JP2007178273A - Atomic frequency acquisition apparatus and atomic clock - Google Patents

Atomic frequency acquisition apparatus and atomic clock Download PDF

Info

Publication number
JP2007178273A
JP2007178273A JP2005377485A JP2005377485A JP2007178273A JP 2007178273 A JP2007178273 A JP 2007178273A JP 2005377485 A JP2005377485 A JP 2005377485A JP 2005377485 A JP2005377485 A JP 2005377485A JP 2007178273 A JP2007178273 A JP 2007178273A
Authority
JP
Japan
Prior art keywords
cell
atomic
laser light
waveguide
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377485A
Other languages
Japanese (ja)
Other versions
JP2007178273A5 (en
JP4853704B2 (en
Inventor
Tomoko Koyama
智子 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005377485A priority Critical patent/JP4853704B2/en
Publication of JP2007178273A publication Critical patent/JP2007178273A/en
Publication of JP2007178273A5 publication Critical patent/JP2007178273A5/ja
Application granted granted Critical
Publication of JP4853704B2 publication Critical patent/JP4853704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve further compactness of atomic clocks while maintaining accuracy. <P>SOLUTION: An atomic clock is provided with: a cell 110 in which atomic gas is sealed inside; a laser diode 120 for oscillating a laser beam which is made incident into the cell 110 to excite the atomic gas; a photo-detector 130 for receiving a laser beam transmitted through the cell 110; a first waveguide 140 for introducing a laser beam oscillated from the laser diode 120 into the cell 110; and a second waveguide 150 for introducing a laser beam transmitted through the cell 110 to the photo-detector 130. The first waveguide 140 is provided with a reflecting plane 141 formed in such a way that the laser beam oscillated from the laser diode 120 becomes incident at an angle of incidence of 45°. The second waveguide 150 is provided with a reflecting plane 151 formed in such a way that the laser beam transmitted through the cell 110 becomes incident at an angle of incidence of 45°. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原子周波数取得装置および原子時計に関する。   The present invention relates to an atomic frequency acquisition device and an atomic clock.

原子の固有振動数を基準として発振器の周波数制御を行う原子時計が、従来の水晶振動子に代わって様々な場面で利用されるようになっている。中でもCPT(Coherent Population Trapping)方式の原子時計は小型化、省電力化に適しており、今後携帯電話などへの適用も見込まれている。   An atomic clock that controls the frequency of an oscillator based on the natural frequency of an atom is used in various situations in place of a conventional crystal unit. Among them, a CPT (Coherent Population Trapping) type atomic clock is suitable for miniaturization and power saving, and is expected to be applied to mobile phones and the like in the future.

米国特許第6,900,702号明細書US Pat. No. 6,900,702 米国特許第6,570,459号明細書US Pat. No. 6,570,459

本発明の目的は、原子時計の精度を維持しつつ、さらに小型化を図ることである。   An object of the present invention is to further reduce the size while maintaining the accuracy of an atomic clock.

本発明の原子周波数取得装置は、内部に原子ガスを封入したセルと、前記セル内部に入射して前記原子ガスを励起させるレーザ光を発振するレーザ光源と、前記セルを通過したレーザ光を受光する受光部と、前記レーザ光源から発振されたレーザ光を前記セル内に導く第1の導波路と、前記セル内を通過したレーザ光を前記受光部に導く第2の導波路を備え、前記第1および第2の導波路の各々が少なくとも1つのレーザ光反射部を備えるようにしたものである。   An atomic frequency acquisition device of the present invention includes a cell in which an atomic gas is enclosed, a laser light source that oscillates a laser beam that enters the cell and excites the atomic gas, and a laser beam that has passed through the cell. A first light guide that guides laser light oscillated from the laser light source into the cell, and a second waveguide that guides laser light that has passed through the cell to the light receiver, Each of the first and second waveguides is provided with at least one laser beam reflecting portion.

これにより、第1および第2の導波路により、レーザ光がセル内で最長の光路をとるようにレーザ光を導くことができるので、セル内でレーザ光が原子ガス中を通過する距離を長くすることが可能となり、装置の精度を落とさずに小型化を図ることができる。
また、前記第1および第2の導波路の各々に備えられたレーザ光反射部によって光路を変えることによりレーザ光を導くことができる。
Thus, the laser light can be guided by the first and second waveguides so that the laser light takes the longest optical path in the cell, so that the distance that the laser light passes through the atomic gas in the cell is increased. Therefore, it is possible to reduce the size without degrading the accuracy of the apparatus.
Further, the laser beam can be guided by changing the optical path by the laser beam reflecting section provided in each of the first and second waveguides.

また、前記第1の導波路が、前記レーザ光源から発振されたレーザ光が45度の入射角で入射するように形成された第1の反射部を備え、前記第2の導波路が、前記セル内を通過したレーザ光が、45度の入射角で入射するように形成された第2の反射部を備えることにより、レーザ光源からの出射方向がセル内の最長の光路方向と直交する場合に対応できる。
この場合、レーザ光源には、例えば面発光レーザの光源を用いることができる。
The first waveguide includes a first reflecting portion formed so that laser light oscillated from the laser light source is incident at an incident angle of 45 degrees, and the second waveguide includes the first waveguide When the laser beam that has passed through the cell is provided with a second reflecting portion formed so as to be incident at an incident angle of 45 degrees, the emission direction from the laser light source is orthogonal to the longest optical path direction in the cell. It can correspond to.
In this case, for example, a surface-emitting laser light source can be used as the laser light source.

本発明による原子周波数取得装置は、原子時計において時間標準周波数を取得するために用いることができる。   The atomic frequency acquisition device according to the present invention can be used to acquire a time standard frequency in an atomic clock.

以下、本発明の実施の形態について図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1による原子周波数取得装置100の構造を示す斜視図、図2(a)は図1のA−A’線での断面図、図2(b)は上面図である。原子周波数取得装置100は、CPT方式の原子時計において、時間標準周波数を取得するために用いられる。
図1および図2に示すように、原子周波数取得装置100は、基板200上に設置された、セル110、レーザダイオード(レーザ光源)120、フォトディテクタ(受光部)130、第1の導波路140および第2の導波路150を備えている。セル110の上面には、ヒータ300が設置されている。レーザダイオード120、フォトディテクタ130、およびヒータ300は、配線(図示せず)によって駆動回路に接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 is a perspective view showing the structure of an atomic frequency acquisition apparatus 100 according to Embodiment 1 of the present invention, FIG. 2A is a cross-sectional view taken along the line AA ′ of FIG. 1, and FIG. FIG. The atomic frequency acquisition device 100 is used to acquire a time standard frequency in a CPT type atomic clock.
As shown in FIGS. 1 and 2, the atomic frequency acquisition device 100 includes a cell 110, a laser diode (laser light source) 120, a photodetector (light receiving unit) 130, a first waveguide 140, and the like installed on a substrate 200. A second waveguide 150 is provided. A heater 300 is installed on the upper surface of the cell 110. The laser diode 120, the photodetector 130, and the heater 300 are connected to a drive circuit by wiring (not shown).

セル110は、突起部114によって基板200に設置されている。レーザダイオード120とフォトディテクタ130は、基板200上にセル110を挟んで配置されている。
レーザダイオード120はここではVCSEL(Vertical Cavity Surface−emitting Laser:垂直面発光レーザダイオード)である。
The cell 110 is installed on the substrate 200 by the protrusion 114. The laser diode 120 and the photodetector 130 are arranged on the substrate 200 with the cell 110 interposed therebetween.
Here, the laser diode 120 is a VCSEL (Vertical Cavity Surface-Emitting Laser).

セル110は、光の透過部のみガラスで、他は、例えば金属などで形成されており、内部にキャビティ(空洞)111を有している。セルの材料としては、ガラスの他にも、レーザダイオード120から発振されるレーザ光(ここではVCSELの波長852nm)を透過するものを用いることができる。キャビティ111には、セシウム原子ガスが封入されている。   The cell 110 is made of glass only in the light transmission part, and the other is made of metal, for example, and has a cavity 111 inside. As a material of the cell, in addition to glass, a material that transmits laser light oscillated from the laser diode 120 (here, wavelength of VCSEL 852 nm) can be used. The cavity 111 is filled with cesium atomic gas.

第1の導波路140は、一面がレーザダイオード120に接し、他の面がセル110の入射面112に接している。第1の導波路140はレーザダイオード120から出力されたレーザ光が45度の入射角で入射する反射部141を有している。反射部141には金属膜等が形成されており、レーザ光を反射する。
第2の導波路150は、一面がフォトディテクタ130に接し、他の面がセル110の出射面113に接している。第2の導波路150は出射面113から出力されたレーザ光が45度の入射角で入射する反射部151を有している。反射部151には金属膜等が形成されており、レーザ光を反射する。
第1の導波路140および第2の導波路150は、例えばインクジェット法によって形成することができる。
One surface of the first waveguide 140 is in contact with the laser diode 120, and the other surface is in contact with the incident surface 112 of the cell 110. The first waveguide 140 has a reflecting portion 141 through which the laser beam output from the laser diode 120 enters at an incident angle of 45 degrees. A metal film or the like is formed on the reflecting portion 141 and reflects the laser light.
One surface of the second waveguide 150 is in contact with the photodetector 130, and the other surface is in contact with the emission surface 113 of the cell 110. The second waveguide 150 has a reflecting portion 151 into which the laser beam output from the emission surface 113 is incident at an incident angle of 45 degrees. A metal film or the like is formed on the reflecting portion 151 and reflects the laser light.
The first waveguide 140 and the second waveguide 150 can be formed by, for example, an inkjet method.

ヒータ300は、キャビティ111内の温度を一定(80度〜130度)に保つための加熱ヒータであり、セル110内を加熱することにより、セシウム原子密度を増やし、レーザ光により励起される原子数を高めている。励起される原子数が増えることにより、感度が向上し原子周波数取得装置100の精度があがる。   The heater 300 is a heater for keeping the temperature in the cavity 111 constant (80 to 130 degrees), and by heating the inside of the cell 110, the cesium atom density is increased and the number of atoms excited by the laser light. Is increasing. As the number of excited atoms increases, the sensitivity is improved and the accuracy of the atomic frequency acquisition device 100 is improved.

次に、原子周波数取得装置100の動作について説明する。
レーザダイオード120から出射されたレーザ光(L)は、図2(a)に示すように第1の導波路140を進行し、反射部141で反射されて光路を90度回転させ、セル110の入射面112を透過してセル110に入射する。
Next, the operation of the atomic frequency acquisition device 100 will be described.
The laser light (L) emitted from the laser diode 120 travels through the first waveguide 140 as shown in FIG. 2A, is reflected by the reflecting portion 141, rotates the optical path by 90 degrees, and The light passes through the incident surface 112 and enters the cell 110.

レーザ光はセル110内を基板200に平行に直進し、出射面113からセル110の外へ出ると、第2の導波路150を通る。レーザ光は反射部151で反射されて光路を90度回転させ、フォトディテクタ130に導入される。   The laser light travels straight in the cell 110 parallel to the substrate 200, and passes through the second waveguide 150 when exiting the cell 110 from the exit surface 113. The laser beam is reflected by the reflecting portion 151, rotates the optical path by 90 degrees, and is introduced into the photodetector 130.

レーザ光はセル110内を通過する間にセシウム原子を励起する。励起されたセシウム原子ガスを通過するレーザ光の強度が最大になる時のレーザ光の上側と下側のサイドバンド周波数差が、セシウム原子の固有周波数と一致する。よって、フォトディテクタ130に受光されるレーザ光の強度が最大となるように外部回路でフィードバック制御することにより、レーザダイオード120の変調周波数が調整される。
フィードバック制御系は、原子周波数取得装置100に接続された制御回路およびローカルオシレータを備えて構成され、フォトディテクタ130の出力が制御回路を経由してローカルオシレータに供給されてフィードバック制御を行い、ローカルオシレータの発振周波数を上述のセシウム原子の固有周波数を基準として安定化している。
上記のようにして調整された発振周波数がローカルオシレータから取得され、原子時計の標準信号として利用される。
The laser light excites cesium atoms while passing through the cell 110. The difference between the upper and lower sideband frequencies of the laser beam when the intensity of the laser beam passing through the excited cesium atom gas is maximized matches the natural frequency of the cesium atom. Therefore, the modulation frequency of the laser diode 120 is adjusted by performing feedback control with an external circuit so that the intensity of the laser beam received by the photodetector 130 is maximized.
The feedback control system includes a control circuit connected to the atomic frequency acquisition apparatus 100 and a local oscillator, and the output of the photodetector 130 is supplied to the local oscillator via the control circuit to perform feedback control. The oscillation frequency is stabilized with reference to the natural frequency of the cesium atom.
The oscillation frequency adjusted as described above is acquired from the local oscillator and used as the standard signal of the atomic clock.

実施の形態1によれば、レーザダイオード120から出力されたレーザ光を、第1の導波路140の反射部141において進行方向を変えることによりセル110に導入し、さらにセル110を通過したレーザ光を第2の導波路150の反射部151において進行方向を変えることによりフォトディテクタ130に導入するようにしたので、レーザダイオード120の出射方向に関わりなく、レーザ光がセル110内の最長の光路を通るようにすることができる。よって、セル110自体の容積が小さくても、レーザ光がセシウム原子ガス中を通過する距離を長くできるので、より多くのセシウム原子を励起することが可能となり、原子周波数取得装置100の精度を保つことができる。
また、反射部141および反射部151が曲面状の反射面を形成することで、レーザ光が広がり角度を持って入射した場合にも、反射面の集光作用によって広がりを抑えることができ、フォトディテクタ130での受光量を上げて、原子周波数取得装置100の精度を上げることができる。
According to the first embodiment, the laser light output from the laser diode 120 is introduced into the cell 110 by changing the traveling direction in the reflecting portion 141 of the first waveguide 140, and further the laser light that has passed through the cell 110. Is introduced into the photodetector 130 by changing the traveling direction in the reflecting portion 151 of the second waveguide 150, so that the laser light passes through the longest optical path in the cell 110 regardless of the emission direction of the laser diode 120. Can be. Therefore, even if the volume of the cell 110 itself is small, the distance that the laser beam passes through the cesium atom gas can be increased, so that more cesium atoms can be excited and the accuracy of the atomic frequency acquisition device 100 is maintained. be able to.
In addition, since the reflecting portion 141 and the reflecting portion 151 form a curved reflecting surface, even when laser light is incident with a spreading angle, the spreading can be suppressed by the condensing action of the reflecting surface, and the photodetector By increasing the amount of light received at 130, the accuracy of the atomic frequency acquisition apparatus 100 can be increased.

なお、入射面112および出射面113をレーザ光の光軸に垂直な面から傾斜させてもよい。これにより、レーザ光の一部が入射面112および出射面113において反射されることにより、光路を逆に進んでレーザダイオード120に戻る(戻り光)を防止することができる。   The incident surface 112 and the emission surface 113 may be inclined from a surface perpendicular to the optical axis of the laser light. As a result, part of the laser light is reflected by the incident surface 112 and the exit surface 113, thereby preventing the light from traveling backward in the optical path and returning to the laser diode 120 (return light).

図3は、実施の形態1による原子周波数取得装置100の変形例である。図に示すように、第1の導波路140の反射部141および第2の導波路150の反射部151に対応する部分の外側の壁面に、レーザ光の反射率をあげるための反射膜142,152を設けている。図1および図2と同一の符号は同一の構成要素を表している。反射膜142,152は、たとえばAl合金やAg合金など、レーザ光(ここではVCSELの波長852nm)を反射するものを用いることができる。
また、反射膜142,152が曲面状の反射面を形成することで、レーザ光が広がり角度を持って入射した場合にも、反射面の集光作用によって広がりを抑えることができ、フォトディテクタ130での受光量を上げて、原子周波数取得装置100の精度を上げることができる。
FIG. 3 is a modification of the atomic frequency acquisition apparatus 100 according to the first embodiment. As shown in the figure, a reflection film 142 for increasing the reflectance of the laser beam on the outer wall surface of the portion corresponding to the reflecting portion 141 of the first waveguide 140 and the reflecting portion 151 of the second waveguide 150, 152 is provided. The same reference numerals as those in FIGS. 1 and 2 represent the same components. As the reflection films 142 and 152, for example, an Al alloy, an Ag alloy, or the like that reflects laser light (here, a wavelength of VCSEL of 852 nm) can be used.
In addition, since the reflection films 142 and 152 form a curved reflection surface, even when the laser light is incident with a spread angle, the spread can be suppressed by the condensing action of the reflection surface. The accuracy of the atomic frequency acquisition apparatus 100 can be increased by increasing the amount of received light.

図1は、本発明の実施の形態1による原子周波数取得装置の構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of an atomic frequency acquisition device according to Embodiment 1 of the present invention. 図2(a)は、図1のA−A’線での断面図、図2(b)は原子周波数取得装置の上面図である。2A is a cross-sectional view taken along line A-A ′ in FIG. 1, and FIG. 2B is a top view of the atomic frequency acquisition device. 図3は、実施の形態1による原子周波数取得装置の変形例の断面図である。FIG. 3 is a cross-sectional view of a modification of the atomic frequency acquisition device according to the first embodiment.

符号の説明Explanation of symbols

100 原子周波数取得装置、110 セル、111 キャビティ、112 入射面、113 出射面、114 突起部、120 レーザダイオード、130 フォトディテクタ、140 第1の導波路、150 第2の導波路、141,151 反射部、142,152 反射膜、200 基板、300 ヒータ

100 atomic frequency acquisition device, 110 cell, 111 cavity, 112 entrance surface, 113 exit surface, 114 protrusion, 120 laser diode, 130 photodetector, 140 first waveguide, 150 second waveguide, 141, 151 reflector 142,152 Reflective film, 200 substrate, 300 heater

Claims (4)

内部に原子ガスを封入したセルと、
前記セル内部に入射して前記原子ガスを励起させるレーザ光を発振するレーザ光源と、
前記セルを通過したレーザ光を受光する受光部と、
前記レーザ光源から発振されたレーザ光を前記セル内に導入する第1の導波路と、
前記セル内を通過したレーザ光を前記受光部に導入する第2の導波路を備え、
前記第1および第2の導波路の各々は、少なくとも1つのレーザ光反射部を備えたことを特徴とする原子周波数取得装置。
A cell containing an atomic gas inside;
A laser light source that oscillates a laser beam that enters the cell and excites the atomic gas;
A light receiving unit that receives the laser light that has passed through the cell;
A first waveguide for introducing laser light oscillated from the laser light source into the cell;
A second waveguide for introducing laser light that has passed through the cell into the light receiving unit;
Each of the first and second waveguides is provided with at least one laser beam reflecting section.
前記第1の導波路は、前記レーザ光源から発振されたレーザ光が、45度の入射角で入射するように形成された第1の反射部を備え、
前記第2の導波路は、前記セル内を通過したレーザ光が、45度の入射角で入射するように形成された第2の反射部を備えたことを特徴とする請求項1に記載の原子周波数取得装置。
The first waveguide includes a first reflecting portion formed so that laser light oscillated from the laser light source is incident at an incident angle of 45 degrees,
The said 2nd waveguide was equipped with the 2nd reflection part formed so that the laser beam which passed the inside of the said cell may enter at an incident angle of 45 degree | times, The said 2nd waveguide is characterized by the above-mentioned. Atomic frequency acquisition device.
前記レーザ光源は、面発光レーザの光源であることを特徴とする請求項1または請求項2に記載の原子周波数取得装置。   The atomic frequency acquisition apparatus according to claim 1, wherein the laser light source is a surface emitting laser light source. 請求項1から請求項3のいずれかに記載の原子周波数取得装置を備えた原子時計。

An atomic clock comprising the atomic frequency acquisition device according to any one of claims 1 to 3.

JP2005377485A 2005-12-28 2005-12-28 Atomic frequency acquisition device and atomic clock Expired - Fee Related JP4853704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377485A JP4853704B2 (en) 2005-12-28 2005-12-28 Atomic frequency acquisition device and atomic clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377485A JP4853704B2 (en) 2005-12-28 2005-12-28 Atomic frequency acquisition device and atomic clock

Publications (3)

Publication Number Publication Date
JP2007178273A true JP2007178273A (en) 2007-07-12
JP2007178273A5 JP2007178273A5 (en) 2011-05-12
JP4853704B2 JP4853704B2 (en) 2012-01-11

Family

ID=38303608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377485A Expired - Fee Related JP4853704B2 (en) 2005-12-28 2005-12-28 Atomic frequency acquisition device and atomic clock

Country Status (1)

Country Link
JP (1) JP4853704B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049623A (en) * 2007-08-17 2009-03-05 Epson Toyocom Corp Atomic oscillator
JP2009182562A (en) * 2008-01-30 2009-08-13 Epson Toyocom Corp Optical system and atomic oscillator
JP2009273088A (en) * 2008-05-12 2009-11-19 Epson Toyocom Corp Optical system and atomic oscillator
EP3100359A4 (en) * 2014-01-30 2017-01-25 Ricoh Company, Ltd. Atomic oscillator and production method thereof
US11675316B2 (en) * 2018-05-10 2023-06-13 Texas Instruments Incorporated Compact millimeter wave system
WO2024035621A1 (en) * 2022-08-08 2024-02-15 Northrop Grumman Systems Corporation Atomic clock system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158591A (en) * 1990-10-22 1992-06-01 Anritsu Corp Frequency stabilized light source
JPH0637384A (en) * 1992-07-13 1994-02-10 Anritsu Corp Light frequency stabilizing light source apparatus
JPH0676349A (en) * 1992-08-06 1994-03-18 Internatl Business Mach Corp <Ibm> Multiplex-beam optical system
US20050046851A1 (en) * 2003-09-02 2005-03-03 Riley William J. Miniature gas cell with folded optics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158591A (en) * 1990-10-22 1992-06-01 Anritsu Corp Frequency stabilized light source
JPH0637384A (en) * 1992-07-13 1994-02-10 Anritsu Corp Light frequency stabilizing light source apparatus
JPH0676349A (en) * 1992-08-06 1994-03-18 Internatl Business Mach Corp <Ibm> Multiplex-beam optical system
US20050046851A1 (en) * 2003-09-02 2005-03-03 Riley William J. Miniature gas cell with folded optics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049623A (en) * 2007-08-17 2009-03-05 Epson Toyocom Corp Atomic oscillator
JP2009182562A (en) * 2008-01-30 2009-08-13 Epson Toyocom Corp Optical system and atomic oscillator
JP2009273088A (en) * 2008-05-12 2009-11-19 Epson Toyocom Corp Optical system and atomic oscillator
EP3100359A4 (en) * 2014-01-30 2017-01-25 Ricoh Company, Ltd. Atomic oscillator and production method thereof
US11675316B2 (en) * 2018-05-10 2023-06-13 Texas Instruments Incorporated Compact millimeter wave system
WO2024035621A1 (en) * 2022-08-08 2024-02-15 Northrop Grumman Systems Corporation Atomic clock system

Also Published As

Publication number Publication date
JP4853704B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4605508B2 (en) Atomic frequency acquisition device and atomic clock
JP4292583B2 (en) Atomic frequency acquisition device and atomic clock
JP5228275B2 (en) Atomic frequency acquisition device and atomic clock
US7786808B2 (en) Micro-structured optic apparatus
US7619485B2 (en) Compact optical assembly for chip-scale atomic clock
JP4853704B2 (en) Atomic frequency acquisition device and atomic clock
JP6741072B2 (en) Atomic oscillator and electronic equipment
JP5259385B2 (en) Wavelength conversion device and image display device
JPH06224500A (en) Semiconductor laser pumping multiplex molecule gas laser
JP2005101504A (en) Laser apparatus
US6829256B2 (en) Fiber laser apparatus as well as optical multi/demultiplexer and image display apparatus therefor
US3968456A (en) Regenerative laser device
JP7319623B2 (en) quantum optics
JPH0951270A (en) Atomic frequency standard
JP2010109411A (en) Atomic oscillator
JP2015119444A (en) Quantum interference device, atomic oscillator, electronic apparatus and mobile body
JP2010003944A (en) Atomic oscillator
JP2015082763A (en) Optical module and atomic oscillator
US20230258562A1 (en) Miniature atomic spectroscopy reference cell system
EP0451278B1 (en) Synchrotron radiation excited laser
JP2009232337A (en) Optical system and atomic oscillator
JP2010283641A (en) Atomic oscillator
WO2022009701A1 (en) Atomic frequency obtaining device and atomic clock
JP2007536755A (en) Radiation emitting device with tilted pumping beam
JP2009218535A (en) Optical system, and atomic oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees