(回転振れ量)を算出する。 As described above, according to the first embodiment of the present invention, the rotating body measuring apparatus 20 includes at least four detector groups i (i = 1) arranged on the rotation circumference of the rotating body 12 toward the measurement center O. 4) and a processing unit 30 connected to the detector group i (i = 1 to 4). The arrangement angle (φ 1 , φ 2 , φ 3 ) of a first set of three detectors i (i = 1 to 4) in the detector group i is a shape r (θ of the rotating body 12 The first set of magnifications H 1k used when calculating the Fourier series component of) is set to an angle according to a predetermined condition. As a predetermined condition, a first set of magnifications H 1k is obtained for a desired arrangement angle, and a magnification H 1k that is the maximum value in the order k of the Fourier series is selected. This operation is repeated for other desired arrangement angles, and the arrangement angle when the maximum magnification H 1k is the minimum is the arrangement angle (φ 1 , φ 2 , φ 3 ) of the first set of detectors. On the other hand, in the detector group i (i = 1 to 4), the arrangement angle (φ 1 , φ 4 , φ) of the second set of detectors, each of which includes at least one set different from the first set. 3 ) is set to an angle according to a complementary condition in which the second set of magnifications H 2k used when calculating the Fourier series component of the shape r (θ) of the rotating body 12 is supplemented with the first set of magnifications H 1k . The complementary condition is a condition for setting the arrangement angle when the magnifications H 1k and H 2k of each set are approximately uniform values equal to or larger than a predetermined value. Based on the output of the detector group i (i = 1 to 4) and a predetermined multipoint method (for example, the principle of the method for measuring a rotating body of the present invention described above), the processing unit 30 forms the shape r ( A characteristic (rotational shake amount) including θ) is calculated.

すなわち、本発明の回転体測定方法等によれば、従来の3点法において3本という検出器の本数制限を外し、4本以上の検出器を用いて、第一に、(22)式および(23)式の分母にくる倍率係数α1k、β1k等が均一になる検出器の角度配置を複数組選択する(所定の条件)。第二に、(22)式および(23)式の分母が0となる部分は複数組の間で補完しあうように倍率H1k、H2k(結果的に倍率係数α1k、β1k等)を選択する(補完条件)。第三に、この補完しあう倍率係数α1k、β1k等(結果的にAak、Bak)を用いて形状r(θ)と回転振れ量x(θ)、y(θ)を求める。従って、形状r(θ)等の算出時の誤差変動が少なく、次数kが高くなっても本発明の回転体測定方法等を適用することができる。このため、高次の次数kを考えた場合でも、正しく計算できない次数kが出てくるということがなく、回転体の形状r(θ)、ひいては回転振れ量x(θ)、y(θ)を正しく求めることができる回転体測定装置20および方法を提供することができる。 That is, according to the rotating body measuring method and the like of the present invention, in the conventional three-point method, the limit of the number of detectors of three is removed, and using four or more detectors, A plurality of sets of detector angular arrangements with uniform magnification factors α 1k , β 1k, etc. coming to the denominator of the equation (23) are selected (predetermined conditions). Secondly, magnifications H 1k , H 2k (resulting magnification factors α 1k , β 1k, etc.) so that the portions where the denominator of the equations (22) and (23) are 0 are complemented between a plurality of sets. Select (complementary condition). Thirdly, the shape r (θ) and the rotational shake amounts x (θ) and y (θ) are obtained using the complementary magnification factors α 1k , β 1k, etc. (resulting in A ak , B ak ). Therefore, the variation in error when calculating the shape r (θ) and the like is small, and the rotating body measuring method of the present invention can be applied even when the order k is high. For this reason, even when a high-order order k is considered, there is no occurrence of an order k that cannot be calculated correctly, and the shape r (θ) of the rotating body, and hence the rotational shake amounts x (θ) and y (θ). Thus, it is possible to provide the rotating body measuring apparatus 20 and the method capable of correctly obtaining the value.

実施例1では、検出器を同時に並べた構成を示した。実施例2では、1本の検出器と回転機構(不図示)とを用いることにより、まず1本の出力をある角度(φ1)で検出し、次に、2番目の検出器の位置(φ2)に回転させて、そこでの値を検出し、続いて3番目の検出器の位置(φ3)に回転させて、そこでの値を検出し、4番目の検出器の位置(φ4)に回転させて、そこでの値を検出する。以上のように、検出器の位置と時間とをずらして4箇所の検出器の位置の値を取得し、当該取得した値に対して本発明の回転体測定方法等の各算出処理を適用すればよい。   In Example 1, the structure which arranged the detector simultaneously was shown. In the second embodiment, by using one detector and a rotation mechanism (not shown), first, one output is detected at a certain angle (φ1), and then the position of the second detector (φ2 ) To detect the value there, then rotate to the third detector position (φ3), detect the value there and rotate to the fourth detector position (φ4) And detect the value there. As described above, the values of the positions of the four detectors are acquired by shifting the position and time of the detector, and each calculation process such as the rotating body measuring method of the present invention is applied to the acquired values. That's fine.

実施例1では、少なくとも4本の検出器群を用い、その検出器群の中から3本を一組とする2組を取った例について説明した。実施例3では、少なくとも4本の検出器群の内に3本を一組とする第m組(m≧2)を設定する。ここで、第m組は第1組ないし第m−1組と少なくとも1本が異なるものであり、第m組の検出器の配置角度は、回転体12の形状r(θ)のフーリエ級数成分算出時に用いる第m組の倍率Hmkが第1組ないし第m−1組の各倍率Hik(i=1〜m)を補完する補完条件に従う角度に設定すればよい。後は、実施例1と同様に本発明の回転体測定方法等を適用することができる。例えば、選択処理部33では、各組(1〜m組)毎に倍率係数算出処理部32により求めた倍率係数α1k、β1k等に基づく倍率H1k、H2k、...、Hmkを求め、フーリエ級数の各次数k毎に各組の倍率H1k、H2k、...、Hmkを比較し、各次数k毎に最大の方の組を選択すればよい。 In the first embodiment, an example has been described in which at least four detector groups are used and two sets of three detector groups are taken from the detector groups. In the third embodiment, an m-th set (m ≧ 2) is set, in which at least three detector groups are included in at least four detector groups. Here, the m-th set is different from at least one of the first to m-1 sets, and the arrangement angle of the m-th set of detectors is the Fourier series component of the shape r (θ) of the rotating body 12. The m-th set of magnifications H mk used at the time of calculation may be set to an angle according to a complementary condition that complements each of the first to m- 1th sets of magnifications H ik (i = 1 to m). Thereafter, the rotating body measuring method of the present invention can be applied in the same manner as in the first embodiment. For example, in the selection processing unit 33, the magnifications H 1k , H 2k , ... Based on the magnification coefficients α 1k , β 1k, etc. obtained by the magnification coefficient calculation processing unit 32 for each group (1 to m groups). . . , H mk, and for each order k of the Fourier series, each set of magnifications H 1k , H 2k,. . . , H mk are compared, and the largest pair is selected for each order k.

本発明の活用例として、ハードディスクまたは光ディスク等の情報機器における回転軸の形状および回転振れ量を非接触で測定する回転体測定装置および方法に適用することができる。   As an application example of the present invention, the present invention can be applied to a rotating body measuring apparatus and method for measuring the shape and rotational shake amount of a rotating shaft in an information device such as a hard disk or an optical disk in a non-contact manner.

本発明の回転体測定方法等の原理を説明するための回転体および検出器の配置を示す図である。It is a figure which shows arrangement | positioning of the rotary body and detector for demonstrating principles, such as the rotary body measuring method of this invention. 発明の実施例1における回転体測定装置20を示す図である。It is a figure which shows the rotary body measuring apparatus 20 in Example 1 of invention. 処理部30の機能を示す機能ブロック図である。3 is a functional block diagram illustrating functions of a processing unit 30. FIG. 本発明の回転体測定方法の処理の流れ(処理部30の機能)を示すフローチャートである。It is a flowchart which shows the flow of a process (function of the process part 30) of the rotary body measuring method of this invention. 3点法の原理を説明するための回転体および検出器の配置を示す図である。It is a figure which shows arrangement | positioning of the rotary body and detector for demonstrating the principle of a three-point method. 3点法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of 3 point | piece method. 実際の回転振れ測定に用いた測定装置20を示す図である。It is a figure which shows the measuring apparatus 20 used for the actual rotational shake measurement. 各検出器i(i=1〜3)の出力波形と、3つの検出器i(i=1〜3)出力を加算した波形dr(θ)とを示すグラフである。It is a graph which shows the waveform dr ((theta)) which added the output waveform of each detector i (i = 1-3), and the three detector i (i = 1-3) output. 加算した波形dr(θ)から回転体12の形状を求め図である。It is a figure which calculates | requires the shape of the rotary body 12 from the added waveform dr ((theta)). 回転振れの周波数成分を表示したグラフである。It is the graph which displayed the frequency component of rotational shake. 本測定(配置角度φ=0゜、φ=120゜、φ=−135゜)に対し、倍率Hkをプロットしたグラフである。This measurement (arrangement angle phi 1 = 0 °, phi 2 = 120 °, phi 3 = -135 °) with respect to a graph plotting magnification Hk. フーリエ級数の次数kを整数とせず、連続な変数として計算することにより、倍率Hkの変化分を示すグラフである。It is a graph which shows the variation | change_quantity of the magnification Hk by calculating as a continuous variable instead of making the order k of a Fourier series into an integer. 配置角度φ=0゜、φ=110゜、φ=−135゜と、φのみ変化させた場合について、倍率Hkの変化分(連続)を示すグラフである。Arrangement angle phi 1 = 0 °, phi 2 = 110 °, phi 3 = -135 °, the case of changing only phi 2, is a graph showing the variation of magnification Hk (continuous).

符号の説明Explanation of symbols

1、2、3、4 検出器、 10、12 回転体、 20 本発明の回転体測定装置、 30 処理部、 31 重み算出処理部、 32 倍率係数算出処理部、 33 選択処理部、 34 重み付け加算処理部、 35 フーリエ係数算出処理部、 36 形状フーリエ係数算出処理部、 37 正形状フーリエ係数算出処理部、 38 形状算出処理部、 39 回転振れ量算出処理部、 40 従来の回転体測定装置。
1, 2, 3, 4 detector, 10, 12 rotator, 20 rotator measurement apparatus of the present invention, 30 processing unit, 31 weight calculation processing unit, 32 magnification factor calculation processing unit, 33 selection processing unit, 34 weighted addition A processing unit, a 35 Fourier coefficient calculation processing unit, a 36 shape Fourier coefficient calculation processing unit, a 37 regular shape Fourier coefficient calculation processing unit, a 38 shape calculation processing unit, a 39 rotational shake amount calculation processing unit, and a conventional rotating body measuring apparatus.

Claims (7)

回転体の形状を含む特性を測定する回転体測定方法であって、該回転体の回転円周上に測定中心に向けて配置された少なくとも4本の検出器群と、該検出器群に接続された処理部とを用いるものであり、
前記検出器群の内の3本を一組とする第1組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第1組の倍率が所定の条件に従う角度に設定され、
前記検出器群の内の、第1組と少なくとも1本が異なる3本を一組とする第2組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第2組の倍率が第1組の倍率を補完する補完条件に従う角度に設定されており、
前記処理部は、前記検出器群の出力と所定の多点法とに基づき回転体の形状を含む特性を算出することを特徴とする回転体測定方法。
A rotating body measuring method for measuring characteristics including a shape of a rotating body, comprising at least four detector groups arranged toward a measurement center on a rotation circumference of the rotating body, and connected to the detector groups And a processing unit
The arrangement angle of the first set of detectors, which is a set of three of the detector groups, is set to an angle in which the first set of magnifications used when calculating the Fourier series component of the shape of the rotating body is in accordance with a predetermined condition. And
An arrangement angle of a second set of detectors in which at least one of the detector groups is at least one different from the first set is the second set used when calculating the Fourier series component of the shape of the rotating body. Is set to an angle that complies with the complementary conditions that complement the first set of magnifications,
The processing unit calculates a characteristic including a shape of a rotating body based on an output of the detector group and a predetermined multipoint method.
請求項1記載の回転体測定方法において、前記検出器群の内に3本を一組とする第m組(m≧2)を設定し、第m組は第1組乃至第m−1組と少なくとも1本が異なるものであり、第m組の検出器の配置角度は、前記回転体の形状のフーリエ級数成分算出時に用いる第m組の倍率が第1組乃至第m−1組の各倍率を補完する補完条件に従う角度に設定されたことを特徴とする回転体測定方法。   2. The rotating body measurement method according to claim 1, wherein an m-th set (m ≧ 2) of three sets is set in the detector group, and the m-th set is the first to m−1th sets. And the arrangement angle of the m-th set of detectors is such that the m-th set magnification used when calculating the Fourier series component of the shape of the rotating body is the first to m-1th set. A rotating body measuring method, characterized in that the angle is set according to a complementary condition for complementing a magnification. 請求項1又は2記載の回転体測定方法において、回転体の形状は回転角によるフーリエ級数で表され、変位検出器の出力である検出変位は回転体の偏心量と該変位検出器の配置角度における回転体の形状とに基づき表され、
前記処理部が、
各組毎に、各検出器の検出変位の重み付け加算を求める際における重みを、偏心量が0となるように求める重み算出処理ステップと、
各組毎に、前記重み算出処理ステップにより求めた重みを用いて各変位検出器の配置角度毎のフーリエ成分を加算した倍率係数を求める倍率係数算出処理ステップと、
各組毎に前記倍率係数算出処理ステップにより求めた倍率係数に基づく倍率を求め、フーリエ級数の各次数毎に各組の倍率の大小を比較し、各次数毎に大きい方の組を選択する選択処理ステップと、
各組毎に、前記重み算出処理ステップにより求めた重みを用いて各検出器の検出変位の重み付け加算を求める重み付け加算処理ステップと、
各組毎に、前記重み付け加算処理ステップにより求めた重み付け加算のフーリエ係数を求めるフーリエ係数算出処理ステップと、
各組毎に、前記倍率係数算出処理ステップにより求めた倍率係数と前記フーリエ係数算出処理ステップにより求めた重み付け加算のフーリエ係数とを用いて、回転体の形状のフーリエ係数を求める形状フーリエ係数算出処理ステップと、
前記形状フーリエ係数算出処理ステップにより求めた各組毎の回転体の形状のフーリエ係数について、前記選択処理ステップにより各次数毎に選択した組の方の回転体の形状のフーリエ係数を各次数毎の正の回転体の形状のフーリエ係数として求める正形状フーリエ係数算出処理ステップと、
前記正形状フーリエ係数算出処理ステップにより求めた正の回転体の形状のフーリエ係数に基づき、回転体の形状を求める形状算出処理ステップとを実行することを特徴とする回転体測定方法。
3. The method of measuring a rotating body according to claim 1, wherein the shape of the rotating body is represented by a Fourier series based on the rotation angle, and the detected displacement that is an output of the displacement detector is an eccentric amount of the rotating body and an arrangement angle of the displacement detector. And based on the shape of the rotating body in
The processing unit is
For each set, a weight calculation processing step for obtaining the weight when calculating the weighted addition of the detection displacement of each detector so that the amount of eccentricity becomes zero;
A magnification factor calculation processing step for obtaining a magnification factor by adding a Fourier component for each arrangement angle of each displacement detector using the weight obtained by the weight calculation processing step for each set;
Select the magnification based on the magnification coefficient obtained by the magnification coefficient calculation processing step for each group, compare the magnitude of each group for each order of the Fourier series, and select the larger group for each order Processing steps;
For each set, a weighted addition processing step for obtaining a weighted addition of detection displacement of each detector using the weight obtained by the weight calculation processing step;
For each set, a Fourier coefficient calculation processing step for obtaining a Fourier coefficient of weighted addition obtained by the weighted addition processing step;
Shape Fourier coefficient calculation processing for obtaining the Fourier coefficient of the shape of the rotating body using the magnification coefficient obtained in the magnification coefficient calculation processing step and the weighted addition Fourier coefficient obtained in the Fourier coefficient calculation processing step for each set Steps,
For the Fourier coefficient of the shape of the rotating body for each set obtained by the shape Fourier coefficient calculation processing step, the Fourier coefficient of the shape of the rotating body of the set selected for each order by the selection processing step is calculated for each order. A positive shape Fourier coefficient calculation processing step to obtain as a Fourier coefficient of the shape of the positive rotating body;
A rotating body measuring method comprising: executing a shape calculating process step for obtaining a shape of a rotating body based on a Fourier coefficient of the shape of the positive rotating body obtained by the positive shape Fourier coefficient calculating process step.
請求項3記載の回転体測定方法において、前記処理部は、前記形状算出処理ステップにより求めた形状と前記重み付け加算処理ステップにより求めた各組毎の重み付け加算とに基づき、回転体の回転振れ量を求める回転振れ量算出ステップをさらに備えたことを特徴とする回転体測定方法。   4. The rotating body measuring method according to claim 3, wherein the processing unit is configured to calculate a rotational shake amount of the rotating body based on the shape obtained by the shape calculating process step and the weighted addition for each set obtained by the weighted adding process step. A rotating body measuring method, further comprising: a rotational shake amount calculating step for obtaining. 請求項1乃至4のいずれかに記載の回転体測定方法において、前記所定の条件は、複数の配置角度に関する第1組の倍率におけるフーリエ級数の次数中での最大値が最小となる倍率の場合の配置角度であることを特徴とする回転体測定方法。   5. The rotating body measurement method according to claim 1, wherein the predetermined condition is a magnification at which a maximum value in the order of the Fourier series in the first set of magnifications for a plurality of arrangement angles is a minimum. A rotating body measuring method, characterized in that the angle is an arrangement angle. 請求項1乃至5のいずれかに記載の回転体測定方法において、前記補完条件は、各組の倍率が所定の値以上の近似的に均一な値となる倍率の場合の配置角度であることを特徴とする回転体測定方法。   6. The rotating body measurement method according to claim 1, wherein the complementary condition is an arrangement angle in a case where a magnification of each set is an approximately uniform value equal to or greater than a predetermined value. A method for measuring a rotating body. 請求項1乃至6のいずれかに記載の回転体測定方法において、検出器が4本の場合、変位検出器の配置角度は、各々、0°、110°、120°及び−135°であることを特徴とする回転体測定方法。


7. The rotating body measurement method according to claim 1, wherein when there are four detectors, the arrangement angles of the displacement detectors are 0 °, 110 °, 120 °, and −135 °, respectively. A method for measuring a rotating body.


JP2005377912A 2005-12-28 2005-12-28 Rotating body measuring method and apparatus Active JP4848513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377912A JP4848513B2 (en) 2005-12-28 2005-12-28 Rotating body measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377912A JP4848513B2 (en) 2005-12-28 2005-12-28 Rotating body measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2007178296A true JP2007178296A (en) 2007-07-12
JP4848513B2 JP4848513B2 (en) 2011-12-28

Family

ID=38303628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377912A Active JP4848513B2 (en) 2005-12-28 2005-12-28 Rotating body measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4848513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215108A (en) * 2010-04-02 2011-10-27 Satoshi Kiyono Measuring method and shape measuring device
WO2019216624A1 (en) * 2018-05-08 2019-11-14 한양대학교에리카산학협력단 Measuring apparatus and measuring method of surface of object
CN112105889A (en) * 2018-05-08 2020-12-18 汉阳大学校Erica产学协力团 Device and method for measuring surface of object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241905A (en) * 2000-03-02 2001-09-07 Tokyo Seimitsu Co Ltd Roughness measuring instrument
JP3401444B2 (en) * 1998-12-15 2003-04-28 株式会社ミツトヨ Fine shape measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3401444B2 (en) * 1998-12-15 2003-04-28 株式会社ミツトヨ Fine shape measuring device
JP2001241905A (en) * 2000-03-02 2001-09-07 Tokyo Seimitsu Co Ltd Roughness measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215108A (en) * 2010-04-02 2011-10-27 Satoshi Kiyono Measuring method and shape measuring device
WO2019216624A1 (en) * 2018-05-08 2019-11-14 한양대학교에리카산학협력단 Measuring apparatus and measuring method of surface of object
CN112105889A (en) * 2018-05-08 2020-12-18 汉阳大学校Erica产学协力团 Device and method for measuring surface of object

Also Published As

Publication number Publication date
JP4848513B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US7650238B2 (en) Environmental characteristic determination
US4903413A (en) Surface profile measurement of workpieces
Shi et al. A hybrid three-probe method for measuring the roundness error and the spindle error
JP5014152B2 (en) Roundness measuring device and tip terminal pass / fail judgment method
CN107747931A (en) For the self-alignment reading head optimization placement method of angular encoder
JP4848513B2 (en) Rotating body measuring method and apparatus
JP5695410B2 (en) Angle detection device and eccentricity estimation method thereof
JP2008501959A (en) Method and computer program for determining operating parameters in rolling bearings and rolling bearings which can be evaluated thereby
US10955440B2 (en) Probe card alignment
WO2015073127A1 (en) Metrology imaging targets having reflection-symmetric pairs of reflection-asymmetric structures
JP2018535400A (en) Multi-dimensional angle determination using high-precision position sensor
Moore Design considerations in multiprobe roundness measurement
Tiainen et al. Effect of positional errors on the accuracy of multi-probe roundness measurement methods
Patra et al. Detection of a slow H i bar in the dwarf irregular galaxy DDO 168
JP2013024757A (en) Graduation error calculating device, graduation error calibration device, and graduation error calculating method
Okuyama et al. Radial motion measurement of a high-revolution spindle motor
JP3788231B2 (en) Evaluation method for radial vibration of rotating body and evaluation apparatus for radial vibration of rotating body
CN114812468A (en) H-shaped six-point method-based precise rotation shafting rotation error in-situ separation method
US11415590B2 (en) Method and apparatus with posture estimation
Ahn et al. Optimal multi-segment cylindrical capacitive sensor
JP2009139151A (en) System error calibration method of interferometer device
US20190195656A1 (en) Method for detecting angle of rotation using automatic gain adjustment algorithm and apparatus thereof
KR100872034B1 (en) Measuring Device of Center of Weight and Unbalanced Moment of Rotating Body and Measuring Method using that
JP7129356B2 (en) Measuring method
JP2005292056A (en) Vibration-measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150